JP2011214108A - Method for manufacturing ferrous sintered material - Google Patents

Method for manufacturing ferrous sintered material Download PDF

Info

Publication number
JP2011214108A
JP2011214108A JP2010084671A JP2010084671A JP2011214108A JP 2011214108 A JP2011214108 A JP 2011214108A JP 2010084671 A JP2010084671 A JP 2010084671A JP 2010084671 A JP2010084671 A JP 2010084671A JP 2011214108 A JP2011214108 A JP 2011214108A
Authority
JP
Japan
Prior art keywords
powder
graphite
acid
sintered material
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010084671A
Other languages
Japanese (ja)
Other versions
JP5816413B2 (en
Inventor
Masaki Yanaka
雅樹 谷中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Powdered Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Powdered Metals Co Ltd filed Critical Hitachi Powdered Metals Co Ltd
Priority to JP2010084671A priority Critical patent/JP5816413B2/en
Publication of JP2011214108A publication Critical patent/JP2011214108A/en
Application granted granted Critical
Publication of JP5816413B2 publication Critical patent/JP5816413B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To economically provide a ferrous sintered material excellent in machinability in which diffusion of carbon is suppressed and graphite is dispersed, without adding an expensive boron oxide powder or boron nitride powder containing boron oxide.SOLUTION: This method for manufacturing the ferrous sintered material comprises: conducting compression molding of a powder obtained by adding, in compounding ratio, 0.05-1.5 mass% of aluminum salt of a higher fatty acid and 0.1-2.0 mass% of graphite powder with respect to an iron powder mixture that is a powder mixture for a ferrous sintered material from which the graphite powder is excluded, and exhibits a pearlite structure after sintering; and sintering the obtained green compact at a temperature equal to or higher than the diffusion temperature of carbon.

Description

本発明は、鉄系焼結材料の製造方法に係り、特に、焼結後の金属組織中に未拡散の黒鉛を分散させることにより、被削性を改善する技術に関する。   The present invention relates to a method for producing an iron-based sintered material, and more particularly to a technique for improving machinability by dispersing undiffused graphite in a sintered metal structure.

粉末冶金法による焼結材料は、ニアネットシェイプに造形することができることに加え、一度押型を作製すれば同形状の製品を多量に生産可能であり、製造コストが低廉であるという利点を有していることから、種々の分野で利用されている。しかし、高い精度が要求される部品に適用する場合は、焼結後に機械加工を要することがあり、その場合には良好な被削性が要求される。   Sintered materials by powder metallurgy can be shaped into a near net shape, and have the advantage of being able to produce a large number of products of the same shape once the stamping die is manufactured. Therefore, it is used in various fields. However, when applied to parts that require high accuracy, machining may be required after sintering, in which case good machinability is required.

したがって、このような観点から、鉄系焼結材料の被削性を向上させる目的で、種々の技術が提案されている。原料粉として硫黄を含有する鉄粉を使用したり、硫化物を原料粉に添加、混合する方法や、焼結体を硫化水素ガス雰囲気で硫化処理する方法などが採用されている(特許文献1など)。   Therefore, from such a viewpoint, various techniques have been proposed for the purpose of improving the machinability of the iron-based sintered material. A method of using iron powder containing sulfur as a raw material powder, a method of adding and mixing sulfide to the raw material powder, a method of sulfiding a sintered body in a hydrogen sulfide gas atmosphere, etc. are adopted (Patent Document 1). Such).

また、焼結合金の気孔中に樹脂などを充填する技術も提供されている(特許文献2など)。このような焼結合金では、切削加工中に気孔中の樹脂がチップブレーキングの起点となるため、切屑の分断性が良好である。   In addition, a technique for filling a resin or the like in the pores of a sintered alloy is also provided (Patent Document 2, etc.). In such a sintered alloy, the resin in the pores becomes the starting point of chip breaking during the cutting process, so that the chip breaking property is good.

黒鉛粉を含有する原料粉からなる圧粉体を炭素の拡散温度以下で焼結し、黒鉛を分散させた材料が実用に供されている(特許文献3など)。黒鉛は、固体潤滑剤としての効果があり被削性の改善に有効である。   A material in which a green compact made of a raw material powder containing graphite powder is sintered at a temperature equal to or lower than the diffusion temperature of carbon and graphite is dispersed has been put to practical use (Patent Document 3, etc.). Graphite has an effect as a solid lubricant and is effective in improving machinability.

しかしながら、快削成分である硫黄を焼結合金の基地中に分散させる方法では、被削性の改善には限界がある。また、硫黄は、焼結合金の強度を低下させる元素であり、特に、靭性を低下させる原因になるとともに、焼結合金の腐食を促進するおそれもあるので用途に制限がある。
また、焼結合金の気孔中に樹脂などを充填する方法では、樹脂などの原料コストがかかるとともに、工程も増えるため、焼結材料のコストが上昇してしまう。
炭素の拡散温度以下で焼結を行うことで黒鉛を分散させる方法では、焼結温度が低いために強度が低くなってしまい、強度が必要とされる部材に適用することができない。
However, the method of dispersing sulfur, which is a free-cutting component, in the base of the sintered alloy has a limit in improving machinability. In addition, sulfur is an element that reduces the strength of the sintered alloy, and in particular, it causes a decrease in toughness and may promote corrosion of the sintered alloy, so that its use is limited.
Further, in the method of filling the pores of the sintered alloy with a resin or the like, the cost of the raw material for the resin or the like is increased and the number of processes is increased, so that the cost of the sintered material is increased.
In the method of dispersing graphite by performing sintering at a temperature equal to or lower than the carbon diffusion temperature, the sintering temperature is low, so the strength is low, and it cannot be applied to a member that requires strength.

そこで、本出願人は、炭素の拡散温度以上で焼結しても黒鉛を基地中に分散させることができる材料として、黒鉛粉末を0.1〜2.0質量%含む鉄系混合粉末に酸化硼素を0.01〜1.0質量%添加した混合粉末からなる圧粉体を焼結した、炭素の拡散が抑制されフェライトとパーライトからなる基地組織中に黒鉛が分散した鉄系焼結材料を提案している(特許文献4参照)。   Therefore, the present applicant oxidized iron-based mixed powder containing 0.1 to 2.0% by mass of graphite powder as a material capable of dispersing graphite in the matrix even when sintered at a temperature higher than the diffusion temperature of carbon. An iron-based sintered material obtained by sintering a green compact composed of a mixed powder to which 0.01 to 1.0% by mass of boron is added, in which carbon diffusion is suppressed and graphite is dispersed in a base structure composed of ferrite and pearlite. It has been proposed (see Patent Document 4).

特開平5−179409号公報JP-A-5-179409 特開2002−285293号公報JP 2002-285293 A 特開昭61−243156号公報JP-A-61-243156 特開平9−241701号公報Japanese Patent Laid-Open No. 9-241701

上記の特許文献4の鉄系焼結材料は、焼結温度を高くしても基地中への炭素の拡散が酸化硼素によって抑制され、鉄系焼結合金の基地硬さを低下させて被削性を向上させることができるが、原料粉末に高価な酸化硼素粉末または酸化硼素を含有する窒化硼素粉末を添加するため、原料コストが上昇してしまう。そのため、低廉な製造方法が求められている。   In the iron-based sintered material of Patent Document 4 described above, even when the sintering temperature is increased, the diffusion of carbon into the matrix is suppressed by boron oxide, and the hardness of the iron-based sintered alloy is reduced, thereby reducing the work. However, since expensive boron oxide powder or boron nitride powder containing boron oxide is added to the raw material powder, the raw material cost increases. Therefore, an inexpensive manufacturing method is required.

そこで、本発明は、炭素の拡散を抑制して黒鉛を分散させた被削性に優れる鉄系焼結材料を経済的に提供することを目的とする。   Therefore, an object of the present invention is to economically provide an iron-based sintered material excellent in machinability in which graphite is dispersed by suppressing carbon diffusion.

上記の目的を達成するため、本発明は、焼結後にパーライト組織を呈する鉄系焼結材料用の粉末混合物より黒鉛粉末を除いた鉄系粉末混合物に対し、配合比で、高級脂肪酸のアルミニウム塩粉末を0.05〜1.5質量%と、黒鉛粉末を0.1〜2.0質量%とを添加した粉末混合物からなる圧粉体を炭素の拡散温度以上の温度で焼結することにより、鉄系焼結材料を得ることを特徴とする。   In order to achieve the above object, the present invention provides an aluminum salt of a higher fatty acid in a mixing ratio with respect to an iron-based powder mixture obtained by removing graphite powder from a powder mixture for an iron-based sintered material that exhibits a pearlite structure after sintering. By sintering a green compact made of a powder mixture to which 0.05 to 1.5% by mass of powder and 0.1 to 2.0% by mass of graphite powder are added at a temperature equal to or higher than the diffusion temperature of carbon. An iron-based sintered material is obtained.

本発明によれば、原料粉末に高価な酸化硼素粉末または酸化硼素を含有する窒化硼素粉末を添加することなく、焼結後の金属組織中に未拡散の黒鉛が分散した組織を有して被削性に優れる鉄系焼結合金を得ることができる。   According to the present invention, an expensive boron oxide powder or boron nitride powder containing boron oxide is not added to the raw material powder, and the sintered metal structure has a structure in which undiffused graphite is dispersed. An iron-based sintered alloy having excellent machinability can be obtained.

本発明者は、炭素の拡散を抑制させ黒鉛を分散させた焼結材料を得るため検討を重ねた結果、高級脂肪酸のアルミニウム塩粉末と黒鉛粉末とを添加することにより、黒鉛の拡散が抑制され、フェライトとパーライトからなる基地組織中に黒鉛が分散した組織となって、被削性に優れる鉄系焼結合金を製造することができることを見出した。   As a result of repeated investigations to obtain a sintered material in which graphite is dispersed by suppressing carbon diffusion, the present inventor has suppressed the diffusion of graphite by adding a higher fatty acid aluminum salt powder and graphite powder. It has been found that an iron-based sintered alloy having excellent machinability can be produced by forming a structure in which graphite is dispersed in a matrix structure composed of ferrite and pearlite.

次に、本発明の成分組成について説明する。高級脂肪酸のアルミニウム塩粉末の量は、0.05質量%未満では黒鉛の拡散を抑制させずに鉄系焼結合金はパーライト組織となる。また、1.5質量%を超えて添加してもこれ以上の炭素の拡散抑制効果は見られないばかりでなく、混合粉末の理論密度を低下させて圧粉体の密度が高くできないため、材料強度を低下させるとともに、混合粉末の流動性を低下させるため、金型への充填性を悪化させる。このため、高級脂肪酸のアルミニウム塩粉末の最適添加量の範囲を、0.05〜1.5質量%とした。なお、この粉末は通常用いられる平均粒径1〜30μm程度のものであればよい。平均粒径が1μm未満であると、凝集しやすくなり、30μmを超えると混合粉末中での均一分散が困難になる。   Next, the component composition of the present invention will be described. If the amount of the higher fatty acid aluminum salt powder is less than 0.05% by mass, the iron-based sintered alloy has a pearlite structure without suppressing the diffusion of graphite. Moreover, even if added over 1.5% by mass, not only the carbon diffusion suppression effect is not seen any more, but also the density of the green compact cannot be increased by lowering the theoretical density of the mixed powder. In order to reduce the strength and the fluidity of the mixed powder, the filling property into the mold is deteriorated. For this reason, the range of the optimal addition amount of the aluminum salt powder of the higher fatty acid was set to 0.05 to 1.5% by mass. In addition, this powder should just be a thing with the average particle diameter of about 1-30 micrometers normally used. When the average particle size is less than 1 μm, aggregation tends to occur, and when it exceeds 30 μm, uniform dispersion in the mixed powder becomes difficult.

また、高級脂肪酸のアルミニウム塩を構成する高級脂肪酸は、ステアリン酸、12−ヒドロキシステアリン酸、ラウリン酸、ミリスチン酸、パルミチン酸、リシノール酸、ベヘン酸の少なくとも1種であると、混合粉末の圧粉成形時に潤滑剤としても作用するため、成形潤滑剤を別途添加する必要も無く、原料コストおよび混合粉末の理論密度の両面で好ましい。なお、圧粉成形金型から圧粉体を抜き出す際の潤滑性が不足する場合には、他の潤滑剤を併せて添加してもよいが、混合粉末の理論密度が低下するため、添加量は、高級脂肪酸のアルミニウム塩との合計で1.5質量%以下であることが好ましい。   The higher fatty acid constituting the higher fatty acid aluminum salt is at least one of stearic acid, 12-hydroxystearic acid, lauric acid, myristic acid, palmitic acid, ricinoleic acid, and behenic acid. Since it also acts as a lubricant during molding, it is not necessary to add a molding lubricant separately, which is preferable in terms of both raw material cost and the theoretical density of the mixed powder. In addition, if the lubricity when extracting the green compact from the green compacting mold is insufficient, other lubricants may be added together, but the added amount because the theoretical density of the mixed powder decreases. Is preferably 1.5% by mass or less in total with the aluminum salt of the higher fatty acid.

また、黒鉛粉末の添加量は、0.1質量%未満では基地中に拡散する炭素の量が少なく所望の強度が得られないばかりでなく、未拡散の黒鉛量も少なく被削性改善の効果が少ない。また、2.0質量%を超えて添加した場合は、パーライト組織となり被削性を低下させるため、高級脂肪酸のアルミニウム塩粉末の添加量を多くする必要があるが、その被削性改善におよぼす効果は少ないため、黒鉛の最適添加量の範囲を0.1〜2.0質量%とした。   Further, if the amount of graphite powder added is less than 0.1% by mass, not only the amount of carbon diffusing into the matrix is small and the desired strength cannot be obtained, but also the amount of undiffused graphite is small and the effect of improving machinability. Less is. Moreover, when added over 2.0% by mass, it becomes a pearlite structure and the machinability is lowered, so it is necessary to increase the amount of aluminum salt powder of higher fatty acid, but this will improve the machinability. Since the effect is small, the range of the optimum addition amount of graphite is set to 0.1 to 2.0% by mass.

表1に示す配合比で原料粉末を用意し、これをV型ミキサーで30分間混合した後に、混合粉末を密度6.8Mg/mに圧粉成形し、外径50mm、内径30mm、高さ25mmの圧粉体を各5個づつ作製した。次いで、それぞれの圧粉体を1130℃の還元性ガス(分解アンモニアガス)雰囲気で30分間加熱して焼結した。ここでは、高級脂肪酸のアルミニウム塩としてステアリン酸アルミニウム(Al−St)を用いた。また、ステアリン酸アルミニウムを含まない試料1および試料8については、圧粉成形用の潤滑剤としてステアリン酸亜鉛(Zn−St)を添加した。 After preparing the raw material powder with the blending ratio shown in Table 1 and mixing it with a V-type mixer for 30 minutes, the mixed powder is compacted to a density of 6.8 Mg / m 3 and has an outer diameter of 50 mm, an inner diameter of 30 mm, and a height. Five pieces of 25 mm green compacts were produced. Subsequently, each green compact was sintered by heating in a reducing gas (decomposed ammonia gas) atmosphere at 1130 ° C. for 30 minutes. Here, aluminum stearate (Al-St) was used as the aluminum salt of the higher fatty acid. Moreover, about the sample 1 and the sample 8 which do not contain aluminum stearate, zinc stearate (Zn-St) was added as a lubricant for compacting.

各焼結体に対して切削試験を行い、工具刃先の逃げ面摩耗幅を工具摩耗量として評価した。切削試験は、ダイヤモンド製のスローアウエイチップを用いてNC旋盤で行い、切削速度を300mm/分、送りを0.03mm/rev、切込量を0.10mmとし、水溶性切削油を用いて4000mの距離を切削した。工具逃げ面を、切削距離800m、1600m、2400m、3200mおよび4000mにおいて走査型電子顕微鏡(SEM)で観察して、工具摩耗量を測定した。測定結果を表1に併せて示した。   A cutting test was performed on each sintered body, and the flank wear width of the tool edge was evaluated as the amount of tool wear. The cutting test was performed on an NC lathe using a diamond throwaway tip, the cutting speed was 300 mm / min, the feed was 0.03 mm / rev, the depth of cut was 0.10 mm, and water-soluble cutting oil was used to make 4000 m. Cut the distance. The tool flank face was observed with a scanning electron microscope (SEM) at cutting distances of 800 m, 1600 m, 2400 m, 3200 m, and 4000 m to measure the amount of tool wear. The measurement results are also shown in Table 1.

Figure 2011214108
Figure 2011214108

試料1〜8の結果から、ステアリン酸アルミニウムを0.05質量%以上添加することで、ステアリン酸亜鉛を添加した試料1よりも工具摩耗量が著しく少なくなることが判った。また、本発明によれば、特許文献4に記載の被削性改善材である試料8と同等以上の被削性が得られることが確認された。ただし、ステアリン酸アルミニウムの添加量が1.5質量%を上回る試料7では、被削性は良好であるが混合粉末の理論密度が低下し、圧粉体の高密度化による強度向上ができないとともに、混合粉末の流動性が低下して金型への充填性が悪化することが確認された。このことから、高級脂肪酸のアルミニウム塩の添加量は、0.05〜1.5質量%が好ましいことが判った。   From the results of Samples 1 to 8, it was found that the amount of tool wear was remarkably reduced by adding 0.05% by mass or more of aluminum stearate as compared with Sample 1 to which zinc stearate was added. Moreover, according to this invention, it was confirmed that the machinability equivalent to or more than the sample 8 which is a machinability improving material described in Patent Document 4 can be obtained. However, in Sample 7 in which the amount of aluminum stearate added exceeds 1.5 mass%, the machinability is good, but the theoretical density of the mixed powder is lowered, and the strength cannot be improved by increasing the density of the green compact. It was confirmed that the fluidity of the mixed powder was lowered and the filling property into the mold was deteriorated. From this, it was found that the addition amount of the higher fatty acid aluminum salt is preferably 0.05 to 1.5% by mass.

ステアリン酸アルミニウムとステアリン酸亜鉛は、ともにステアリン酸の金属塩であるが、ステアリン酸亜鉛には鉄系焼結合金基地への黒鉛の拡散を抑制する効果がない。従って、そのメカニズムは未解明であるが、アルミニウムが何らかの作用により鉄系焼結合金基地への黒鉛の拡散を抑制しているものと推定される。   Both aluminum stearate and zinc stearate are metal salts of stearic acid, but zinc stearate has no effect of suppressing the diffusion of graphite into the iron-based sintered alloy matrix. Therefore, although the mechanism is not yet elucidated, it is presumed that aluminum suppresses the diffusion of graphite to the iron-based sintered alloy matrix by some action.

試料9〜14の結果から、黒鉛を0.1質量%以上添加することで、黒鉛を添加しない試料9よりも工具摩耗量が著しく少なくなることが判った。また、黒鉛添加量が2.0質量%を上回る試料14では、パーライトが生成されたために工具摩耗量が増加した。このことから、黒鉛の添加量は、0.1〜2.0質量%が好ましいことが判った。   From the results of Samples 9 to 14, it was found that the amount of tool wear was remarkably reduced by adding 0.1% by mass or more of graphite as compared with Sample 9 to which no graphite was added. Further, in Sample 14 in which the amount of graphite added exceeds 2.0% by mass, tool wear increased because pearlite was generated. From this, it was found that the addition amount of graphite is preferably 0.1 to 2.0% by mass.

Claims (2)

焼結後にパーライト組織を呈する鉄系焼結材料用の粉末混合物より黒鉛粉末を除いた鉄系粉末混合物に対し、配合比で、高級脂肪酸のアルミニウム塩を0.05〜1.5質量%と、黒鉛粉末を0.1〜2.0質量%とを添加した粉末を圧縮成形し、得られた圧粉体を炭素の拡散温度以上の温度で焼結する鉄系焼結材料の製造方法。   With respect to the iron-based powder mixture obtained by removing the graphite powder from the powder mixture for iron-based sintered material exhibiting a pearlite structure after sintering, 0.05 to 1.5 mass% of a higher fatty acid aluminum salt in a compounding ratio, A method for producing an iron-based sintered material, in which a powder obtained by adding 0.1 to 2.0% by mass of graphite powder is compression-molded, and the obtained green compact is sintered at a temperature equal to or higher than the diffusion temperature of carbon. 前記高級脂肪酸のアルミニウム塩を構成する高級脂肪酸が、ステアリン酸、12−ヒドロキシステアリン酸、ラウリン酸、ミリスチン酸、パルミチン酸、リシノール酸、ベヘン酸の少なくとも1種であることを特徴とする請求項1に記載の鉄系焼結材料の製造方法。   The higher fatty acid constituting the aluminum salt of the higher fatty acid is at least one of stearic acid, 12-hydroxystearic acid, lauric acid, myristic acid, palmitic acid, ricinoleic acid, and behenic acid. The manufacturing method of the iron-type sintered material as described in 2.
JP2010084671A 2010-03-31 2010-03-31 Method for producing ferrous sintered material Active JP5816413B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010084671A JP5816413B2 (en) 2010-03-31 2010-03-31 Method for producing ferrous sintered material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010084671A JP5816413B2 (en) 2010-03-31 2010-03-31 Method for producing ferrous sintered material

Publications (2)

Publication Number Publication Date
JP2011214108A true JP2011214108A (en) 2011-10-27
JP5816413B2 JP5816413B2 (en) 2015-11-18

Family

ID=44944149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010084671A Active JP5816413B2 (en) 2010-03-31 2010-03-31 Method for producing ferrous sintered material

Country Status (1)

Country Link
JP (1) JP5816413B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104550908A (en) * 2014-12-25 2015-04-29 铜陵市经纬流体科技有限公司 Cracking-resistant iron-base powder metallurgy material used for valve and preparation method of cracking-resistant iron-base powder metallurgy material
CN104550922A (en) * 2014-12-25 2015-04-29 铜陵市经纬流体科技有限公司 Powder metallurgy material for high-finish-degree valve and preparation method of powder metallurgy material
KR20190119353A (en) * 2018-04-12 2019-10-22 한국과학기술원 Boron-nitride nanoplatelets/metal nanocomposite powder and method of manufacturing thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58126959A (en) * 1982-01-22 1983-07-28 Mitsubishi Metal Corp Sintered material having cast iron structure and its manufacture
JPH09241701A (en) * 1996-03-05 1997-09-16 Hitachi Powdered Metals Co Ltd Powdery mixture for iron based sintering material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58126959A (en) * 1982-01-22 1983-07-28 Mitsubishi Metal Corp Sintered material having cast iron structure and its manufacture
JPH09241701A (en) * 1996-03-05 1997-09-16 Hitachi Powdered Metals Co Ltd Powdery mixture for iron based sintering material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104550908A (en) * 2014-12-25 2015-04-29 铜陵市经纬流体科技有限公司 Cracking-resistant iron-base powder metallurgy material used for valve and preparation method of cracking-resistant iron-base powder metallurgy material
CN104550922A (en) * 2014-12-25 2015-04-29 铜陵市经纬流体科技有限公司 Powder metallurgy material for high-finish-degree valve and preparation method of powder metallurgy material
KR20190119353A (en) * 2018-04-12 2019-10-22 한국과학기술원 Boron-nitride nanoplatelets/metal nanocomposite powder and method of manufacturing thereof
KR102191865B1 (en) 2018-04-12 2020-12-17 한국과학기술원 Boron-nitride nanoplatelets/metal nanocomposite powder and method of manufacturing thereof

Also Published As

Publication number Publication date
JP5816413B2 (en) 2015-11-18

Similar Documents

Publication Publication Date Title
JP4844693B2 (en) Iron-based powder mixture, iron-based powder molded body, and method for producing iron-based powder sintered body
RU2524510C2 (en) Production of diffusion-alloyed iron powder or iron-based powder, diffusion-alloyed powder, composition including diffusion-alloyed powder, compacted and sintered part made thereof
JP5696512B2 (en) Mixed powder for powder metallurgy, method for producing the same, iron-based powder sintered body having excellent machinability, and method for producing the same
TWI769130B (en) Powder metal composition for easy machining
JP2010111937A (en) High-strength composition iron powder and sintered component using the same
CN1442257A (en) Manufacturing method of high density iron base forging part
JP5504971B2 (en) Mixed powder for powder metallurgy and sintered metal powder with excellent machinability
JP5504963B2 (en) Mixed powder for powder metallurgy and sintered metal powder with excellent machinability
JP2017179388A (en) Powder for sintering and sintered body
JP5741649B2 (en) Iron-based powder mixture
JP5816413B2 (en) Method for producing ferrous sintered material
JP2016222942A (en) Mixed powder for iron-based powder metallurgy and sintered body manufactured by using the same
RU2735532C2 (en) Powdered metal composition for easy processing by cutting
JP4839275B2 (en) Mixed powder for powder metallurgy and sintered iron powder
JP2014111844A (en) Iron based mixed powder for sintered member excellent in machinability
JP2009242887A (en) Iron-based powdery mixture
JP4935731B2 (en) Iron-based powder mixture
JP2014025109A (en) Mixed powder for powder metallurgy
JP2018090854A (en) Mixed powder for iron-based powder metallurgy and method for producing sintered body
JP5504863B2 (en) Mixed powder for powder metallurgy and sintered metal powder with excellent machinability
CN111344090B (en) Mixed powder for powder metallurgy
JP5310074B2 (en) Iron-based powder mixture for high-strength sintered parts of automobiles
KR102348200B1 (en) Mixed powder for powder metallurgy
CN112368408A (en) Iron-based sintered member, iron-based powder mixture, and method for producing iron-based sintered member
JP2004083948A (en) Ferrous sintered alloy having excellent machinability and production method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140523

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20140526

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150819

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150928

R151 Written notification of patent or utility model registration

Ref document number: 5816413

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350