JP2011213897A - Pipe heat insulating material and method for manufacturing the same - Google Patents

Pipe heat insulating material and method for manufacturing the same Download PDF

Info

Publication number
JP2011213897A
JP2011213897A JP2010084087A JP2010084087A JP2011213897A JP 2011213897 A JP2011213897 A JP 2011213897A JP 2010084087 A JP2010084087 A JP 2010084087A JP 2010084087 A JP2010084087 A JP 2010084087A JP 2011213897 A JP2011213897 A JP 2011213897A
Authority
JP
Japan
Prior art keywords
polylactic acid
foam
acid resin
insulating material
heat insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010084087A
Other languages
Japanese (ja)
Inventor
Satomi Harada
里美 原田
Katsunori Nishijima
克典 西嶋
Yasuhiro Ono
靖裕 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Kasei Co Ltd
Original Assignee
Sekisui Plastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Plastics Co Ltd filed Critical Sekisui Plastics Co Ltd
Priority to JP2010084087A priority Critical patent/JP2011213897A/en
Publication of JP2011213897A publication Critical patent/JP2011213897A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a pipe heat insulating material, which is made from a raw material except for petroleum-based raw materials and has functions equal or superior to those of conventional products.SOLUTION: The pipe heat insulating material comprises a foam molded article of a polylactic acid-based resin, manufactured by in-mold foam molding of a polylactic acid-based resin foamed material. The polylactic acid-based foamed material contains at least a polylactic acid-based resin. The polylactic acid-based resin shows exothermic peaks derived from crystallization in the measurement by using a differential scanning calorimeter. When the exothermic peaks are segmented, from the low temperature side, into first, second, third and fourth segments, the peaks are in such figures that (1) the total calorific value of the first, second, third and fourth segments is 10 J/g or more and that (2) the percentage of the total calorific value of the first, third and fourth segments with respect to the total calorific value of the first, second, third and fourth segments is 45% or more.

Description

本発明は、主として給水・給湯用のパイプ配管を保温するのに用いられる配管保温材及びその製造方法に関する。更に詳しくは、外観及び耐熱性に優れたポリ乳酸系樹脂発泡成形体を用いた配管保温材及びその製造方法に関する。   TECHNICAL FIELD The present invention relates to a pipe heat insulating material mainly used for keeping warm pipe pipes for water supply and hot water supply and a method for manufacturing the same. More specifically, the present invention relates to a pipe heat insulating material using a polylactic acid resin foam molded article having excellent appearance and heat resistance, and a method for producing the same.

冷水源あるいは温水源から建物の内外にわたって給水・給湯用のパイプが配管され、冷水・温水が消費場所まで導かれる。管路での熱損失を少なくするために、給水・給湯用のパイプには保温材が取り付けられる。このような保温材には、ヒートポンプタイプエアコンの高温熱媒配管部に用いられても耐え得るような耐熱性、断熱厚みを有することが求められる。このような機能をコスト低減しつつ改善して行く取り組みがなされてきた。   Pipes for water supply and hot water supply are provided from the cold water source or hot water source to the inside and outside of the building, and cold water and hot water are led to the consumption place. In order to reduce heat loss in the pipeline, a heat insulating material is attached to the pipe for water supply and hot water supply. Such a heat insulating material is required to have heat resistance and heat insulation thickness that can withstand even when used in a high-temperature heat medium piping part of a heat pump type air conditioner. Efforts have been made to improve such functions while reducing costs.

このような、配管保温材の従来技術としては、無架橋ポリプロピレン系樹脂の押出筒状発泡体を用いた配管保温材が知られている(特許文献1参照)。   As a prior art of such a pipe heat insulating material, a pipe heat insulating material using an extruded tubular foam of non-crosslinked polypropylene resin is known (see Patent Document 1).

特開平9−25353号公報Japanese Patent Laid-Open No. 9-25353

特許文献1にかかる発明は、ポリプロピレン系樹脂発泡成型体を利用したものである。しかし、配管保温材の全生産量は膨大な数に昇るので、たとえポリプロピレン系樹脂がリサイクル可能であるとしても、環境や資源という観点から石油由来原料以外の自然循環型の再生可能材料により、従来品と同程度以上の製品を製造することが必要とされる。本発明は、石油由来原料以外の自然循環型の再生可能材料を用いることにより環境や資源の問題を解決し、かつ従来品と同程度以上の機能を有する配管保温材を提供することをその課題とする。   The invention according to Patent Document 1 uses a polypropylene resin foam molded body. However, the total production volume of piping insulation materials is enormous, so even if polypropylene resin is recyclable, from the viewpoint of environment and resources, natural circulation type renewable materials other than petroleum-derived raw materials have It is necessary to produce a product that is at least as good as the product. The object of the present invention is to solve environmental and resource problems by using natural circulation type renewable materials other than petroleum-derived raw materials, and to provide a pipe heat insulating material having a function equivalent to or higher than that of conventional products. And

本発明の発明者等は、鋭意検討の結果、示差走査熱量計で測定した際に結晶化由来の発熱ピークの一部が低温側にシフトしたポリ乳酸系樹脂を含むポリ乳酸系樹脂発泡体であれば、外観、融着性及び耐熱性に優れた配管保温材を得られること意外にも見出すことで本発明に至った。   As a result of intensive studies, the inventors of the present invention are polylactic acid resin foams containing a polylactic acid resin in which a part of an exothermic peak derived from crystallization is shifted to a low temperature side when measured with a differential scanning calorimeter. If present, the present invention has been achieved by surprisingly finding that a pipe heat insulating material excellent in appearance, fusion property and heat resistance can be obtained.

かくして本発明によれば、ポリ乳酸系樹脂発泡体を型内発泡成形したポリ乳酸系樹脂発泡成形体からなる配管保温材であって、該ポリ乳酸系樹脂発泡体がポリ乳酸系樹脂を少なくとも含み、前記ポリ乳酸系樹脂が示差走査熱量計で測定した際に結晶化由来の発熱ピークを有し、
前記発熱ピークは、それを温度の低い方から第1、第2、第3及び第4の区分に四等分した場合、
(1)第1、第2、第3及び第4の区分の発熱量の合計が10J/g以上であり、
(2)第1、第2、第3及び第4の区分の発熱量の合計に対して、第1、第3及び第4の区分の発熱量の合計が45%以上である形状を有するポリ乳酸系樹脂発泡体からなることを特徴とする配管保温材が提供される。
Thus, according to the present invention, there is provided a pipe heat insulating material comprising a polylactic acid resin foam molded body obtained by in-mold foam molding of a polylactic acid resin foam, wherein the polylactic acid resin foam contains at least a polylactic acid resin. The polylactic acid resin has an exothermic peak derived from crystallization when measured with a differential scanning calorimeter,
The exothermic peak is divided into four equal parts in the first, second, third and fourth sections from the lower temperature,
(1) The total calorific value of the first, second, third and fourth sections is 10 J / g or more,
(2) Poly having a shape in which the total amount of heat generated in the first, third, and fourth sections is 45% or more of the total amount of heat generated in the first, second, third, and fourth sections A piping heat insulating material comprising a lactic acid resin foam is provided.

また、本発明によれば、上記の配管保温材の製造方法であって、
0.05〜0.5g/cm3の嵩密度のポリ乳酸系樹脂1次発泡体をガラス転移温度(Tg)−20℃〜ガラス転移温度(Tg)+5℃の温度範囲で10〜300秒間加熱することで発泡させて、0.02〜0.2g/cm3の嵩密度のポリ乳酸系樹脂高倍発泡体を得ることを特徴とする配管保温材の製造方法が提供される。
Further, according to the present invention, there is provided a method for producing the above-mentioned pipe heat insulating material,
A polylactic acid resin primary foam having a bulk density of 0.05 to 0.5 g / cm 3 is heated for 10 to 300 seconds in a temperature range of glass transition temperature (Tg) −20 ° C. to glass transition temperature (Tg) + 5 ° C. Thus, a method for producing a pipe heat insulating material is provided which is foamed to obtain a polylactic acid resin high-magnification foam having a bulk density of 0.02 to 0.2 g / cm 3 .

本発明による配管保温材は、型内成形時に速やかに結晶化度を上昇できるポリ乳酸系樹脂発泡体からなるので、外観、融着性及び耐熱性に優れた配管保温材を提供できる。   Since the pipe heat insulating material according to the present invention is made of a polylactic acid resin foam that can quickly increase the crystallinity during in-mold molding, it is possible to provide a pipe heat insulating material that is excellent in appearance, fusion property, and heat resistance.

更に、第1、第2、第3及び第4の区分の発熱量の合計が12J/g以上であり、
第1、第2、第3及び第4の区分の発熱量の合計に対して、第1、第3及び第4の区分の発熱量の合計が50%以上である場合、外観、融着性及び耐熱性をより向上できる。
Furthermore, the total amount of heat generated in the first, second, third and fourth sections is 12 J / g or more,
When the total amount of heat generated in the first, second, third, and fourth sections is 50% or more with respect to the total amount of heat generated in the first, second, third, and fourth sections, the appearance and fusion properties And heat resistance can be improved more.

また、ポリ乳酸系樹脂が、乳酸又はラクチドのD体及びL体の双方の光学異性体からなるモノマー成分を含有しかつD体又はL体のうちの少ない方の光学異性体の含有量が5モル%未満であるか、あるいは、D体又はL体のうちのいずれか一方の光学異性体からなるモノマー成分のみに由来する場合、外観、融着性及び耐熱性をより向上できる。   The polylactic acid-based resin contains a monomer component composed of both optical isomers of lactic acid or lactide in the D-form and L-form, and the content of the smaller optical isomer of the D-form or L-form is 5 When it is less than mol% or is derived only from the monomer component consisting of either one of the optical isomers of D-form and L-form, the appearance, fusion property and heat resistance can be further improved.

更に、ポリ乳酸系樹脂が、30J/g以上の結晶融解の吸熱ピークの吸熱量を有する場合、外観、融着性及び耐熱性をより向上できる。   Furthermore, when the polylactic acid-based resin has an endothermic amount of an endothermic peak of crystal melting of 30 J / g or more, it is possible to further improve the appearance, the fusibility and the heat resistance.

また、ポリ乳酸系樹脂発泡体が、0.05〜0.5g/cm3の嵩密度のポリ乳酸系樹脂1次発泡体を加熱することで発泡して得られた0.02〜0.2g/cm3の嵩密度のポリ乳酸系樹脂高倍発泡体である場合、外観、融着性及び耐熱性をより向上できる。 Further, polylactic acid resin foam, obtained by foaming by heating the polylactic acid resin primary foam bulk density of 0.05~0.5g / cm 3 0.02~0.2g In the case of a polylactic acid resin high-magnification foam having a bulk density of / cm 3 , the appearance, fusing property and heat resistance can be further improved.

更に、0.05〜0.5g/cm3の嵩密度のポリ乳酸系樹脂1次発泡体をガラス転移温度(Tg)−20℃〜ガラス転移温度(Tg)+5℃の温度範囲で10〜300秒間加熱することで発泡させて、ポリ乳酸系樹脂発泡体として、0.02〜0.2g/cm3の嵩密度のポリ乳酸系樹脂高倍発泡体を得る場合、外観、融着性及び耐熱性をより向上可能な配管保温材を簡便に製造できる。 Furthermore, the polylactic acid resin primary foam having a bulk density of 0.05 to 0.5 g / cm 3 is 10 to 300 in a temperature range of glass transition temperature (Tg) −20 ° C. to glass transition temperature (Tg) + 5 ° C. When it is foamed by heating for 2 seconds to obtain a polylactic acid resin high-magnification foam having a bulk density of 0.02 to 0.2 g / cm 3 as a polylactic acid resin foam, appearance, fusing property and heat resistance It is possible to easily manufacture a pipe heat insulating material that can improve the temperature.

発泡粒子の製造装置の一例を示した模式断面図である。It is the schematic cross section which showed an example of the manufacturing apparatus of an expanded particle. マルチノズル金型を正面から見た模式図である。It is the schematic diagram which looked at the multi-nozzle mold from the front. 実施例1のDSC曲線である。2 is a DSC curve of Example 1. 実施例2のDSC曲線である。2 is a DSC curve of Example 2. 比較例1のDSC曲線である。2 is a DSC curve of Comparative Example 1. 比較例2のDSC曲線である。3 is a DSC curve of Comparative Example 2.

(発熱ピーク)
本発明による配管保温材は、特定の示差走査熱量計(DSC)で測定した際に結晶化由来の発熱ピーク(非結晶から結晶へ遷移する際の発熱量に対応)を有するポリ乳酸系樹脂発泡体からなる。具体的には、この発熱ピークは、それを温度の低い方から第1、第2、第3及び第4の区分に四等分した場合、
(1)第1、第2、第3及び第4の区分の発熱量(以下、全発熱量ともいう)の合計が10J/g以上であり、
(2)第1、第2、第3及び第4の区分の発熱量の合計に対して、第1、第3及び第4の区分の発熱量の合計が45%以上である
形状を有している。要するに、構成(1)で発熱ピークの大きさが特定され、構成(2)で発熱ピークの横の広がりが特定されている。なお、全発熱量及び発熱量は絶対値であり、発熱ピークの面積に対応している。また、結晶化由来の発熱ピークは、ポリ乳酸系樹脂の種類によっても異なるが、通常60〜110℃の範囲に発現する。
(Exothermic peak)
The heat insulating material for piping according to the present invention has a polylactic acid resin foam having an exothermic peak derived from crystallization (corresponding to an exothermic amount at the time of transition from amorphous to crystalline) when measured with a specific differential scanning calorimeter (DSC) Consists of the body. Specifically, this exothermic peak is divided into the first, second, third and fourth divisions from the lower temperature,
(1) The sum of the calorific values (hereinafter also referred to as total calorific values) of the first, second, third and fourth sections is 10 J / g or more,
(2) A shape in which the total amount of heat generated in the first, third, and fourth sections is 45% or more of the total amount of heat generated in the first, second, third, and fourth sections. ing. In short, the size of the exothermic peak is specified in the configuration (1), and the lateral extension of the exothermic peak is specified in the configuration (2). Note that the total calorific value and calorific value are absolute values and correspond to the area of the exothermic peak. Moreover, although the exothermic peak derived from crystallization differs depending on the type of polylactic acid resin, it usually appears in the range of 60 to 110 ° C.

なお、発泡体は、粒子状であっても、粒子の集合体状であってもよいが、粒子状であることが後の発泡成形の際の取り扱いが容易であるため好ましい。
ところで、上記特許文献中には結晶性ポリ乳酸樹脂に用いた場合が例示されている。しかし、発明者等が、実際に特許文献に例示された方法をD体量が5モル%以下の高結晶性ポリ乳酸樹脂に用いた場合、発泡剤として用いる炭酸ガスの可塑効果によりポリ乳酸樹脂の結晶化度が上がってしまい、水蒸気で加熱しても発泡できないことを確認している(比較例3及び4参照)。
The foam may be in the form of particles or an aggregate of particles. However, it is preferable that the foam is in the form of particles because it is easy to handle in subsequent foam molding.
By the way, the case where it uses for crystalline polylactic acid resin is illustrated in the said patent document. However, when the inventors actually used the method exemplified in the patent literature for a highly crystalline polylactic acid resin having a D-form amount of 5 mol% or less, the polylactic acid resin is produced by the plasticizing effect of carbon dioxide used as a foaming agent. It has been confirmed that foaming cannot be performed even when heated with water vapor (see Comparative Examples 3 and 4).

(1)発熱ピークの大きさ(全発熱量)
全発熱量が10J/gより小さいと、結晶化度が上昇しているため型内成形時にポリ乳酸系樹脂発泡体同士の熱融着性が低下して、得られる発泡成形体の機械的強度及び外観が低下する。好ましい全発熱量は12J/g以上であり、より好ましい全発熱量は14J/g以上である。また、全発熱量が大きいと結晶化が完了するまでに時間がかかるため、全発熱量の上限は、35J/gであることが好ましい。
(1) Exothermic peak size (total calorific value)
If the total calorific value is less than 10 J / g, the degree of crystallinity is increased, so that the heat-fusability between the polylactic acid resin foams is reduced during in-mold molding, and the mechanical strength of the resulting foam molded article And the appearance deteriorates. A preferable total heat generation amount is 12 J / g or more, and a more preferable total heat generation amount is 14 J / g or more. Moreover, since it takes time until crystallization is completed when the total calorific value is large, the upper limit of the total calorific value is preferably 35 J / g.

(2)発熱ピークの横の広がり
一般に結晶性ポリ乳酸樹脂の発熱ピークは一山の略三角形形状を示す。これに対して、本発明の発泡体を構成するポリ乳酸系樹脂は、上記一山の発熱ピークと、それより低温側に更に他の発熱ピークを発現させた二山又は二山が合成された略台形形状や略半円形状を示す。低温側の他の発熱ピークについては、まだ化学的に解明されていない。しかし、発明者等は、ポリ乳酸系樹脂が加熱及び発泡による樹脂の延伸の作用により、ごく軽微に結晶化した結晶前駆体に由来する発熱ピークであると考えている(結晶前駆体を含む発泡体を改質発泡体と称する)。発明者等は、この低温側の発熱ピークが、一般的な一山の発熱ピークを有するポリ乳酸系樹脂に比べて、比較的速やかな結晶化に寄与する、と考えている。
(2) Horizontal extension of exothermic peak Generally, the exothermic peak of crystalline polylactic acid resin has a substantially triangular shape. On the other hand, in the polylactic acid resin constituting the foam of the present invention, two peaks or two peaks in which the above-described peak of heat generation and another peak of heat generation were further developed on the lower temperature side were synthesized. A substantially trapezoidal shape or a substantially semicircular shape is shown. Other exothermic peaks on the low temperature side have not been chemically elucidated yet. However, the inventors believe that the polylactic acid-based resin is an exothermic peak derived from a crystal precursor crystallized very slightly by the action of stretching of the resin by heating and foaming (foaming including a crystal precursor). The body is called modified foam). The inventors believe that this low-temperature exothermic peak contributes to relatively rapid crystallization as compared to a polylactic acid resin having a general peak of exothermic peaks.

また、上記結晶前駆体が生じても発熱ピークの総熱量はあまり減少しないため、型内成形時に融着を阻害することもなくかつ速やかに結晶化が進み、外観や耐熱性に優れた発泡成形体を得ることができる。   In addition, even if the above crystal precursor is generated, the total heat quantity of the exothermic peak does not decrease so much, so that the crystallization progresses quickly without hindering fusion during molding, and foam molding with excellent appearance and heat resistance You can get a body.

第1、第3及び第4の区分の発熱量の合計が、第1、第2、第3及び第4の区分の発熱量の合計の45%未満の割合の場合、外観及び耐熱性に優れた発泡成形体を得ることが困難となる。より好ましい割合は50%以上であり、更に好ましくは55%以上である。割合の上限は、65%であることが好ましい。また、第1の区分の発熱量が、第1、第2、第3及び第4の区分の発熱量の合計の25%以上の割合であることが好ましく、30%以上の割合であることがより好ましい。この第1の区分は、上記結晶前駆体を主として含む区分であると発明者等は考えている。なお、第2の区分は、一山の発熱ピークの場合、最も大きな割合を占める区分である。   When the total amount of heat generated in the first, third, and fourth sections is less than 45% of the total amount of heat generated in the first, second, third, and fourth sections, the appearance and heat resistance are excellent. It is difficult to obtain a foamed molded product. A more desirable ratio is 50% or more, and still more preferably 55% or more. The upper limit of the ratio is preferably 65%. Further, the calorific value of the first section is preferably a ratio of 25% or more of the total calorific value of the first, second, third and fourth sections, and preferably a ratio of 30% or more. More preferred. The inventors consider that the first section is a section mainly including the crystal precursor. Note that the second category is the category that occupies the largest proportion in the case of a mountainous exothermic peak.

(ポリ乳酸系樹脂)
ポリ乳酸系樹脂は、一般に市販されているポリ乳酸系樹脂を用いることができる。具体的には、D−乳酸及びL−乳酸の共重合体、D−乳酸(D体)又はL−乳酸(L体)のいずれか一方の単独重合体、D−ラクチド(D体)、L−ラクチド(L体)及びDL−ラクチドからなる群より選ばれた一又は二以上のラクチドの開環重合体が挙げられる。
(Polylactic acid resin)
As the polylactic acid resin, commercially available polylactic acid resins can be used. Specifically, a copolymer of D-lactic acid and L-lactic acid, a homopolymer of any one of D-lactic acid (D-form) or L-lactic acid (L-form), D-lactide (D-form), L -A ring-opening polymer of one or more lactides selected from the group consisting of lactide (L-form) and DL-lactide.

ここで、D体又はL体のうちの少ない方の光学異性体の割合が5モル%未満であるD体とL体との共重合体、及びD体又はL体のいずれか一方の単独重合体は、少ない方の光学異性体が減少するにしたがって、結晶性が高くなり融点が高くなる傾向がある。一方、D体又はL体のうちの少ない方の光学異性体の割合が5モル%以上であるD体とL体との共重合体は、少ない方の光学異性体が増加するにしたがって、結晶性が低くなり、やがて非結晶となる傾向がある。
従って、例えば、高い耐熱性が望まれる用途では、前者のポリ乳酸系樹脂を、複雑な空間への充填性の向上が望まれる用途では、後者のポリ乳酸系樹脂を使用できる。
Here, the copolymer of D-form and L-form in which the ratio of the lesser optical isomer of D-form or L-form is less than 5 mol%, and the single weight of either D-form or L-form The coalescence tends to increase in crystallinity and melting point as the smaller optical isomer decreases. On the other hand, a copolymer of D-form and L-form in which the ratio of the smaller optical isomer of D-form or L-form is 5 mol% or more increases as the smaller optical isomer increases. Tend to be low and eventually become amorphous.
Therefore, for example, the former polylactic acid-based resin can be used in applications where high heat resistance is desired, and the latter polylactic acid-based resin can be used in applications where improvement in filling properties in complicated spaces is desired.

また、後者のポリ乳酸系樹脂は、改質発泡体を金型内に充填して更に発泡させて得られる発泡成形体の耐熱性を向上できるので、発泡成形体は高い温度であってもその形態を維持できる。従って、発泡成形体を金型から高い温度のまま取り出すことが可能となって発泡成形体の金型内における冷却時間が短縮され、発泡成形体の生産効率を向上させることもできる。   In addition, the latter polylactic acid-based resin can improve the heat resistance of a foamed molded product obtained by filling a modified foam into a mold and further foaming the foamed molded product, so that the foamed molded product can be improved even at high temperatures. The form can be maintained. Therefore, the foamed molded product can be taken out from the mold at a high temperature, the cooling time in the mold of the foamed molded product is shortened, and the production efficiency of the foamed molded product can be improved.

更に、D体とL体との共重合体は、D体又はL体のうちのいずれか少ない方の光学異性体の割合が4モル%未満であることが好ましく、3モル%未満であることより好ましく、2モル%未満であることが特に好ましい。   Further, in the copolymer of D-form and L-form, the ratio of the smaller one of D-form and L-form is preferably less than 4 mol%, and less than 3 mol%. More preferably, it is particularly preferably less than 2 mol%.

ここで、1次発泡体を押出発泡法で得る場合、ポリ乳酸系樹脂は、その融点(mp)と、動的粘弾性測定にて得られた、貯蔵弾性率曲線と損失弾性率曲線との交点における温度Tとが下記式1を満たすように調整されることが好ましい。
(ポリ乳酸系樹脂の融点(mp)−40℃)
≦(交点における温度T)≦ポリ乳酸系樹脂の融点(mp)・・・式1
Here, when the primary foam is obtained by the extrusion foaming method, the polylactic acid resin has a melting point (mp) and a storage elastic modulus curve and a loss elastic modulus curve obtained by dynamic viscoelasticity measurement. It is preferable that the temperature T at the intersection is adjusted so as to satisfy the following formula 1.
(Melting point of polylactic acid resin (mp) -40 ° C)
≦ (temperature T at the intersection) ≦ melting point of polylactic acid resin (mp) Formula 1

ここで、動的粘弾性測定にて得られた貯蔵弾性率は、粘弾性において弾性的な性質を示す指標であって、発泡過程における気泡膜の弾性の大小を示す指標であり、発泡過程において、気泡膜の収縮力に抗して気泡を膨張させるのに必要な発泡圧の大小を示す指標である。   Here, the storage elastic modulus obtained by the dynamic viscoelasticity measurement is an index indicating elastic properties in the viscoelasticity, and is an index indicating the elasticity of the bubble film in the foaming process. This is an index indicating the magnitude of the foaming pressure required to expand the bubbles against the contraction force of the bubble film.

即ち、ポリ乳酸系樹脂の動的粘弾性測定にて得られた貯蔵弾性率が低いと、気泡膜が伸長された場合、気泡膜が伸長力に抗して収縮しようとする力が小さい。そのため、1次発泡体の製造に必要とする発泡圧によって発泡膜が容易に伸長してしまう結果、気泡膜が過度に伸長してしまい破泡を生じることがある。一方、ポリ乳酸系樹脂の動的粘弾性測定にて得られた貯蔵弾性率が高いと、気泡膜に伸長力が加わった場合、伸長に抗する気泡膜の収縮力が大きくなる。そのため、1次発泡体の製造に必要とする発泡圧で一旦、気泡が膨張したとしても、温度低下等に起因する経時的な発泡圧の低下に伴って気泡が収縮してしまうことがある。   That is, when the storage elastic modulus obtained by the dynamic viscoelasticity measurement of the polylactic acid-based resin is low, when the cell membrane is stretched, the force that the cell membrane attempts to contract against the stretching force is small. Therefore, as a result of the foaming film easily extending due to the foaming pressure required for the production of the primary foam, the bubble film may extend excessively, resulting in bubble breakage. On the other hand, when the storage elastic modulus obtained by the dynamic viscoelasticity measurement of the polylactic acid-based resin is high, when the expansion force is applied to the cell membrane, the contraction force of the cell membrane resists the expansion. For this reason, even if the bubbles once expand at the foaming pressure required for the production of the primary foam, the bubbles may contract as the foaming pressure decreases with time due to a temperature drop or the like.

また、動的粘弾性測定にて得られた損失弾性率は、粘弾性において粘性的な性質を示す指標である。具体的には、発泡過程における気泡膜の粘性を示す指標である。特に、発泡過程において、気泡膜をどの程度まで破れることなく伸長できるかの許容範囲を示す指標であると同時に、発泡圧によって所望大きさに気泡を膨張させた後、この膨張した気泡をその大きさに維持する能力を示す指標でもある。   Moreover, the loss elastic modulus obtained by the dynamic viscoelasticity measurement is an index indicating a viscous property in viscoelasticity. Specifically, it is an index indicating the viscosity of the bubble film in the foaming process. In particular, in the foaming process, it is an index indicating an allowable range of how much the bubble membrane can be stretched without being broken. At the same time, after the bubbles are expanded to a desired size by the foaming pressure, the expanded bubbles are expanded in size. It is also an indicator that shows the ability to maintain the same.

即ち、ポリ乳酸系樹脂の動的粘弾性測定にて得られた損失弾性率が低いと、1次発泡体の製造に必要とする発泡圧によって気泡膜が伸長された場合、気泡膜が容易に破れてしまうことがある。一方、ポリ乳酸系樹脂の動的粘弾性測定にて得られた損失弾性率が高いと、発泡力が気泡膜によって熱エネルギーに変換されてしまい、1次発泡体の製造時に気泡膜を円滑に伸長させることが難しくなり、気泡を膨張させることが困難になることがある。   That is, if the loss elastic modulus obtained by the dynamic viscoelasticity measurement of the polylactic acid resin is low, the cell membrane can be easily formed when the cell membrane is stretched by the foaming pressure required for producing the primary foam. It may be torn. On the other hand, if the loss elastic modulus obtained by the dynamic viscoelasticity measurement of the polylactic acid resin is high, the foaming force is converted into thermal energy by the foam film, and the foam film is made smooth during the production of the primary foam. It may be difficult to expand and it may be difficult to expand the bubbles.

このように、ポリ乳酸系樹脂を発泡させて1次発泡体を製造するにあたっては、発泡過程において、発泡圧によって気泡膜が破れることなく適度に伸長するための弾性力、即ち、貯蔵弾性率を有していることが好ましい。加えて、発泡圧によって気泡膜が破れることなく円滑に伸長し、所望大きさに膨張した気泡をその大きさに発泡圧の経時的な減少にかかわらず維持しておくための粘性力、即ち、損失弾性率を有していることが好ましい。   Thus, in producing a primary foam by foaming a polylactic acid-based resin, in the foaming process, an elastic force, ie, storage elastic modulus, for appropriately expanding without breaking the cell membrane due to foaming pressure is obtained. It is preferable to have. In addition, the foam force smoothly expands without breaking the bubble film, and the viscous force to maintain the expanded bubble to the desired size regardless of the decrease in the foam pressure over time, that is, It preferably has a loss elastic modulus.

つまり、押出発泡工程において、ポリ乳酸系樹脂の貯蔵弾性率及び損失弾性率の双方が押出発泡に適した値を有していることが好ましく、このような押出発泡に適した貯蔵弾性率及び損失弾性率を押出発泡工程においてポリ乳酸系樹脂に付与するために、ポリ乳酸系樹脂における動的粘弾性測定にて得られた、貯蔵弾性率曲線と損失弾性率曲線との交点における温度T(以下「温度T」という)と、ポリ乳酸系樹脂の融点(mp)とが、好ましくは下記式1を満たすように、より好ましくは式2を満たすように調整される。この調整により、貯蔵弾性率及び損失弾性率をそれらのバランスをとりながら押出発泡性を良好なものとし、1次発泡体を安定的に製造できる。   That is, in the extrusion foaming process, it is preferable that both the storage elastic modulus and loss elastic modulus of the polylactic acid-based resin have values suitable for extrusion foaming, and the storage elastic modulus and loss suitable for such extrusion foaming. In order to impart an elastic modulus to the polylactic acid resin in the extrusion foaming process, the temperature T (below) at the intersection of the storage elastic modulus curve and the loss elastic modulus curve obtained by dynamic viscoelasticity measurement in the polylactic acid resin. (Referred to as “temperature T”) and the melting point (mp) of the polylactic acid-based resin are preferably adjusted so as to satisfy the following formula 1, more preferably satisfy the formula 2. By this adjustment, the primary foam can be stably produced with good extrusion foamability while balancing the storage elastic modulus and loss elastic modulus.

〔ポリ乳酸系樹脂の融点(mp)−40℃〕
≦交点における温度T≦ポリ乳酸系樹脂の融点(mp)・・・式1
〔ポリ乳酸系樹脂の融点(mp)−35℃〕
≦交点における温度T≦〔ポリ乳酸系樹脂の融点(mp)−10℃〕・・・式2
[Melting point of polylactic acid resin (mp) −40 ° C.]
≦ Temperature at the intersection T ≦ Melting point of polylactic acid resin (mp) Formula 1
[Melting point of polylactic acid resin (mp) -35 ° C.]
≦ Temperature at the intersection T ≦ [Melting point of polylactic acid resin (mp) −10 ° C.] Formula 2

更に、温度Tと、ポリ乳酸系樹脂の融点(mp)とが上記式1を満たすように調整されるのが好ましい理由を下記に詳述する。
まず、温度Tが、ポリ乳酸系樹脂の融点(mp)よりも40℃を超えて低い場合には、押出発泡時におけるポリ乳酸系樹脂の損失弾性率が貯蔵弾性率に比して大き過ぎるために、損失弾性率と貯蔵弾性率とのバランスが崩れてしまう。
Further, the reason why the temperature T and the melting point (mp) of the polylactic acid resin are preferably adjusted so as to satisfy the above formula 1 will be described in detail below.
First, when the temperature T is lower than the melting point (mp) of the polylactic acid resin by more than 40 ° C., the loss elastic modulus of the polylactic acid resin at the time of extrusion foaming is too large compared to the storage elastic modulus. In addition, the balance between the loss elastic modulus and the storage elastic modulus is lost.

そこで、ポリ乳酸系樹脂の損失弾性率に適した発泡力、即ち、粘性に合わせた発泡力とすると、弾性力に対する発泡力が大き過ぎてしまい、気泡膜が破れて破泡を生じて良好な1次発泡体を得られないことがある。逆に、ポリ乳酸系樹脂の貯蔵弾性率に適した発泡力、即ち、弾性に合わせた発泡力とすると、粘性力に対する発泡力が小さく、ポリ乳酸系樹脂が発泡しにくくなり、良好な1次発泡体を得られないことがある。   Therefore, if the foaming force suitable for the loss elastic modulus of the polylactic acid-based resin, that is, the foaming force matched to the viscosity, the foaming force with respect to the elastic force is too large, and the bubble film is broken and bubbles are broken. A primary foam may not be obtained. Conversely, if the foaming force suitable for the storage elastic modulus of the polylactic acid-based resin, that is, the foaming force matched to the elasticity, the foaming force with respect to the viscous force is small, and the polylactic acid-based resin is difficult to foam, and a good primary A foam may not be obtained.

また、温度Tが、ポリ乳酸系樹脂の融点(mp)よりも高いと、押出発泡時におけるポリ乳酸系樹脂の貯蔵弾性率が損失弾性率に比して大き過ぎることになる。そのため、上述と同様に損失弾性率と貯蔵弾性率とのバランスが崩れてしまうことがある。   If the temperature T is higher than the melting point (mp) of the polylactic acid resin, the storage elastic modulus of the polylactic acid resin at the time of extrusion foaming is too large compared to the loss elastic modulus. Therefore, the balance between the loss elastic modulus and the storage elastic modulus may be lost as described above.

そこで、ポリ乳酸系樹脂の貯蔵弾性率に適した発泡力、即ち、弾性に合わせた発泡力とすると、粘性力に対する発泡力が大き過ぎてしまい、気泡膜が破れて破泡を生じ良好な1次発泡体を得られないことがある。逆に、ポリ乳酸系樹脂の損失弾性率に適した発泡力、即ち、粘性に合わせた発泡力とすると、弾性力に対する発泡力が小さく、ポリ乳酸系樹脂が一旦発泡したとしても、経時的な発泡力の低下に伴って気泡が収縮してしまって、やはり良好な1次発泡体を得られないことがある。   Therefore, when the foaming force suitable for the storage elastic modulus of the polylactic acid-based resin, that is, the foaming force matched to the elasticity, the foaming force with respect to the viscous force is too large, and the bubble film is broken to cause bubble breakage. The secondary foam may not be obtained. On the contrary, if the foaming force suitable for the loss elastic modulus of the polylactic acid-based resin, that is, the foaming force matched to the viscosity, the foaming force with respect to the elastic force is small. As the foaming power decreases, the air bubbles contract, and a good primary foam may not be obtained.

ポリ乳酸系樹脂の重量平均分子量が高くなるにしたがって、温度Tが高くなる。よって、温度Tと、ポリ乳酸系樹脂の融点(mp)とを上記式1を満たすように調整するには、ポリ乳酸系樹脂の重合時に反応時間又は反応温度を調整することによって、得られるポリ乳酸系樹脂の重量平均分子量を調整する方法、押出発泡前に又は押出発泡時にポリ乳酸系樹脂の重量平均分子量を増粘剤や架橋剤を用いて調整する方法が挙げられる。なお、重量平均分子量は、5.0×104〜40×104の範囲であることが好ましい。
発泡体には、必要に応じて他の成分が含まれていてもよい。他の成分としては、難燃剤、帯電防止剤、着色剤、酸化防止剤、熱安定剤、紫外線吸収剤、加水分解抑制剤等が挙げられる。
As the weight average molecular weight of the polylactic acid resin increases, the temperature T increases. Therefore, in order to adjust the temperature T and the melting point (mp) of the polylactic acid-based resin so as to satisfy the above formula 1, the reaction time or the reaction temperature is adjusted during the polymerization of the polylactic acid-based resin. Examples thereof include a method of adjusting the weight average molecular weight of the lactic acid resin, and a method of adjusting the weight average molecular weight of the polylactic acid resin before or during extrusion foaming using a thickener or a crosslinking agent. The weight average molecular weight is preferably in the range of 5.0 × 10 4 to 40 × 10 4 .
The foam may contain other components as necessary. Examples of other components include flame retardants, antistatic agents, colorants, antioxidants, heat stabilizers, ultraviolet absorbers, hydrolysis inhibitors, and the like.

(1次発泡体の製造)
1次発泡体は、公知の方法によって製造できる。例えば、以下の押出発泡法が挙げられる。以下の方法は、1次発泡体が粒子状の場合の一方法である。
まず、ポリ乳酸系樹脂を押出機に供給して発泡剤の存在下にて溶融混練する。この後、押出機の前端に取り付けた図1及び2に示すノズル金型からポリ乳酸系樹脂押出物を押出発泡させる。
(Production of primary foam)
The primary foam can be produced by a known method. For example, the following extrusion foaming method is mentioned. The following method is one method when the primary foam is in the form of particles.
First, a polylactic acid resin is supplied to an extruder and melt kneaded in the presence of a foaming agent. Thereafter, a polylactic acid resin extrudate is extruded and foamed from the nozzle mold shown in FIGS. 1 and 2 attached to the front end of the extruder.

なお、上記押出機としては、汎用されている押出機であれば、特に限定されない。例えば、単軸押出機、二軸押出機、複数の押出機を連結させたタンデム型の押出機が挙げられる。   The extruder is not particularly limited as long as it is a general-purpose extruder. Examples thereof include a single-screw extruder, a twin-screw extruder, and a tandem type extruder in which a plurality of extruders are connected.

また、発泡剤としては、汎用されているものが用いられる。例えば、アゾジカルボンアミド、ジニトロソペンタメチレンテトラミン、ヒドラゾイルジカルボンアミド、重炭酸ナトリウム等の化学発泡剤;プロパン、ノルマルブタン、イソブタン、ノルマルペンタン、イソペンタン、ヘキサン等の飽和脂肪族炭化水素、ジメチルエーテル等のエーテル類、二酸化炭素、窒素等の物理発泡剤等が挙げられる。この内、ジメチルエーテル、プロパン、ノルマルブタン、イソブタン、二酸化炭素が好ましく、プロパン、ノルマルブタン、イソブタンがより好ましく、ノルマルブタン、イソブタンが特に好ましい。   Moreover, what is used widely is used as a foaming agent. For example, chemical blowing agents such as azodicarbonamide, dinitrosopentamethylenetetramine, hydrazoyl dicarbonamide, sodium bicarbonate; saturated aliphatic hydrocarbons such as propane, normal butane, isobutane, normal pentane, isopentane, hexane, dimethyl ether, etc. Examples include physical foaming agents such as ethers, carbon dioxide, and nitrogen. Of these, dimethyl ether, propane, normal butane, isobutane and carbon dioxide are preferred, propane, normal butane and isobutane are more preferred, and normal butane and isobutane are particularly preferred.

発泡剤量は、少ないと、1次発泡体を所望発泡倍率まで発泡できないことがある。一方、多いと、発泡剤が可塑剤として作用することから溶融状態のポリ乳酸系樹脂の粘弾性が低下し過ぎて発泡性が低下し良好な1次発泡体を得ることができないことがある。加えて1次発泡体の発泡倍率が高過ぎて結晶化度を制御できなくなる場合がある。よって、発泡剤量は、ポリ乳酸系樹脂100重量部に対して、0.1〜5重量部が好ましく、0.2〜4重量部がより好ましく、0.3〜3重量部が特に好ましい。   If the amount of the foaming agent is small, the primary foam may not be foamed to a desired expansion ratio. On the other hand, if the amount is too large, the foaming agent acts as a plasticizer, so that the viscoelasticity of the molten polylactic acid-based resin is too low, and foamability is lowered, and a good primary foam may not be obtained. In addition, the expansion ratio of the primary foam may be too high to control the crystallinity. Therefore, the amount of the foaming agent is preferably 0.1 to 5 parts by weight, more preferably 0.2 to 4 parts by weight, and particularly preferably 0.3 to 3 parts by weight with respect to 100 parts by weight of the polylactic acid resin.

なお、押出機には気泡調整剤が添加されることが好ましい。ただし、気泡調整剤の多くは、1次発泡体の結晶核剤として作用するため、ポリ乳酸系樹脂の結晶化を促進しない気泡調整剤を用いることが好ましい。そのような気泡調整剤としては、ポリテトラフルオロエチレン粉末、アクリル樹脂で変性されたポリテトラフルオロエチレン粉末が挙げられる。   In addition, it is preferable that a bubble regulator is added to an extruder. However, since many of the bubble regulators act as crystal nucleating agents for the primary foam, it is preferable to use a bubble regulator that does not promote crystallization of the polylactic acid resin. Examples of such a bubble regulator include polytetrafluoroethylene powder and polytetrafluoroethylene powder modified with an acrylic resin.

また、押出機に供給される気泡調整剤の量は、少ないと、1次発泡体の気泡が粗大となり、得られる発泡成形体の外観が低下することがある。一方、多いと、ポリ乳酸系樹脂を押出発泡させる際に破泡を生じて1次発泡体の独立気泡率が低下することがある。よって、気泡調整剤の量は、ポリ乳酸系樹脂100重量部に対して、0.01〜3重量部が好ましく、0.05〜2重量部がより好ましく、0.1〜1重量部が特に好ましい。   Moreover, when there is little quantity of the bubble regulator supplied to an extruder, the bubble of a primary foam becomes coarse and the external appearance of the foaming molding obtained may fall. On the other hand, when the polylactic acid-based resin is extruded and foamed, the foam may be broken to lower the closed cell ratio of the primary foam. Therefore, the amount of the air conditioner is preferably 0.01 to 3 parts by weight, more preferably 0.05 to 2 parts by weight, and particularly preferably 0.1 to 1 part by weight with respect to 100 parts by weight of the polylactic acid resin. preferable.

ノズル金型1から押出されたポリ乳酸系樹脂押出物は引き続き切断工程に入る。ポリ乳酸系樹脂押出物の切断は、回転軸2をモータ3により回転させ、ノズル金型1の前端面1aに配設された回転刃5を2000〜10000rpmの一定の回転数で回転させて行う。   The polylactic acid-based resin extrudate extruded from the nozzle mold 1 continues into the cutting step. The polylactic acid resin extrudate is cut by rotating the rotary shaft 2 with a motor 3 and rotating the rotary blade 5 disposed on the front end surface 1a of the nozzle mold 1 at a constant rotational speed of 2000 to 10000 rpm. .

全ての回転刃5はノズル金型1の前端面1aに常時、接触しながら回転している。ノズル金型1から押出発泡されたポリ乳酸系樹脂押出物は、回転刃5と、ノズル金型1におけるノズルの出口部11端縁との間に生じる剪断応力によって、一定の時間間隔毎に大気中において切断されて1次発泡体とされる。この時、ポリ乳酸系樹脂押出物の冷却が過度とならない範囲内において、ポリ乳酸系樹脂押出物に水を霧状に吹き付けてもよい。   All the rotary blades 5 are always rotating in contact with the front end face 1a of the nozzle mold 1. The polylactic acid resin extrudate extruded and foamed from the nozzle mold 1 is subjected to atmospheric air at a certain time interval due to shear stress generated between the rotary blade 5 and the edge of the nozzle outlet 11 in the nozzle mold 1. It is cut into a primary foam. At this time, water may be sprayed onto the polylactic acid resin extrudate in a range where the cooling of the polylactic acid resin extrudate does not become excessive.

ノズル金型1のノズル内においてポリ乳酸系樹脂が発泡しないことが好ましい。そのため、ポリ乳酸系樹脂は、ノズル金型1のノズルの出口部11から吐出された直後は、未だに発泡しておらず、吐出されてから僅かな時間が経過した後に発泡を始める。従って、ポリ乳酸系樹脂押出物は、ノズル金型1のノズルの出口部11から吐出された直後の未発泡部と、この未発泡部に連続する、未発泡部に先んじて押出された発泡途上の発泡部とからなる。   It is preferable that the polylactic acid resin does not foam in the nozzle of the nozzle mold 1. Therefore, immediately after the polylactic acid-based resin is discharged from the nozzle outlet portion 11 of the nozzle mold 1, the polylactic acid-based resin has not yet been foamed, and starts to foam after a short time has elapsed since being discharged. Therefore, the polylactic acid-based resin extrudate is in the process of foaming extruded before the unfoamed portion, which continues from the unfoamed portion immediately after being discharged from the nozzle outlet portion 11 of the nozzle mold 1 and the unfoamed portion. The foamed part.

ノズル金型1のノズルの出口部11から突出されてから発泡を開始するまでの間、未発泡部はその状態を維持する。この未発泡部が維持される時間は、ノズル金型1のノズルの出口部11における樹脂圧力や、発泡剤量等によって調整できる。ノズル金型1のノズルの出口部11における樹脂圧力が高いと、ポリ乳酸系樹脂押出物はノズル金型1から押出されてから直ぐに発泡することはなく未発泡の状態を維持する。ノズル金型1のノズルの出口部11における樹脂圧力の調整は、ノズルの口径、押出量、ポリ乳酸系樹脂の溶融粘度及び溶融張力によって調整できる。発泡剤量を適正な量に調整することによって金型内部においてポリ乳酸系樹脂が発泡することを防止し、未発泡部を確実に形成できる。   The non-foamed portion maintains its state from when it is projected from the outlet 11 of the nozzle of the nozzle mold 1 until foaming is started. The time for which the unfoamed part is maintained can be adjusted by the resin pressure at the nozzle outlet 11 of the nozzle mold 1, the amount of foaming agent, and the like. When the resin pressure at the nozzle outlet 11 of the nozzle mold 1 is high, the polylactic acid resin extrudate does not foam immediately after being extruded from the nozzle mold 1 and maintains an unfoamed state. The adjustment of the resin pressure at the nozzle outlet 11 of the nozzle mold 1 can be adjusted by the nozzle diameter, the extrusion amount, the melt viscosity and the melt tension of the polylactic acid resin. By adjusting the amount of the foaming agent to an appropriate amount, the polylactic acid resin can be prevented from foaming inside the mold, and the unfoamed portion can be reliably formed.

ポリ乳酸系樹脂の押出温度(押出機の先端部におけるポリ乳酸系樹脂の温度)は、低いと、フラクチャーが生じ、得られた1次発泡体同士が付きやすくなる。一方、ポリ乳酸系樹脂の押出温度が高いと、ポリ乳酸系樹脂の分解が促進し、1次発泡体の発泡性及び連続気泡率が低下し易くなる。従って、押出温度は、ポリ乳酸系樹脂の融点よりも10〜50℃高い温度が好ましく、ポリ乳酸系樹脂の融点よりも15〜45℃高い温度がより好ましく、ポリ乳酸系樹脂の融点よりも20〜40℃高い温度が特に好ましい。   When the extrusion temperature of the polylactic acid resin (the temperature of the polylactic acid resin at the tip of the extruder) is low, fracture occurs and the obtained primary foams are easily attached. On the other hand, when the extrusion temperature of the polylactic acid-based resin is high, the decomposition of the polylactic acid-based resin is accelerated, and the foamability and open cell ratio of the primary foam are likely to be lowered. Accordingly, the extrusion temperature is preferably 10 to 50 ° C. higher than the melting point of the polylactic acid resin, more preferably 15 to 45 ° C. higher than the melting point of the polylactic acid resin, and 20 times higher than the melting point of the polylactic acid resin. A temperature of ~ 40 ° C is particularly preferred.

全ての回転刃5はノズル金型1の前端面1aに常時、接触した状態でポリ乳酸系樹脂押出物を切断していることから、ポリ乳酸系樹脂押出物は、ノズル金型1のノズルの出口部11から吐出された直後の未発泡部において切断されて1次発泡体が製造される。   Since all the rotary blades 5 cut the polylactic acid-based resin extrudate while being always in contact with the front end surface 1 a of the nozzle mold 1, the polylactic acid-based resin extrudate is used as the nozzle of the nozzle mold 1. The primary foam is manufactured by cutting at the unfoamed portion immediately after being discharged from the outlet portion 11.

得られた1次発泡体は、ポリ乳酸系樹脂押出物をその未発泡部で切断していることから、切断部の表面には気泡断面は存在しない。そして、1次発泡体の表面全面は、気泡断面の存在しない表皮層で被覆されている。従って、1次発泡体は、発泡ガスの抜けがなく優れた発泡性を有していると共に連続気泡率も低く、更に、表面の熱融着性にも優れている。   Since the obtained primary foam cuts the polylactic acid resin extrudate at its unfoamed portion, there is no cell cross section on the surface of the cut portion. The entire surface of the primary foam is covered with a skin layer having no bubble cross section. Accordingly, the primary foam has excellent foamability without any loss of foam gas, has a low open cell ratio, and is excellent in surface heat-fusibility.

1次発泡体の表面は、気泡断面が露出していない表皮層から形成されている。そのため1次発泡体に由来する改質発泡体を型内発泡成形に用いた時、改質発泡体同士の熱融着性が良好であり、得られる発泡成形体は、表面ムラがなく外観に優れていると共に優れた機械的強度を有している。   The surface of the primary foam is formed from a skin layer in which the cell cross section is not exposed. Therefore, when the modified foam derived from the primary foam is used for in-mold foam molding, the heat-fusibility between the modified foams is good, and the resulting foam molded body has no surface unevenness and has an appearance. It has excellent mechanical strength as well as excellent.

また、回転刃5は一定の回転数で回転していることが好ましい。回転刃5の回転数は、2000〜10000rpmが好ましく、3000〜9000rpmがより好ましく、4000〜8000rmpが更に好ましい。
2000rpmを下回ると、ポリ乳酸系樹脂押出物を回転刃5によって切断できないことがある。そのため、1次発泡体同士が合体したり、1次発泡体の形状が不均一となることがある。10000rpmを上回ると下記の問題点を生じることがある。
Moreover, it is preferable that the rotary blade 5 is rotating at a constant rotational speed. The rotational speed of the rotary blade 5 is preferably 2000 to 10,000 rpm, more preferably 3000 to 9000 rpm, and still more preferably 4000 to 8000 rpm.
If it is less than 2000 rpm, the polylactic acid resin extrudate may not be cut by the rotary blade 5. For this reason, the primary foams may be united with each other, or the shape of the primary foam may be uneven. If it exceeds 10,000 rpm, the following problems may occur.

第一の問題点は、回転刃による切断応力が大きくなって、1次発泡体がノズルの出口部から冷却部材に向かって飛散される際に、1次発泡体の初速が速くなることがある。その結果、ポリ乳酸系樹脂押出物を切断してから、1次発泡体が冷却部材に衝突するまでの時間が短くなり、1次発泡体の発泡が不充分となることである。第二の問題点は、回転刃及び回転軸の摩耗が大きくなって回転刃及び回転軸の寿命が短くなることである。   The first problem is that when the cutting stress due to the rotary blade increases and the primary foam is scattered from the outlet portion of the nozzle toward the cooling member, the initial speed of the primary foam may be increased. . As a result, the time from when the polylactic acid resin extrudate is cut until the primary foam collides with the cooling member is shortened, and foaming of the primary foam is insufficient. The second problem is that the wear of the rotary blade and the rotary shaft is increased and the life of the rotary blade and the rotary shaft is shortened.

1次発泡体は、回転刃5による切断応力によって切断と同時に外方又は前方に向かって飛散され、冷却ドラム41の周壁部41bの内周面に直ちに衝突する。1次発泡体は、冷却ドラム41に衝突するまでの間も発泡をし続けており、発泡によって略球状に成長している。   The primary foam is scattered outward or forward simultaneously with the cutting by the cutting stress of the rotary blade 5 and immediately collides with the inner peripheral surface of the peripheral wall portion 41 b of the cooling drum 41. The primary foam continues to foam until it collides with the cooling drum 41 and grows into a substantially spherical shape by foaming.

冷却ドラム41の周壁部41bの内周面は全面的に冷却液42で被覆されており、冷却ドラム41の周壁部41bの内周面に衝突した1次発泡体は直ちに冷却されて、発泡が停止する。このように、ポリ乳酸系樹脂押出物を回転刃5によって切断した後に、1次発泡体を直ちに冷却液42によって冷却していることで、1次発泡体を構成しているポリ乳酸系樹脂の結晶化度が上昇するのを防止できると共に、1次発泡体が過度に発泡するのを防止できる。   The inner peripheral surface of the peripheral wall portion 41b of the cooling drum 41 is entirely covered with the cooling liquid 42, and the primary foam that collides with the inner peripheral surface of the peripheral wall portion 41b of the cooling drum 41 is immediately cooled and foamed. Stop. Thus, after cutting the polylactic acid resin extrudate with the rotary blade 5, the primary foam is immediately cooled with the cooling liquid 42, so that the polylactic acid resin constituting the primary foam can be obtained. The crystallinity can be prevented from increasing, and the primary foam can be prevented from excessively foaming.

従って、1次発泡体は、型内発泡成形時に優れた発泡性及び熱融着性を発揮する。型内発泡成形時に1次発泡体の結晶化度を上昇させて、ポリ乳酸系樹脂の耐熱性を向上でき、得られる発泡成形体は、優れた耐熱性を有している。   Therefore, the primary foam exhibits excellent foamability and heat-fusibility during in-mold foam molding. It is possible to improve the heat resistance of the polylactic acid resin by increasing the crystallinity of the primary foam during in-mold foam molding, and the resulting foam molded article has excellent heat resistance.

なお、冷却液42の温度は、低いと、冷却ドラム41の近傍に位置するノズル金型が過度に冷却されて、ポリ乳酸系樹脂の押出発泡に悪影響が生じることがある一方、高いと、1次発泡体を構成しているポリ乳酸系樹脂の結晶化度が高くなり、1次発泡体の熱融着性が低下することがある。よって、温度は、0〜45℃が好ましく、5〜40℃がより好ましく、10〜35℃が特に好ましい。   If the temperature of the cooling liquid 42 is low, the nozzle mold located in the vicinity of the cooling drum 41 is excessively cooled, which may adversely affect the extrusion foaming of the polylactic acid resin. The degree of crystallinity of the polylactic acid resin constituting the secondary foam may be high, and the heat-fusibility of the primary foam may be reduced. Therefore, the temperature is preferably 0 to 45 ° C, more preferably 5 to 40 ° C, and particularly preferably 10 to 35 ° C.

そして、得られる1次発泡体の結晶化度は、30%以下が好ましく、3〜28%がより好ましく、5〜26%が特に好ましい。1次発泡体の結晶化度は、ノズル金型1からポリ乳酸系樹脂押出物が押出されてから1次発泡体が冷却液42に衝突するまでの時間や、冷却液42の温度によって調整できる。   And the degree of crystallinity of the obtained primary foam is preferably 30% or less, more preferably 3 to 28%, and particularly preferably 5 to 26%. The degree of crystallinity of the primary foam can be adjusted by the time from when the polylactic acid-based resin extrudate is extruded from the nozzle mold 1 until the primary foam collides with the coolant 42 and the temperature of the coolant 42. .

1次発泡体の嵩密度が小さいと、1次発泡体の連続気泡率が上昇して、高倍発泡工程時に1次発泡体に必要な発泡力を付与できないことがある。一方、大きいと、得られる1次発泡体の気泡が不均一となって、高倍発泡工程時における一次発泡体の発泡性が不充分となることがある。よって、嵩密度は、0.02〜0.6g/cm3が好ましく、0.03〜0.5g/cm3がより好ましく、0.04〜0.4g/cm3が特に好ましい。 When the bulk density of the primary foam is small, the open cell ratio of the primary foam increases, and the foaming force necessary for the primary foam may not be imparted during the high-magnification foaming process. On the other hand, if it is large, the cells of the resulting primary foam may become non-uniform, and the foamability of the primary foam during the high-magnification foaming process may be insufficient. Therefore, the bulk density is preferably 0.02~0.6g / cm 3, more preferably 0.03~0.5g / cm 3, 0.04~0.4g / cm 3 is particularly preferred.

そして、1次発泡体の連続気泡率は、高いと、高倍発泡工程時や型内発泡成形時に改質発泡体が殆ど発泡せず、改質発泡体同士の融着性が低くなって、得られる発泡成形体の機械的強度が低下することがある。よって、連続気泡率は、20%未満が好ましく、10%以下がより好ましく、5%以下が特に好ましい。なお、1次発泡体の連続気泡率の調整は、押出機からのポリ乳酸系樹脂の押出発泡温度、押出機への発泡剤の供給量等を調整することによって行われる。   When the open cell ratio of the primary foam is high, the modified foam hardly foams during the high-magnification foaming process or in-mold foam molding, and the fusion property between the modified foams becomes low. The mechanical strength of the foamed molded product may be lowered. Therefore, the open cell ratio is preferably less than 20%, more preferably 10% or less, and particularly preferably 5% or less. The open cell ratio of the primary foam is adjusted by adjusting the extrusion foaming temperature of the polylactic acid resin from the extruder, the supply amount of the foaming agent to the extruder, and the like.

また、1次発泡体の粒径は、小さいと、高倍発泡工程時に1次発泡体の発泡性が低下することがある。一方、大きいと、型内発泡成形時に金型内への改質発泡体の充填性が低下することがある。よって、0.5〜5.0mmが好ましく、1.0〜4.5mmがより好ましく、1.5〜4mmが特に好ましい。   Moreover, if the particle size of the primary foam is small, the foamability of the primary foam may be reduced during the high-magnification foaming process. On the other hand, if it is large, the filling property of the modified foam into the mold may be lowered during in-mold foam molding. Therefore, 0.5 to 5.0 mm is preferable, 1.0 to 4.5 mm is more preferable, and 1.5 to 4 mm is particularly preferable.

(改質発泡体の製法)
上記結晶前駆体は、1次発泡体の加熱や延伸により生じさせることができ、高倍発泡工程時の加熱と発泡による延伸で生じさせることが工程上好ましい。
加熱温度が低いと結晶化が進まず結晶前駆体を生じさせることができないことがある。また、加熱温度がガラス転移温度(Tg)よりも高くなるに従い、結晶前駆体ではなく通常の結晶化が進んでしまうことがある。結晶化が進むと、型内成形時にポリ乳酸系樹脂発泡体同士の熱融着性が低下して、得られる発泡成形体の機械的強度及び外観性が低下することがある。好ましい加熱温度はTg−20℃〜Tg+5℃であり、より好ましくはTg−15℃〜Tg+3℃であり、更に好ましくはTg−10℃〜Tg+1である。
(Production method of modified foam)
The crystal precursor can be generated by heating or stretching the primary foam, and is preferably generated by heating and stretching by foaming in the high-magnification foaming process.
If the heating temperature is low, crystallization does not proceed and a crystal precursor may not be produced. Further, as the heating temperature becomes higher than the glass transition temperature (Tg), normal crystallization may proceed instead of the crystal precursor. As crystallization progresses, the heat-fusibility between the polylactic acid resin foams may be reduced during in-mold molding, and the mechanical strength and appearance of the resulting foam molded article may be reduced. A preferable heating temperature is Tg-20 ° C to Tg + 5 ° C, more preferably Tg-15 ° C to Tg + 3 ° C, and further preferably Tg-10 ° C to Tg + 1.

また、加熱時間は、短いと十分に結晶前駆体を生じさせることができないことがあり、長いと結晶前駆体を経て結晶化してしまうことがある。そのため、加熱時間は、好ましくは10〜300秒であり、より好ましくは20〜270秒であり、更に好ましくは30〜240秒である。   In addition, if the heating time is short, the crystal precursor may not be sufficiently generated, and if it is long, the crystal may be crystallized through the crystal precursor. Therefore, the heating time is preferably 10 to 300 seconds, more preferably 20 to 270 seconds, and further preferably 30 to 240 seconds.

ここで、例えば、上記の高倍発泡工程により、0.05〜0.5g/cm3の嵩密度の1次発泡体を、0.02〜0.2g/cm3の嵩密度の改質発泡体とすることができる。ここで、改質発泡体は、1次発泡体の嵩密度より1.6倍以上高い嵩密度を有していることが好ましい。 Here, for example, by the above high magnification foaming process, the primary foam bulk density of 0.05 to 0.5 g / cm 3, modified foam bulk density of 0.02~0.2g / cm 3 It can be. Here, the modified foam preferably has a bulk density that is 1.6 times higher than the bulk density of the primary foam.

高倍発泡工程の前に、上記一次発泡体に不活性ガスを含浸させて、一次発泡体の発泡力を向上させてもよい。一次発泡体の発泡力を向上させることにより、低い温度でも結晶化度を上げることなく速やかに高発泡倍率の改質発泡体が得られる。なお、不活性ガスとしては、例えば、二酸化炭素、窒素、ヘリウム、アルゴン等が挙げられる。   Prior to the high-magnification foaming step, the primary foam may be impregnated with an inert gas to improve the foaming power of the primary foam. By improving the foaming power of the primary foam, a modified foam having a high foaming ratio can be obtained quickly without increasing the crystallinity even at a low temperature. In addition, as an inert gas, a carbon dioxide, nitrogen, helium, argon etc. are mentioned, for example.

一次発泡体に不活性ガスを含浸させる方法としては、例えば、圧力容器中で常圧以上の圧力を有する不活性ガス雰囲気下に1次発泡体を置くことによって不活性ガスを含浸させる方法が挙げられる。
なお、不活性ガスが二酸化炭素である場合、0.1〜1.5MPaの二酸化炭素雰囲気中に一次発泡粒子を20分〜24時間に亘って置いて、一次発泡体中に二酸化炭素を含浸させて発泡性を向上させておくことが好ましい。また、含浸させる際の雰囲気温度は、高いと一次発泡体の結晶化度が上がるおそれがあるため、0〜40℃が好ましく、5〜35℃がより好ましく、10〜30℃が更に好ましい。
Examples of the method of impregnating the primary foam with the inert gas include a method of impregnating the inert gas by placing the primary foam in an inert gas atmosphere having a pressure higher than normal pressure in a pressure vessel. It is done.
When the inert gas is carbon dioxide, the primary foamed particles are placed in a carbon dioxide atmosphere of 0.1 to 1.5 MPa for 20 minutes to 24 hours to impregnate the primary foam with carbon dioxide. It is preferable to improve the foamability. Moreover, since the atmosphere temperature at the time of impregnation may raise the crystallinity degree of a primary foam, 0-40 degreeC is preferable, 5-35 degreeC is more preferable, and 10-30 degreeC is still more preferable.

(発泡成形体)
このようにして得られた改質発泡体を金型のキャビティ内に充填して加熱することで、改質発泡体を更に発泡させる。この加熱により、改質発泡体同士をそれらの発泡圧によって互いに融着一体化できるので、融着性に優れた発泡成形体を得ることができる。また、この加熱により、改質発泡体を構成するポリ乳酸系樹脂の結晶化度を上昇できるので、耐熱性に優れた発泡成形体を得ることができる。
(Foamed molded product)
The modified foam thus obtained is filled in a cavity of a mold and heated to further foam the modified foam. By this heating, the modified foams can be fused and integrated with each other by their foaming pressure, so that it is possible to obtain a foamed molded article having excellent meltability. Moreover, since the crystallinity degree of the polylactic acid-type resin which comprises a modified foam can be raised by this heating, the foaming molding excellent in heat resistance can be obtained.

なお、改質発泡体の加熱媒体としては、特に限定されず、水蒸気の他に、熱風、温水等が挙げられる。この内、温水を用いることが好ましい。これは、温水は、液体状であって比熱が大きいことから、温度が低くても金型内の改質発泡体に発泡に必要な高い熱量を充分に付与できるからである。従って、改質発泡体を加熱し過ぎることなく、充分に加熱、発泡できる。そのため、加熱媒体として水蒸気や熱風を用いた時に生じたような改質発泡体表面の熱収縮を生じさせることなく、改質発泡体同士をそれらの発泡力によって互いに強固に熱融着一体化できる。その結果、得られる発泡成形体は、優れた機械的強度を有していると共に外観にも優れている。   In addition, it does not specifically limit as a heating medium of a modified foam, Hot air, warm water, etc. other than water vapor | steam are mentioned. Of these, it is preferable to use warm water. This is because hot water is liquid and has a large specific heat, so that a high amount of heat necessary for foaming can be sufficiently imparted to the modified foam in the mold even when the temperature is low. Therefore, the modified foam can be sufficiently heated and foamed without being heated too much. Therefore, the modified foams can be strongly heat-bonded and integrated with each other by their foaming force without causing the thermal shrinkage of the surface of the modified foams that occurs when steam or hot air is used as the heating medium. . As a result, the obtained foamed molded article has excellent mechanical strength and excellent appearance.

また、高圧の水蒸気を用いるのに比べて、低い圧力で型内発泡成形を行うことができるので、金型の設計強度を低く抑えることができる。そのため、複雑な形状を有する金型でも成形可能であると共に、コンパクトな金型でも成形可能である。その結果、発泡成形体の生産性を向上できる。   In addition, since the in-mold foam molding can be performed at a lower pressure than when high-pressure steam is used, the design strength of the mold can be kept low. Therefore, a mold having a complicated shape can be molded, and a compact mold can also be molded. As a result, the productivity of the foamed molded product can be improved.

加熱媒体として用いる水の温度は、低いと、金型内に充填した改質発泡体の発泡が不充分となり、改質発泡体同士の熱融着性が低下する。そのため発泡成形体の機械的強度や外観性が低下することがある。一方、高いと、水を高圧状態としなければならず、ボイラーのような大掛かりな設備を要する。よって、水の温度は、60〜100℃が好ましく、70〜99℃がより好ましく、80〜98℃が特に好ましい。   When the temperature of the water used as the heating medium is low, foaming of the modified foam filled in the mold becomes insufficient, and the heat-fusibility between the modified foams decreases. Therefore, the mechanical strength and appearance of the foamed molded product may be deteriorated. On the other hand, if it is high, water must be in a high-pressure state, and a large facility such as a boiler is required. Therefore, the temperature of water is preferably 60 to 100 ° C, more preferably 70 to 99 ° C, and particularly preferably 80 to 98 ° C.

金型内に充填した改質発泡体に温水を供給して改質発泡体を加熱する方法としては、特に限定されず、例えば、(1)公知の型内発泡成形機に水蒸気の代わりに温水を供給する方法、(2)改質発泡体を充填した金型を、温水中に浸漬する方法等が挙げられる。この内、複雑な形状の金型であっても金型全体、即ち、改質発泡体を全体的に均一に加熱、発泡できる(2)の方法が好ましい。   The method of heating the modified foam by supplying warm water to the modified foam filled in the mold is not particularly limited. For example, (1) warm water instead of water vapor in a known in-mold foam molding machine And (2) a method of immersing a mold filled with the modified foam in warm water. Among these, the method (2) is preferable because even the mold having a complicated shape can uniformly heat and foam the entire mold, that is, the modified foam.

金型内に充填した改質発泡体の温水による加熱時間は、短いと、改質発泡体の加熱が不充分となって改質発泡体同士の熱融着が不充分となり、又は改質発泡体の結晶化度が充分に上昇しないことがある。その結果、得られる発泡成形体の耐熱性が低下することがある。一方、長いと、発泡成形体の生産性が低下することになる。加熱時間は、20秒〜1時間が好ましい。   If the heating time of the modified foam filled in the mold with hot water is short, the heating of the modified foam is insufficient, and the thermal fusion between the modified foams becomes insufficient, or the modified foam is formed. The crystallinity of the body may not increase sufficiently. As a result, the heat resistance of the obtained foamed molded product may be lowered. On the other hand, when it is long, the productivity of the foamed molded product is lowered. The heating time is preferably 20 seconds to 1 hour.

型内発泡成形後、金型内に形成された発泡成形体は、冷却した上で金型を開放することで取り出すことができる。発泡成形体の冷却温度は、高いと、改質発泡体を充分に固化できないことがある。その結果、金型から取り出した時に膨らんで金型のキャビティ形状通りの発泡成形体とならないことがある。よって冷却温度は、発泡成形体の表面温度が好ましくは50℃以下となるように、より好ましくは0〜45℃となるように、特に好ましくは0〜40℃となるように、最も好ましくは0〜35℃となるように設定できる。   After the in-mold foam molding, the foam molded body formed in the mold can be taken out by cooling and then opening the mold. If the cooling temperature of the foamed molded product is high, the modified foam may not be sufficiently solidified. As a result, when it is taken out from the mold, it may swell and may not become a foamed molded product according to the cavity shape of the mold. Therefore, the cooling temperature is most preferably 0 so that the surface temperature of the foamed molded product is preferably 50 ° C. or less, more preferably 0 to 45 ° C., particularly preferably 0 to 40 ° C. It can set so that it may become -35 degreeC.

上記冷却方法としては、特に限定されないが、(1)金型を50℃以下の雰囲気中に放置する方法、(2)金型に50℃以下の水又は空気を吹き付ける方法、(3)金型を50℃以下の水中に浸漬させる方法が挙げられる。この内、複雑な形状の金型であっても金型全体を均一に冷却できることから、(3)の冷却方法が好ましい。なお、冷却時間は、冷却方法や金型の大きさ等に応じて適宜、調整できる。例えば、50℃以下の水中に金型を浸漬させる場合には、1〜10分が好ましい。   The cooling method is not particularly limited, but (1) a method of leaving the mold in an atmosphere of 50 ° C. or lower, (2) a method of spraying water or air of 50 ° C. or lower onto the mold, and (3) a mold. Is immersed in water at 50 ° C. or lower. Among these, the cooling method (3) is preferable because even the mold having a complicated shape can cool the entire mold uniformly. The cooling time can be appropriately adjusted according to the cooling method, the size of the mold, and the like. For example, when the mold is immersed in water at 50 ° C. or lower, 1 to 10 minutes is preferable.

発泡成形体の結晶化度は、低いと、耐熱性が低下することがある。一方、高いと、発泡成形体が脆くなることがある。そのため、結晶化度は、好ましくは40〜65%、より好ましくは45〜64%、特に好ましくは50〜63%である。   If the crystallinity of the foamed molded product is low, the heat resistance may decrease. On the other hand, if it is high, the foamed molded product may become brittle. Therefore, the crystallinity is preferably 40 to 65%, more preferably 45 to 64%, and particularly preferably 50 to 63%.

なお、金型は、特に限定されず、例えば、鉄系金属、アルミニウム系金属、銅系金属、亜鉛系金属等から構成されていてもよい。この内、熱伝導性及び加工性の観点からアルミニウム系金属から構成されていることが好ましい。   In addition, a metal mold | die is not specifically limited, For example, you may be comprised from the iron-type metal, the aluminum-type metal, the copper-type metal, the zinc-type metal, etc. Among these, it is preferable that it is comprised from the aluminum-type metal from a heat conductive and workable viewpoint.

更に、型内発泡成形前に、上記改質発泡体に更に不活性ガスを含浸させて、改質発泡体の発泡力を向上させてもよい。発泡力を向上させることにより、型内発泡成形時に改質発泡体同士の融着性が向上し、得られる発泡成形体に更に優れた機械的強度を付与できる。なお、不活性ガスとしては、例えば、二酸化炭素、窒素、ヘリウム、アルゴン等が挙げられる。   Furthermore, before the in-mold foam molding, the modified foam may be further impregnated with an inert gas to improve the foaming power of the modified foam. By improving the foaming force, the fusion property between the modified foams can be improved at the time of in-mold foam molding, and further excellent mechanical strength can be imparted to the resulting foam molded article. In addition, as an inert gas, a carbon dioxide, nitrogen, helium, argon etc. are mentioned, for example.

改質発泡体に更に不活性ガスを含浸させる方法としては、例えば、圧力容器中で常圧以上の圧力を有する不活性ガス雰囲気下に1次発泡体を置くことによって改質発泡体中に不活性ガスを含浸させる方法が挙げられる。不活性ガスは、改質発泡体を金型内に充填する前に含浸させてもよく、改質発泡体を金型内に充填した後に金型ごと不活性ガス雰囲気下に置くことで含浸させてもよい。なお、不活性ガスが二酸化炭素である場合、0.1〜1.2MPaの二酸化炭素雰囲気中に改質発泡体を20分〜24時間に亘って放置することが好ましい。圧力は大気圧を基準としている。   As a method for further impregnating the modified foam with an inert gas, for example, the primary foam is placed in an inert gas atmosphere having a pressure equal to or higher than normal pressure in a pressure vessel. The method of impregnating with an active gas is mentioned. The inert gas may be impregnated before filling the modified foam into the mold, or impregnated by placing the modified foam in the mold and placing it in an inert gas atmosphere together with the mold. May be. When the inert gas is carbon dioxide, it is preferable to leave the modified foam in a carbon dioxide atmosphere of 0.1 to 1.2 MPa for 20 minutes to 24 hours. The pressure is based on atmospheric pressure.

上述した発泡成形体からなる本発明の配管保温材は、植物由来の材料からなるため、石油資源に負担をかけない。また、生分解性であるため、使用後の処理段階においても環境負荷が少ない。また、耐熱性や機械的強度等の特性についても従来のものと全く遜色がない。本発明の配管保温材が広く普及することにより、資源や環境に貢献することができる。   Since the pipe heat insulating material of the present invention comprising the above-described foamed molded article is made of a plant-derived material, it does not place a burden on petroleum resources. Moreover, since it is biodegradable, there is little environmental load also in the process step after use. Also, the properties such as heat resistance and mechanical strength are not inferior to those of the conventional one. The widespread use of the pipe heat insulating material of the present invention can contribute to resources and the environment.

以下、実施例を挙げて更に説明するが、本発明はこれら実施例によって限定されるものではない。実施例に記載した各種測定法及び製造条件を以下で説明する。   Hereinafter, although an example is given and explained further, the present invention is not limited by these examples. Various measurement methods and production conditions described in the examples will be described below.

(D体又はL体の含有量)
ポリ乳酸系樹脂中におけるD体又はL体の含有量は以下の方法によって測定する。ポリ乳酸系樹脂を凍結粉砕し、ポリ乳酸系樹脂の粉末200mgを三角フラスコ内に供給した後、三角フラスコ内に1Nの水酸化ナトリウム水溶液30ミリリットルを加える。そして、三角フラスコを振りながら65℃に加熱してポリ乳酸系樹脂を完全に溶解させる。しかる後、1N塩酸を三角フラスコ内に供給して中和し、pHが4〜7の分解溶液を作製し、メスフラスコを用いて所定の体積とする。
次に、分解溶液を0.45μmのメンブレンフィルターで濾過した後、液体クロマトグラフを用いて分析し、得られたチャートに基づいてD体及びL体由来のピーク面積から面積比を存在比としてD体量及びL体量を算出する。そして、上述と同様の要領を5回繰り返して行い、得られたD体量及びL体量をそれぞれ相加平均した値を、ポリ乳酸系樹脂のD体量及びL体量とする。
HPLC装置(液体クロマトグラフ):日本分光社製商品名「PU−2085 Plus型システム」
カラム:住友分析センター社製商品名「SUMICHIRAL OA5000」(4.6mmφ×250mm)
カラム温度:25℃
移動相:2mMCuSO4水溶液と2−プロパノールとの混合液
(CuSO4水溶液:2−プロパノール(体積比)=95:5)
移動相流量:1.0ミリリットル/分
検出器:UV254nm
注入量:20マイクロリットル
(D or L content)
The content of D-form or L-form in the polylactic acid resin is measured by the following method. The polylactic acid-based resin is freeze-pulverized and 200 mg of the polylactic acid-based resin powder is supplied into the Erlenmeyer flask, and then 30 ml of a 1N sodium hydroxide aqueous solution is added to the Erlenmeyer flask. Then, the polylactic acid resin is completely dissolved by heating to 65 ° C. while shaking the Erlenmeyer flask. Thereafter, 1N hydrochloric acid is supplied into the Erlenmeyer flask to neutralize it, a decomposition solution having a pH of 4 to 7 is prepared, and a predetermined volume is obtained using a volumetric flask.
Next, after the decomposition solution is filtered through a 0.45 μm membrane filter, it is analyzed using a liquid chromatograph. Based on the obtained chart, the area ratio is calculated from the peak area derived from D-form and L-form as D Calculate body weight and L body weight. Then, the same procedure as described above is repeated 5 times, and values obtained by arithmetically averaging the obtained D-form amount and L-form amount are defined as the D-form amount and L-form amount of the polylactic acid resin.
HPLC apparatus (liquid chromatograph): “PU-2085 Plus type system” manufactured by JASCO Corporation
Column: Sumitomo Analysis Center Co., Ltd. trade name “SUMICIRAL OA5000” (4.6 mmφ × 250 mm)
Column temperature: 25 ° C
Mobile phase: 2MMCuSO 4 mixture of aqueous solution and 2-propanol (CuSO 4 solution: 2-propanol (volume ratio) = 95: 5)
Mobile phase flow rate: 1.0 ml / min Detector: UV254 nm
Injection volume: 20 microliters

(貯蔵弾性率曲線と損失弾性率曲線との交点における温度T)
貯蔵弾性率曲線と損失弾性率曲線との交点における温度Tは次のようにして測定する。
まず、発泡粒子を製造する要領において、発泡剤を添加しないこと以外は同様の要領にて、ポリ乳酸系樹脂粒子を得る。
このポリ乳酸系樹脂粒子を9.33×104Paの減圧下にて80℃で3時間に亘って乾燥する。このポリ乳酸系樹脂粒子を構成しているポリ乳酸系樹脂の融点よりも40〜50℃だけ高い温度に加熱した測定プレート上に載置して窒素雰囲気下にて5分間に亘って放置し溶融させる。
次に、直径が25mmの平面円形状の押圧板を用意し、この押圧板を用いて測定プレート上のポリ乳酸系樹脂を押圧板と測定プレートとの対向面間の間隔が1mmとなるまで上下方向に押圧する。そして、押圧板の外周縁からはみ出したポリ乳酸系樹脂を除去した後、5分間に亘って放置する。
しかる後、歪み5%、周波数1rad/秒、降温速度2℃/分、測定間隔30秒の条件下にて、ポリ乳酸系樹脂の動的粘弾性測定を行って貯蔵弾性率及び損失弾性率を測定する。次に、横軸を温度とし、縦軸を貯蔵弾性率及び損失弾性率として、貯蔵弾性率曲線及び損失弾性率曲線を描く。なお、貯蔵弾性率曲線及び損失弾性率曲線を描くにあたっては、測定温度を基準として互いに隣接する測定値同士を直線で結ぶ。
そして、得られた貯蔵弾性率曲線と損失弾性率曲線との交点を読み取ることで温度Tが得られる。なお、貯蔵弾性率曲線と損失弾性率曲線とが複数箇所において互いに交差する場合は、貯蔵弾性率曲線と損失弾性率曲線との複数の交点における温度のうち最も高い温度を、温度Tとする。
また、温度Tは、Reologica Instruments A.B社から商品名「DynAlyser DAR−100」にて市販されている動的粘弾性測定装置を用いて測定する。
(Temperature T at the intersection of storage modulus curve and loss modulus curve)
The temperature T at the intersection of the storage modulus curve and the loss modulus curve is measured as follows.
First, polylactic acid resin particles are obtained in the same manner except that the foaming agent is not added.
The polylactic acid resin particles are dried for 3 hours at 80 ° C. under a reduced pressure of 9.33 × 10 4 Pa. Placed on a measurement plate heated to 40-50 ° C. higher than the melting point of the polylactic acid resin constituting the polylactic acid resin particles and allowed to stand for 5 minutes in a nitrogen atmosphere to melt Let
Next, a flat circular pressure plate having a diameter of 25 mm is prepared, and the polylactic acid resin on the measurement plate is moved up and down until the distance between the opposing surfaces of the pressure plate and the measurement plate becomes 1 mm. Press in the direction. And after removing the polylactic acid-type resin which protruded from the outer periphery of a press plate, it is left to stand for 5 minutes.
Thereafter, the dynamic viscoelasticity measurement of the polylactic acid resin is performed under the conditions of 5% strain, frequency 1 rad / sec, temperature drop rate 2 ° C./min, and measurement interval 30 sec to determine the storage elastic modulus and loss elastic modulus. taking measurement. Next, a storage elastic modulus curve and a loss elastic modulus curve are drawn with the horizontal axis as temperature and the vertical axis as storage elastic modulus and loss elastic modulus. In drawing the storage elastic modulus curve and the loss elastic modulus curve, the measurement values adjacent to each other are connected with a straight line based on the measurement temperature.
And temperature T is obtained by reading the intersection of the obtained storage elastic modulus curve and loss elastic modulus curve. When the storage elastic modulus curve and the loss elastic modulus curve intersect each other at a plurality of locations, the highest temperature among the temperatures at the plurality of intersections of the storage elastic modulus curve and the loss elastic modulus curve is defined as a temperature T.
Also, the temperature T is the value of Relogica Instruments A. It measures using the dynamic viscoelasticity measuring apparatus marketed with the brand name "DynAlyser DAR-100" from B company.

(粒径)
発泡粒子の粒径は、直径を直接、ノギスを用いて次のようにして測定する。即ち、発泡粒子の切断面における最も長い直径(長径)及び最も短い直径(短径)を測定すると共に、発泡粒子における切断面に直交する方向の長さを測定する。発泡粒子30個の長径、短径及び長さの相加平均値を粒径とする。
(Particle size)
The diameter of the expanded particles is measured directly using a caliper as follows. That is, the longest diameter (major axis) and the shortest diameter (minor axis) on the cut surface of the expanded particle are measured, and the length of the expanded particle in the direction perpendicular to the cut surface is measured. The arithmetic average value of the major axis, minor axis, and length of 30 expanded particles is defined as the particle size.

(連続気泡率)
連続気泡率は次のようにして測定する。
まず、体積測定空気比較式比重計の試料カップを用意し、この試料カップの80%程度を満たす量の発泡粒子の全重量A(g)を測定する。次に、上記発泡粒子全体の体積B(cm3)を比重計を用いて1−1/2−1気圧法により測定する。なお、体積測定空気比較式比重計は、例えば、東京サイエンス社から商品名「1000型」にて市販されている。
続いて、金網製の容器を用意し、この金網製の容器を水中に浸漬し、この水中に浸漬した状態における金網製の容器の重量C(g)を測定する。次に、この金網製の容器内に発泡粒子を全量入れた上で、この金網製の容器を水中に浸漬し、水中に浸漬した状態における金網製の容器とこの金網製容器に入れた発泡粒子の全量とを併せた重量D(g)を測定する。
そして、下記式に基づいて発泡粒子の見掛け体積E(cm3)を算出し、この見掛け体積Eと発泡粒子全体の体積B(cm3)に基づいて下記式により発泡粒子の連続気泡率を算出する。なお、水1gの体積を1cm3とする。
E=A+(C−D)
連続気泡率(%)=100×(E−B)/E
(Open cell ratio)
The open cell ratio is measured as follows.
First, a sample cup of a volumetric air comparison type hydrometer is prepared, and the total weight A (g) of foamed particles in an amount satisfying about 80% of the sample cup is measured. Next, the volume B (cm 3 ) of the entire expanded particle is measured by a 1-1 / 2-1 atmospheric pressure method using a hydrometer. The volumetric air comparison type hydrometer is commercially available, for example, from Tokyo Science Co. under the trade name “1000 type”.
Subsequently, a wire mesh container is prepared, the wire mesh container is immersed in water, and the weight C (g) of the wire mesh container in the state immersed in the water is measured. Next, after all of the foam particles are put in the wire mesh container, the wire mesh container is immersed in water, and the wire mesh container in the water soaked state and the foam particles placed in the wire mesh container The weight D (g) combined with the total amount of was measured.
Then, the apparent volume E (cm 3 ) of the expanded particles is calculated based on the following formula, and the open cell ratio of the expanded particles is calculated by the following formula based on the apparent volume E and the entire volume B (cm 3 ) of the expanded particles. To do. The volume of 1 g of water is 1 cm 3 .
E = A + (CD)
Open cell ratio (%) = 100 × (EB) / E

(DSC測定)
発熱量、吸熱量、結晶化度、及び融点は次のようにして測定する。
発泡粒子又は発泡成形体を4mg試料として採取する。得られた試料を、JIS K7121に記載の測定法に準拠して、10℃/分の速度にて30℃から210℃まで昇温しながら、示差走査熱量計(DSC:エスアイアイナノテクノロジー社製 示差走査熱量計装置 「DSC6220型」)を用いて、1mg当たりの発熱量及び融解熱量を測定する。両熱量を下記式に代入することで結晶化度を算出する。

Figure 2011213897
(DSC measurement)
The exotherm, endotherm, crystallinity, and melting point are measured as follows.
The expanded particles or the expanded molded article is collected as a 4 mg sample. In accordance with the measurement method described in JIS K7121, the obtained sample was heated from 30 ° C. to 210 ° C. at a rate of 10 ° C./min, and a differential scanning calorimeter (DSC: manufactured by SII Nano Technology Co., Ltd.) Using a differential scanning calorimeter “DSC 6220 type”), the calorific value per 1 mg and the heat of fusion are measured. The degree of crystallinity is calculated by substituting both calories into the following equation.
Figure 2011213897

ここで、発泡粒子又は発泡成形体の発熱量は、DSC曲線の結晶化由来の発熱ピークと結晶融解の吸熱ピークの間の直線部分をベースラインとして引き、発熱ピークの高温側でベースラインから離れる点から、発熱ピークの低温側でベースラインの延長線と交わる点までのベースラインとDSC曲線に囲まれる部分の面積から求められる値とする。また、結晶融解の吸熱ピークの低温側直近に小さな発熱ピークが現れる場合は、該発熱ピークの低温側でベースラインから離れる点から、発熱ピークの高温側でベースラインの延長線と交わる点までのベースラインとDSC曲線に囲まれる部分の面積から求められる値とする。
発熱ピークの高温側からベースラインを引く理由は、発熱ピークの低温側には、ガラス転移やエンタルピー緩和、及び発泡粒子からの発泡剤の逸散に由来する、なだらかな吸熱ピークが発熱ピークの直近に現れるため、発熱ピークの低温側からはベースラインを引くことができないからである。
また、発泡粒子又は発泡成形体の吸熱量は、DSC曲線の結晶化由来の発熱ピークと結晶融解の吸熱ピークの間の直線部分をベースラインとして引き、吸熱ピークの低温側でベースラインから離れる点から、吸熱ピークの高温側でベースラインに戻る点までのベースラインとDSC曲線に囲まれた部分の面積から求められる値とする。ただし、吸熱ピークの低温側に小さな発熱ピークが現れる場合は、吸熱ピークとベースラインが交わる点と吸熱ピークの高温側でベースラインに戻る点までのベースラインとDSC曲線に囲まれた部分の面積から求められる値とする。
また、ポリ乳酸系樹脂の融点(mp)は、得られたDSC曲線における融解ピークの頂点の温度をポリ乳酸系樹脂の融点(mp)とする。なお、融解ピークの頂点が複数個ある場合には、最も高い温度とする。
Here, the calorific value of the foamed particles or the foamed molded article is drawn from the straight line portion between the exothermic peak derived from crystallization of the DSC curve and the endothermic peak of crystal melting as a baseline, and departs from the baseline on the high temperature side of the exothermic peak. A value obtained from the area of the portion surrounded by the base line and the DSC curve from the point to the point where the exothermic peak intersects the extended line of the base line on the low temperature side. In addition, when a small exothermic peak appears near the low temperature side of the endothermic peak of crystal melting, from the point away from the baseline on the low temperature side of the exothermic peak to the point where it intersects with the baseline extension line on the high temperature side of the exothermic peak. The value is obtained from the area of the portion surrounded by the baseline and the DSC curve.
The reason why the baseline is drawn from the high temperature side of the exothermic peak is that the gentle endothermic peak, which is derived from glass transition, enthalpy relaxation, and dissipation of the foaming agent from the expanded particles, is close to the exothermic peak. This is because the base line cannot be drawn from the low temperature side of the exothermic peak.
In addition, the endothermic amount of the expanded particles or the foamed molded article is a point where a straight line portion between the exothermic peak derived from crystallization of the DSC curve and the endothermic peak of crystal melting is drawn as a baseline, and the temperature is away from the baseline on the low temperature side of the endothermic peak. To a value obtained from the area of the portion surrounded by the baseline and the DSC curve up to the point where the endothermic peak returns to the baseline on the high temperature side. However, when a small exothermic peak appears on the low temperature side of the endothermic peak, the area of the portion surrounded by the baseline and DSC curve from the point where the endothermic peak and the baseline intersect and the point where the high temperature side of the endothermic peak returns to the baseline. The value obtained from
The melting point (mp) of the polylactic acid-based resin is defined as the melting point (mp) of the polylactic acid-based resin at the peak temperature of the melting peak in the obtained DSC curve. When there are a plurality of melting peak apexes, the highest temperature is set.

(嵩密度)
ポリ乳酸系樹脂発泡粒子の嵩密度は、JIS K6911:1995年「熱硬化性プラスチック一般試験方法」に準拠して測定されたものをいう。即ち、JIS K6911に準拠した見掛け密度測定器を用いて測定し、下記式に基づいてポリ乳酸系樹脂発泡粒子の嵩密度を測定する。
ポリ乳酸系樹脂発泡粒子の嵩密度(g/cm3
=〔試料を入れたメスシリンダーの質量(g)−メスシリンダーの質量(g)〕
/〔メスシリンダーの容量(cm3)〕
(The bulk density)
The bulk density of the polylactic acid-based resin expanded particles refers to that measured according to JIS K6911: 1995 “General Test Method for Thermosetting Plastics”. That is, it measures using the apparent density measuring device based on JISK6911, and measures the bulk density of a polylactic acid-type resin expanded particle based on a following formula.
Bulk density (g / cm 3 ) of foamed polylactic acid resin
= [Mass of measuring cylinder with sample (g) -Mass of measuring cylinder (g)]
/ [Capacity of measuring cylinder (cm 3 )]

(見掛け密度)
ポリ乳酸系樹脂発泡成形体の見掛け密度は、JIS K6767:1999「発泡プラスチック及びゴム−見掛け密度の測定」に記載の方法で測定する。
(Apparent density)
The apparent density of the polylactic acid-based resin foamed molded article is measured by the method described in JIS K6767: 1999 “Measurement of foamed plastic and rubber-apparent density”.

(耐熱性)
得られたポリ乳酸系樹脂発泡成形体を120℃に維持された電気オーブン内に22時間に亘って放置する。そして、電気オーブン内に放置する前後のポリ乳酸系樹脂発泡成形体の寸法を測定し、下記式に基づいて寸法変化率を算出し耐熱性として評価する。なお、ポリ乳酸系樹脂発泡成形体の寸法は、縦方向、横方向及び高さ方向の寸法の相加平均値とする。
寸法変化率(%)=100×(加熱後の寸法−加熱前の寸法)/加熱前の寸法
(Heat-resistant)
The obtained polylactic acid resin foamed molded product is left in an electric oven maintained at 120 ° C. for 22 hours. And the dimension of the polylactic acid-type resin foaming molding before and behind leaving to stand in an electric oven is measured, a dimensional change rate is computed based on a following formula, and it evaluates as heat resistance. In addition, let the dimension of a polylactic acid-type resin foaming molding be an arithmetic mean value of the dimension of a vertical direction, a horizontal direction, and a height direction.
Dimensional change rate (%) = 100 × (dimension after heating−dimension before heating) / dimension before heating

(実施例1)
図1及び図2に示した製造装置を用いて発泡粒子を製造した。まず、結晶性のポリ乳酸系樹脂(ユニチカ社製商品名「TERRAMAC HV−6250H」、融点(mp):169.1℃、D体比率:1.2モル%、L体比率:98.8モル%、動的粘弾性測定にて得られた、貯蔵弾性率曲線と損失弾性率曲線との交点における温度T:138.8℃)100重量部、気泡調整剤としてポリテトラフルオロエチレン粉末(旭硝子社製 商品名「フルオンL169J」)0.1重量部を口径が65mmの単軸押出機に供給して溶融混練した。なお、単軸押出機内において、ポリ乳酸系樹脂を始めは190℃にて溶融混練した後に220℃まで昇温させながら溶融混練した。
Example 1
Expanded particles were produced using the production apparatus shown in FIGS. First, crystalline polylactic acid resin (trade name “TERRAMAC HV-6250H” manufactured by Unitika Ltd., melting point (mp): 169.1 ° C., D-form ratio: 1.2 mol%, L-form ratio: 98.8 mol %, Obtained by dynamic viscoelasticity measurement, 100 parts by weight at the intersection of storage elastic modulus curve and loss elastic modulus curve, 13 parts by weight, polytetrafluoroethylene powder (Asahi Glass Co., Ltd.) as a bubble regulator Product name “Fullon L169J”) 0.1 parts by weight was supplied to a single screw extruder having a diameter of 65 mm and melt-kneaded. In the single screw extruder, the polylactic acid resin was first melt-kneaded at 190 ° C. and then melt-kneaded while raising the temperature to 220 ° C.

続いて、単軸押出機の途中から、イソブタン35重量%及びノルマルブタン65重量%からなるブタンをポリ乳酸系樹脂100重量部に対して1.2重量部となるように溶融状態のポリ乳酸系樹脂に圧入して、ポリ乳酸系樹脂中に均一に分散させた。   Subsequently, from the middle of the single-screw extruder, the polylactic acid-based polylactic acid in a melted state so that butane comprising 35% by weight of isobutane and 65% by weight of normal butane is 1.2 parts by weight with respect to 100 parts by weight of the polylactic acid-based resin. It was press-fitted into the resin and uniformly dispersed in the polylactic acid resin.

しかる後、押出機の先端部において、溶融状態のポリ乳酸系樹脂を190℃に冷却した後、単軸押出機の前端に取り付けたマルチノズル金型1の各ノズルから剪断速度7621sec-1でポリ乳酸系樹脂を押出発泡させた。なお、マルチノズル金型1の温度は200℃に維持されていた。
なお、マルチノズル金型1は、出口部11の直径が1.0mmのノズルを10個有しており、ノズルの出口部11は全て、マルチノズル金型1の前端面1aに想定した、直径が139.5mmの仮想円A上に等間隔毎に配設されていた。
Thereafter, after the molten polylactic acid-based resin is cooled to 190 ° C. at the front end of the extruder, the poly-nozzle mold 1 attached to the front end of the single-screw extruder is subjected to polyslurry at a shear rate of 7621 sec −1 . A lactic acid resin was extruded and foamed. The temperature of the multi-nozzle mold 1 was maintained at 200 ° C.
The multi-nozzle mold 1 has ten nozzles having a diameter of the outlet portion 11 of 1.0 mm, and all the outlet portions 11 of the nozzle are assumed to be on the front end face 1a of the multi-nozzle die 1. Are arranged at equal intervals on a virtual circle A of 139.5 mm.

そして、回転軸2の後端部外周面には、四枚の回転刃5が回転軸2の周方向に等間隔毎に一体的に設けられており、各回転刃5はマルチノズル金型1の前端面1aに常時、接触した状態で仮想円A上を移動するように構成されていた。
更に、冷却部材4は、正面円形状の前部41aと、この前部41aの外周縁から後方に向かって延設されかつ内径が315mmの円筒状の周壁部41bとからなる冷却ドラム41を備えていた。そして、供給管41d及びドラム41の供給口41cを通じて冷却ドラム41内に冷却水42が供給されており、周壁部41bの内面全面には、この内面に沿って20℃の冷却水42が前方に向かって螺旋状に流れていた。
Then, four rotary blades 5 are integrally provided at equal intervals in the circumferential direction of the rotary shaft 2 on the outer peripheral surface of the rear end portion of the rotary shaft 2, and each rotary blade 5 is a multi-nozzle mold 1. It is configured to move on the virtual circle A while always in contact with the front end face 1a.
Further, the cooling member 4 includes a cooling drum 41 including a front circular front part 41a and a cylindrical peripheral wall part 41b extending rearward from the outer peripheral edge of the front part 41a and having an inner diameter of 315 mm. It was. The cooling water 42 is supplied into the cooling drum 41 through the supply pipe 41d and the supply port 41c of the drum 41, and the cooling water 42 at 20 ° C. is forwarded along the inner surface of the peripheral wall portion 41b. It was flowing in a spiral.

そして、マルチノズル金型1の前端面1aに配設した回転刃5を4800rpmの回転数で回転させてあり、マルチノズル金型1の各ノズルの出口部11から押出発泡されたポリ乳酸系樹脂押出物を回転刃5によって切断して略球状の1次発泡粒子を製造した。ポリ乳酸系樹脂押出物は、マルチノズル金型1のノズルから押出された直後の未発泡部と、この未発泡部に連続する発泡途上の発泡部とからなっていた。そして、ポリ乳酸系樹脂押出物は、ノズルの出口部11の開口端において切断されており、ポリ乳酸系樹脂押出物の切断は未発泡部において行われていた。   A polylactic acid-based resin extruded and foamed from the outlet portion 11 of each nozzle of the multi-nozzle mold 1 is rotated by the rotary blade 5 disposed on the front end surface 1a of the multi-nozzle mold 1 at a rotation speed of 4800 rpm. The extrudate was cut with the rotary blade 5 to produce substantially spherical primary expanded particles. The polylactic acid-based resin extrudate was composed of an unfoamed portion immediately after being extruded from the nozzle of the multi-nozzle mold 1 and a foamed portion in the course of foaming continuous with the unfoamed portion. And the polylactic acid-type resin extrudate was cut | disconnected in the opening end of the exit part 11 of a nozzle, and the cutting | disconnection of the polylactic acid-type resin extrudate was performed in the unfoamed part.

なお、1次発泡粒子の製造にあたっては、まず、マルチノズル金型1に回転軸2を取り付けずかつ冷却部材4をマルチノズル金型1から退避させておいた。この状態で、単軸押出機からポリ乳酸系樹脂押出物を押出発泡させ、ポリ乳酸系樹脂押出物が、マルチノズル金型1のノズルから押出された直後の未発泡部と、この未発泡部に連続する発泡途上の発泡部とからなることを確認した。次に、マルチノズル金型1に回転軸2を取り付けかつ冷却部材4を所定位置に配設した後、回転軸2を回転させ、ポリ乳酸系樹脂押出物をノズルの出口部11の開口端において回転刃5で切断して1次発泡粒子を製造した。   In the production of the primary expanded particles, first, the rotating shaft 2 was not attached to the multi-nozzle mold 1 and the cooling member 4 was retracted from the multi-nozzle mold 1. In this state, the polylactic acid resin extrudate is extruded and foamed from a single screw extruder, and the polylactic acid resin extrudate is extruded from the nozzle of the multi-nozzle mold 1 and the unfoamed portion. It was confirmed that it was composed of a foaming part in the middle of foaming. Next, after attaching the rotating shaft 2 to the multi-nozzle mold 1 and disposing the cooling member 4 at a predetermined position, the rotating shaft 2 is rotated, and the polylactic acid resin extrudate is placed at the opening end of the outlet portion 11 of the nozzle. Cutting with a rotary blade 5 produced primary expanded particles.

1次発泡粒子は、回転刃5による切断応力によって外方又は前方に向かって飛ばされ、冷却部材4の冷却ドラム41の内面に沿って流れている冷却水42に衝突して直ちに冷却された。
冷却された1次発泡粒子は、冷却ドラム41の排出口41e及び排出管41fを通じて冷却水42と共に排出された後、脱水機にて冷却水42と分離された。得られた1次発泡粒子は、その粒径が2.2〜2.6mmであり、嵩密度が0.2g/cm3であり、結晶化度が19.3%であった。
The primary expanded particles were blown outward or forward by the cutting stress of the rotary blade 5, collided with the cooling water 42 flowing along the inner surface of the cooling drum 41 of the cooling member 4, and immediately cooled.
The cooled primary expanded particles were discharged together with the cooling water 42 through the discharge port 41e and the discharge pipe 41f of the cooling drum 41, and then separated from the cooling water 42 by a dehydrator. The obtained primary expanded particles had a particle size of 2.2 to 2.6 mm, a bulk density of 0.2 g / cm 3 , and a crystallinity of 19.3%.

次に、1次発泡粒子を密閉容器内に入れ、この密閉容器内に二酸化炭素を1.0MPaの圧力にて圧入して25℃にて6時間に亘って放置して1次発泡粒子に二酸化炭素を含浸させた。
上記1次発泡粒子を圧力容器から取り出して、直ちに撹拌機付きの熱風乾燥機に供給し、撹拌しながら54℃の乾燥した熱風で3分間に亘って加熱して発泡させた。その結果、粒径が2.8〜3.5mm、嵩密度が0.047g/cm3、結晶化度が22.3%の高発泡倍率の改質発泡粒子を得た。この改質発泡粒子をDSCで測定したところ、結晶化に由来するピークが二山形状を示していた。また、発熱ピークを温度で四等分して温度の低い方から第1、第2、第3、第4分割とした際の、発熱ピークの熱量に占める第1、第3、第4分割の熱量の合計の割合は59.1%であった。
Next, the primary expanded particles are put in a sealed container, and carbon dioxide is injected into the sealed container at a pressure of 1.0 MPa and left at 25 ° C. for 6 hours to form carbon dioxide into the primary expanded particles. Impregnated with carbon.
The primary foamed particles were taken out from the pressure vessel, immediately supplied to a hot air dryer equipped with a stirrer, and heated and foamed for 3 minutes with 54 ° C. dry hot air while stirring. As a result, modified expanded particles having a high expansion ratio having a particle size of 2.8 to 3.5 mm, a bulk density of 0.047 g / cm 3 and a crystallinity of 22.3% were obtained. When this modified foamed particle was measured by DSC, the peak derived from crystallization showed a double peak shape. Further, when the exothermic peak is divided into four equal parts by temperature and the first, second, third, and fourth divisions are made from the lowest temperature, the first, third, and fourth divisions in the heat quantity of the exothermic peak The total proportion of heat was 59.1%.

次に、改質発泡粒子を密閉容器内に入れ、この密閉容器内に二酸化炭素を0.8MPaの圧力にて圧入して25℃にて24時間に亘って放置して改質発泡粒子に二酸化炭素を含浸させた。
続いて、直径約50mmφの配管の、略T字状の分岐部に対応する配管保温材を成形するためのするためのアルミニウム製金型のキャビティ内に充填した。また、金型は、この金型のキャビティ内と金型外部とを連通させるために、直径が8mmの円形状の供給口を20mm間隔毎に備えていた。各供給口には、開口幅が1mmの格子部を設けることで、金型内に充填した高発泡粒子がこの供給口を通じて金型外に流出せず、供給口を通じて金型外からキャビティ内に水を円滑に供給できるように構成した。
Next, the modified foamed particles are placed in a sealed container, and carbon dioxide is injected into the sealed container at a pressure of 0.8 MPa and left at 25 ° C. for 24 hours to form carbon dioxide into the modified foamed particles. Impregnated with carbon.
Then, it filled in the cavity of the aluminum metal mold | die for shape | molding the piping heat insulating material corresponding to the substantially T-shaped branch part of piping about 50 mm diameter in diameter. Further, the mold was provided with a circular supply port having a diameter of 8 mm at intervals of 20 mm in order to communicate the inside of the mold cavity and the outside of the mold. By providing a grid part with an opening width of 1 mm at each supply port, the highly foamed particles filled in the mold do not flow out of the mold through this supply port, but from outside the mold through the supply port into the cavity. It was configured so that water could be supplied smoothly.

次に、加熱水槽内の85℃に維持された温水中に改質発泡粒子を充填した金型を完全に40秒間に亘って浸漬した。この浸漬により、金型の供給口を通じて金型のキャビティ内の発泡粒子に温水を供給することで、改質発泡粒子を加熱、2次発泡させて改質発泡粒子同士を熱融着一体化させて発泡成形体を得た。   Next, the mold filled with the modified foamed particles was completely immersed in warm water maintained at 85 ° C. in a heated water tank for 40 seconds. By this immersion, hot water is supplied to the foam particles in the cavity of the mold through the mold supply port, whereby the modified foam particles are heated and secondarily foamed, and the modified foam particles are integrated by heat fusion. Thus, a foamed molded product was obtained.

次に、加熱水槽内から金型を取り出した。そして、冷却水槽内の20℃に維持された水中に金型を完全に5分間に亘って浸漬した。この浸漬により、金型内の発泡成形体を冷却した。
金型を冷却水槽から取り出した後、金型を開放することで直方体形状の発泡成形体を得た。金型を冷却水槽から取り出して金型を開放して直方体形状の発泡成形体を得た。得られた発泡成形体は、見掛け密度が0.047g/cm3で非常に優れた外観を有していた。性能評価の結果を表1に示す。
Next, the mold was taken out from the heated water tank. And the metal mold | die was completely immersed over 5 minutes in the water maintained at 20 degreeC in a cooling water tank. The foamed molded body in the mold was cooled by this immersion.
After the mold was taken out of the cooling water tank, the mold was opened to obtain a rectangular parallelepiped foam molded body. The mold was taken out from the cooling water tank, and the mold was opened to obtain a rectangular parallelepiped foam molded body. The obtained foamed molded article had an apparent appearance with an apparent density of 0.047 g / cm 3 . The performance evaluation results are shown in Table 1.

(実施例2)
熱風乾燥機での熱風の温度を47℃とし、加熱時間を210秒と変えたこと以外は実施例1と同様にして改質発泡粒子を得た。得られた改質発泡粒子は粒径が2.5〜3.4mm、嵩密度が0.058g/cm3、結晶化度が23.1%であった。この改質発泡粒子をDSCで測定したところ、結晶化に由来するピークが略半円形状を示していた。また、発熱ピークを温度で四等分して温度の低い方から第1、第2、第3、第4分割とした際の、発熱ピークの熱量に占める第1、第3、第4分割の熱量の合計の割合は54.3%だった。
次に、得られた改質発泡粒子から実施例1と同様の要領にて、発泡成形体を得た。得られた発泡成形体は、見掛け密度が0.058g/cm3で非常に優れた外観を有していた。性能評価の結果を表1に示す。
(Example 2)
Modified foamed particles were obtained in the same manner as in Example 1 except that the temperature of the hot air in the hot air dryer was 47 ° C. and the heating time was changed to 210 seconds. The obtained modified foamed particles had a particle size of 2.5 to 3.4 mm, a bulk density of 0.058 g / cm 3 , and a crystallinity of 23.1%. When this modified foamed particle was measured by DSC, the peak derived from crystallization showed a substantially semicircular shape. Further, when the exothermic peak is divided into four equal parts by temperature and the first, second, third, and fourth divisions are made from the lowest temperature, the first, third, and fourth divisions in the heat quantity of the exothermic peak The total amount of heat was 54.3%.
Next, a foamed molded article was obtained from the obtained modified foamed particles in the same manner as in Example 1. The obtained foamed molded article had an apparent appearance with an apparent density of 0.058 g / cm 3 . The performance evaluation results are shown in Table 1.

(比較例1)
実施例1で得られた1次発泡粒子を、密閉容器内に供給した。この密閉容器内に二酸化炭素を0.3MPa(G)の圧力にて圧入して25℃で24時間に亘って放置することで、1次発泡粒子に二酸化炭素を含浸させた。
次に、二酸化炭素が含浸した1次発泡粒子から実施例1と同様の要領にて、発泡成形体を得た。得られた発泡成形体は、全体的に膨らんでおり外観不良であった。
なお、1次発泡粒子をDSCで測定したところ、結晶化に由来するピークはシャープな一山の略三角形形状を示していた。また、発熱ピークを温度で四等分して温度の低い方から第1、第2、第3、第4分割とした際の、発熱ピークの熱量に占める第1、第3、第4分割の熱量の合計の割合は36.5%であった。性能評価の結果を表1に示す。
(Comparative Example 1)
The primary expanded particles obtained in Example 1 were supplied into a sealed container. Carbon dioxide was injected into the sealed container at a pressure of 0.3 MPa (G) and left at 25 ° C. for 24 hours to impregnate the primary foamed particles with carbon dioxide.
Next, a foam-molded article was obtained from the primary foamed particles impregnated with carbon dioxide in the same manner as in Example 1. The obtained foamed molded product was swollen as a whole and had a poor appearance.
When the primary foamed particles were measured by DSC, the peak derived from crystallization showed a sharp and substantially triangular shape. Further, when the exothermic peak is divided into four equal parts by temperature and the first, second, third, and fourth divisions are made from the lowest temperature, the first, third, and fourth divisions in the heat quantity of the exothermic peak The total proportion of heat was 36.5%. The performance evaluation results are shown in Table 1.

(比較例2)
熱風乾燥機での熱風の温度を52℃から68℃に変えたこと以外は実施例1と同様にして、高発泡粒子を得た。得られた高発泡粒子は粒径が2.8〜3.6mm、嵩密度が0.041g/cm3、結晶化度が28.5%であった。この高発泡粒子をDSCで測定したところ、結晶化に由来するピークは一山の略三角形形状を示していた。また、発熱ピークを温度で四等分して温度の低い方から第1、第2、第3、第4分割とした際の、発熱ピークの熱量に占める第1、第3、第4分割の熱量の合計の割合は35.3%であった。
次に、得られた高発泡粒子から実施例1と同様の要領にて、発泡成形体を得た。得られたポリ乳酸系樹脂発泡成形体は、密度が0.041g/cm3で非常に優れた外観を有していた。性能評価の結果を表1に示す。
(Comparative Example 2)
Highly expanded particles were obtained in the same manner as in Example 1 except that the temperature of the hot air in the hot air dryer was changed from 52 ° C to 68 ° C. The obtained highly expanded particles had a particle size of 2.8 to 3.6 mm, a bulk density of 0.041 g / cm 3 , and a crystallinity of 28.5%. When this highly expanded particle was measured by DSC, the peak derived from crystallization showed a substantially triangular shape of a mountain. Further, when the exothermic peak is divided into four equal parts by temperature and the first, second, third, and fourth divisions are made from the lowest temperature, the first, third, and fourth divisions in the heat quantity of the exothermic peak The total proportion of heat was 35.3%.
Next, a foam-molded article was obtained from the obtained highly expanded particles in the same manner as in Example 1. The obtained polylactic acid resin foamed molded article had a very excellent appearance with a density of 0.041 g / cm 3 . The performance evaluation results are shown in Table 1.

(比較例3)
発泡倍率20倍の発泡ポリプロピレンにて、実施例1と同形状、同寸法の発泡成形体を製造した。性能評価の結果を表1に示す。
(Comparative Example 3)
A foamed molded product having the same shape and the same dimensions as in Example 1 was produced from a foamed polypropylene having a foaming ratio of 20 times. The performance evaluation results are shown in Table 1.

Figure 2011213897
Figure 2011213897

表1から、発熱ピークの全発熱量に対して、第1、第3及び第4の区分の熱量の合計の占める割合が、45%以上の改質発泡粒子を使用した場合、外観、融着性及び耐熱性に優れた発泡成形体を得られることがわかる。
なお、実施例1及び2、比較例1及び2のDSC曲線を図3〜6に示す。図中、Xは結晶化由来の発熱ピークを意味する。
From Table 1, when the modified foamed particles in which the total amount of heat of the first, third, and fourth categories occupies 45% or more of the total heat generation of the exothermic peak, appearance, fusion It can be seen that a foamed molded article excellent in heat resistance and heat resistance can be obtained.
In addition, the DSC curves of Examples 1 and 2 and Comparative Examples 1 and 2 are shown in FIGS. In the figure, X means an exothermic peak derived from crystallization.

1ノズル金型:1a前端面:2回転軸:3モータ:4冷却部材:5回転刃:11出口部:41冷却ドラム:41a前部:41b周壁部:41c供給口:41d供給管:41e排出口:41f排出管:42冷却液:A仮想円:X結晶化由来の発熱ピーク 1 nozzle mold: 1a front end surface: 2 rotation shaft: 3 motor: 4 cooling member: 5 rotation blade: 11 outlet part: 41 cooling drum: 41a front part: 41b peripheral wall part: 41c supply port: 41d supply pipe: 41e exhaust Outlet: 41f Discharge pipe: 42 Coolant: A Virtual circle: Exothermic peak derived from X crystallization

Claims (6)

ポリ乳酸系樹脂発泡体を型内発泡成形したポリ乳酸系樹脂発泡成形体からなる配管保温材であって、該ポリ乳酸系樹脂発泡体がポリ乳酸系樹脂を少なくとも含み、前記ポリ乳酸系樹脂が示差走査熱量計で測定した際に結晶化由来の発熱ピークを有し、
前記発熱ピークは、それを温度の低い方から第1、第2、第3及び第4の区分に四等分した場合、
(1)第1、第2、第3及び第4の区分の発熱量の合計が10J/g以上であり、
(2)第1、第2、第3及び第4の区分の発熱量の合計に対して、第1、第3及び第4の区分の発熱量の合計が45%以上である形状を有するポリ乳酸系樹脂発泡体からなることを特徴とする配管保温材。
A pipe heat insulating material comprising a polylactic acid resin foam molded body obtained by in-mold foam molding of a polylactic acid resin foam, wherein the polylactic acid resin foam contains at least a polylactic acid resin, It has an exothermic peak derived from crystallization when measured with a differential scanning calorimeter,
The exothermic peak is divided into four equal parts in the first, second, third and fourth sections from the lower temperature,
(1) The total calorific value of the first, second, third and fourth sections is 10 J / g or more,
(2) Poly having a shape in which the total amount of heat generated in the first, third, and fourth sections is 45% or more of the total amount of heat generated in the first, second, third, and fourth sections A piping heat insulating material comprising a lactic acid resin foam.
前記ポリ乳酸系樹脂発泡体が第1、第2、第3及び第4の区分の発熱量の合計が12J/g以上であり、第1、第2、第3及び第4の区分の発熱量の合計に対して、第1、第3及び第4の区分の発熱量の合計が50%以上である請求項1に記載の配管保温材。   The polylactic acid-based resin foam has a total calorific value of 12 J / g or more in the first, second, third and fourth sections, and the calorific value in the first, second, third and fourth sections. The piping heat insulating material according to claim 1, wherein the total amount of heat generated in the first, third, and fourth sections is 50% or more with respect to the total of the above. 前記ポリ乳酸系樹脂は、乳酸又はラクチドのD体及びL体の双方の光学異性体からなりかつD体又はL体のうちの少ない方の光学異性体の含有量が5モル%未満のモノマー成分に由来するか、あるいは、D体又はL体のうちのいずれか一方の光学異性体からなるモノマー成分のみに由来する請求項1又は2に記載の配管保温材。   The polylactic acid-based resin is a monomer component composed of both D-form and L-form optical isomers of lactic acid or lactide, and the content of the lesser of the D-form or L-form is less than 5 mol%. The pipe heat insulating material according to claim 1 or 2, derived from the above, or derived only from the monomer component consisting of one of the optical isomers of D-form or L-form. 前記ポリ乳酸系樹脂が、30J/g以上の結晶融解の吸熱ピークの吸熱量を有する請求項1〜3のいずれか1つに記載の配管保温材。   The pipe heat insulating material according to any one of claims 1 to 3, wherein the polylactic acid-based resin has an endothermic amount of an endothermic peak of crystal melting of 30 J / g or more. 前記ポリ乳酸系樹脂発泡体が、0.05〜0.5g/cm3の嵩密度のポリ乳酸系樹脂1次発泡体を加熱することで発泡して得られた0.02〜0.2g/cm3の嵩密度のポリ乳酸系樹脂高倍発泡体である請求項1〜4のいずれか1つに記載の配管保温材。 0.02-0.2 g / obtained by foaming the polylactic acid-based resin foam by heating a polylactic acid-based resin primary foam having a bulk density of 0.05-0.5 g / cm 3. The piping heat insulating material according to any one of claims 1 to 4, which is a polylactic acid resin high-magnification foam having a bulk density of cm 3 . 請求項1〜5のいずれか1つに記載の配管保温材の製造方法であって、
0.05〜0.5g/cm3の嵩密度のポリ乳酸系樹脂1次発泡体をガラス転移温度(Tg)−20℃〜ガラス転移温度(Tg)+5℃の温度範囲で10〜300秒間加熱することで発泡させて、0.02〜0.2g/cm3の嵩密度のポリ乳酸系樹脂高倍発泡体を得ることを特徴とする配管保温材の製造方法。
It is a manufacturing method of the piping heat insulating material as described in any one of Claims 1-5,
A polylactic acid resin primary foam having a bulk density of 0.05 to 0.5 g / cm 3 is heated for 10 to 300 seconds in a temperature range of glass transition temperature (Tg) −20 ° C. to glass transition temperature (Tg) + 5 ° C. To obtain a polylactic acid resin high-magnification foam having a bulk density of 0.02 to 0.2 g / cm 3 , thereby producing a pipe heat insulating material.
JP2010084087A 2010-03-31 2010-03-31 Pipe heat insulating material and method for manufacturing the same Pending JP2011213897A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010084087A JP2011213897A (en) 2010-03-31 2010-03-31 Pipe heat insulating material and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010084087A JP2011213897A (en) 2010-03-31 2010-03-31 Pipe heat insulating material and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2011213897A true JP2011213897A (en) 2011-10-27

Family

ID=44943975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010084087A Pending JP2011213897A (en) 2010-03-31 2010-03-31 Pipe heat insulating material and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2011213897A (en)

Similar Documents

Publication Publication Date Title
JP4213200B2 (en) Polylactic acid resin foamed particles for in-mold foam molding, production method thereof, and production method of polylactic acid resin foam molding
JP4761916B2 (en) Polylactic acid resin foam molding
JP5188232B2 (en) Method for producing foamed polylactic acid resin particles for in-mold foam molding
JPWO2013031769A1 (en) Aromatic polyester resin foamed particles for in-mold foam molding and method for producing the same, in-mold foam molded body, composite structure member, and automotive member
JP2007169394A (en) Method for producing polylactic acid resin expanded particle for in-mold expansion molding
JP2013227483A (en) Thermoplastic polyester resin foamed particle, method for producing molded foam using the same, molded foam, and composite foam
JP4773870B2 (en) Process for producing polylactic acid-based resin foam molding
JP3619154B2 (en) Crystalline aromatic polyester resin pre-foamed particles, in-mold foam molded article and foam laminate using the same
JP5777297B2 (en) Method for producing polycarbonate resin foam molding
JP5216619B2 (en) Method for producing foamed polylactic acid resin particles for in-mold foam molding
JP4761917B2 (en) Process for producing pre-expanded particles of polylactic acid resin
JP5502778B2 (en) Polylactic acid resin foam and method for producing the same
JP2012188560A (en) Polyester resin foamed particle, polyester resin foamed molded product using the foamed particle, and method of producing the molded product
JP2011213897A (en) Pipe heat insulating material and method for manufacturing the same
JP2011213893A (en) Automobile interior material and method for manufacturing the same
JP2012201818A (en) Lactic acid-acryl-styrene-based resin foam and lactic acud-acryl-styrene-based resin foam molding
JP2011213896A (en) Sun visor and method for manufacturing the same
JP2011213906A (en) Polylactic acid-based resin foaming particle, method for producing the same, and foamed molding
JP2010023333A (en) Container forming poly-lactic acid resin foaming particle and its production process, also production process of poly-lactic acid resin foam container using container forming poly-lactic acid resin foaming particle
JP2011111615A (en) Polylactic acid-based resin foamed particle for foam molding in mold, secondary foamed particle, and polylactic acid-based resin foamed molded article
JP2012214636A (en) Method for producing polyester-based resin foamed body and polyester-based resin foamed body
JP4928920B2 (en) Method for producing foamed polylactic acid resin particles for in-mold foam molding
JP2012077178A (en) Structural member for vehicle
JP2012077179A (en) Heat insulating material for floor heating
JP5306137B2 (en) Method for producing foamed polylactic acid resin particles for in-mold foam molding