JP2011213268A - Vehicular control device - Google Patents

Vehicular control device Download PDF

Info

Publication number
JP2011213268A
JP2011213268A JP2010084302A JP2010084302A JP2011213268A JP 2011213268 A JP2011213268 A JP 2011213268A JP 2010084302 A JP2010084302 A JP 2010084302A JP 2010084302 A JP2010084302 A JP 2010084302A JP 2011213268 A JP2011213268 A JP 2011213268A
Authority
JP
Japan
Prior art keywords
battery
camber
vehicle
camber angle
wheel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010084302A
Other languages
Japanese (ja)
Inventor
Kazuo Isotani
和巨 磯谷
Akira Mizuno
晃 水野
Yosuke Ando
陽祐 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Equos Research Co Ltd
Original Assignee
Equos Research Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Equos Research Co Ltd filed Critical Equos Research Co Ltd
Priority to JP2010084302A priority Critical patent/JP2011213268A/en
Publication of JP2011213268A publication Critical patent/JP2011213268A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Vehicle Body Suspensions (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a vehicular control device capable of suppressing reduction of the remaining capacity of a battery and degradation of the battery, and ensuring the traveling stability of a vehicle.SOLUTION: A battery state determinator determines whether a battery is insufficiently charged or degraded. Besides, a state quantity determinator determines whether the vehicular state quantity satisfies the predetermined condition. As a result of determination, when the vehicular state quantity satisfies the predetermined condition, and if the battery is insufficiently charged or degraded, a battery degradation state adjuster drives a camber angle adjusting device at the timing earlier than that when the camber angle is adjusted by a normal state adjuster, and the camber angle of the wheel is adjusted so that the absolute value of the camber angle is increased. By driving the camber angle adjusting device when the longitudinal acceleration or the lateral acceleration is small, any instantaneous load is reduced to suppress the power consumption, reduction of the remaining capacity of the battery or degradation of the battery can be suppressed, and the camber angle is reliably adjusted to ensure the traveling stability of the vehicle.

Description

本発明は、車輪のキャンバ角を調整するキャンバ角調整装置と、そのキャンバ角調整装置に電力を供給するバッテリと、を備えた車両に用いられる車両用制御装置に関し、特に、バッテリの残存容量の低下やバッテリの劣化を抑制すると共に、車両の走行安定性を確保できる車両用制御装置に関するものである。   The present invention relates to a camber angle adjusting device that adjusts a camber angle of a wheel and a battery that supplies electric power to the camber angle adjusting device. The present invention relates to a vehicular control device that can suppress a drop and battery deterioration and can ensure running stability of the vehicle.

従来より、車両の走行状態に応じて車輪のキャンバ角を調整することで、車両の走行安定性を確保する技術が知られている。この種の技術に関し、例えば特許文献1には、車両が所定の速度以上で走行するときにネガティブキャンバを車輪に付与することで、車両の走行安定性を向上させる技術が開示されている。車輪のキャンバ角は、バッテリから供給される電力でキャンバ角調整装置が駆動され、キャンバ角調整装置により路面に対する車輪の接地部位を車両の進行方向とは略垂直な方向(横方向)にずらすことで、車輪が傾けられて調整される。このとき車輪の接地部位と路面との間に摩擦が生じる。キャンバ角調整装置は、この摩擦に抗する力を車輪に付与することにより車輪のキャンバ角を調整する。   2. Description of the Related Art Conventionally, there has been known a technique for ensuring traveling stability of a vehicle by adjusting a camber angle of a wheel according to the traveling state of the vehicle. With regard to this type of technology, for example, Patent Literature 1 discloses a technology for improving the running stability of a vehicle by applying a negative camber to the wheel when the vehicle runs at a predetermined speed or higher. The camber angle of the wheel is driven by the power supplied from the battery, and the camber angle adjusting device shifts the ground contact portion of the wheel with respect to the road surface in a direction (lateral direction) substantially perpendicular to the traveling direction of the vehicle. The wheels are tilted and adjusted. At this time, friction occurs between the ground contact portion of the wheel and the road surface. The camber angle adjusting device adjusts the camber angle of the wheel by applying a force against the friction to the wheel.

特開昭60−193781号公報JP-A-60-193781

しかしながら、上述した特許文献1に開示される技術では、バッテリが充電不足であるか劣化しているかに関わらず、車両の速度に応じて車輪にネガティブキャンバが付与される。例えば、車両の進行方向の加速度(前後加速度)や進行方向とは垂直な方向の加速度(横加速度)が大きなときは、車輪の接地荷重が大きくなる。このときに車輪にネガティブキャンバを付与すると、車輪の接地部位と路面との間の摩擦が大きなため、キャンバ角調整装置の負荷が大きくなる。従って、キャンバ角調整装置の電力消費量も瞬間的に増加する。バッテリが充電不足の場合は、電力消費量が増加するとバッテリの残存容量が低下するという問題点があった。また、バッテリが劣化している場合は、電力消費量が瞬間的に増加するとバッテリの劣化が加速されるという問題点があった。   However, in the technique disclosed in Patent Document 1 described above, a negative camber is given to the wheel according to the speed of the vehicle regardless of whether the battery is insufficiently charged or deteriorated. For example, when the acceleration in the traveling direction of the vehicle (longitudinal acceleration) or the acceleration in the direction perpendicular to the traveling direction (lateral acceleration) is large, the ground contact load of the wheel increases. If a negative camber is applied to the wheel at this time, the friction between the ground contact portion of the wheel and the road surface is large, and the load on the camber angle adjusting device increases. Therefore, the power consumption of the camber angle adjusting device also increases instantaneously. When the battery is insufficiently charged, there is a problem that the remaining capacity of the battery decreases as the power consumption increases. Further, when the battery is deteriorated, there is a problem that the deterioration of the battery is accelerated when the power consumption increases momentarily.

さらに、バッテリの充電不足やバッテリが劣化している場合は、バッテリがキャンバ角調整装置に供給する電圧や電流が不安定になるため、キャンバ角調整装置の動作が不安定になり、キャンバ角を調整するタイミングが遅れることがある。特に、車両の前後加速度や横加速度が大きくなるとキャンバ角調整装置の負荷が大きくなるため、この傾向が顕著になり、キャンバ角を調整するタイミングが遅れるおそれがあった。   Furthermore, when the battery is insufficiently charged or the battery has deteriorated, the voltage and current supplied to the camber angle adjustment device by the battery become unstable, so the operation of the camber angle adjustment device becomes unstable and the camber angle is reduced. Adjustment timing may be delayed. In particular, when the longitudinal acceleration or lateral acceleration of the vehicle increases, the load on the camber angle adjusting device increases. This tendency becomes prominent, and the timing for adjusting the camber angle may be delayed.

本発明は、上述した問題点を解決するためになされたものであり、バッテリの残存容量の低下やバッテリの劣化を抑制すると共に、車両の走行安定性を確保できる車両用制御装置を提供することを目的としている。   The present invention has been made to solve the above-described problems, and provides a vehicle control device that can suppress a decrease in the remaining capacity of a battery and a deterioration of the battery, and can ensure traveling stability of the vehicle. It is an object.

課題を解決するための手段および発明の効果Means for Solving the Problems and Effects of the Invention

この目的を達成するために請求項1記載の車両用制御装置によれば、バッテリが供給する電力によりキャンバ角調整装置が駆動され車輪のキャンバ角が調整される車両において、バッテリ情報取得手段によりバッテリの情報が取得され、取得された情報に基づいてバッテリ状態判断手段によりバッテリが充電不足であるか又は劣化しているか判断される。一方、状態量取得手段により車両の状態量が取得され、その車両の状態量が状態量判断手段により所定の条件を満たすか判断される。判断の結果、バッテリが充電不足でない又は劣化しておらず、且つ、車両の状態量が所定の条件を満たす場合に、通常状態調整手段によってキャンバ角調整装置が駆動され車輪のキャンバ角が絶対値が大きくなるように調整される。   In order to achieve this object, according to the vehicle control device of the first aspect, in the vehicle in which the camber angle adjusting device is driven by the power supplied by the battery and the camber angle of the wheel is adjusted, the battery is acquired by the battery information acquisition means. Information is acquired, and based on the acquired information, the battery state determination means determines whether the battery is insufficiently charged or deteriorated. On the other hand, a state quantity of the vehicle is acquired by the state quantity acquisition means, and it is determined whether the state quantity of the vehicle satisfies a predetermined condition by the state quantity determination means. As a result of the determination, when the battery is not insufficiently charged or deteriorated and the vehicle state quantity satisfies a predetermined condition, the camber angle adjusting device is driven by the normal state adjusting means and the camber angle of the wheel is an absolute value. Is adjusted to be large.

これに対し、バッテリが充電不足である又は劣化しており、且つ、車両の状態量が所定の条件を満たす場合には、通常状態調整手段により車輪のキャンバ角が調整される場合よりも早いタイミングで、バッテリ低下状態調整手段によりキャンバ角調整装置が駆動され車輪のキャンバ角が絶対値が大きくなるように調整される。このようにバッテリが充電不足である又は劣化していると判断される場合は、通常状態調整手段により車輪のキャンバ角が調整される場合よりも早いタイミングで、バッテリ低下状態調整手段により車輪のキャンバ角が調整されるので、バッテリ低下状態調整手段は、通常状態調整手段によりキャンバ角調整装置が駆動されるときよりも、前後加速度や横加速度が小さなときにキャンバ角調整装置を駆動する。これにより、キャンバ角調整装置の瞬間的な負荷を減らし、電力消費量を抑制できる。よって、バッテリの残存容量の低下やバッテリの劣化を抑制できる効果がある。   On the other hand, when the battery is undercharged or deteriorated and the vehicle state quantity satisfies a predetermined condition, the timing is earlier than when the camber angle of the wheel is adjusted by the normal state adjusting means. Thus, the camber angle adjusting device is driven by the battery low state adjusting means, and the camber angle of the wheel is adjusted so that the absolute value becomes large. When it is determined that the battery is insufficiently charged or deteriorated in this way, the wheel camber is adjusted by the battery low state adjusting means at an earlier timing than the case where the wheel camber angle is adjusted by the normal condition adjusting means. Since the angle is adjusted, the battery low state adjusting unit drives the camber angle adjusting device when the longitudinal acceleration and the lateral acceleration are smaller than when the camber angle adjusting device is driven by the normal state adjusting unit. Thereby, the instantaneous load of the camber angle adjusting device can be reduced and the power consumption can be suppressed. Therefore, there is an effect that a decrease in the remaining capacity of the battery and deterioration of the battery can be suppressed.

さらに、バッテリ低下状態調整手段は、通常状態調整手段によりキャンバ角調整装置が駆動されてキャンバ角が調整されるときよりも、前後加速度や横加速度が小さく路面と車輪との摩擦が小さいタイミングでキャンバ角調整装置を駆動し車輪のキャンバ角を調整するので、キャンバ角調整装置の負荷を減らすことができる。これにより、バッテリがキャンバ角調整装置に供給する電圧や電流が不安定になったとしても、キャンバ角を確実に調整することができ車両の走行安定性を確保できる効果がある。   Further, the battery lowering state adjusting means has a camber angle at a timing when the camber angle adjusting device is driven by the normal state adjusting means and the camber angle is adjusted and the longitudinal and lateral accelerations are small and the friction between the road surface and the wheels is small. Since the angle adjusting device is driven to adjust the camber angle of the wheel, the load on the camber angle adjusting device can be reduced. As a result, even if the voltage or current supplied from the battery to the camber angle adjusting device becomes unstable, the camber angle can be adjusted with certainty, and the running stability of the vehicle can be ensured.

請求項2記載の車両用制御装置によれば、状態量判断手段により満たすか判断される所定の条件は、バッテリ状態判断手段によりバッテリが充電不足である又は劣化していると判断されるバッテリ低下状態の場合の条件が、バッテリ状態判断手段によりバッテリが充電不足でない又は劣化していないと判断される通常状態の場合の条件を満たすための必要条件となるように設定されている。その結果、バッテリが充電不足である又は劣化していると判断されるバッテリ低下状態のときであれば車輪のキャンバ角が調整されるような状態量であっても、バッテリが充電不足でない又は劣化していないと判断される通常状態の場合には、車輪のキャンバ角が調整されないように設定することができる。これにより、請求項1の効果に加え、バッテリの残存容量の低下やバッテリの劣化の抑制を重視するのか、バッテリの残存容量の低下やバッテリの劣化の抑制と車両の走行安定性の確保とを両立させるのか等、条件設定によって任意に選択することができ、車両設計の自在性を向上させる効果がある。   According to the vehicle control device of claim 2, the predetermined condition for determining whether or not the state quantity determining unit satisfies the condition is that the battery is determined to be insufficiently charged or deteriorated by the battery state determining unit. The condition in the state is set to be a necessary condition for satisfying the condition in the normal state in which it is determined by the battery state determination means that the battery is not insufficiently charged or deteriorated. As a result, if the battery is in a low battery state where it is determined that the battery is undercharged or deteriorated, the battery is not undercharged or deteriorated even if the state is such that the camber angle of the wheel is adjusted. In the normal state where it is determined that the wheel is not engaged, the camber angle of the wheel can be set not to be adjusted. In this way, in addition to the effect of the first aspect, importance is placed on the reduction of the remaining capacity of the battery and the suppression of the deterioration of the battery, the reduction of the remaining capacity of the battery and the suppression of the deterioration of the battery, and the securing of the running stability of the vehicle. It can be arbitrarily selected depending on the condition setting, such as whether to achieve both, and there is an effect of improving the flexibility of vehicle design.

請求項3記載の車両用制御装置によれば、通常状態調整手段およびバッテリ低下状態調整手段によって駆動されるキャンバ角調整装置により後輪のキャンバ角が調整され、後輪にネガティブキャンバが付与される。後輪にネガティブキャンバが付与されることにより、後輪に発生するキャンバスラストを利用して車両の特性を安定したアンダーステア傾向にすることができるので、請求項1又は2の効果に加え、車両の直進安定性や限界走行性能を向上させる効果がある。   According to the vehicle control apparatus of the third aspect, the camber angle of the rear wheel is adjusted by the camber angle adjusting device driven by the normal state adjusting means and the battery low state adjusting means, and the negative camber is given to the rear wheel. . Since the negative camber is applied to the rear wheel, the canvas characteristic generated on the rear wheel can be used to make the vehicle characteristics have a stable understeer tendency. Therefore, in addition to the effect of the first or second aspect, It has the effect of improving straight running stability and marginal driving performance.

第1実施の形態における車両用制御装置が搭載される車両を模式的に示した模式図である。It is the schematic diagram which showed typically the vehicle by which the vehicle control apparatus in 1st Embodiment is mounted. 懸架装置の正面図である。It is a front view of a suspension apparatus. 車両用制御装置の電気的構成を示したブロック図である。It is the block diagram which showed the electric constitution of the control apparatus for vehicles. 状態量判断処理を示すフローチャートである。It is a flowchart which shows a state quantity determination process. 走行状態判断処理を示すフローチャートである。It is a flowchart which shows a driving | running | working state judgment process. 偏摩耗荷重判断処理を示すフローチャートである。It is a flowchart which shows a partial wear load judgment process. バッテリ低下判断処理を示すフローチャートである。It is a flowchart which shows a battery fall judgment process. キャンバ制御処理を示すフローチャートである。It is a flowchart which shows a camber control process. 第2実施の形態における車両用制御装置が搭載される車両を模式的に示した模式図である。It is the schematic diagram which showed typically the vehicle by which the vehicle control apparatus in 2nd Embodiment is mounted. 懸架装置の正面図である。It is a front view of a suspension apparatus. 車両用制御装置の電気的構成を示したブロック図である。It is the block diagram which showed the electric constitution of the control apparatus for vehicles. 第3実施の形態における車両用制御装置の電気的構成を示したブロック図である。It is the block diagram which showed the electric constitution of the control apparatus for vehicles in 3rd Embodiment. 走行状態閾値マップの内容を模式的に示した模式図である。It is the schematic diagram which showed the content of the driving | running | working state threshold value map typically. 走行状態判断処理を示すフローチャートである。It is a flowchart which shows a driving | running | working state judgment process. キャンバ制御処理を示すフローチャートである。It is a flowchart which shows a camber control process. 第4実施の形態における車両用制御装置の電気的構成を示したブロック図である。It is the block diagram which showed the electrical structure of the vehicle control apparatus in 4th Embodiment. 状態量閾値マップの内容を模式的に示した模式図である。It is the schematic diagram which showed the content of the state quantity threshold value map typically. 状態量判断処理を示すフローチャートである。It is a flowchart which shows a state quantity determination process. 第5実施の形態における車両用制御装置の電気的構成を示したブロック図である。It is the block diagram which showed the electric constitution of the control apparatus for vehicles in 5th Embodiment. キャンバ制御処理を示すフローチャートである。It is a flowchart which shows a camber control process. キャンバ解除処理を示すフローチャートである。It is a flowchart which shows a camber cancellation process.

以下、本発明の好ましい実施の形態について添付図面を参照して説明する。図1は、本発明の第1実施の形態における車両用制御装置100が搭載される車両1を模式的に示した模式図である。なお、図1の矢印U−D,L−R,F−Bは、車両1の上下方向、左右方向、前後方向をそれぞれ示している。   Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a schematic diagram schematically showing a vehicle 1 on which a vehicle control device 100 according to the first embodiment of the present invention is mounted. Note that arrows UD, LR, and FB in FIG. 1 indicate the up-down direction, the left-right direction, and the front-rear direction of the vehicle 1, respectively.

まず、車両1の概略構成について説明する。車両1は、図1に示すように、車体フレームBFと、その車体フレームBFを支持する複数(本実施の形態では4輪)の車輪2と、それら複数の車輪2の内の一部(本実施の形態では、左右の前輪2FL,2FR)を回転駆動する車輪駆動装置3と、左右の後輪2RL,2RRを車体フレームBFに懸架する複数の懸架装置4と、左右の前輪2FL,2FRを車体フレームBFに懸架する複数の懸架装置40と、複数の車輪2の内の一部(本実施の形態では、左右の前輪2FL,2FR)を操舵する操舵装置5とを主に備えて構成されている。   First, a schematic configuration of the vehicle 1 will be described. As shown in FIG. 1, the vehicle 1 includes a vehicle body frame BF, a plurality of (four wheels in the present embodiment) wheels 2 that support the vehicle body frame BF, and some of the plurality of wheels 2 (the book In the embodiment, the wheel drive device 3 that rotationally drives the left and right front wheels 2FL, 2FR), the plurality of suspension devices 4 that suspend the left and right rear wheels 2RL, 2RR on the vehicle body frame BF, and the left and right front wheels 2FL, 2FR A plurality of suspension devices 40 that are suspended on the body frame BF and a steering device 5 that steers a part of the plurality of wheels 2 (in this embodiment, the left and right front wheels 2FL, 2FR) are mainly provided. ing.

次いで、各部の詳細構成について説明する。車輪2は、図1に示すように、車両1の前方側(矢印F方向側)に位置する左右の前輪2FL,2FRと、車両1の後方側(矢印B方向側)に位置する左右の後輪2RL,2RRとを備えている。なお、本実施の形態では、左右の前輪2FL,2FRは、車輪駆動装置3により回転駆動される駆動輪として構成される一方、左右の後輪2RL,2RRは、車両1の走行に伴って従動される従動輪として構成されている。   Next, the detailed configuration of each part will be described. As shown in FIG. 1, the wheel 2 includes left and right front wheels 2FL and 2FR located on the front side (arrow F direction side) of the vehicle 1 and left and right rear wheels located on the rear side (arrow B direction side) of the vehicle 1. Wheels 2RL and 2RR are provided. In the present embodiment, the left and right front wheels 2FL and 2FR are configured as drive wheels that are rotationally driven by the wheel drive device 3, while the left and right rear wheels 2RL and 2RR are driven as the vehicle 1 travels. It is configured as a driven wheel.

また、車輪2は、図1に示すように、左右の前輪2FL,2FR及び左右の後輪2RL,2RRが全て同じ形状および特性に構成され、そのトレッドの幅(図1左右方向の寸法)が同一の幅に構成されている。   In addition, as shown in FIG. 1, the left and right front wheels 2FL, 2FR and the left and right rear wheels 2RL, 2RR are all configured to have the same shape and characteristics, and the wheel 2 has a tread width (dimension in the left-right direction in FIG. 1). It is configured to have the same width.

車輪駆動装置3は、上述したように、左右の前輪2FL,2FRを回転駆動するための装置であり、後述するように電動モータ3aにより構成されている(図3参照)。また、電動モータ3aは、図1に示すように、デファレンシャルギヤ(図示せず)及び一対のドライブシャフト31を介して左右の前輪2FL,2FRに接続されている。   As described above, the wheel drive device 3 is a device for rotationally driving the left and right front wheels 2FL and 2FR, and is configured by an electric motor 3a as described later (see FIG. 3). Further, as shown in FIG. 1, the electric motor 3 a is connected to the left and right front wheels 2 FL and 2 FR via a differential gear (not shown) and a pair of drive shafts 31.

運転者がアクセルペダル61を操作した場合には、車輪駆動装置3から左右の前輪2FL,2FRに回転駆動力が付与され、それら左右の前輪2FL,2FRがアクセルペダル61の操作量に応じて回転駆動される。なお、左右の前輪2FL,2FRの回転差は、デファレンシャルギヤにより吸収される。   When the driver operates the accelerator pedal 61, a rotational driving force is applied to the left and right front wheels 2FL, 2FR from the wheel drive device 3, and the left and right front wheels 2FL, 2FR rotate according to the operation amount of the accelerator pedal 61. Driven. The difference in rotation between the left and right front wheels 2FL and 2FR is absorbed by the differential gear.

懸架装置4,40は、路面から車輪2を介して車体フレームBFに伝わる振動を緩和するための装置、いわゆるサスペンションとして機能するものであり、伸縮可能に構成され、図1に示すように、各車輪2に対応してそれぞれ設けられている。また、本実施の形態における懸架装置4は、左右の後輪のキャンバ角を調整するキャンバ角調整機構としての機能を兼ね備えている。   The suspension devices 4 and 40 function as a so-called suspension for mitigating vibration transmitted from the road surface to the vehicle body frame BF via the wheels 2, and are configured to be extendable and extend as shown in FIG. It is provided corresponding to each wheel 2. In addition, the suspension device 4 in the present embodiment also has a function as a camber angle adjusting mechanism that adjusts the camber angles of the left and right rear wheels.

ここで、図2を参照して、懸架装置4の詳細構成について説明する。図2は、懸架装置4の正面図である。なお、ここでは、キャンバ角調整機構として機能する構成のみについて説明し、サスペンションとして機能する構成については周知の構成と同様であるので、その説明を省略する。また、各懸架装置4の構成は、左右の後輪2RL,2RRにおいてそれぞれ共通であるので、右の後輪2RRに対応する懸架装置4を代表例として図2に図示する。但し、図2では、理解を容易とするために、ドライブシャフト31等の図示が省略されている。   Here, with reference to FIG. 2, the detailed structure of the suspension apparatus 4 is demonstrated. FIG. 2 is a front view of the suspension device 4. Here, only the configuration that functions as a camber angle adjusting mechanism will be described, and the configuration that functions as a suspension is the same as a known configuration, and thus description thereof is omitted. Further, since the configuration of each suspension device 4 is common to the left and right rear wheels 2RL and 2RR, the suspension device 4 corresponding to the right rear wheel 2RR is shown in FIG. 2 as a representative example. However, in FIG. 2, illustration of the drive shaft 31 and the like is omitted for easy understanding.

懸架装置4は、図2に示すように、ストラット41及びロアアーム42を介して車体フレームBFに支持されるナックル43と、駆動力を発生するRRモータ44RRと、そのRRモータ44RRの駆動力を伝達するウォームホイール45及びアーム46と、それらウォームホイール45及びアーム46から伝達されるRRモータ44RRの駆動力によりナックル43に対して揺動駆動される可動プレート47とを主に備えて構成されている。   As shown in FIG. 2, the suspension device 4 transmits a knuckle 43 supported by the vehicle body frame BF via a strut 41 and a lower arm 42, an RR motor 44RR that generates a driving force, and a driving force of the RR motor 44RR. The worm wheel 45 and the arm 46 are configured to mainly include a movable plate 47 that is swingably driven with respect to the knuckle 43 by the driving force of the RR motor 44RR transmitted from the worm wheel 45 and the arm 46. .

ナックル43は、車輪2を操舵可能に支持するものであり、図2に示すように、上端(図2上側)がストラット41に連結されると共に、下端(図2下側)がボールジョイントを介してロアアーム42に連結されている。   The knuckle 43 supports the wheel 2 so as to be steerable. As shown in FIG. 2, the upper end (upper side in FIG. 2) is connected to the strut 41, and the lower end (lower side in FIG. 2) is connected via a ball joint. Are coupled to the lower arm 42.

RRモータ44RRは、可動プレート47に揺動駆動のための駆動力を付与するものであり、DCモータにより構成され、その出力軸44aにはウォーム(図示せず)が形成されている。   The RR motor 44RR applies a driving force for swing driving to the movable plate 47, is constituted by a DC motor, and has a worm (not shown) formed on its output shaft 44a.

ウォームホイール45は、RRモータ44RRの駆動力をアーム46に伝達するものであり、RRモータ44RRの出力軸44aに形成されたウォームに噛み合い、かかるウォームと共に食い違い軸歯車対を構成している。   The worm wheel 45 transmits the driving force of the RR motor 44RR to the arm 46, meshes with a worm formed on the output shaft 44a of the RR motor 44RR, and constitutes a staggered shaft gear pair together with the worm.

アーム46は、ウォームホイール45から伝達されるRRモータ44RRの駆動力を可動プレート47に伝達するものであり、図2に示すように、一端(図2右側)が第1連結軸48を介してウォームホイール45の回転軸45aから偏心した位置に連結される一方、他端(図2左側)が第2連結軸49を介して可動プレート47の上端(図2上側)に連結されている。   The arm 46 transmits the driving force of the RR motor 44RR transmitted from the worm wheel 45 to the movable plate 47, and has one end (right side in FIG. 2) via the first connecting shaft 48 as shown in FIG. The other end (left side in FIG. 2) is connected to the upper end (upper side in FIG. 2) via the second connection shaft 49 while being connected to a position eccentric from the rotation shaft 45 a of the worm wheel 45.

可動プレート47は、車輪2を回転可能に支持するものであり、上述したように、上端(図2上側)がアーム46に連結される一方、下端(図2下側)がキャンバ軸50を介してナックル43に揺動可能に軸支されている。   The movable plate 47 supports the wheel 2 in a rotatable manner. As described above, the upper end (upper side in FIG. 2) is coupled to the arm 46, and the lower end (lower side in FIG. 2) is interposed via the camber shaft 50. The knuckle 43 is pivotally supported so as to be swingable.

上述したように構成される懸架装置4によれば、RRモータ44RRが駆動されると、ウォームホイール45が回転すると共に、ウォームホイール45の回転運動がアーム46の直線運動に変換される。その結果、アーム46が直線運動することで、可動プレート47がキャンバ軸50を揺動軸として揺動駆動され、車輪2のキャンバ角が調整される。   According to the suspension device 4 configured as described above, when the RR motor 44RR is driven, the worm wheel 45 rotates and the rotational motion of the worm wheel 45 is converted into linear motion of the arm 46. As a result, when the arm 46 moves linearly, the movable plate 47 is driven to swing with the camber shaft 50 as the swing shaft, and the camber angle of the wheel 2 is adjusted.

なお、本実施の形態では、各連結軸48,49及びウォームホイール45の回転軸45aが、車体フレームBFから車輪2に向かう方向(矢印R方向)において、第1連結軸48、回転軸45a、第2連結軸49の順に一直線上に並んで位置する第1キャンバ状態と、回転軸45a、第1連結軸48、第2連結軸49の順に一直線上に並んで位置する第2キャンバ状態(図2に示す状態)とのいずれか一方のキャンバ状態となるように車輪2のキャンバ角が調整される。   In the present embodiment, the first connecting shaft 48, the rotating shaft 45a, the rotating shaft 45a of each connecting shaft 48, 49 and the worm wheel 45 in the direction from the vehicle body frame BF toward the wheel 2 (arrow R direction). A first camber state positioned in a straight line in the order of the second connecting shaft 49, and a second camber state positioned in a straight line in the order of the rotating shaft 45a, the first connecting shaft 48, and the second connecting shaft 49 (see FIG. 2), the camber angle of the wheel 2 is adjusted so that one of the camber states is established.

これにより、車輪2のキャンバ角が調整された状態では、車輪2に外力が加わったとしても、アーム46を回動させる方向の力は発生せず、車輪2のキャンバ角を維持することができる。   Thereby, in the state where the camber angle of the wheel 2 is adjusted, even if an external force is applied to the wheel 2, no force in the direction of rotating the arm 46 is generated, and the camber angle of the wheel 2 can be maintained. .

また、本実施の形態では、第1キャンバ状態において、車輪2のキャンバ角がマイナス方向の所定の角度(本実施の形態では−4°、以下「第1キャンバ角」と称す)に調整され、車輪2にネガティブキャンバが付与される。一方、第2キャンバ状態(図2に示す状態)では、車輪2のキャンバ角が−1°(以下「第2キャンバ角」と称す)に調整される。   In the present embodiment, in the first camber state, the camber angle of the wheel 2 is adjusted to a predetermined negative angle (-4 ° in the present embodiment, hereinafter referred to as “first camber angle”). A negative camber is applied to the wheel 2. On the other hand, in the second camber state (the state shown in FIG. 2), the camber angle of the wheel 2 is adjusted to −1 ° (hereinafter referred to as “second camber angle”).

なお、懸架装置40は、左右の前輪2FL,2FRのキャンバ角を調整する機能が省略されている点(即ち、図2に示す懸架装置4において、RRモータ44RRによる伸縮機能が省略されている点)を除き、その他の構成は懸架装置4と同じ構成であるので、その説明を省略する。本実施の形態では、左右の前輪2FL,2FRのキャンバ角は−1°に固定されている。   The suspension device 40 is omitted in the function of adjusting the camber angles of the left and right front wheels 2FL, 2FR (that is, in the suspension device 4 shown in FIG. 2, the extension / retraction function by the RR motor 44RR is omitted). Except for (), the other configuration is the same as that of the suspension device 4, and the description thereof is omitted. In the present embodiment, the camber angles of the left and right front wheels 2FL, 2FR are fixed at −1 °.

図1に戻って説明する。操舵装置5は、運転者によるステアリング63の操作を左右の前輪2FL,2FRに伝えて操舵するための装置であり、いわゆるラック&ピニオン式のステアリングギヤとして構成されている。   Returning to FIG. The steering device 5 is a device for steering an operation of the steering 63 by the driver to the left and right front wheels 2FL, 2FR, and is configured as a so-called rack and pinion type steering gear.

この操舵装置5によれば、運転者によるステアリング63の操作(回転)は、まず、ステアリングコラム51を介してユニバーサルジョイント52に伝達され、ユニバーサルジョイント52により角度を変えられつつステアリングボックス53のピニオン53aに回転運動として伝達される。そして、ピニオン53aに伝達された回転運動は、ラック53bの直線運動に変換され、ラック53bが直線運動することで、ラック53bの両端に接続されたタイロッド54が移動する。その結果、タイロッド54がナックル55を押し引きすることで、車輪2に所定の舵角が付与される。   According to the steering device 5, the operation (rotation) of the steering 63 by the driver is first transmitted to the universal joint 52 via the steering column 51, and the pinion 53 a of the steering box 53 is changed while the angle is changed by the universal joint 52. Is transmitted as rotational motion. Then, the rotational motion transmitted to the pinion 53a is converted into a linear motion of the rack 53b, and the tie rod 54 connected to both ends of the rack 53b moves by the linear motion of the rack 53b. As a result, the tie rod 54 pushes and pulls the knuckle 55, so that a predetermined steering angle is given to the wheel 2.

アクセルペダル61及びブレーキペダル62は、運転者により操作される操作部材であり、各ペダル61,62の操作状態(踏み込み量、踏み込み速度など)に応じて、車両1の走行速度や制動力が決定され、車輪駆動装置3が駆動制御される。ステアリング63は、運転者により操作される操作部材であり、その操作状態(ステア角、ステア角速度など)に応じて、操舵装置5により左右の前輪2FL,2FRが操舵される。   The accelerator pedal 61 and the brake pedal 62 are operation members operated by the driver, and the traveling speed and braking force of the vehicle 1 are determined according to the operation state (depression amount, depressing speed, etc.) of the pedals 61 and 62. The wheel drive device 3 is driven and controlled. The steering 63 is an operation member operated by the driver, and the left and right front wheels 2FL and 2FR are steered by the steering device 5 according to the operation state (steer angle, steer angular velocity, etc.).

バッテリ64は、車両1の各部に電力を供給する部材であり、RLモータ44RL,RRモータ44RRはバッテリ64から供給する電力により駆動される。   The battery 64 is a member that supplies electric power to each part of the vehicle 1, and the RL motor 44 RL and the RR motor 44 RR are driven by electric power supplied from the battery 64.

車両用制御装置100は、上述したように構成される車両1の各部を制御するための装置であり、例えば、各ペダル61,62やステアリング63の操作状態に応じてキャンバ角調整装置44(図3参照)を作動制御する。   The vehicle control device 100 is a device for controlling each part of the vehicle 1 configured as described above. For example, the camber angle adjusting device 44 (see FIG. 3).

次いで、図3を参照して、車両用制御装置100の詳細構成について説明する。図3は、車両用制御装置100の電気的構成を示したブロック図である。車両用制御装置100は、図3に示すように、CPU71、ROM72及びRAM73を備え、それらがバスライン74を介して入出力ポート75に接続されている。また、入出力ポート75には、車輪駆動装置3等の装置が接続されている。   Next, a detailed configuration of the vehicle control device 100 will be described with reference to FIG. FIG. 3 is a block diagram showing an electrical configuration of the vehicle control device 100. As shown in FIG. 3, the vehicle control device 100 includes a CPU 71, a ROM 72, and a RAM 73, which are connected to an input / output port 75 via a bus line 74. The input / output port 75 is connected to a device such as the wheel drive device 3.

CPU71は、バスライン74により接続された各部を制御する演算装置であり、ROM72は、CPU71により実行される制御プログラム(例えば、図4から図8に図示されるフローチャートのプログラム)や固定値データ等を記憶する書き換え不能な不揮発性のメモリであり、図3に示すように上限抵抗値72a及び下限残存容量72bが記憶されている。   The CPU 71 is an arithmetic unit that controls each unit connected by the bus line 74, and the ROM 72 is a control program executed by the CPU 71 (for example, the program of the flowchart shown in FIGS. 4 to 8), fixed value data, or the like. Is stored in a non-rewritable nonvolatile memory, as shown in FIG. 3, in which an upper limit resistance value 72a and a lower limit remaining capacity 72b are stored.

上限抵抗値72aは、バッテリ64の劣化状態(SOH)の指標である温度補正後の内部抵抗の上限を示す抵抗値であり、CPU71は、バッテリ64の温度補正後の内部抵抗が上限抵抗値72a以上である場合に、バッテリ64が劣化した状態にあると判断する。下限残存容量72bは、バッテリ64の残存容量(SOC)の下限値であり、CPU71はバッテリ64の残存容量が下限残存容量72b以下である場合に、バッテリ64が充電不足の状態にあると判断する。   The upper limit resistance value 72a is a resistance value indicating the upper limit of the internal resistance after temperature correction, which is an indicator of the deterioration state (SOH) of the battery 64. The CPU 71 determines that the internal resistance after temperature correction of the battery 64 is the upper limit resistance value 72a. When it is above, it is determined that the battery 64 is in a deteriorated state. The lower limit remaining capacity 72b is a lower limit value of the remaining capacity (SOC) of the battery 64. When the remaining capacity of the battery 64 is equal to or less than the lower limit remaining capacity 72b, the CPU 71 determines that the battery 64 is in an insufficiently charged state. .

RAM73は、制御プログラムの実行時に各種のデータを書き換え可能に記憶するためのメモリであり、図3に示すように、キャンバフラグ73a、状態量フラグ73b、走行状態フラグ73c、偏摩耗荷重フラグ73d及びバッテリフラグ73eが設けられている。   The RAM 73 is a memory for storing various data in a rewritable manner when the control program is executed. As shown in FIG. 3, the camber flag 73a, the state amount flag 73b, the running state flag 73c, the uneven wear load flag 73d, A battery flag 73e is provided.

キャンバフラグ73aは、車輪2のキャンバ角が第1キャンバ角に調整された状態にあるか否かを示すフラグであり、CPU71は、このキャンバフラグ73aがオンである場合に、車輪2のキャンバ角が第1キャンバ角に調整された状態にあると判断する。   The camber flag 73a is a flag indicating whether or not the camber angle of the wheel 2 is adjusted to the first camber angle, and the CPU 71 displays the camber angle of the wheel 2 when the camber flag 73a is on. Is determined to have been adjusted to the first camber angle.

状態量フラグ73bは、車両1の状態量が所定の条件を満たすか否かを示すフラグであり、後述する状態量判断処理(図4参照)の実行時にオン又はオフに切り替えられる。なお、本実施の形態における状態量フラグ73bは、アクセルペダル61、ブレーキペダル62及びステアリング63の操作量の内の少なくとも1の操作量が所定の操作量以上である場合にオンに切り替えられ、CPU71は、この状態量フラグ73bがオンである場合に、車両1の状態量が所定の条件を満たしていると判断する。   The state quantity flag 73b is a flag indicating whether or not the state quantity of the vehicle 1 satisfies a predetermined condition, and is switched on or off when a state quantity determination process (see FIG. 4) described later is executed. Note that the state amount flag 73b in the present embodiment is switched on when at least one of the operation amounts of the accelerator pedal 61, the brake pedal 62, and the steering 63 is equal to or greater than a predetermined operation amount, and the CPU 71 Determines that the state quantity of the vehicle 1 satisfies a predetermined condition when the state quantity flag 73b is on.

走行状態フラグ73cは、車両1の走行状態が所定の直進状態であるか否かを示すフラグであり、後述する走行状態判断処理(図5参照)の実行時にオン又はオフに切り替えられる。なお、本実施の形態における走行状態フラグ73cは、車両1の走行速度が所定の走行速度以上であり、且つ、ステアリング63の操作量が所定の操作量以下である場合にオンに切り替えられ、CPU71は、この走行状態フラグ73cがオンである場合に、車両1の走行状態が所定の直進状態であると判断する。   The traveling state flag 73c is a flag indicating whether or not the traveling state of the vehicle 1 is a predetermined straight traveling state, and is switched on or off when a traveling state determination process (see FIG. 5) described later is executed. The traveling state flag 73c in the present embodiment is switched on when the traveling speed of the vehicle 1 is equal to or higher than the predetermined traveling speed and the operation amount of the steering 63 is equal to or smaller than the predetermined operation amount. Determines that the traveling state of the vehicle 1 is a predetermined straight traveling state when the traveling state flag 73c is on.

偏摩耗荷重フラグ73dは、車輪2のキャンバ角が第1キャンバ角の状態、即ち、車輪2にネガティブキャンバが付与された状態で車両1が走行する場合に、車輪2の接地荷重がタイヤ(トレッド)に偏摩耗を引き起こす恐れのある接地荷重(以下「偏摩耗荷重」と称す)であるか否かを示すフラグであり、後述する偏摩耗荷重判断処理(図6参照)の実行時にオン又はオフに切り替えられる。CPU71は、この偏摩耗荷重フラグ73dがオンである場合に、車輪2の接地荷重がタイヤに偏摩耗を引き起こす恐れのある偏摩耗荷重であると判断する。   The uneven wear load flag 73d indicates that when the vehicle 1 travels in a state in which the camber angle of the wheel 2 is the first camber angle, that is, in a state where a negative camber is applied to the wheel 2, the ground load of the wheel 2 is a tire (tread). ) Is a flag indicating whether or not the contact load may cause uneven wear (hereinafter referred to as “uneven wear load”), and is turned on or off during execution of the uneven wear load determination process (see FIG. 6) described later. Can be switched to. When the uneven wear load flag 73d is on, the CPU 71 determines that the ground load of the wheel 2 is an uneven wear load that may cause uneven wear on the tire.

バッテリフラグ73eは、バッテリ64が充電不足である又は劣化しているか否かを示すフラグであり、後述するバッテリ低下判断処理(図7参照)の実行時にオン又はオフに切り替えられ、CPU71は、このバッテリフラグ73eがオンである場合に、バッテリ64が充電不足である又は劣化していると判断する。   The battery flag 73e is a flag indicating whether or not the battery 64 is insufficiently charged or deteriorated. The battery 71 is switched on or off during execution of a later-described battery decrease determination process (see FIG. 7). When the battery flag 73e is on, it is determined that the battery 64 is insufficiently charged or deteriorated.

車輪駆動装置3は、上述したように、左右の前輪2FL,2FR(図1参照)を回転駆動するための装置であり、それら左右の前輪2FL,2FRに回転駆動力を付与する電動モータ3aと、その電動モータ3aをCPU71からの指示に基づいて駆動制御する駆動制御回路(図示せず)とを主に備えている。但し、車輪駆動装置3は、電動モータ3aに限られず、他の駆動源を採用することは当然可能である。他の駆動源としては、例えば、油圧モータやエンジン等が例示される。   As described above, the wheel drive device 3 is a device for rotationally driving the left and right front wheels 2FL, 2FR (see FIG. 1), and an electric motor 3a that applies a rotational driving force to the left and right front wheels 2FL, 2FR. A drive control circuit (not shown) for driving and controlling the electric motor 3a based on an instruction from the CPU 71 is mainly provided. However, the wheel drive device 3 is not limited to the electric motor 3a, and other drive sources can naturally be adopted. Examples of other drive sources include a hydraulic motor and an engine.

キャンバ角調整装置44は、左右の後輪2RL,2RRのキャンバ角を調整するための装置であり、上述したように、各懸架装置4の可動プレート47(図2参照)に揺動のための駆動力をそれぞれ付与する合計2個のRLモータ44RL、RRモータ44RRと、それら各モータ44RL,44RRをCPU71からの指示に基づいて駆動制御する駆動制御回路(図示せず)とを主に備えている。   The camber angle adjusting device 44 is a device for adjusting the camber angles of the left and right rear wheels 2RL and 2RR. As described above, the camber angle adjusting device 44 swings the movable plate 47 (see FIG. 2) of each suspension device 4. It mainly includes a total of two RL motors 44RL and RR motor 44RR that respectively apply driving force, and a drive control circuit (not shown) that drives and controls each of the motors 44RL and 44RR based on an instruction from the CPU 71. Yes.

加速度センサ装置80は、車両1の加速度を検出すると共に、その検出結果をCPU71に出力するための装置であり、前後方向加速度センサ80a及び左右方向加速度センサ80bと、それら各加速度センサ80a,80bの検出結果を処理してCPU71に出力する出力回路(図示せず)とを主に備えている。   The acceleration sensor device 80 is a device for detecting the acceleration of the vehicle 1 and outputting the detection result to the CPU 71. The acceleration sensor device 80a includes a longitudinal acceleration sensor 80a, a lateral acceleration sensor 80b, and the acceleration sensors 80a and 80b. It mainly includes an output circuit (not shown) that processes the detection result and outputs it to the CPU 71.

前後方向加速度センサ80aは、車両1(車体フレームBF)の前後方向(図1矢印F−B方向)の加速度、いわゆる前後加速度(前後G)を検出するセンサであり、左右方向加速度センサ80bは、車両1(車体フレームBF)の左右方向(図1矢印L−R方向)の加速度、いわゆる横加速度(横G)を検出するセンサである。なお、本実施の形態では、これら各加速度センサ80a,80bが圧電素子を利用した圧電型センサとして構成されている。   The longitudinal acceleration sensor 80a is a sensor that detects acceleration in the longitudinal direction (direction of arrow FB in FIG. 1) of the vehicle 1 (body frame BF), so-called longitudinal acceleration (longitudinal G), and the lateral acceleration sensor 80b is This is a sensor that detects acceleration in the left-right direction (the direction of arrow LR in FIG. 1) of the vehicle 1 (body frame BF), that is, lateral acceleration (lateral G). In the present embodiment, each of the acceleration sensors 80a and 80b is configured as a piezoelectric sensor using a piezoelectric element.

また、CPU71は、加速度センサ装置80から入力された各加速度センサ80a,80bの検出結果(前後G、横G)を時間積分して、2方向(前後方向および左右方向)の速度をそれぞれ算出すると共に、それら2方向成分を合成することで、車両1の走行速度を取得することができる。   Further, the CPU 71 time-integrates the detection results (front and rear G, lateral G) of the respective acceleration sensors 80a and 80b input from the acceleration sensor device 80, and calculates speeds in two directions (front and rear directions and left and right directions), respectively. At the same time, the traveling speed of the vehicle 1 can be acquired by synthesizing these two-direction components.

ヨーレートセンサ装置81は、車両1のヨーレートを検出すると共に、その検出結果をCPU71に出力するための装置であり、車両1の重心を通る鉛直軸(図1矢印U−D方向軸)回りの車両1(車体フレームBF)の回転角速度を検出するヨーレートセンサ81aと、そのヨーレートセンサ81aの検出結果を処理してCPU71に出力する出力回路(図示せず)とを主に備えている。   The yaw rate sensor device 81 is a device for detecting the yaw rate of the vehicle 1 and outputting the detection result to the CPU 71, and a vehicle around a vertical axis (an arrow UD direction axis in FIG. 1) passing through the center of gravity of the vehicle 1. 1 (main body frame BF) is mainly provided with a yaw rate sensor 81a that detects the rotational angular velocity, and an output circuit (not shown) that processes the detection result of the yaw rate sensor 81a and outputs it to the CPU 71.

ロール角センサ装置82は、車両1のロール角を検出すると共に、その検出結果をCPU71に出力するための装置であり、車両1の重心を通る前後軸(図1矢印F−B方向軸)回りの車両1(車体フレームBF)の回転角を検出するロール角センサ82aと、そのロール角センサ82aの検出結果を処理してCPU71に出力する出力回路(図示せず)とを主に備えている。   The roll angle sensor device 82 is a device for detecting the roll angle of the vehicle 1 and outputting the detection result to the CPU 71. The roll angle sensor device 82 rotates about the front-rear axis passing through the center of gravity of the vehicle 1 (the arrow FB direction axis in FIG. 1). A roll angle sensor 82a for detecting the rotation angle of the vehicle 1 (body frame BF) and an output circuit (not shown) for processing the detection result of the roll angle sensor 82a and outputting the result to the CPU 71. .

なお、本実施の形態では、ヨーレートセンサ81a及びロール角センサ82aがサニャック効果により回転角速度および回転角を検出する光学式ジャイロセンサにより構成されている。但し、他の種類のジャイロセンサを採用することは当然可能である。他の種類のジャイロセンサとしては、例えば、機械式や流体式などのジャイロセンサが例示される。   In the present embodiment, the yaw rate sensor 81a and the roll angle sensor 82a are configured by an optical gyro sensor that detects a rotational angular velocity and a rotational angle by the Sagnac effect. However, it is naturally possible to employ other types of gyro sensors. Examples of other types of gyro sensors include mechanical and fluid gyro sensors.

サスストロークセンサ装置83は、各懸架装置4の伸縮量を検出すると共に、その検出結果をCPU71に出力するための装置であり、各懸架装置4の伸縮量をそれぞれ検出する合計2個のRL〜RRサスストロークセンサ83RL〜83RRと、それら各サスストロークセンサ83RL〜83RRの検出結果を処理してCPU71に出力する出力回路(図示せず)とを備えている。   The suspension stroke sensor device 83 is a device for detecting the amount of expansion / contraction of each suspension device 4 and outputting the detection result to the CPU 71. The suspension stroke sensor device 83 detects the amount of expansion / contraction of each suspension device 4 in total. RR suspension stroke sensors 83RL to 83RR, and an output circuit (not shown) that processes the detection results of the respective suspension stroke sensors 83RL to 83RR and outputs them to the CPU 71 are provided.

なお、本実施の形態では、各サスストロークセンサ83RL〜83RRがひずみゲージとして構成されており、これら各サスストロークセンサ83RL〜83RRは、各懸架装置4のショックアブソーバ(図示せず)にそれぞれ配設されている。   In the present embodiment, each of the suspension stroke sensors 83RL to 83RR is configured as a strain gauge, and each of the suspension stroke sensors 83RL to 83RR is disposed in a shock absorber (not shown) of each suspension device 4, respectively. Has been.

CPU71は、サスストロークセンサ装置83から入力された各サスストロークセンサ83RL〜83RRの検出結果(伸縮量)に基づいて、後輪2RL,2RRの接地荷重を取得する。即ち、後輪2RL,2RRの接地荷重と懸架装置4の伸縮量とは比例関係を有しているので、懸架装置4の伸縮量をXとし、懸架装置4の減衰定数をkとすると、後輪2RL,2RRの接地荷重Fは、F=kXとなる。   The CPU 71 acquires the ground load of the rear wheels 2RL and 2RR based on the detection results (extension amounts) of the suspension stroke sensors 83RL to 83RR input from the suspension stroke sensor device 83. That is, since the ground load of the rear wheels 2RL and 2RR and the expansion / contraction amount of the suspension device 4 have a proportional relationship, if the expansion / contraction amount of the suspension device 4 is X and the damping constant of the suspension device 4 is k, the rear The ground load F of the wheels 2RL and 2RR is F = kX.

接地荷重センサ装置84は、後輪2RL,2RRの接地荷重を検出すると共に、その検出結果をCPU71に出力するための装置であり、後輪2RL,2RRの接地荷重をそれぞれ検出する合計2個のRL〜RR接地荷重センサ84RL〜84RRと、それら各接地荷重センサ84RL〜84RRの検出結果を処理してCPU71に出力する出力回路(図示せず)とを備えている。   The ground load sensor device 84 is a device for detecting the ground load of the rear wheels 2RL and 2RR and outputting the detection result to the CPU 71. The ground load sensor device 84 detects the ground loads of the rear wheels 2RL and 2RR, respectively. RL to RR ground load sensors 84RL to 84RR and an output circuit (not shown) that processes the detection results of the ground load sensors 84RL to 84RR and outputs them to the CPU 71.

なお、本実施の形態では、各接地荷重センサ84RL〜84RRがピエゾ抵抗型の荷重センサとして構成されており、これら各接地荷重センサ84RL〜84RRは、各懸架装置4のショックアブソーバ(図示せず)にそれぞれ配設されている。   In the present embodiment, each of the ground load sensors 84RL to 84RR is configured as a piezoresistive load sensor, and each of the ground load sensors 84RL to 84RR is a shock absorber (not shown) of each suspension device 4. Respectively.

サイドウォール潰れ代センサ装置85は、後輪2RL,2RRのタイヤサイドウォールの潰れ代を検出すると共に、その検出結果をCPU71に出力するための装置であり、後輪2RL,2RRのタイヤサイドウォールの潰れ代をそれぞれ検出する合計2個のRL〜RRサイドウォール潰れ代センサ85RL〜85RRと、それら各サイドウォール潰れ代センサ85RL〜85RRの検出結果を処理してCPU71に出力する出力回路(図示せず)とを備えている。   The side wall crushing margin sensor device 85 is a device for detecting the crushing margin of the tire side walls of the rear wheels 2RL and 2RR and outputting the detection result to the CPU 71. A total of two RL to RR side wall collapse allowance sensors 85RL to 85RR that detect the collapse allowance, and an output circuit (not shown) that processes the detection results of the respective sidewall collapse allowance sensors 85RL to 85RR and outputs them to the CPU 71. ).

なお、本実施の形態では、各サイドウォール潰れ代センサ85RL〜85RRがひずみゲージとして構成されており、これら各サイドウォール潰れ代センサ85RL〜85RRは、後輪2RL,2RR内にそれぞれ配設されている。   In the present embodiment, each of the sidewall collapse allowance sensors 85RL to 85RR is configured as a strain gauge, and each of these sidewall collapse allowance sensors 85RL to 85RR is disposed in each of the rear wheels 2RL and 2RR. Yes.

バッテリ状態検出装置86は、バッテリ64の電圧、電流および温度を検出すると共に、その検出結果をCPUに出力するための装置であり、バッテリ64の電圧を検出する電圧センサ86a、バッテリ64の電流を検出する電流センサ86b、バッテリ64の温度を検出する温度センサ86cと、それら電圧センサ86a、電流センサ86b、温度センサ86cの検出結果を処理してCPU71に出力する出力回路(図示せず)とを備えている。   The battery state detection device 86 is a device for detecting the voltage, current and temperature of the battery 64 and outputting the detection result to the CPU. The voltage sensor 86a for detecting the voltage of the battery 64 and the current of the battery 64 are detected. A current sensor 86b to detect, a temperature sensor 86c to detect the temperature of the battery 64, and an output circuit (not shown) that processes the detection results of the voltage sensor 86a, current sensor 86b, and temperature sensor 86c and outputs them to the CPU 71. I have.

アクセルペダルセンサ装置61aは、アクセルペダル61の操作量を検出すると共に、その検出結果をCPU71に出力するための装置であり、アクセルペダル61の踏み込み量を検出する角度センサ(図示せず)と、その角度センサの検出結果を処理してCPU71に出力する出力回路(図示せず)とを主に備えている。   The accelerator pedal sensor device 61a is a device for detecting the operation amount of the accelerator pedal 61 and outputting the detection result to the CPU 71. An angle sensor (not shown) for detecting the depression amount of the accelerator pedal 61; It mainly includes an output circuit (not shown) that processes the detection result of the angle sensor and outputs it to the CPU 71.

ブレーキペダルセンサ装置62aは、ブレーキペダル62の操作量を検出すると共に、その検出結果をCPU71に出力するための装置であり、ブレーキペダル62の踏み込み量を検出する角度センサ(図示せず)と、その角度センサの検出結果を処理してCPU71に出力する出力回路(図示せず)とを主に備えている。   The brake pedal sensor device 62a is a device for detecting the operation amount of the brake pedal 62 and outputting the detection result to the CPU 71. An angle sensor (not shown) for detecting the depression amount of the brake pedal 62; It mainly includes an output circuit (not shown) that processes the detection result of the angle sensor and outputs it to the CPU 71.

ステアリングセンサ装置63aは、ステアリング63の操作量を検出すると共に、その検出結果をCPU71に出力するための装置であり、ステアリング63のステア角を検出する角度センサ(図示せず)と、その角度センサの検出結果を処理してCPU71に出力する出力回路(図示せず)とを主に備えている。   The steering sensor device 63a is a device for detecting the operation amount of the steering 63 and outputting the detection result to the CPU 71. An angle sensor (not shown) for detecting the steering angle of the steering 63, and the angle sensor. And an output circuit (not shown) for processing the detection result and outputting it to the CPU 71.

なお、本実施の形態では、各角度センサが電気抵抗を利用した接触型のポテンショメータとして構成されている。また、CPU71は、各センサ装置61a,62a,63aから入力された各角度センサの検出結果(操作量)を時間微分して、各ペダル61,62の踏み込み速度およびステアリング63のステア角速度を取得することができる。更に、CPU71は、取得したステアリング63のステア角速度を時間微分して、ステアリング63のステア角加速度を取得することができる。   In the present embodiment, each angle sensor is configured as a contact-type potentiometer using electric resistance. In addition, the CPU 71 time-differentiates the detection results (operation amounts) of the angle sensors input from the sensor devices 61a, 62a, and 63a, and acquires the depression speeds of the pedals 61 and 62 and the steering angular speed of the steering 63. be able to. Further, the CPU 71 can obtain the steering angular acceleration of the steering 63 by differentiating the obtained steering angular velocity of the steering 63 with respect to time.

図3に示す他の入出力装置90としては、例えば、GPSを利用して車両1の現在位置を取得すると共にその取得した車両1の現在位置を道路に関する情報が記憶された地図データに対応付けて取得するナビゲーション装置などが例示される。   As another input / output device 90 illustrated in FIG. 3, for example, the current position of the vehicle 1 is acquired using GPS, and the acquired current position of the vehicle 1 is associated with map data in which information on roads is stored. The navigation apparatus etc. which are acquired in this way are illustrated.

次いで、図4を参照して、状態量判断処理について説明する。図4は、状態量判断処理を示すフローチャートである。この処理は、車両用制御装置100の電源が投入されている間、CPU71によって繰り返し(例えば、0.2秒間隔で)実行される処理であり、車両1の状態量が所定の条件を満たすかを判断する処理である。   Next, the state quantity determination process will be described with reference to FIG. FIG. 4 is a flowchart showing the state quantity determination process. This process is a process that is repeatedly executed by the CPU 71 (for example, at intervals of 0.2 seconds) while the power of the vehicle control device 100 is turned on, and whether the state quantity of the vehicle 1 satisfies a predetermined condition. Is a process for determining.

CPU71は、状態量判断処理に関し、まず、アクセルペダル61の操作量(踏み込み量)、ブレーキペダル62の操作量(踏み込み量)及びステアリング63の操作量(ステア角)をそれぞれ取得し(S1、S2、S3)、それら取得した各ペダル61,62の操作量およびステアリング63の操作量の内の少なくとも1の操作量が所定の操作量以上であるか否かを判断する(S4)。なお、S4の処理では、S1〜S3の処理でそれぞれ取得した各ペダル61,62の操作量およびステアリング63の操作量と、それら各ペダル61,62の操作量およびステアリング63の操作量にそれぞれ対応してROM72に予め記憶されている閾値(本実施の形態では、車輪2のキャンバ角が第2キャンバ角の状態で車両1が加速、制動または旋回する場合に、車輪2がスリップする恐れがあると判断される限界値)とを比較して、現在の各ペダル61,62の操作量およびステアリング63の操作量が所定の操作量以上であるか否かを判断する。   Regarding the state quantity determination processing, the CPU 71 first acquires the operation amount (depression amount) of the accelerator pedal 61, the operation amount (depression amount) of the brake pedal 62, and the operation amount (steer angle) of the steering 63 (S1, S2). S3), it is determined whether or not at least one of the obtained operation amounts of the pedals 61 and 62 and the operation amount of the steering 63 is equal to or greater than a predetermined operation amount (S4). In the process of S4, the operation amounts of the pedals 61 and 62 and the operation amount of the steering 63 acquired in the processes of S1 to S3 respectively correspond to the operation amounts of the pedals 61 and 62 and the operation amount of the steering 63, respectively. Then, the threshold value stored in advance in the ROM 72 (in this embodiment, when the vehicle 1 is accelerated, braked or turned while the camber angle of the wheel 2 is the second camber angle, the wheel 2 may slip. To determine whether or not the current operation amount of each pedal 61 and 62 and the operation amount of the steering 63 are equal to or greater than a predetermined operation amount.

その結果、各ペダル61,62の操作量およびステアリング63の操作量の内の少なくとも1の操作量が所定の操作量以上であると判断される場合には(S4:Yes)、状態量フラグ73bをオンして(S5)、この状態量判断処理を終了する。即ち、この状態量判断処理では、各ペダル61,62の操作量およびステアリング63の操作量の内の少なくとも1の操作量が所定の操作量以上である場合に、車両1の状態量が所定の条件を満たすと判断する。   As a result, when it is determined that at least one of the operation amounts of the pedals 61 and 62 and the operation amount of the steering 63 is equal to or greater than the predetermined operation amount (S4: Yes), the state amount flag 73b. Is turned on (S5), and the state quantity determination process is terminated. That is, in this state quantity determination process, when at least one of the operation amounts of the pedals 61 and 62 and the operation amount of the steering 63 is equal to or greater than a predetermined operation amount, the state quantity of the vehicle 1 is a predetermined amount. Judge that the condition is met.

一方、S4の処理の結果、各ペダル61,62の操作量およびステアリング63の操作量のいずれもが所定の操作量より小さいと判断される場合には(S4:No)、状態量フラグ73bをオフして(S6)、この状態量判断処理を終了する。   On the other hand, as a result of the process of S4, when it is determined that both the operation amount of each pedal 61 and 62 and the operation amount of the steering 63 are smaller than the predetermined operation amount (S4: No), the state amount flag 73b is set. It is turned off (S6), and this state quantity determination process is terminated.

次いで、図5を参照して、走行状態判断処理について説明する。図5は、走行状態判断処理を示すフローチャートである。この処理は、車両用制御装置100の電源が投入されている間、CPU71によって繰り返し(例えば、0.2秒間隔で)実行される処理であり、車両1の走行状態が所定の直進状態であるか否かを判断する処理である。   Next, the traveling state determination process will be described with reference to FIG. FIG. 5 is a flowchart showing the running state determination process. This process is a process repeatedly executed by the CPU 71 (for example, at intervals of 0.2 seconds) while the power of the vehicle control device 100 is turned on, and the traveling state of the vehicle 1 is a predetermined straight traveling state. This is a process for determining whether or not.

CPU71は、走行状態判断処理に関し、まず、車両1の走行速度を取得し(S11)、その取得した車両1の走行速度が所定の速度以上であるか否かを判断する(S12)。なお、S12の処理では、S11の処理で取得した車両1の走行速度と、ROM72に予め記憶されている閾値とを比較して、現在の車両1の走行速度が所定の速度以上であるか否かを判断する。   Regarding the travel state determination process, the CPU 71 first acquires the travel speed of the vehicle 1 (S11), and determines whether or not the acquired travel speed of the vehicle 1 is equal to or higher than a predetermined speed (S12). In the process of S12, the travel speed of the vehicle 1 acquired in the process of S11 is compared with the threshold value stored in advance in the ROM 72, and whether or not the current travel speed of the vehicle 1 is equal to or higher than a predetermined speed. Determine whether.

その結果、車両1の走行速度が所定の速度より小さいと判断される場合には(S12:No)、走行状態フラグ73cをオフして(S16)、この走行状態判断処理を終了する。   As a result, when it is determined that the traveling speed of the vehicle 1 is smaller than the predetermined speed (S12: No), the traveling state flag 73c is turned off (S16), and this traveling state determination process is terminated.

一方、S12の処理の結果、車両1の走行速度が所定の速度以上であると判断される場合には(S12:Yes)、ステアリング63の操作量(ステア角)を取得し(S13)、その取得したステアリング63の操作量が所定の操作量以下であるか否かを判断する(S14)。なお、S14の処理では、S13の処理で取得したステアリング63の操作量と、ROM72に予め記憶されている閾値(本実施の形態では、図4に示す状態量判断処理において、車両1の状態量が所定の条件を満たすか否かを判断するためのステアリング63の操作量より小さい値)とを比較して、現在のステアリング63の操作量が所定の操作量以下であるか否かを判断する。   On the other hand, when it is determined that the traveling speed of the vehicle 1 is equal to or higher than the predetermined speed as a result of the processing of S12 (S12: Yes), the operation amount (steer angle) of the steering 63 is acquired (S13). It is determined whether or not the acquired operation amount of the steering 63 is equal to or less than a predetermined operation amount (S14). In the process of S14, the operation amount of the steering 63 acquired in the process of S13 and the threshold value stored in advance in the ROM 72 (in this embodiment, in the state quantity determination process shown in FIG. And a value smaller than the operation amount of the steering wheel 63 for determining whether or not a predetermined condition is satisfied), it is determined whether or not the current operation amount of the steering wheel 63 is equal to or less than the predetermined operation amount. .

その結果、ステアリング63の操作量が所定の操作量以下であると判断される場合には(S14:Yes)、走行状態フラグ73cをオンして(S15)、この走行状態判断処理を終了する。即ち、この走行状態判断手段では、車両1の走行速度が所定の速度以上であり、且つ、ステアリング63の操作量が所定の操作量以下である場合に、車両1の走行状態が所定の直進状態であると判断する。   As a result, when it is determined that the operation amount of the steering 63 is equal to or less than the predetermined operation amount (S14: Yes), the traveling state flag 73c is turned on (S15), and this traveling state determination process is ended. That is, in this traveling state determination means, when the traveling speed of the vehicle 1 is equal to or higher than a predetermined speed and the operation amount of the steering 63 is equal to or smaller than the predetermined operation amount, the traveling state of the vehicle 1 is a predetermined straight traveling state. It is judged that.

一方、S14の処理の結果、ステアリング63の操作量が所定の操作量より大きいと判断される場合には(S14:No)、走行状態フラグ73cをオフして(S16)、この走行状態判断処理を終了する。   On the other hand, when it is determined that the operation amount of the steering wheel 63 is larger than the predetermined operation amount as a result of the processing of S14 (S14: No), the traveling state flag 73c is turned off (S16), and this traveling state determination processing Exit.

次いで、図6を参照して、偏摩耗荷重判断処理について説明する。図6は、偏摩耗荷重判断処理を示すフローチャートである。この処理は、車両用制御装置100の電源が投入されている間、CPU71によって繰り返し(例えば、0.2秒間隔で)実行される処理であり、車輪2にネガティブキャンバが付与された状態で車両1が走行する場合に、後輪2RL,2RRの接地荷重がタイヤ(トレッド)に偏摩耗を引き起こす恐れのある偏摩耗荷重であるか否かを判断する処理である。   Next, the uneven wear load determination process will be described with reference to FIG. FIG. 6 is a flowchart showing an uneven wear load determination process. This process is a process that is repeatedly executed by the CPU 71 (for example, at intervals of 0.2 seconds) while the power of the vehicle control device 100 is turned on, and the vehicle with the negative camber applied to the wheels 2 is executed. This is a process for determining whether or not the ground contact load of the rear wheels 2RL and 2RR is a partial wear load that may cause a partial wear on the tire (tread) when the vehicle 1 travels.

CPU71は、偏摩耗荷重判断処理に関し、まず、各懸架装置4の伸縮量が所定の伸縮量以下であるか否かを判断する(S21)。なお、S21の処理では、サスストロークセンサ装置83により各懸架装置4の伸縮量を検出すると共に、その検出された各懸架装置4の伸縮量と、ROM72に予め記憶されている閾値とを比較して、現在の各懸架装置4の伸縮量が所定の伸縮量以下であるか否かを判断する。   Regarding the uneven wear load determination process, the CPU 71 first determines whether or not the expansion / contraction amount of each suspension device 4 is equal to or less than a predetermined expansion / contraction amount (S21). In the process of S21, the suspension stroke sensor device 83 detects the expansion / contraction amount of each suspension device 4, and compares the detected expansion / contraction amount of each suspension device 4 with a threshold value stored in advance in the ROM 72. Thus, it is determined whether the current expansion / contraction amount of each suspension device 4 is equal to or less than a predetermined expansion / contraction amount.

その結果、各懸架装置4の内の少なくとも1の懸架装置4の伸縮量が所定の伸縮量より大きいと判断される場合には(S21:No)、その伸縮量の大きい懸架装置4に対応する後輪2RL,2RRの接地荷重が所定の接地荷重より大きく、かかる後輪2RL,2RRの接地荷重が偏摩耗荷重であると判断されるので、偏摩耗荷重フラグ73dをオンして(S32)、この偏摩耗荷重判断処理を終了する。   As a result, when it is determined that the expansion / contraction amount of at least one suspension device 4 among the suspension devices 4 is larger than the predetermined expansion / contraction amount (S21: No), it corresponds to the suspension device 4 having the large expansion / contraction amount. Since the grounding load of the rear wheels 2RL, 2RR is larger than the predetermined grounding load and the grounding load of the rear wheels 2RL, 2RR is determined to be an uneven wear load, the uneven wear load flag 73d is turned on (S32), The uneven wear load determination process is terminated.

一方、S21の処理の結果、各懸架装置4の伸縮量が所定の伸縮量以下であると判断される場合には(S21:Yes)、車両1の前後Gが所定の加速度以下であるか否かを判断する(S22)。なお、S22の処理では、加速度センサ装置80(前後方向加速度センサ80a)により検出された車両1の前後Gと、ROM72に予め記憶されている閾値とを比較して、現在の車両1の前後Gが所定の加速度以下であるか否かを判断する。   On the other hand, as a result of the process of S21, when it is determined that the expansion / contraction amount of each suspension device 4 is equal to or less than the predetermined expansion / contraction amount (S21: Yes), whether the longitudinal G of the vehicle 1 is equal to or less than the predetermined acceleration. Is determined (S22). In the process of S22, the longitudinal G of the vehicle 1 detected by the acceleration sensor device 80 (the longitudinal acceleration sensor 80a) is compared with the threshold value stored in advance in the ROM 72, and the longitudinal G of the current vehicle 1 is compared. Is less than or equal to a predetermined acceleration.

その結果、車両1の前後Gが所定の加速度より大きいと判断される場合には(S22:No)、左右の前輪2FL,2FR又は左右の後輪2RL,2RRのいずれかの接地荷重が所定の接地荷重より大きいと推定され、かかる車輪2の接地荷重が偏摩耗荷重であると判断されるので、偏摩耗荷重フラグ73dをオンして(S32)、この偏摩耗荷重判断処理を終了する。   As a result, when it is determined that the longitudinal G of the vehicle 1 is larger than the predetermined acceleration (S22: No), the ground load of either the left or right front wheels 2FL, 2FR or the left and right rear wheels 2RL, 2RR is predetermined. Since it is estimated that the contact load is larger than the contact load, and it is determined that the contact load of the wheel 2 is an uneven wear load, the uneven wear load flag 73d is turned on (S32), and the uneven wear load determination process is terminated.

一方、S22の処理の結果、車両1の前後Gが所定の加速度以下であると判断される場合には(S22:Yes)、車両1の横Gが所定の加速度以下であるか否かを判断する(S23)。なお、S23の処理では、加速度センサ装置80(左右方向加速度センサ80b)により検出された車両1の横Gと、ROM72に予め記憶されている閾値とを比較して、現在の車両1の横Gが所定の加速度以下であるか否かを判断する。   On the other hand, when it is determined that the front and rear G of the vehicle 1 is equal to or lower than the predetermined acceleration as a result of the process of S22 (S22: Yes), it is determined whether the lateral G of the vehicle 1 is equal to or lower than the predetermined acceleration. (S23). In the process of S23, the lateral G of the vehicle 1 detected by the acceleration sensor device 80 (the lateral acceleration sensor 80b) is compared with the threshold value stored in advance in the ROM 72, and the lateral G of the current vehicle 1 is compared. Is less than or equal to a predetermined acceleration.

その結果、車両1の横Gが所定の加速度より大きいと判断される場合には(S23:No)、左の前後輪2FL,2RL又は右の前後輪2FR,2RRのいずれかの接地荷重が所定の接地荷重より大きいと推定され、かかる車輪2の接地荷重が偏摩耗荷重であると判断されるので、偏摩耗荷重フラグ73dをオンして(S32)、この偏摩耗荷重判断処理を終了する。   As a result, when it is determined that the lateral G of the vehicle 1 is larger than the predetermined acceleration (S23: No), the ground load of either the left front wheel 2FL, 2RL or the right front wheel 2FR, 2RR is predetermined. Therefore, it is determined that the ground contact load of the wheel 2 is a partial wear load. Therefore, the partial wear load flag 73d is turned on (S32), and the uneven wear load determination process is terminated.

一方、S23の処理の結果、車両1の横Gが所定の加速度以下であると判断される場合には(S23:Yes)、車両1のヨーレートが所定のヨーレート以下であるか否かを判断する(S24)。なお、S24の処理では、ヨーレートセンサ装置81により検出された車両1のヨーレートと、ROM72に予め記憶されている閾値とを比較して、現在の車両1のヨーレートが所定のヨーレート以下であるか否かを判断する。   On the other hand, when it is determined that the lateral G of the vehicle 1 is equal to or lower than the predetermined acceleration as a result of the process of S23 (S23: Yes), it is determined whether the yaw rate of the vehicle 1 is equal to or lower than the predetermined yaw rate. (S24). In the process of S24, the yaw rate of the vehicle 1 detected by the yaw rate sensor device 81 is compared with the threshold value stored in advance in the ROM 72, and whether or not the current yaw rate of the vehicle 1 is equal to or less than a predetermined yaw rate. Determine whether.

その結果、車両1のヨーレートが所定のヨーレートより大きいと判断される場合には(S24:No)、左の前後輪2FL,2RL又は右の前後輪2FR,2RRのいずれかの接地荷重が所定の接地荷重より大きいと推定され、かかる車輪2の接地荷重が偏摩耗荷重であると判断されるので、偏摩耗荷重フラグ73dをオンして(S32)、この偏摩耗荷重判断処理を終了する。   As a result, when it is determined that the yaw rate of the vehicle 1 is greater than the predetermined yaw rate (S24: No), the ground load of either the left front wheel 2FL, 2RL or the right front wheel 2FR, 2RR is predetermined. Since it is estimated that the contact load is larger than the contact load, and it is determined that the contact load of the wheel 2 is an uneven wear load, the uneven wear load flag 73d is turned on (S32), and the uneven wear load determination process is terminated.

一方、S24の処理の結果、車両1のヨーレートが所定のヨーレート以下であると判断される場合には(S24:Yes)、車両1のロール角が所定のロール角以下であるか否かを判断する(S25)。なお、S25の処理では、ロール角センサ装置82により検出された車両1のロール角と、ROM72に予め記憶されている閾値とを比較して、現在の車両1のロール角が所定のロール角以下であるか否かを判断する。   On the other hand, when it is determined that the yaw rate of the vehicle 1 is equal to or smaller than the predetermined yaw rate as a result of the process of S24 (S24: Yes), it is determined whether the roll angle of the vehicle 1 is equal to or smaller than the predetermined roll angle. (S25). In the process of S25, the roll angle of the vehicle 1 detected by the roll angle sensor device 82 is compared with a threshold value stored in advance in the ROM 72, so that the current roll angle of the vehicle 1 is equal to or less than a predetermined roll angle. It is determined whether or not.

その結果、車両1のロール角が所定のロール角より大きいと判断される場合には(S25:No)、左右の前輪2FL,2FR又は左右の後輪2RL,2RRのいずれかの接地荷重が所定の接地荷重より大きいと推定され、かかる車輪2の接地荷重が偏摩耗荷重であると判断されるので、偏摩耗荷重フラグ73dをオンして(S32)、この偏摩耗荷重判断処理を終了する。   As a result, when it is determined that the roll angle of the vehicle 1 is larger than the predetermined roll angle (S25: No), the ground contact load of either the left and right front wheels 2FL, 2FR or the left and right rear wheels 2RL, 2RR is predetermined. Therefore, it is determined that the ground contact load of the wheel 2 is a partial wear load. Therefore, the partial wear load flag 73d is turned on (S32), and the uneven wear load determination process is terminated.

一方、S25の処理の結果、車両1のロール角が所定のロール角以下であると判断される場合には(S25:Yes)、後輪2RL,2RRの接地荷重が所定の接地荷重以下であるか否かを判断する(S26)。なお、S26の処理では、接地荷重センサ装置84により検出された後輪2RL,2RRの接地荷重と、ROM72に予め記憶されている閾値とを比較して、現在の後輪2RL,2RRの接地荷重が所定の接地荷重以下であるか否かを判断する。   On the other hand, when it is determined that the roll angle of the vehicle 1 is equal to or smaller than the predetermined roll angle as a result of the process of S25 (S25: Yes), the ground load of the rear wheels 2RL and 2RR is equal to or smaller than the predetermined ground load. Whether or not (S26). In the process of S26, the ground load of the rear wheels 2RL and 2RR detected by the ground load sensor device 84 is compared with the threshold value stored in advance in the ROM 72, and the current ground load of the rear wheels 2RL and 2RR is compared. Is less than or equal to a predetermined ground load.

その結果、左右の後輪2RL,2RRのいずれかの接地荷重が所定の接地荷重より大きいと判断される場合には(S26:No)、かかる後輪2RL,2RRの接地荷重が偏摩耗荷重であると判断されるので、偏摩耗荷重フラグ73dをオンして(S32)、この偏摩耗荷重判断処理を終了する。   As a result, when it is determined that the ground load of either of the left and right rear wheels 2RL, 2RR is larger than the predetermined ground load (S26: No), the ground load of the rear wheels 2RL, 2RR is an uneven wear load. Since it is determined that there is, the uneven wear load flag 73d is turned on (S32), and this uneven wear load determination process is terminated.

一方、S26の処理の結果、後輪2RL,2RRの接地荷重が所定の荷重以下であると判断される場合には(S26:Yes)、後輪2RL,2RRのタイヤサイドウォールの潰れ代が所定の潰れ代以下であるか否かを判断する(S27)。なお、S27の処理では、サイドウォール潰れ代センサ装置85により検出された後輪2RL,2RRのタイヤサイドウォールの潰れ代と、ROM72に予め記憶されている閾値とを比較して、現在の後輪2RL,2RRのタイヤサイドウォールの潰れ代が所定の潰れ代以下であるか否かを判断する。   On the other hand, when it is determined that the ground load of the rear wheels 2RL and 2RR is equal to or lower than the predetermined load as a result of the processing of S26 (S26: Yes), the crushed allowance of the tire sidewalls of the rear wheels 2RL and 2RR is predetermined. It is determined whether or not it is equal to or less than the collapse cost (S27). In the process of S27, the collapse width of the tire sidewalls of the rear wheels 2RL and 2RR detected by the sidewall collapse allowance sensor device 85 is compared with the threshold value stored in advance in the ROM 72, and the current rear wheel is determined. It is determined whether or not the 2RL and 2RR tire sidewalls have a predetermined collapse allowance.

その結果、後輪2RL,2RRのいずれかのタイヤサイドウォールの潰れ代が所定の潰れ代より大きいと判断される場合には(S27:No)、その潰れ代の大きい後輪2RL,2RRの接地荷重が所定の接地荷重より大きいと推定され、かかる後輪2RL,2RRの接地荷重が偏摩耗荷重であると判断されるので、偏摩耗荷重フラグ73dをオンして(S32)、この偏摩耗荷重判断処理を終了する。   As a result, when it is determined that the crushed allowance of the tire sidewall of either of the rear wheels 2RL, 2RR is larger than the predetermined crushed allowance (S27: No), the grounding of the rear wheels 2RL, 2RR having the large crushed allowance is determined. The load is estimated to be larger than the predetermined ground load, and it is determined that the ground load of the rear wheels 2RL and 2RR is an uneven wear load. Therefore, the uneven wear load flag 73d is turned on (S32), and the uneven wear load is determined. The determination process ends.

一方、S27の処理の結果、後輪2RL,2RRのタイヤサイドウォールの潰れ代が所定の潰れ代以下であると判断される場合には(S27:Yes)、アクセルペダル61の操作量(踏み込み量)が所定の操作量以下であるか否かを判断する(S28)。なお、S28の処理では、アクセルペダルセンサ装置61aにより検出されたアクセルペダル61の操作量と、ROM72に予め記憶されている閾値(本実施の形態では、図4に示す状態量判断処理において、車両1の状態量が所定の条件を満たすか否かを判断するためのアクセルペダル61の操作量より小さい値)とを比較して、現在のアクセルペダル61の操作量が所定の操作量以下であるか否かを判断する。   On the other hand, as a result of the processing of S27, when it is determined that the crushed allowance of the tire sidewalls of the rear wheels 2RL, 2RR is equal to or less than the predetermined crushed allowance (S27: Yes), the operation amount of the accelerator pedal 61 (depressed amount) ) Is less than or equal to a predetermined operation amount (S28). In the process of S28, the operation amount of the accelerator pedal 61 detected by the accelerator pedal sensor device 61a and a threshold value stored in advance in the ROM 72 (in the present embodiment, in the state quantity determination process shown in FIG. And the current operation amount of the accelerator pedal 61 is equal to or less than the predetermined operation amount, as compared with the operation amount of the accelerator pedal 61 for determining whether or not the state quantity of 1 satisfies the predetermined condition. Determine whether or not.

その結果、アクセルペダル61の操作量が所定の操作量より大きいと判断される場合には(S28:No)、左右の後輪2RL,2RRの接地荷重が所定の接地荷重より大きいと推定され、かかる車輪2の接地荷重が偏摩耗荷重であると判断されるので、偏摩耗荷重フラグ73dをオンして(S32)、この偏摩耗荷重判断処理を終了する。   As a result, when it is determined that the operation amount of the accelerator pedal 61 is larger than the predetermined operation amount (S28: No), it is estimated that the ground load of the left and right rear wheels 2RL, 2RR is larger than the predetermined ground load. Since it is determined that the ground contact load of the wheel 2 is an uneven wear load, the uneven wear load flag 73d is turned on (S32), and the uneven wear load determination process is terminated.

一方、S28の処理の結果、アクセルペダル61の操作量が所定の操作量以下であると判断される場合には(S28:Yes)、ステアリング63の操作量(ステア角)が所定の操作量以下であるか否かを判断する(S29)。なお、S29の処理では、ステアリングセンサ装置63aにより検出されたステアリング63の操作量と、ROM72に予め記憶されている閾値(本実施の形態では、図4に示す状態量判断処理において、車両1の状態量が所定の条件を満たすか否かを判断するためのステアリング63の操作量より小さい値、且つ、図5に示す走行状態判断処理において、車両1の走行状態が所定の直進状態であるか否かを判断するためのステアリング63の操作量より大きい値)とを比較して、現在のステアリング63の操作量が所定の操作量以下であるか否かを判断する。   On the other hand, when it is determined that the operation amount of the accelerator pedal 61 is equal to or less than the predetermined operation amount as a result of the processing of S28 (S28: Yes), the operation amount (steer angle) of the steering 63 is equal to or less than the predetermined operation amount. It is determined whether or not (S29). In the process of S29, the operation amount of the steering 63 detected by the steering sensor device 63a and the threshold value stored in advance in the ROM 72 (in the present embodiment, in the state quantity determination process shown in FIG. A value smaller than the operation amount of the steering wheel 63 for determining whether or not the state quantity satisfies a predetermined condition, and whether or not the driving state of the vehicle 1 is a predetermined straight traveling state in the driving state determination process shown in FIG. And a value larger than the operation amount of the steering 63 for determining whether or not the current operation amount of the steering 63 is equal to or less than a predetermined operation amount.

その結果、ステアリング63の操作量が所定の操作量より大きいと判断される場合には(S29:No)、左の前後輪2FL,2RL又は右の前後輪2FR,2RRのいずれかの接地荷重が所定の接地荷重より大きいと推定され、かかる車輪2の接地荷重が偏摩耗荷重であると判断されるので、偏摩耗荷重フラグ73dをオンして(S32)、この偏摩耗荷重判断処理を終了する。   As a result, when it is determined that the operation amount of the steering 63 is larger than the predetermined operation amount (S29: No), the ground load of either the left front wheel 2FL, 2RL or the right front wheel 2FR, 2RR is Since it is estimated that the contact load of the wheel 2 is larger than the predetermined contact load, it is determined that the contact load of the wheel 2 is an uneven wear load. Therefore, the uneven wear load flag 73d is turned on (S32), and this uneven wear load determination process is terminated. .

一方、S29の処理の結果、ステアリング63の操作量が所定の操作量以下であると判断される場合には(S29:Yes)、ステアリング63の操作速度(ステア角速度)が所定の速度以下であるか否かを判断する(S30)。なお、S30の処理では、ステアリング63の操作量を時間微分して取得されるステアリング63の操作速度と、ROM72に予め記憶されている閾値とを比較して、現在のステアリング63の操作速度が所定の速度以下であるか否かを判断する。   On the other hand, when it is determined that the operation amount of the steering 63 is equal to or less than the predetermined operation amount as a result of the process of S29 (S29: Yes), the operation speed (steer angular velocity) of the steering 63 is equal to or less than the predetermined speed. Whether or not (S30). In the process of S30, the operation speed of the steering 63 obtained by time differentiation of the operation amount of the steering 63 is compared with a threshold value stored in advance in the ROM 72, so that the current operation speed of the steering 63 is predetermined. It is determined whether or not the speed is below.

その結果、ステアリング63の操作速度が所定の速度より大きいと判断される場合には(S30:No)、左の前後輪2FL,2RL又は右の前後輪2FR,2RRのいずれかの接地荷重が所定の接地荷重より大きいと推定され、かかる車輪2の接地荷重が偏摩耗荷重であると判断されるので、偏摩耗荷重フラグ73dをオンして(S32)、この偏摩耗荷重判断処理を終了する。   As a result, when it is determined that the operation speed of the steering 63 is greater than the predetermined speed (S30: No), the ground load of either the left front wheel 2FL, 2RL or the right front wheel 2FR, 2RR is predetermined. Therefore, it is determined that the ground contact load of the wheel 2 is a partial wear load. Therefore, the partial wear load flag 73d is turned on (S32), and the uneven wear load determination process is terminated.

一方、S30の処理の結果、ステアリング63の操作速度が所定の速度以下であると判断される場合には(S30:Yes)、ステアリング63の操作加速度(ステア角加速度)が所定の加速度以下であるか否かを判断する(S31)。なお、S31の処理では、ステアリング63の操作速度を時間微分して取得されるステアリング63の操作加速度と、ROM72に予め記憶されている閾値とを比較して、現在のステアリング63の操作加速度が所定の加速度以下であるか否かを判断する。   On the other hand, if it is determined that the operation speed of the steering wheel 63 is equal to or lower than the predetermined speed as a result of the process of S30 (S30: Yes), the operational acceleration (steer angular acceleration) of the steering wheel 63 is equal to or lower than the predetermined acceleration. Whether or not (S31). In the process of S31, the operation acceleration of the steering wheel 63 obtained by time differentiation of the operation speed of the steering wheel 63 is compared with the threshold value stored in advance in the ROM 72, and the current operation acceleration of the steering wheel 63 is predetermined. It is determined whether the acceleration is equal to or less than the acceleration.

その結果、ステアリング63の操作加速度が所定の加速度より大きいと判断される場合には(S31:No)、左の前後輪2FL,2RL又は右の前後輪2FR,2RRのいずれかの接地荷重が所定の接地荷重より大きいと推定され、かかる車輪2の接地荷重が偏摩耗荷重であると判断されるので、偏摩耗荷重フラグ73dをオンして(S32)、この偏摩耗荷重判断処理を終了する。   As a result, when it is determined that the operation acceleration of the steering 63 is greater than the predetermined acceleration (S31: No), the ground load of either the left front wheel 2FL, 2RL or the right front wheel 2FR, 2RR is predetermined. Therefore, it is determined that the ground contact load of the wheel 2 is a partial wear load. Therefore, the partial wear load flag 73d is turned on (S32), and the uneven wear load determination process is terminated.

一方、S31の処理の結果、ステアリング63の操作加速度が所定の加速度以下であると判断される場合には(S31:Yes)、偏摩耗フラグ73dをオフして(S33)、この偏摩耗荷重判断処理を終了する。   On the other hand, if it is determined that the operation acceleration of the steering wheel 63 is equal to or lower than the predetermined acceleration as a result of the processing of S31 (S31: Yes), the uneven wear flag 73d is turned off (S33), and this uneven wear load determination is performed. The process ends.

次いで、図7を参照して、バッテリ低下判断処理について説明する。図7は、バッテリ低下判断処理を示すフローチャートである。この処理は、車両用制御装置100の電源が投入されている間、CPU71によって繰り返し(例えば、0.2秒間隔で)実行される処理であり、バッテリ64が充電不足であるか又は劣化しているか否かを判断する処理である。   Next, with reference to FIG. 7, the battery decrease determination process will be described. FIG. 7 is a flowchart showing a battery decrease determination process. This process is repeatedly executed by the CPU 71 (for example, at intervals of 0.2 seconds) while the power of the vehicle control device 100 is turned on, and the battery 64 is insufficiently charged or deteriorated. This is a process for determining whether or not there is.

CPUは、バッテリ低下判断処理に関し、まず、車輪駆動装置3が駆動中か否かを判断し(S41)、車輪駆動装置3が停止していると判断される場合には(S41:No)、車輪駆動装置3の始動前のバッテリの開回路電圧E(負荷をかけていないときのバッテリ64の端子間の電位差)及びバッテリ64の温度を取得する(S42)。次いで、CPU71は、車輪駆動装置3の始動時の最大負荷電圧Vm(負荷があるときのバッテリ64の端子間の最大の電位差)及び最大負荷電流Im(負荷があるときにバッテリ64から流れる最大の電流)を取得する(S43)。S42及びS43の処理は、車輪駆動装置3が始動するまで繰り返し実行される(S44:No)。   Regarding the battery decrease determination process, the CPU first determines whether or not the wheel drive device 3 is being driven (S41), and if it is determined that the wheel drive device 3 is stopped (S41: No), The battery open circuit voltage E (potential difference between the terminals of the battery 64 when no load is applied) and the temperature of the battery 64 before starting the wheel drive device 3 are acquired (S42). Next, the CPU 71 starts the maximum load voltage Vm (maximum potential difference between the terminals of the battery 64 when there is a load) and the maximum load current Im (maximum current flowing from the battery 64 when there is a load). Current) is acquired (S43). The processes of S42 and S43 are repeatedly executed until the wheel drive device 3 is started (S44: No).

車輪駆動装置3が始動したと判断される場合には(S44:Yes)、CPU71は開回路電圧E及び最大負荷電圧Vmから降下電圧ΔVを算出し、最大負荷電流Imから内部抵抗R=ΔV/Imを算出すると共に、バッテリ64の温度で補正した内部抵抗Rtを求める(S45)。次いで、温度補正後の内部抵抗Rtが上限抵抗値72a以上であるかを判断する(S46)。なお、S46の処理では、内部抵抗RtとROM72に予め記憶されている上限抵抗値72aとを比較して、バッテリ64の内部抵抗Rtが上限抵抗値72a以上であるか否かを判断する。S46の処理の結果、内部抵抗Rtが上限抵抗値72a未満であると判断される場合には(S46:No)、バッテリ64は劣化していないと判断されるため、次に負荷電圧(負荷があるときのバッテリの端子間の電圧)と負荷電流(負荷があるときにバッテリから流れる電流)とを取得する(S47)。   When it is determined that the wheel drive device 3 has started (S44: Yes), the CPU 71 calculates the drop voltage ΔV from the open circuit voltage E and the maximum load voltage Vm, and the internal resistance R = ΔV / from the maximum load current Im. Im is calculated, and an internal resistance Rt corrected by the temperature of the battery 64 is obtained (S45). Next, it is determined whether the temperature-corrected internal resistance Rt is equal to or higher than the upper limit resistance value 72a (S46). In the process of S46, the internal resistance Rt is compared with the upper limit resistance value 72a stored in advance in the ROM 72 to determine whether or not the internal resistance Rt of the battery 64 is equal to or higher than the upper limit resistance value 72a. As a result of the processing of S46, when it is determined that the internal resistance Rt is less than the upper limit resistance value 72a (S46: No), it is determined that the battery 64 has not deteriorated. The voltage between the terminals of the battery at a certain time) and the load current (current flowing from the battery when there is a load) are acquired (S47).

一方、S41の処理において、車輪駆動装置3が駆動していると判断される場合には(S41:Yes)、CPU71は、S42〜S46の処理をスキップしてS47の処理を実行する。CPU71は、S47の処理において取得した負荷電圧および負荷電流に基づき、バッテリ64の残存容量(SOC)を算出する(S48)。なお、残存容量の算出方法は周知であるため(例えば、特開平8−278352号公報など)、説明を省略する。   On the other hand, in the process of S41, when it is determined that the wheel drive device 3 is driven (S41: Yes), the CPU 71 skips the processes of S42 to S46 and executes the process of S47. The CPU 71 calculates the remaining capacity (SOC) of the battery 64 based on the load voltage and load current acquired in the process of S47 (S48). Note that a method for calculating the remaining capacity is well known (for example, JP-A-8-278352, etc.), and thus the description thereof is omitted.

次に、CPU71は残存容量が下限残存容量72b以下であるかを判断し(S49)、残存容量が下限容量値72bより大きいと判断される場合には(S49:No)、バッテリ64は充電不足ではなく劣化もしていないと判断されるので、バッテリフラグ73eをオフして(S50)、このバッテリ低下判断処理を終了する。なお、S49の処理では、算出された残存容量とROM72に予め記憶されている下限残存容量72bとを比較して、バッテリ64の残存容量が下限残存容量72b以下か否かを判断する。   Next, the CPU 71 determines whether the remaining capacity is equal to or less than the lower limit remaining capacity 72b (S49). If it is determined that the remaining capacity is greater than the lower limit capacity value 72b (S49: No), the battery 64 is insufficiently charged. Therefore, the battery flag 73e is turned off (S50), and the battery decrease determination process is terminated. In the process of S49, the calculated remaining capacity is compared with the lower limit remaining capacity 72b stored in advance in the ROM 72, and it is determined whether or not the remaining capacity of the battery 64 is equal to or lower than the lower limit remaining capacity 72b.

一方、S49の処理の結果、残存容量が下限容量値72b以下であると判断される場合には(S49:Yes)、バッテリ64は劣化していないが充電不足であると判断されるので、バッテリフラグ73eをオンして(S51)、このバッテリ低下判断処理を終了する。また、S46の処理の結果、内部抵抗Rtが上限抵抗値72a以上であると判断される場合には(S46:Yes)、バッテリ64は劣化していると判断されるので、バッテリフラグ73eをオンして(S51)、このバッテリ低下判断処理を終了する。   On the other hand, when it is determined that the remaining capacity is equal to or lower than the lower limit capacity value 72b as a result of the process of S49 (S49: Yes), it is determined that the battery 64 is not deteriorated but is insufficiently charged. The flag 73e is turned on (S51), and the battery decrease determination process is terminated. If it is determined that the internal resistance Rt is greater than or equal to the upper limit resistance value 72a as a result of the processing in S46 (S46: Yes), it is determined that the battery 64 has deteriorated, so the battery flag 73e is turned on. In step S51, the battery decrease determination process is terminated.

次いで、図8を参照して、キャンバ制御処理について説明する。図8は、キャンバ制御処理を示すフローチャートである。この処理は、車両用制御装置100の電源が投入されている間、CPU71によって繰り返し(例えば、0.2秒間隔で)実行される処理であり、車輪2(左右の後輪2RL,2RR)のキャンバ角を調整する処理である。   Next, camber control processing will be described with reference to FIG. FIG. 8 is a flowchart showing camber control processing. This process is a process that is repeatedly executed by the CPU 71 (for example, at intervals of 0.2 seconds) while the power of the vehicle control device 100 is turned on, and the wheels 2 (left and right rear wheels 2RL, 2RR) are processed. This is a process for adjusting the camber angle.

CPU71は、キャンバ制御処理に関し、まず、バッテリフラグ73eがオンであるか否かを判断し(S61)、バッテリフラグ73eがオンであると判断される場合には(S61:Yes)、キャンバフラグ73aがオンであるか否かを判断する(S62)。その結果、キャンバフラグ73aがオフであると判断される場合には(S62:No)、ステアリング63の操作量が所定の操作量以下であるか否かを判断する(S63)。なお、S63の処理では、ステアリングセンサ装置63aにより検出されたステアリング63の操作量と、ROM72に予め記憶されている閾値(本実施の形態では、図4に示す状態量判断処理において、車両1の状態量が所定の条件を満たすか否かを判断するためのステアリング63の操作量より小さい値、且つ、図5に示す走行状態判断処理において、車両1の走行状態が所定の直進状態であるか否かを判断するためのステアリング63の操作量より大きい値)とを比較して、現在のステアリング63の操作量が所定の操作量以下であるか否かを判断する。   Regarding the camber control process, the CPU 71 first determines whether or not the battery flag 73e is on (S61), and if it is determined that the battery flag 73e is on (S61: Yes), the camber flag 73a. It is determined whether or not is on (S62). As a result, when it is determined that the camber flag 73a is off (S62: No), it is determined whether or not the operation amount of the steering 63 is equal to or less than a predetermined operation amount (S63). In the process of S63, the operation amount of the steering 63 detected by the steering sensor device 63a and the threshold value stored in advance in the ROM 72 (in the present embodiment, in the state quantity determination process shown in FIG. A value smaller than the operation amount of the steering wheel 63 for determining whether or not the state quantity satisfies a predetermined condition, and whether or not the driving state of the vehicle 1 is a predetermined straight traveling state in the driving state determination process shown in FIG. And a value larger than the operation amount of the steering 63 for determining whether or not the current operation amount of the steering 63 is equal to or less than a predetermined operation amount.

その結果、ステアリング63の操作量が所定の操作量以下である(車両1が直進状態にある)と判断される場合には(S63:Yes)、RL〜RRモータ44RL〜44RRを作動させて、左右の後輪2RL,2RRのキャンバ角を第1キャンバ角に調整し、後輪2RL,2RRにネガティブキャンバを付与すると共に(S64)、キャンバフラグ73aをオンして(S65)、このキャンバ制御処理を終了する。   As a result, when it is determined that the operation amount of the steering 63 is equal to or less than the predetermined operation amount (the vehicle 1 is in a straight traveling state) (S63: Yes), the RL to RR motors 44RL to 44RR are operated, The camber angles of the left and right rear wheels 2RL, 2RR are adjusted to the first camber angle, a negative camber is applied to the rear wheels 2RL, 2RR (S64), and the camber flag 73a is turned on (S65). Exit.

また、S62の処理の結果、キャンバフラグ73aがオンであると判断される場合には(S62:Yes)、後輪2RL,2RRのキャンバ角は既に第1キャンバ角に調整されているので、S63〜S65の処理をスキップして、第1キャンバ角を維持したまま、このキャンバ制御処理を終了する。   If it is determined as a result of the processing in S62 that the camber flag 73a is on (S62: Yes), the camber angles of the rear wheels 2RL and 2RR have already been adjusted to the first camber angle. The process of S65 is skipped, and this camber control process is terminated while maintaining the first camber angle.

これにより、バッテリフラグ73eがオンである場合、即ちバッテリ64が充電不足であるか又は劣化していると判断される場合は、後輪2RL,2RRのキャンバ角を第1キャンバ角に維持することで、キャンバ角の調整が繰り返されることを防止して電力消費量を抑制できる。よって、バッテリ64の残存容量の低下やバッテリ64の劣化を抑制できる。   Thereby, when the battery flag 73e is on, that is, when it is determined that the battery 64 is insufficiently charged or deteriorated, the camber angles of the rear wheels 2RL and 2RR are maintained at the first camber angle. Therefore, it is possible to prevent the adjustment of the camber angle from being repeated and to suppress the power consumption. Therefore, a decrease in the remaining capacity of the battery 64 and deterioration of the battery 64 can be suppressed.

また、バッテリ64の充電不足やバッテリ64が劣化している場合は、後輪2RL,2RRのキャンバ角が第1キャンバ角のまま、ネガティブキャンバが付与された状態が維持されるので、キャンバ角を調整するタイミングが遅れるということがなく、車両1の走行安定性を確保できる。   In addition, when the battery 64 is insufficiently charged or the battery 64 is deteriorated, the camber angle of the rear wheels 2RL and 2RR is maintained at the first camber angle and the negative camber is applied. The running timing of the vehicle 1 can be ensured without delaying the adjustment timing.

また、後輪2RL,2RRのキャンバ角を第2キャンバ角から第1キャンバ角に調整するのは、車両1が直進状態にあるときなので、後輪2RL,2RRのキャンバ角を調整するキャンバ角調整装置44の負荷を、車両1が旋回状態にあるときと比較して小さくできる。その結果、電力消費量が抑制され、バッテリ64の残存容量の低下やバッテリ64の劣化を抑制できる。   Also, the camber angle adjustment for adjusting the camber angle of the rear wheels 2RL and 2RR is performed because the camber angle of the rear wheels 2RL and 2RR is adjusted from the second camber angle to the first camber angle because the vehicle 1 is in a straight traveling state. The load on the device 44 can be reduced compared to when the vehicle 1 is in a turning state. As a result, power consumption is suppressed, and a decrease in remaining capacity of the battery 64 and deterioration of the battery 64 can be suppressed.

さらに、キャンバ角調整装置44により後輪2RL,2RRのキャンバ角が調整され、後輪2RL,2RRにネガティブキャンバが付与されるので、車両1の特性を安定したアンダーステア傾向にすることができる。その結果、車両1の直進安定性や限界走行性能を向上させることができる。   Furthermore, the camber angle adjusting device 44 adjusts the camber angles of the rear wheels 2RL and 2RR, and a negative camber is imparted to the rear wheels 2RL and 2RR, so that the characteristics of the vehicle 1 can have a stable understeer tendency. As a result, it is possible to improve the straight running stability and the limit traveling performance of the vehicle 1.

一方、S61の処理において、バッテリフラグ73eがオフであると判断される場合には(S61:No)、次にCPU71は、状態量フラグ73bがオンであるか否かを判断する(S66)。その結果、状態量フラグ73bがオンであると判断される場合には(S66:Yes)、キャンバフラグ73aがオンであるか否かを判断する(S67)。その結果、キャンバフラグ73aがオフであると判断される場合には(S67:No)、RL〜RRモータ44RL〜44RRを作動させて、左右の後輪2RL,2RRのキャンバ角を第1キャンバ角に調整し、後輪2RL,2RRにネガティブキャンバを付与すると共に(S68)、キャンバフラグ73aをオンして(S69)、このキャンバ制御処理を終了する。   On the other hand, in the process of S61, when it is determined that the battery flag 73e is off (S61: No), the CPU 71 next determines whether or not the state quantity flag 73b is on (S66). As a result, when it is determined that the state quantity flag 73b is on (S66: Yes), it is determined whether the camber flag 73a is on (S67). As a result, when it is determined that the camber flag 73a is off (S67: No), the RL to RR motors 44RL to 44RR are operated to set the camber angles of the left and right rear wheels 2RL and 2RR to the first camber angle. To the rear wheels 2RL, 2RR (S68), the camber flag 73a is turned on (S69), and the camber control process is terminated.

これにより、車両1の状態量が所定の条件を満たす場合、即ち、各ペダル61,62の操作量およびステアリング63の操作量の内の少なくとも1の操作量が所定の操作量以上であり、後輪2RL,2RRのキャンバ角が第2キャンバ角の状態で車両1が加速、制動または旋回すると車輪2がスリップする恐れがあると判断される場合には、後輪2RL,2RRにネガティブキャンバを付与することで、後輪2RL,2RRに発生するキャンバスラストを利用して、車両1の走行安定性を確保することができる。   As a result, when the state quantity of the vehicle 1 satisfies the predetermined condition, that is, at least one of the operation quantity of each pedal 61 and 62 and the operation quantity of the steering 63 is equal to or greater than the predetermined operation quantity. If it is determined that there is a risk of the wheel 2 slipping when the vehicle 1 accelerates, brakes or turns with the camber angle of the wheels 2RL and 2RR being the second camber angle, a negative camber is applied to the rear wheels 2RL and 2RR. Thus, the running stability of the vehicle 1 can be ensured by using the canvas last generated in the rear wheels 2RL and 2RR.

一方、S67の処理の結果、キャンバフラグ73aがオンであると判断される場合には(S67:Yes)、後輪2RL,2RRのキャンバ角は既に第1キャンバ角に調整されているので、S68及びS69の処理をスキップして、このキャンバ制御処理を終了する。   On the other hand, if it is determined as a result of the processing in S67 that the camber flag 73a is on (S67: Yes), the camber angles of the rear wheels 2RL and 2RR have already been adjusted to the first camber angle, so S68. And the process of S69 is skipped and this camber control process is complete | finished.

これに対し、S66の処理の結果、状態量フラグ73bがオフであると判断される場合には(S66:No)、走行状態フラグ73cがオンであるか否かを判断し(S70)、走行状態フラグ73cがオンであると判断される場合には(S70:Yes)、キャンバフラグ73aがオンであるか否かを判断する(S71)。その結果、キャンバフラグ73aがオフであると判断される場合には(S71:No)、RL〜RRモータ44RL〜44RRを作動させて、左右の後輪2RL,2RRのキャンバ角を第1キャンバ角に調整し、後輪2RL,2RRにネガティブキャンバを付与すると共に(S72)、キャンバフラグ73aをオンして(S73)、S74の処理を実行する。   On the other hand, as a result of the process of S66, when it is determined that the state quantity flag 73b is off (S66: No), it is determined whether or not the travel state flag 73c is on (S70). If it is determined that the status flag 73c is on (S70: Yes), it is determined whether the camber flag 73a is on (S71). As a result, when it is determined that the camber flag 73a is off (S71: No), the RL to RR motors 44RL to 44RR are operated to set the camber angles of the left and right rear wheels 2RL and 2RR to the first camber angle. The negative camber is applied to the rear wheels 2RL and 2RR (S72), the camber flag 73a is turned on (S73), and the process of S74 is executed.

これにより、車両1の走行状態が所定の直進状態である場合、即ち、車両1の走行速度が所定の速度以上であると共にステアリング63の操作量が所定の操作量以下であり、車両1が比較的高速で直進している場合には、後輪2RL,2RRにネガティブキャンバを付与することで、車輪2の横剛性を利用して、車両1の直進安定性を確保することができる。   Thereby, when the traveling state of the vehicle 1 is a predetermined straight traveling state, that is, the traveling speed of the vehicle 1 is equal to or higher than the predetermined speed and the operation amount of the steering 63 is equal to or smaller than the predetermined operation amount. When the vehicle is traveling straight at a high speed, it is possible to ensure the straight running stability of the vehicle 1 by using the lateral rigidity of the wheels 2 by applying a negative camber to the rear wheels 2RL and 2RR.

一方、S71の処理の結果、キャンバフラグ73aがオンであると判断される場合には(S71:Yes)、後輪2RL,2RRのキャンバ角は既に第1キャンバ角に調整されているので、S72及びS73の処理をスキップして、偏摩耗荷重フラグ73dがオンであるか否かを判断する(S74)。その結果、偏摩耗荷重フラグ73dがオンであると判断される場合には(S74:Yes)、RL〜RRモータ44RL〜44RRを作動させて、左右の後輪2RL,2RRのキャンバ角を第2キャンバ角に調整し、後輪2RL,2RRへのネガティブキャンバの付与を解除すると共に(S75)、キャンバフラグ73aをオフして(S76)、このキャンバ制御処理を終了する。   On the other hand, if it is determined as a result of the processing of S71 that the camber flag 73a is on (S71: Yes), the camber angles of the rear wheels 2RL and 2RR have already been adjusted to the first camber angle, so S72 And the process of S73 is skipped and it is judged whether the partial wear load flag 73d is ON (S74). As a result, when it is determined that the uneven wear load flag 73d is on (S74: Yes), the RL to RR motors 44RL to 44RR are operated to set the camber angles of the left and right rear wheels 2RL and 2RR to the second. The camber angle is adjusted to release the negative camber from the rear wheels 2RL and 2RR (S75), the camber flag 73a is turned off (S76), and the camber control process is terminated.

これにより、後輪2RL,2RRの接地荷重が偏摩耗荷重である場合、即ち、後輪2RL,2RRにネガティブキャンバが付与された状態で車両1が走行すると、タイヤ(トレッド)に偏摩耗を引き起こす恐れがある場合には、後輪2RL,2RRへのネガティブキャンバの付与を解除することで、タイヤの偏摩耗を抑制することができる。   As a result, when the ground contact load of the rear wheels 2RL, 2RR is uneven wear load, that is, when the vehicle 1 travels with the negative camber applied to the rear wheels 2RL, 2RR, uneven wear is caused on the tire (tread). When there is a fear, the partial wear of the tire can be suppressed by releasing the application of the negative camber to the rear wheels 2RL and 2RR.

一方、S74の処理の結果、偏摩耗荷重フラグ73dがオフであると判断される場合には(S74:No)、後輪2RL,2RRの接地荷重は偏摩耗荷重ではなく、後輪2RL,2RRにネガティブキャンバが付与された状態で車両1が走行しても、タイヤ(トレッド)が偏摩耗する恐れはないと判断されるので、S75及びS76の処理をスキップして、このキャンバ制御処理を終了する。   On the other hand, when it is determined that the uneven wear load flag 73d is OFF as a result of the process of S74 (S74: No), the ground load of the rear wheels 2RL and 2RR is not the uneven wear load, but the rear wheels 2RL and 2RR. Even if the vehicle 1 travels with the negative camber applied to the tire, it is determined that there is no risk of uneven wear on the tire (tread), so the processes of S75 and S76 are skipped and the camber control process is terminated. To do.

これに対し、S70の処理の結果、走行状態フラグ73cがオフであると判断される場合には(S70:No)、キャンバフラグ73aがオンであるか否かを判断する(S77)。その結果、キャンバフラグ73aがオンであると判断される場合には(S77:Yes)、RL〜RRモータ44RL〜44RRを作動させて、左右の後輪2RL,2RRのキャンバ角を第2キャンバ角に調整し、後輪2RL,2RRへのネガティブキャンバの付与を解除すると共に(S78)、キャンバフラグ73aをオフして(S79)、このキャンバ制御処理を終了する。   On the other hand, when it is determined that the traveling state flag 73c is off as a result of the process of S70 (S70: No), it is determined whether or not the camber flag 73a is on (S77). As a result, when it is determined that the camber flag 73a is on (S77: Yes), the RL to RR motors 44RL to 44RR are operated to set the camber angles of the left and right rear wheels 2RL and 2RR to the second camber angle. The negative camber is no longer assigned to the rear wheels 2RL and 2RR (S78), the camber flag 73a is turned off (S79), and the camber control process is terminated.

これにより、車両1の状態量が所定の条件を満たしておらず車両1の走行状態が所定の直進状態でない場合、即ち、車両1の走行安定性を優先して確保する必要がない場合には、後輪2RL,2RRへのネガティブキャンバの付与を解除することで、キャンバスラストの影響を回避して、省燃費化を図ることができる。   Thereby, when the state quantity of the vehicle 1 does not satisfy the predetermined condition and the traveling state of the vehicle 1 is not the predetermined straight traveling state, that is, when it is not necessary to prioritize the traveling stability of the vehicle 1. By releasing the negative camber from the rear wheels 2RL and 2RR, the influence of the canvas last can be avoided and fuel consumption can be reduced.

一方、S77の処理の結果、キャンバフラグ73aがオフであると判断される場合には(S77:No)、後輪2RL,2RRのキャンバ角は既に第2キャンバ角に調整されているので、S78及びS79の処理をスキップして、このキャンバ制御処理を終了する。   On the other hand, if it is determined that the camber flag 73a is OFF as a result of the processing of S77 (S77: No), the camber angles of the rear wheels 2RL and 2RR have already been adjusted to the second camber angle, so S78 And the process of S79 is skipped and this camber control process is complete | finished.

以上説明したように、第1実施の形態によれば、後輪2RL,2RRの接地荷重が所定の接地荷重以上であると判断される場合に、後輪2RL,2RRのキャンバ角が第2キャンバ角(第1キャンバ角よりも絶対値が小さいキャンバ角)に調整され、後輪2RL,2RRへのネガティブキャンバの付与が解除されるので、タイヤの偏摩耗を抑制することができる。即ち、車輪2の接地荷重が大きいほどタイヤの摩耗が進行し易いので、車輪2の接地荷重が所定の接地荷重以上である場合には、車輪2へのネガティブキャンバの付与を解除することで、タイヤの偏摩耗を抑制することができる。その結果、タイヤの寿命を向上させることができる。また、タイヤの偏摩耗を抑制することで、タイヤの接地面が不均一となるのを防止して、車両1の走行安定性を確保することができる。更に、タイヤの偏摩耗を抑制できるので、その分、省燃費化を図ることができる。   As described above, according to the first embodiment, when it is determined that the ground load of the rear wheels 2RL and 2RR is equal to or greater than the predetermined ground load, the camber angle of the rear wheels 2RL and 2RR is the second camber. Since the angle (the camber angle having a smaller absolute value than the first camber angle) is adjusted and the negative camber is not applied to the rear wheels 2RL and 2RR, uneven wear of the tire can be suppressed. That is, since the wear of the tire is more likely to progress as the contact load of the wheel 2 is larger, when the contact load of the wheel 2 is equal to or greater than the predetermined contact load, by canceling the application of the negative camber to the wheel 2, Uneven wear of the tire can be suppressed. As a result, the life of the tire can be improved. Further, by suppressing uneven wear of the tire, it is possible to prevent the ground contact surface of the tire from becoming uneven and to ensure the running stability of the vehicle 1. Furthermore, since uneven wear of the tire can be suppressed, fuel saving can be achieved correspondingly.

また、第1実施の形態によれば、バッテリ64が充電不足ではなく劣化もしていないと判断される場合であって、車両1の状態量が所定の条件を満たすと判断される場合に、後輪2RL,2RRのキャンバ角が第1キャンバ角に調整され、後輪2RL,2RRにネガティブキャンバが付与されるので、後輪2RL,2RRに発生するキャンバスラストを利用して、車両1の走行安定性を確保することができる。また、車両1の状態量が所定の条件を満たしていないと判断され、且つ、車輪2の接地荷重が所定の接地荷重以上であると判断される場合には、後輪2RL,2RRのキャンバ角が第2キャンバ角(第1キャンバ角よりも絶対値が小さいキャンバ角)に調整され、後輪2RL,2RRへのネガティブキャンバの付与が解除されるので、タイヤの偏摩耗を抑制することができる。よって、走行安定性の確保とタイヤの偏摩耗の抑制との両立を図ることができる。   Further, according to the first embodiment, when it is determined that the battery 64 is not insufficiently charged and has not deteriorated, and when it is determined that the state quantity of the vehicle 1 satisfies the predetermined condition, Since the camber angles of the wheels 2RL and 2RR are adjusted to the first camber angle and the negative camber is given to the rear wheels 2RL and 2RR, the running stability of the vehicle 1 is stabilized by using the canvas last generated in the rear wheels 2RL and 2RR. Sex can be secured. Further, when it is determined that the state quantity of the vehicle 1 does not satisfy the predetermined condition and the ground load of the wheel 2 is determined to be equal to or greater than the predetermined ground load, the camber angles of the rear wheels 2RL and 2RR are determined. Is adjusted to the second camber angle (the camber angle having an absolute value smaller than the first camber angle) and the negative camber is no longer applied to the rear wheels 2RL and 2RR, so that uneven wear of the tire can be suppressed. . Therefore, it is possible to achieve both of ensuring traveling stability and suppressing uneven wear of the tire.

また、第1実施の形態によれば、バッテリ64が充電不足ではなく劣化もしていないと判断される場合であって、車両1の走行状態が所定の直進状態であると判断される場合に、後輪2RL,2RRのキャンバ角が第1キャンバ角に調整され、後輪2RL,2RRにネガティブキャンバが付与されるので、車輪2の横剛性を利用して、車両1の直進安定性を確保することができる。また、車両1の走行状態が所定の直進状態であると判断され、且つ、車輪2の接地荷重が所定の接地荷重以上であると判断される場合には、後輪2RL,2RRのキャンバ角が第2キャンバ角(第1キャンバ角よりも絶対値が小さいキャンバ角)に調整され、後輪2RL,2RRへのネガティブキャンバの付与が解除されるので、タイヤの偏摩耗を抑制することができる。よって、直進安定性の確保とタイヤの偏摩耗の抑制との両立を図ることができる。   Further, according to the first embodiment, when it is determined that the battery 64 is not insufficiently charged and has not deteriorated, and when the traveling state of the vehicle 1 is determined to be a predetermined straight traveling state, The camber angles of the rear wheels 2RL and 2RR are adjusted to the first camber angle, and a negative camber is applied to the rear wheels 2RL and 2RR. Therefore, the lateral rigidity of the wheels 2 is used to ensure the straight running stability of the vehicle 1. be able to. When it is determined that the traveling state of the vehicle 1 is a predetermined straight traveling state and the ground load of the wheel 2 is determined to be equal to or greater than the predetermined ground load, the camber angles of the rear wheels 2RL and 2RR are Adjustment to the second camber angle (a camber angle having a smaller absolute value than the first camber angle) and release of the negative camber to the rear wheels 2RL and 2RR are released, so that uneven wear of the tire can be suppressed. Therefore, it is possible to achieve both of ensuring straight running stability and suppressing uneven wear of the tire.

次いで、図9から図11を参照して、第2実施の形態について説明する。第1実施の形態では、車両用制御装置100の制御対象である車両1が、左右の後輪2RL,2RRのキャンバ角がキャンバ角調整装置44により調整可能に構成される場合を説明したが、第2実施の形態における車両201は、左右の前輪2FL,2FR及び左右の後輪2RL,2RRを含む全ての車輪2のキャンバ角をキャンバ角調整装置244により調整可能に構成される場合を説明する。なお、第1実施の形態と同一の部分については同一の符号を付して、その説明を省略する。   Next, a second embodiment will be described with reference to FIGS. In 1st Embodiment, although the vehicle 1 which is the control object of the control apparatus 100 for vehicles demonstrated the case where the camber angles of the left and right rear wheels 2RL and 2RR were configured to be adjustable by the camber angle adjusting device 44, The vehicle 201 according to the second embodiment will be described in a case where the camber angles of all the wheels 2 including the left and right front wheels 2FL and 2FR and the left and right rear wheels 2RL and 2RR can be adjusted by the camber angle adjusting device 244. . In addition, the same code | symbol is attached | subjected about the part same as 1st Embodiment, and the description is abbreviate | omitted.

図9は、第2実施の形態における車両用制御装置200が搭載される車両201を模式的に示した模式図である。なお、図9の矢印U−D,L−R,F−Bは、車両201の上下方向、左右方向、前後方向をそれぞれ示している。まず、車両201の概略構成について説明する。図8に示すように、車両201は左右の前輪2FL,2FRが懸架装置204により車体フレームBFに懸架される一方、左右の後輪2RL,2RRが懸架装置4により車体フレームBFに懸架されている。懸架装置204は、懸架装置4と同様に、車輪2のキャンバ角を調整するキャンバ角調整機構としての機能を兼ね備えている。   FIG. 9 is a schematic diagram schematically showing a vehicle 201 on which the vehicle control device 200 according to the second embodiment is mounted. Note that arrows UD, LR, and FB in FIG. 9 indicate the up-down direction, the left-right direction, and the front-rear direction of the vehicle 201, respectively. First, a schematic configuration of the vehicle 201 will be described. As shown in FIG. 8, in the vehicle 201, the left and right front wheels 2FL and 2FR are suspended on the vehicle body frame BF by the suspension device 204, while the left and right rear wheels 2RL and 2RR are suspended on the vehicle body frame BF by the suspension device 4. . Similar to the suspension device 4, the suspension device 204 also has a function as a camber angle adjustment mechanism that adjusts the camber angle of the wheel 2.

ここで、図10を参照して、懸架装置204の詳細構成について説明する。図10は、懸架装置204の正面図である。なお、ここでは、キャンバ角調整機構として機能する構成のみについて説明し、サスペンションとして機能する構成については周知の構成と同様であるので、その説明を省略する。また、各懸架装置204の構成は、左右の前輪2FL,2FRにおいてそれぞれ共通であるので、右の前輪2FRに対応する懸架装置204を代表例として図10に図示する。但し、図10では、理解を容易とするためにドライブシャフト31等の図示が省略されている。   Here, with reference to FIG. 10, the detailed structure of the suspension apparatus 204 is demonstrated. FIG. 10 is a front view of the suspension device 204. Here, only the configuration that functions as a camber angle adjusting mechanism will be described, and the configuration that functions as a suspension is the same as a known configuration, and thus description thereof is omitted. Further, since the structure of each suspension device 204 is common to the left and right front wheels 2FL and 2FR, the suspension device 204 corresponding to the right front wheel 2FR is shown in FIG. 10 as a representative example. However, in FIG. 10, illustration of the drive shaft 31 and the like is omitted for easy understanding.

懸架装置204は、図10に示すように、ストラット41及びロアアーム42を介して車体フレームBFに支持されるナックル43と、駆動力を発生するFRモータ44FRと、そのFRモータ44FRの駆動力を伝達するウォームホイール45及びアーム246と、それらウォームホイール45及びアーム246から伝達されるFRモータ44FRの駆動力によりナックル43に対して揺動駆動される可動プレート47とを主に備えて構成されている。   As shown in FIG. 10, the suspension device 204 transmits the knuckle 43 supported by the vehicle body frame BF via the strut 41 and the lower arm 42, the FR motor 44FR that generates the driving force, and the driving force of the FR motor 44FR. The worm wheel 45 and the arm 246, and the movable plate 47 that is swingably driven with respect to the knuckle 43 by the driving force of the FR motor 44FR transmitted from the worm wheel 45 and the arm 246 are mainly configured. .

アーム246は、ウォームホイール45から伝達されるFRモータ44FRの駆動力を可動プレート47に伝達するものであり、図10に示すように、一端(図10右側)が第1連結軸248を介してウォームホイール45の回転軸45aから偏心した位置に連結される一方、他端(図10左側)が第2連結軸49を介して可動プレート47の上端(図10上側)に連結されている。   The arm 246 transmits the driving force of the FR motor 44FR transmitted from the worm wheel 45 to the movable plate 47. As shown in FIG. 10, one end (right side in FIG. 10) is connected via the first connecting shaft 248. The other end (left side in FIG. 10) is connected to the upper end (upper side in FIG. 10) via the second connection shaft 49 while being connected to a position eccentric from the rotation shaft 45 a of the worm wheel 45.

上述したように構成される懸架装置204によれば、FRモータ44FRが駆動されると、ウォームホイール45が回転すると共に、ウォームホイール45の回転運動がアーム246の直線運動に変換される。その結果、アーム246が直線運動することで、可動プレート47がキャンバ軸50を揺動軸として揺動駆動され、車輪2のキャンバ角が調整される。   According to the suspension device 204 configured as described above, when the FR motor 44FR is driven, the worm wheel 45 rotates and the rotational motion of the worm wheel 45 is converted into linear motion of the arm 246. As a result, when the arm 246 moves linearly, the movable plate 47 is driven to swing with the camber shaft 50 as the swing shaft, and the camber angle of the wheel 2 is adjusted.

なお、本実施の形態では、各連結軸248,49及びウォームホイール45の回転軸45aが、車体フレームBFから車輪2に向かう方向(矢印R方向)において、回転軸45a、第1連結軸248、第2連結軸49の順に一直線上に並んで位置する第1キャンバ状態と、第1連結軸248、回転軸45a、第2連結軸49の順に一直線上に並んで位置する第2キャンバ状態(図10に示す状態)とのいずれか一方のキャンバ状態となるように車輪2のキャンバ角が調整される。   In the present embodiment, the connecting shafts 248, 49 and the rotating shaft 45a of the worm wheel 45 are in the direction from the vehicle body frame BF toward the wheel 2 (arrow R direction), the rotating shaft 45a, the first connecting shaft 248, A first camber state positioned in a straight line in the order of the second connecting shaft 49, and a second camber state positioned in a straight line in the order of the first connecting shaft 248, the rotating shaft 45a, and the second connecting shaft 49 (see FIG. 10), the camber angle of the wheel 2 is adjusted so as to be in either one of the camber states.

これにより、車輪2のキャンバ角が第1キャンバ状態若しくは第2キャンバ状態に調整された状態では、車輪2に外力が加わったとしても、アーム246を回動させる方向の力は発生せず、車輪2のキャンバ角を維持することができる。また、本実施の形態では、第1キャンバ状態において、車輪2のキャンバ角がプラス方向の所定の角度(本実施の形態では+2°、以下「第1キャンバ角」と称す)に調整され、車輪2にポジティブキャンバが付与される。一方、第2キャンバ状態(図10に示す状態)では、車輪2のキャンバ角が第1キャンバ角より絶対値が小さく、第1キャンバ角よりネガティブ方向の所定の角度(本実施の形態では−1°、以下「第2キャンバ角」と称す)の定常角に調整される。   Thereby, in the state in which the camber angle of the wheel 2 is adjusted to the first camber state or the second camber state, even if an external force is applied to the wheel 2, no force in the direction of rotating the arm 246 is generated. A camber angle of 2 can be maintained. In the present embodiment, in the first camber state, the camber angle of the wheel 2 is adjusted to a predetermined angle in the plus direction (+ 2 ° in the present embodiment, hereinafter referred to as “first camber angle”). 2 is given a positive camber. On the other hand, in the second camber state (the state shown in FIG. 10), the camber angle of the wheel 2 has a smaller absolute value than the first camber angle, and a predetermined angle in the negative direction from the first camber angle (−1 in the present embodiment). (Hereinafter referred to as “second camber angle”).

車両用制御装置200は、上述したように構成される車両201の各部を制御するための装置であり、例えば、各ペダル61,62やステアリング63の操作状態に応じてキャンバ角調整装置244(図11参照)を作動制御する。   The vehicle control device 200 is a device for controlling each part of the vehicle 201 configured as described above. For example, the camber angle adjusting device 244 (see FIG. 11).

次いで、図11を参照して、車両用制御装置200の詳細構成について説明する。図11は、車両用制御装置200の電気的構成を示したブロック図である。   Next, a detailed configuration of the vehicle control device 200 will be described with reference to FIG. FIG. 11 is a block diagram showing an electrical configuration of the vehicle control device 200.

キャンバ角調整装置244は、左右の後輪2RL,2RR及び左右の後輪2RL,2RRのキャンバ角を調整するための装置であり、左右の前輪2FL,2FR及び左右の後輪2RL,2RRにキャンバ角をそれぞれ付与する合計4個のFL〜RRモータ44FL〜44RRと、それら各モータ44FL〜44RRをCPU71からの指示に基づいて駆動制御する駆動制御回路(図示せず)とを主に備えている。即ち、第2実施の形態におけるキャンバ角調整装置244は、第1実施の形態におけるキャンバ角調整装置44に、左右の前輪2FL,2FRに対応するFL,FRモータ44FL,44FRを付加して構成されている。   The camber angle adjusting device 244 is a device for adjusting the camber angles of the left and right rear wheels 2RL, 2RR and the left and right rear wheels 2RL, 2RR. The camber angle adjusting device 244 is a camber for the left and right front wheels 2FL, 2FR and the left and right rear wheels 2RL, 2RR. A total of four FL to RR motors 44FL to 44RR that respectively give corners, and a drive control circuit (not shown) that drives and controls each of the motors 44FL to 44RR based on instructions from the CPU 71 are mainly provided. . That is, the camber angle adjusting device 244 in the second embodiment is configured by adding FL and FR motors 44FL and 44FR corresponding to the left and right front wheels 2FL and 2FR to the camber angle adjusting device 44 in the first embodiment. ing.

サスストロークセンサ装置283は、懸架装置4,204の伸縮量を検出すると共に、その検出結果をCPU71に出力するための装置であり、懸架装置4,204の伸縮量をそれぞれ検出するFL〜RRサスストロークセンサ83FL〜83RRと、それら各サスストロークセンサ83FL〜83RRの検出結果を処理してCPU71に出力する出力回路(図示せず)とを備えている。即ち、第2実施の形態におけるサスストロークセンサ装置283は、第1実施の形態におけるサスストロークセンサ装置83に、左右の前輪2FL,2FRに対応するFL,FRサスストロークセンサ83FL,83FRを付加して構成されている。   The suspension stroke sensor device 283 is a device for detecting the amount of expansion / contraction of the suspension devices 4 and 204 and outputting the detection result to the CPU 71. The suspension stroke sensor device 283 detects the amount of expansion / contraction of the suspension devices 4 and 204, respectively. Stroke sensors 83FL to 83RR and an output circuit (not shown) for processing the detection results of the respective suspension stroke sensors 83FL to 83RR and outputting them to the CPU 71 are provided. That is, the suspension stroke sensor device 283 in the second embodiment adds the FL and FR suspension stroke sensors 83FL and 83FR corresponding to the left and right front wheels 2FL and 2FR to the suspension stroke sensor device 83 in the first embodiment. It is configured.

接地荷重センサ装置284は、左右の前輪2FL,2FR及び左右の後輪2RL,2RRの接地荷重を検出すると共に、その検出結果をCPU71に出力するための装置であり、左右の前輪2FL,2FR及び後輪2RL,2RRの接地荷重をそれぞれ検出するFL〜RR接地荷重センサ84FL〜84RRと、それら各接地荷重センサ84FL〜84RRの検出結果を処理してCPU71に出力する出力回路(図示せず)とを備えている。即ち、第2実施の形態における接地荷重センサ装置284は、第1実施の形態における接地荷重センサ装置84に、左右の前輪2FL,2FRに対応するFL,FR接地荷重センサ84FL,84FRを付加して構成されている。   The ground load sensor device 284 is a device for detecting the ground loads of the left and right front wheels 2FL, 2FR and the left and right rear wheels 2RL, 2RR and outputting the detection result to the CPU 71. The left and right front wheels 2FL, 2FR and FL to RR ground load sensors 84FL to 84RR that detect the ground loads of the rear wheels 2RL and 2RR, respectively, and an output circuit (not shown) that processes the detection results of the ground load sensors 84FL to 84RR and outputs them to the CPU 71 It has. In other words, the ground load sensor device 284 in the second embodiment adds the FL and FR ground load sensors 84FL and 84FR corresponding to the left and right front wheels 2FL and 2FR to the ground load sensor device 84 in the first embodiment. It is configured.

サイドウォール潰れ代センサ装置285は、左右の前輪2FL,2FR及び後輪2RL,2RRのタイヤサイドウォールの潰れ代を検出すると共に、その検出結果をCPU71に出力するための装置であり、左右の前輪2FL,2FR及び後輪2RL,2RRのタイヤサイドウォールの潰れ代をそれぞれ検出するFL〜RRサイドウォール潰れ代センサ85FL〜85RRと、それら各サイドウォール潰れ代センサ85FL〜85RRの検出結果を処理してCPU71に出力する出力回路(図示せず)とを備えている。即ち、第2実施の形態におけるサイドウォール潰れ代センサ装置285は、第1実施の形態におけるサイドウォール潰れ代センサ装置85に、左右の前輪2FL,2FRに対応するFL,FRサイドウォール潰れ代センサ85FL,85FRを付加して構成されている。   The side wall crushing margin sensor device 285 is a device for detecting crushing margins of the tire sidewalls of the left and right front wheels 2FL, 2FR and the rear wheels 2RL, 2RR and outputting the detection result to the CPU 71. 2 FL, 2 FR and rear wheels 2 RL, 2 RR of the tire sidewalls are detected by the FL to RR sidewall collapse margin sensors 85 FL to 85 RR, and the detection results of the respective sidewall collapse margin sensors 85 FL to 85 RR are processed. And an output circuit (not shown) for outputting to the CPU 71. That is, the sidewall collapse allowance sensor device 285 in the second embodiment is different from the sidewall collapse allowance sensor device 85 in the first embodiment in that the FL and FR sidewall collapse allowance sensors 85FL correspond to the left and right front wheels 2FL and 2FR. , 85FR are added.

次いで、第2実施の形態における偏摩耗荷重判断処理について説明するが、第1実施の形態における偏摩耗荷重判断処理(図6参照)とほぼ同様であるので、異なる点についてのみ説明する。   Next, the uneven wear load determination process in the second embodiment will be described, but since it is substantially the same as the uneven wear load determination process (see FIG. 6) in the first embodiment, only different points will be described.

第2実施の形態では、左右の前輪2FL,2FRに対応するFL,FRサスストロークセンサ83FL,83FR、左右の前輪2FL,2FRに対応するFL,FR接地荷重センサ84FL,84FR、左右の前輪2FL,2FRに対応するFL,FRサイドウォール潰れ代センサ85FL,85FRが、第1実施の形態に付加されている。従って、それらのセンサを用いて、第1実施の形態における偏摩耗荷重判断処理(図6参照)のS21の処理の一部を代えて各車輪2の懸架装置4,40の伸縮量と所定値とを比較し、S26の処理の一部を代えて各車輪2の接地荷重と所定値とを比較し、S27の処理の一部を代えてタイヤサイドウォールの潰れ代と所定値とを比較する。これにより、左右の前輪2FL,2FRにポジティブキャンバが付与されると共に左右の後輪2RL,2RRにネガティブキャンバが付与された状態で車両201が走行する場合に、左右の前輪2FL,2FR又は左右の後輪2RL,2RRの接地荷重がタイヤ(トレッド)に偏摩耗を引き起こす恐れのある偏摩耗荷重であるか否かを判断する。   In the second embodiment, FL corresponding to the left and right front wheels 2FL and 2FR, FR suspension stroke sensors 83FL and 83FR, FL corresponding to the left and right front wheels 2FL and 2FR, FR ground load sensors 84FL and 84FR, left and right front wheels 2FL, FL and FR side wall collapse allowance sensors 85FL and 85FR corresponding to 2FR are added to the first embodiment. Therefore, using these sensors, the amount of expansion and contraction of the suspension devices 4 and 40 of each wheel 2 and a predetermined value are substituted for part of the processing of S21 of the uneven wear load determination processing (see FIG. 6) in the first embodiment. , Compare a part of the process of S26 with the ground load of each wheel 2 and a predetermined value, and change a part of the process of S27 and compare the crushed allowance of the tire sidewall with a predetermined value. . As a result, when the vehicle 201 travels with a positive camber applied to the left and right front wheels 2FL, 2FR and a negative camber applied to the left and right rear wheels 2RL, 2RR, the left and right front wheels 2FL, 2FR or left and right It is determined whether or not the ground load of the rear wheels 2RL and 2RR is an uneven wear load that may cause uneven wear on the tire (tread).

また、第2実施の形態では、第1実施の形態における偏摩耗荷重判断処理の各処理に加え、ブレーキペダル62の操作量(踏み込み量)が所定の操作量以下であるか否かを判断する処理を実行する。なお、この処理では、ブレーキペダルセンサ装置62aにより検出されたブレーキペダル62の操作量と、ROM72に予め記憶されている閾値(本実施の形態では、図4に示す状態量判断処理において、車両1の状態量が所定の条件を満たすか否かを判断するためのブレーキペダル62の操作量より小さい値)とを比較して、現在のブレーキペダル62の操作量が所定の操作量以下であるか否かを判断する。   In the second embodiment, in addition to the uneven wear load determination processing in the first embodiment, it is determined whether or not the operation amount (depression amount) of the brake pedal 62 is equal to or less than a predetermined operation amount. Execute the process. In this process, the operation amount of the brake pedal 62 detected by the brake pedal sensor device 62a and the threshold value stored in advance in the ROM 72 (in the present embodiment, in the state quantity determination process shown in FIG. Whether the current operation amount of the brake pedal 62 is equal to or smaller than the predetermined operation amount. Judge whether or not.

その結果、ブレーキペダル62の操作量が所定の操作量より大きいと判断される場合には(No)、前輪2FL,2FR側に前後荷重が移動して、左右の前輪2FL,2FRの接地荷重が所定の接地荷重より大きいと推定され、かかる車輪2の接地荷重が偏摩耗荷重であると判断されるので、偏摩耗荷重フラグ73dをオンして、この偏摩耗荷重判断処理を終了する。一方、この処理の結果、ブレーキペダル62の操作量が所定の操作量以下であると判断される場合には(Yes)、偏摩耗荷重判断処理の他の処理を実行する。   As a result, when it is determined that the operation amount of the brake pedal 62 is larger than the predetermined operation amount (No), the front / rear load moves to the front wheels 2FL, 2FR side, and the ground loads of the left and right front wheels 2FL, 2FR are increased. Since it is estimated that the contact load of the wheel 2 is larger than the predetermined contact load, it is determined that the contact load of the wheel 2 is an uneven wear load. Therefore, the uneven wear load flag 73d is turned on, and this uneven wear load determination process is terminated. On the other hand, as a result of this processing, when it is determined that the operation amount of the brake pedal 62 is equal to or less than the predetermined operation amount (Yes), other processing of uneven wear load determination processing is executed.

また、第1実施の形態におけるキャンバ制御処理では、左右の後輪2RL,2RRのキャンバ角を調整してネガティブキャンバの付与と解除とを行ったが、第2実施の形態におけるキャンバ制御処理においては、左右の後輪2RL,2RRのキャンバ角を調整してネガティブキャンバの付与と解除とを行うのに加え、左右の前輪2FL,2FRのキャンバ角を調整してポジティブキャンバの付与と解除とを行う。   In the camber control process in the first embodiment, the camber angles of the left and right rear wheels 2RL and 2RR are adjusted to give and release the negative camber. In the camber control process in the second embodiment, In addition to adjusting the camber angles of the left and right rear wheels 2RL and 2RR to give and release the negative camber, the camber angles of the left and right front wheels 2FL and 2FR are adjusted to give and release the positive camber. .

第2実施の形態においては、バッテリ64が供給する電力でキャンバ角調整装置244を駆動し、前輪2FL,2FR及び後輪2RL,2RRのキャンバ角を調整するので、第1実施の形態と比較してキャンバ角調整装置244の電力消費量は増えるが、第1実施の形態と同様に、車両201の直進安定性や限界走行性能を向上させることができる。   In the second embodiment, the camber angle adjusting device 244 is driven by the electric power supplied by the battery 64 to adjust the camber angles of the front wheels 2FL, 2FR and the rear wheels 2RL, 2RR. Compared with the first embodiment. Thus, although the power consumption of the camber angle adjusting device 244 increases, the straight traveling stability and the limit traveling performance of the vehicle 201 can be improved as in the first embodiment.

次いで、図12から図15を参照して、第3実施の形態について説明する。図12は第3実施の形態における車両用制御装置300の電気的構成を示したブロック図である。車両用制御装置300は、第1実施の形態で説明した車両用制御装置100に代えて車両1に搭載されているものとする。なお、第1実施の形態と同一の部分については同一の符号を付して、その説明を省略する。   Next, a third embodiment will be described with reference to FIGS. FIG. 12 is a block diagram showing an electrical configuration of the vehicle control apparatus 300 according to the third embodiment. The vehicle control device 300 is assumed to be mounted on the vehicle 1 instead of the vehicle control device 100 described in the first embodiment. In addition, the same code | symbol is attached | subjected about the part same as 1st Embodiment, and the description is abbreviate | omitted.

車両用制御装置300は、図12に示すように、CPU71、ROM372及びRAM73を備え、それらがバスライン74を介して入出力ポート75に接続されている。また、入出力ポート75には、車輪駆動装置3等の装置が接続されている。ROM372は、CPU71により実行される制御プログラム(例えば、図4、図6、図7、図14及び図15に図示されるフローチャートのプログラム)や固定値データ等を格納した書き換え不能な不揮発性のメモリである。また、ROM372には、上限抵抗値および下限残存容量(いずれも図示せず)に加え、図12に示すように、走行状態閾値マップ372aが設けられている。   As shown in FIG. 12, the vehicle control device 300 includes a CPU 71, a ROM 372, and a RAM 73, which are connected to an input / output port 75 via a bus line 74. The input / output port 75 is connected to a device such as the wheel drive device 3. The ROM 372 is a non-rewritable nonvolatile memory that stores a control program executed by the CPU 71 (for example, the programs in the flowcharts shown in FIGS. 4, 6, 7, 14, and 15), fixed value data, and the like. It is. In addition to the upper limit resistance value and the lower limit remaining capacity (both not shown), the ROM 372 is provided with a running state threshold value map 372a as shown in FIG.

ここで、図13を参照して、走行状態閾値マップ372aについて説明する。図13は走行状態閾値マップ372aの内容を模式的に示した模式図である。走行状態閾値マップ372aは、ステアリング63の操作量および車両1の走行速度に対して後輪2RL,2RRのキャンバ角を制御する閾値を規定したマップである。CPU71は、この走行状態閾値マップ372aの内容に基づいて、キャンバ角を第1キャンバ角または第2キャンバ角に調整する閾値を決定する。   Here, the traveling state threshold map 372a will be described with reference to FIG. FIG. 13 is a schematic diagram schematically showing the contents of the running state threshold map 372a. The traveling state threshold map 372a is a map that defines thresholds for controlling the camber angles of the rear wheels 2RL and 2RR with respect to the operation amount of the steering 63 and the traveling speed of the vehicle 1. The CPU 71 determines a threshold value for adjusting the camber angle to the first camber angle or the second camber angle based on the contents of the running state threshold map 372a.

また、走行状態閾値マップ372aには、通常モードでの閾値とバッテリ低下モードでの閾値とが、ステアリング63の操作量および車両1の走行速度に対して規定されており、CPU71は後述する走行状態判断処理(図14参照)において、通常モードでの閾値およびバッテリ低下モードでの閾値をそれぞれ読み出して、ステアリング63の操作量および車両1の走行速度に対する閾値を決定する。   In the running state threshold map 372a, a threshold value in the normal mode and a threshold value in the battery reduction mode are defined for the operation amount of the steering 63 and the running speed of the vehicle 1, and the CPU 71 executes a running state described later. In the determination process (see FIG. 14), the threshold value in the normal mode and the threshold value in the battery reduction mode are read out to determine the threshold value for the operation amount of the steering 63 and the traveling speed of the vehicle 1.

この走行状態閾値マップ372aによれば、図13に示すように、車両1の走行速度に対して、通常モードでの閾値S1が時速60kmに、バッテリ低下モードでの閾値S2が時速80kmにそれぞれ規定されている。また、ステアリング63の操作量(ステア角)に対して、通常モードでの閾値θ1が10度(中心線に対して左右に10度)に、バッテリ低下モードでの閾値θ2が5度(中心線に対して左右に5度)にそれぞれ規定されている。   According to the running state threshold map 372a, as shown in FIG. 13, the threshold S1 in the normal mode is defined as 60 km / h and the threshold S2 in the battery reduction mode is defined as 80 km / h with respect to the running speed of the vehicle 1. Has been. Further, the threshold θ1 in the normal mode is 10 degrees (10 degrees left and right with respect to the center line) with respect to the operation amount (steer angle) of the steering 63, and the threshold θ2 in the battery reduction mode is 5 degrees (center line). And 5 degrees to the left and right).

後述する走行状態判断処理(図14参照)において、通常モードでは、車両1の走行速度が閾値S1(60km)以上かつステアリング63の操作量が閾値θ1(10度)以下のときに車輪2のキャンバ角が第1キャンバ角に調整され車輪2にネガティブキャンバが付与されるように規定されている。一方、バッテリ低下モードでは、車両1の走行速度が閾値S2(80km)以上かつステアリング63の操作量が閾値θ2(5度)以下のときに車輪2のキャンバ角が第1キャンバ角に調整され車輪2にネガティブキャンバが付与されるように規定されている。   In the traveling state determination process (see FIG. 14) described later, in the normal mode, the camber of the wheel 2 is performed when the traveling speed of the vehicle 1 is equal to or higher than the threshold value S1 (60 km) and the operation amount of the steering 63 is equal to or lower than the threshold value θ1 (10 degrees). The angle is adjusted to the first camber angle so that a negative camber is applied to the wheel 2. On the other hand, in the battery reduction mode, the camber angle of the wheel 2 is adjusted to the first camber angle when the traveling speed of the vehicle 1 is not less than the threshold value S2 (80 km) and the operation amount of the steering 63 is not more than the threshold value θ2 (5 degrees). 2 is defined so that a negative camber is provided.

即ち、車輪2のキャンバ角が第1キャンバ角に調整される条件は、通常モードの場合の条件が、バッテリ低下モードの場合の条件を満たすための必要条件であり、バッテリ低下モードの場合の条件が、通常モードの場合の条件を満たすための十分条件である。換言すれば、車輪2のキャンバ角が第1キャンバ角に調整され車輪2にネガティブキャンバが付与される条件は、通常モードよりバッテリ低下モードが厳格である。従って、後述するキャンバ制御処理(図15参照)では、車輪2のキャンバ角が第1キャンバ角に調整され車輪2にネガティブキャンバが付与されるのは、バッテリ低下モードが通常モードよりも遅いタイミングとなるように設定されている。   That is, the condition for adjusting the camber angle of the wheel 2 to the first camber angle is a necessary condition for the condition in the normal mode to satisfy the condition in the battery low mode, and the condition in the battery low mode. Is a sufficient condition for satisfying the conditions in the normal mode. In other words, under the condition that the camber angle of the wheel 2 is adjusted to the first camber angle and the negative camber is applied to the wheel 2, the battery lowering mode is stricter than the normal mode. Therefore, in the camber control process (see FIG. 15), which will be described later, the camber angle of the wheel 2 is adjusted to the first camber angle and the negative camber is given to the wheel 2 at a timing when the battery lowering mode is slower than the normal mode. It is set to be.

次いで、図14を参照して、走行状態判断処理について説明する。図14は走行状態判断処理を示すフローチャートである。この処理は、車両用制御装置300の電源が投入されている間、CPU71によって繰り返し(例えば、0.2秒間隔で)実行される処理であり、車両1の走行状態が所定の直進状態であるか否かを判断する処理である。なお、第1実施の形態で説明した状態量判断処理(図4参照)、偏磨耗荷重判断処理(図6参照)及びバッテリ低下判断処理(図7参照)も、車両用制御装置300の電源が投入されている間、CPU71によって繰り返し(例えば、0.2秒間隔で)実行されているものとする。   Next, the traveling state determination process will be described with reference to FIG. FIG. 14 is a flowchart showing the running state determination process. This process is a process repeatedly executed by the CPU 71 (for example, at intervals of 0.2 seconds) while the power of the vehicle control device 300 is turned on, and the traveling state of the vehicle 1 is a predetermined straight traveling state. This is a process for determining whether or not. In the state quantity determination process (see FIG. 4), the uneven wear load determination process (see FIG. 6), and the battery decrease determination process (see FIG. 7) described in the first embodiment, the power source of the vehicle control device 300 is also the same. It is assumed that it is repeatedly executed by the CPU 71 (for example, at intervals of 0.2 seconds) while it is being charged.

CPU71は、走行状態判断処理に関し、まず、車両1の走行速度およびステアリング63の操作量を取得する(S81,S82)。次いで、バッテリフラグ73eがオンであるか否かを判断する(S83)。その結果、バッテリフラグ73eがオフであると判断される場合には(S83:No)、車両1の走行速度が通常モードでの閾値S1以上であるか否かを判断する(S84)。なお、S84の処理では、S81の処理で取得した車両1の走行速度と、ROM372に予め記憶されている走行状態閾値マップ372aの通常モードの閾値S1とを比較して、現在の車両1の走行速度が閾値S1以上であるか否かを判断する。   Regarding the traveling state determination process, the CPU 71 first acquires the traveling speed of the vehicle 1 and the operation amount of the steering 63 (S81, S82). Next, it is determined whether or not the battery flag 73e is on (S83). As a result, when it is determined that the battery flag 73e is off (S83: No), it is determined whether or not the traveling speed of the vehicle 1 is equal to or higher than the threshold value S1 in the normal mode (S84). In the process of S84, the travel speed of the vehicle 1 acquired in the process of S81 is compared with the threshold S1 in the normal mode of the travel state threshold map 372a stored in advance in the ROM 372, and the current travel of the vehicle 1 is compared. It is determined whether or not the speed is greater than or equal to a threshold value S1.

その結果、車両1の走行速度が閾値S1より小さいと判断される場合には(S84:No)、走行状態フラグ73cをオフして(S87)、この走行状態判断処理を終了する。   As a result, when it is determined that the traveling speed of the vehicle 1 is smaller than the threshold value S1 (S84: No), the traveling state flag 73c is turned off (S87), and this traveling state determination process is terminated.

一方、S84の処理の結果、車両1の走行速度が閾値S1以上であると判断される場合には(S84:Yes)、ステアリング63の操作量(ステア角)が通常モードでの閾値θ1以下であるか否かを判断する(S85)。なお、S85の処理では、S82の処理で取得したステアリング63の操作量と、ROM372に予め記憶されている走行状態閾値マップ372aの通常モードの閾値θ1(本実施の形態では、図4に示す状態量判断処理において、車両1の状態量が所定の条件を満たすか否かを判断するためのステアリング63の操作量より小さい値)とを比較して、現在のステアリング63の操作量が閾値θ1以下であるか否かを判断する。   On the other hand, when it is determined that the traveling speed of the vehicle 1 is equal to or greater than the threshold value S1 as a result of the process of S84 (S84: Yes), the operation amount (steer angle) of the steering 63 is equal to or less than the threshold value θ1 in the normal mode. It is determined whether or not there is (S85). In the process of S85, the operation amount of the steering wheel 63 obtained in the process of S82 and the normal mode threshold θ1 of the running state threshold map 372a stored in advance in the ROM 372 (in this embodiment, the state shown in FIG. 4). In the amount determination process, the current operation amount of the steering wheel 63 is less than or equal to the threshold θ1 by comparing the state amount of the vehicle 1 with a value smaller than the operation amount of the steering wheel 63 for determining whether or not a predetermined condition is satisfied. It is determined whether or not.

その結果、ステアリング63の操作量が閾値θ1以下であると判断される場合には(S14:Yes)、走行状態フラグ73cをオンして(S86)、この走行状態判断処理を終了する。即ち、この走行状態判断手段では、バッテリフラグ73eがオフであると判断される場合には、車両1の走行速度が閾値S1以上であり、且つ、ステアリング63の操作量が閾値θ1以下である場合に、車両1の走行状態が所定の直進状態であると判断する。   As a result, when it is determined that the operation amount of the steering wheel 63 is equal to or less than the threshold value θ1 (S14: Yes), the traveling state flag 73c is turned on (S86), and the traveling state determination process is terminated. That is, in this traveling state determination means, when it is determined that the battery flag 73e is off, the traveling speed of the vehicle 1 is not less than the threshold value S1, and the operation amount of the steering 63 is not more than the threshold value θ1. In addition, it is determined that the traveling state of the vehicle 1 is a predetermined straight traveling state.

一方、S85の処理の結果、ステアリング63の操作量が閾値θ1より大きいと判断される場合には(S85:No)、走行状態フラグ73cをオフして(S87)、この走行状態判断処理を終了する。   On the other hand, when it is determined that the operation amount of the steering wheel 63 is larger than the threshold value θ1 as a result of the process of S85 (S85: No), the travel state flag 73c is turned off (S87), and the travel state determination process is terminated. To do.

これに対し、S83の処理の結果、バッテリフラグ73eがオンであると判断される場合には(S83:Yes)、車両1の走行速度がバッテリ低下モードでの閾値S2以上であるか否かを判断する(S88)。なお、S88の処理では、S81の処理で取得した車両1の走行速度と、ROM372に予め記憶されている走行状態閾値マップ372aのバッテリ低下モードの閾値S2(閾値S1より大きい値)とを比較して、現在の車両1の走行速度が閾値S2以上であるか否かを判断する。   On the other hand, when it is determined that the battery flag 73e is on as a result of the process of S83 (S83: Yes), it is determined whether or not the traveling speed of the vehicle 1 is equal to or higher than the threshold value S2 in the battery reduction mode. Judgment is made (S88). In the process of S88, the travel speed of the vehicle 1 acquired in the process of S81 is compared with the threshold S2 (value greater than the threshold S1) of the battery lowering mode in the travel state threshold map 372a stored in advance in the ROM 372. Thus, it is determined whether or not the current traveling speed of the vehicle 1 is equal to or greater than the threshold value S2.

その結果、車両1の走行速度が閾値S2より小さいと判断される場合には(S88:No)、走行状態フラグ73cをオフして(S90)、この走行状態判断処理を終了する。   As a result, when it is determined that the traveling speed of the vehicle 1 is smaller than the threshold value S2 (S88: No), the traveling state flag 73c is turned off (S90), and this traveling state determination process is terminated.

一方、S88の処理の結果、車両1の走行速度が閾値S2以上であると判断される場合には(S88:Yes)、ステアリング63の操作量(ステア角)がバッテリ低下モードでの閾値θ2以下であるか否かを判断する(S89)。なお、S89の処理では、S82の処理で取得したステアリング63の操作量と、ROM372に予め記憶されている走行状態閾値マップ372aのバッテリ低下モードの閾値θ2(閾値θ1より小さい値)とを比較して、現在のステアリング63の操作量が閾値θ2以下であるか否かを判断する。   On the other hand, when it is determined that the traveling speed of the vehicle 1 is equal to or greater than the threshold value S2 as a result of the process of S88 (S88: Yes), the operation amount (steer angle) of the steering 63 is equal to or less than the threshold value θ2 in the battery reduction mode. It is determined whether or not (S89). In the process of S89, the operation amount of the steering wheel 63 acquired in the process of S82 is compared with the threshold value θ2 (value smaller than the threshold value θ1) of the battery reduction mode stored in the ROM 372 in advance in the running state threshold value map 372a. Thus, it is determined whether or not the current operation amount of the steering 63 is equal to or less than the threshold value θ2.

その結果、ステアリング63の操作量が閾値θ2以下であると判断される場合には(S89:Yes)、走行状態フラグ73cをオンして(S86)、この走行状態判断処理を終了する。即ち、この走行状態判断処理では、バッテリフラグ73eがオンであると判断される場合には、車両1の走行速度が閾値S2以上であり、且つ、ステアリング63の操作量が閾値θ2以下である場合に、車両1の走行状態が所定の直進状態であると判断する。   As a result, when it is determined that the operation amount of the steering wheel 63 is equal to or less than the threshold value θ2 (S89: Yes), the traveling state flag 73c is turned on (S86), and the traveling state determination process ends. That is, in this travel state determination process, when it is determined that the battery flag 73e is on, the travel speed of the vehicle 1 is equal to or greater than the threshold value S2, and the operation amount of the steering 63 is equal to or less than the threshold value θ2. In addition, it is determined that the traveling state of the vehicle 1 is a predetermined straight traveling state.

一方、S89の処理の結果、ステアリング63の操作量が閾値θ2より大きいと判断される場合には(S89:No)、走行状態フラグ73cをオフして(S90)、この走行状態判断処理を終了する。   On the other hand, if it is determined that the operation amount of the steering wheel 63 is larger than the threshold value θ2 as a result of the process of S89 (S89: No), the travel state flag 73c is turned off (S90), and the travel state determination process is terminated. To do.

次いで、図15を参照して、キャンバ制御処理について説明する。図15はキャンバ制御処理を示すフローチャートである。この処理は、車両用制御装置300の電源が投入されている間、CPU71によって繰り返し(例えば、0.2秒間隔で)実行される処理であり、車輪2(左右の後輪2RL,2RR)のキャンバ角を調整する処理である。   Next, the camber control process will be described with reference to FIG. FIG. 15 is a flowchart showing camber control processing. This process is a process that is repeatedly executed by the CPU 71 (for example, at intervals of 0.2 seconds) while the power of the vehicle control device 300 is turned on, and the wheels 2 (left and right rear wheels 2RL, 2RR) are processed. This is a process for adjusting the camber angle.

CPU71は、キャンバ制御処理に関し、まず、状態量フラグ73bがオンであるか否かを判断し(S91)、状態量フラグ73bがオンであると判断される場合には(S91:Yes)、キャンバフラグ73aがオンであるか否かを判断する(S92)。その結果、キャンバフラグ73aがオフであると判断される場合には(S92:No)、RL〜RRモータ44RL,44RRを作動させて、左右の後輪2RL,2RRのキャンバ角を第1キャンバ角に調整し、後輪2RL,2RRにネガティブキャンバを付与すると共に(S93)、キャンバフラグ73aをオンして(S94)、このキャンバ制御処理を終了する。   Regarding the camber control process, the CPU 71 first determines whether or not the state quantity flag 73b is on (S91). If it is determined that the state quantity flag 73b is on (S91: Yes), It is determined whether or not the flag 73a is on (S92). As a result, when it is determined that the camber flag 73a is off (S92: No), the RL to RR motors 44RL and 44RR are operated to set the camber angles of the left and right rear wheels 2RL and 2RR to the first camber angle. To the rear wheels 2RL, 2RR (S93), the camber flag 73a is turned on (S94), and the camber control process is terminated.

これにより、車両1の状態量が所定の条件を満たす場合、即ち、各ペダル61,62の操作量およびステアリング63の操作量の内の少なくとも1の操作量が所定の操作量以上であり、車輪2のキャンバ角が第2キャンバ角の状態で車両1が加速、制動または旋回すると車輪2がスリップする恐れがあると判断される場合には、後輪2RL,2RRにネガティブキャンバを付与することで、後輪2RL,2RRに発生するキャンバスラストを利用して、車両1の走行安定性を確保することができる。   Thereby, when the state quantity of the vehicle 1 satisfies a predetermined condition, that is, at least one of the operation quantities of the pedals 61 and 62 and the operation quantity of the steering 63 is equal to or greater than the predetermined operation quantity. When it is determined that there is a risk of the wheels 2 slipping when the vehicle 1 is accelerated, braked or turned with the second camber angle being the second camber angle, a negative camber is applied to the rear wheels 2RL and 2RR. The running stability of the vehicle 1 can be ensured by using the canvas last generated in the rear wheels 2RL and 2RR.

一方、S92の処理の結果、キャンバフラグ73aがオンであると判断される場合には(S92:Yes)、後輪2RL,2RRのキャンバ角は既に第1キャンバ角に調整されているので、S93及びS94の処理をスキップして、このキャンバ制御処理を終了する。   On the other hand, if it is determined that the camber flag 73a is on (S92: Yes) as a result of the process of S92, the camber angles of the rear wheels 2RL and 2RR have already been adjusted to the first camber angle, so S93 And the process of S94 is skipped and this camber control process is complete | finished.

これに対し、S91の処理の結果、状態量フラグ73bがオフであると判断される場合には(S91:No)、走行状態フラグ73cがオンであるか否かを判断し(S95)、走行状態フラグ73cがオンであると判断される場合には(S95:Yes)、キャンバフラグ73aがオンであるか否かを判断する(S96)。その結果、キャンバフラグ73aがオフであると判断される場合には(S96:No)、RL〜RRモータ44RL,44RRを作動させて、左右の後輪2RL,2RRのキャンバ角を第1キャンバ角に調整し、後輪2RL,2RRにネガティブキャンバを付与すると共に(S97)、キャンバフラグ73aをオンして(S98)、S99の処理を実行する。   On the other hand, when it is determined that the state quantity flag 73b is off as a result of the process of S91 (S91: No), it is determined whether or not the travel state flag 73c is on (S95). When it is determined that the status flag 73c is on (S95: Yes), it is determined whether the camber flag 73a is on (S96). As a result, when it is determined that the camber flag 73a is off (S96: No), the RL to RR motors 44RL and 44RR are operated to set the camber angles of the left and right rear wheels 2RL and 2RR to the first camber angle. The negative camber is assigned to the rear wheels 2RL and 2RR (S97), the camber flag 73a is turned on (S98), and the process of S99 is executed.

これにより、車両1の走行状態が所定の直進状態である場合、即ち、車両1の走行速度が所定の速度以上(通常モードの場合は閾値S1以上であり、バッテリ低下モードの場合は閾値S2以上)であると共にステアリング63の操作量が所定の操作量以下(通常モードの場合は閾値θ1以下であり、バッテリ低下モードの場合は閾値θ2以下)であり、車両1が比較的高速で直進している場合には、後輪2RL,2RRにネガティブキャンバを付与することで、車輪2の横剛性を利用して、車両1の直進安定性を確保することができる。   Thereby, when the traveling state of the vehicle 1 is a predetermined straight traveling state, that is, the traveling speed of the vehicle 1 is equal to or higher than the predetermined speed (in the normal mode, the threshold value is S1 or higher, and in the battery low mode, the threshold value is S2 or higher ) And the operation amount of the steering 63 is equal to or less than a predetermined operation amount (threshold value θ1 or less in the normal mode, or less than threshold value θ2 in the battery low mode), and the vehicle 1 travels straight ahead at a relatively high speed. In this case, by applying a negative camber to the rear wheels 2RL and 2RR, it is possible to ensure the straight running stability of the vehicle 1 using the lateral rigidity of the wheels 2.

一方、S96の処理の結果、キャンバフラグ73aがオンであると判断される場合には(S96:Yes)、後輪2RL,2RRのキャンバ角は既に第1キャンバ角に調整されているので、S97及びS98の処理をスキップして、偏摩耗荷重フラグ73dがオンであるか否かを判断する(S99)。その結果、偏摩耗荷重フラグ73dがオンであると判断される場合には(S99:Yes)、RL〜RRモータ44RL,44RRを作動させて、後輪2RL,2RRのキャンバ角を第2キャンバ角に調整し、後輪2RL,2RRへのネガティブキャンバの付与を解除すると共に(S100)、キャンバフラグ73aをオフして(S101)、このキャンバ制御処理を終了する。   On the other hand, if it is determined that the camber flag 73a is on as a result of the process of S96 (S96: Yes), the camber angles of the rear wheels 2RL and 2RR have already been adjusted to the first camber angle, so S97 And the process of S98 is skipped and it is judged whether the partial wear load flag 73d is ON (S99). As a result, when it is determined that the uneven wear load flag 73d is on (S99: Yes), the RL to RR motors 44RL and 44RR are operated to set the camber angles of the rear wheels 2RL and 2RR to the second camber angle. The negative camber is no longer assigned to the rear wheels 2RL and 2RR (S100), the camber flag 73a is turned off (S101), and the camber control process is terminated.

これにより、車輪2の接地荷重が偏摩耗荷重である場合、即ち、後輪2RL,2RRにネガティブキャンバが付与された状態で車両1が走行すると、タイヤ(トレッド)に偏摩耗を引き起こす恐れがある場合には、後輪2RL,2RRへのネガティブキャンバの付与を解除することで、タイヤの偏摩耗を抑制することができる。   Thereby, when the ground contact load of the wheel 2 is an uneven wear load, that is, when the vehicle 1 travels with the negative camber applied to the rear wheels 2RL and 2RR, there is a risk of causing uneven wear on the tire (tread). In such a case, uneven wear of the tire can be suppressed by releasing the negative camber from being applied to the rear wheels 2RL and 2RR.

一方、S99の処理の結果、偏摩耗荷重フラグ73dがオフであると判断される場合には(S99:No)、車輪2の接地荷重は偏摩耗荷重ではなく、後輪2RL,2RRにネガティブキャンバが付与された状態で車両1が走行しても、タイヤ(トレッド)が偏摩耗する恐れはないと判断されるので、S100及びS101の処理をスキップして、このキャンバ制御処理を終了する。   On the other hand, if it is determined that the uneven wear load flag 73d is OFF as a result of the process of S99 (S99: No), the ground contact load of the wheel 2 is not the uneven wear load, and the negative camber is applied to the rear wheels 2RL and 2RR. Even if the vehicle 1 travels in a state where is given, it is determined that there is no possibility that the tire (tread) will be unevenly worn, so the processing of S100 and S101 is skipped and the camber control processing is terminated.

これに対し、S95の処理の結果、走行状態フラグ73cがオフであると判断される場合には(S95:No)、キャンバフラグ73aがオンであるか否かを判断する(S102)。その結果、キャンバフラグ73aがオンであると判断される場合には(S102:Yes)、RL〜RRモータ44RL,44RRを作動させて、後輪2RL,2RRのキャンバ角を第2キャンバ角に調整し、後輪2RL,2RRへのネガティブキャンバの付与を解除すると共に(S103)、キャンバフラグ73aをオフして(S104)、このキャンバ制御処理を終了する。   On the other hand, when it is determined as a result of the process of S95 that the traveling state flag 73c is off (S95: No), it is determined whether or not the camber flag 73a is on (S102). As a result, when it is determined that the camber flag 73a is ON (S102: Yes), the RL to RR motors 44RL and 44RR are operated to adjust the camber angles of the rear wheels 2RL and 2RR to the second camber angle. Then, the application of the negative camber to the rear wheels 2RL and 2RR is canceled (S103), the camber flag 73a is turned off (S104), and the camber control process is terminated.

これにより、車両1の状態量が所定の条件を満たしておらず車両1の走行状態が所定の直進状態でない場合、即ち、車両1の走行安定性を優先して確保する必要がない場合には、後輪2RL,2RRへのネガティブキャンバの付与を解除することで、キャンバスラストの影響を回避して、省燃費化を図ることができる。   Thereby, when the state quantity of the vehicle 1 does not satisfy the predetermined condition and the traveling state of the vehicle 1 is not the predetermined straight traveling state, that is, when it is not necessary to prioritize the traveling stability of the vehicle 1. By releasing the negative camber from the rear wheels 2RL and 2RR, the influence of the canvas last can be avoided and fuel consumption can be reduced.

一方、S102の処理の結果、キャンバフラグ73aがオフであると判断される場合には(S102:No)、後輪2RL,2RRのキャンバ角は既に第2キャンバ角に調整されているので、S103及びS104の処理をスキップして、このキャンバ制御処理を終了する。   On the other hand, if it is determined that the camber flag 73a is OFF as a result of the process of S102 (S102: No), the camber angles of the rear wheels 2RL and 2RR have already been adjusted to the second camber angle. And the process of S104 is skipped and this camber control process is complete | finished.

以上説明したように、第3実施の形態によれば、車輪2の接地荷重が所定の接地荷重以上であると判断される場合に、車輪2のキャンバ角が第2キャンバ角(第1キャンバ角よりも絶対値が小さいキャンバ角)に調整され、車輪2へのネガティブキャンバの付与が解除されるので、タイヤの偏摩耗を抑制することができる。即ち、車輪2の接地荷重が大きいほどタイヤの摩耗が進行し易いので、車輪2の接地荷重が所定の接地荷重以上である場合には、車輪2へのネガティブキャンバの付与を解除することで、タイヤの偏摩耗を抑制することができる。その結果、タイヤの寿命を向上させることができる。また、タイヤの偏摩耗を抑制することで、タイヤの接地面が不均一となるのを防止して、車両1の走行安定性を確保することができる。更に、タイヤの偏摩耗を抑制できるので、その分、省燃費化を図ることができる。   As described above, according to the third embodiment, when it is determined that the ground load of the wheel 2 is equal to or greater than the predetermined ground load, the camber angle of the wheel 2 is the second camber angle (first camber angle). (The camber angle having a smaller absolute value) is adjusted and the application of the negative camber to the wheel 2 is released, so that uneven wear of the tire can be suppressed. That is, since the wear of the tire is more likely to progress as the contact load of the wheel 2 is larger, when the contact load of the wheel 2 is equal to or greater than the predetermined contact load, by canceling the application of the negative camber to the wheel 2, Uneven wear of the tire can be suppressed. As a result, the life of the tire can be improved. Further, by suppressing uneven wear of the tire, it is possible to prevent the ground contact surface of the tire from becoming uneven and to ensure the running stability of the vehicle 1. Furthermore, since uneven wear of the tire can be suppressed, fuel saving can be achieved correspondingly.

また、第3実施の形態によれば、車両1の状態量が所定の条件を満たすと判断される場合に、車輪2のキャンバ角が第1キャンバ角に調整され、車輪2にネガティブキャンバが付与されるので、車輪2に発生するキャンバスラストを利用して、車両1の走行安定性を確保することができる。また、車両1の状態量が所定の条件を満たしていないと判断され、且つ、車輪2の接地荷重が所定の接地荷重以上であると判断される場合には、車輪2のキャンバ角が第2キャンバ角(第1キャンバ角よりも絶対値が小さいキャンバ角)に調整され、車輪2へのネガティブキャンバの付与が解除されるので、タイヤの偏摩耗を抑制することができる。よって、走行安定性の確保とタイヤの偏摩耗の抑制との両立を図ることができる。   Further, according to the third embodiment, when it is determined that the state quantity of the vehicle 1 satisfies the predetermined condition, the camber angle of the wheel 2 is adjusted to the first camber angle, and a negative camber is imparted to the wheel 2. Therefore, the running stability of the vehicle 1 can be ensured using the canvas last generated on the wheels 2. Further, when it is determined that the state quantity of the vehicle 1 does not satisfy the predetermined condition and it is determined that the ground load of the wheel 2 is equal to or greater than the predetermined ground load, the camber angle of the wheel 2 is the second Since the camber angle is adjusted to a camber angle (a camber angle having a smaller absolute value than the first camber angle) and the application of the negative camber to the wheel 2 is released, uneven wear of the tire can be suppressed. Therefore, it is possible to achieve both of ensuring traveling stability and suppressing uneven wear of the tire.

また、第3実施の形態によれば、車両1の走行状態が所定の直進状態であると判断される場合に、車輪2のキャンバ角が第1キャンバ角に調整され、車輪2にネガティブキャンバが付与されるので、車輪2の横剛性を利用して、車両1の直進安定性を確保することができる。また、車両1の走行状態が所定の直進状態であると判断され、且つ、車輪2の接地荷重が所定の接地荷重以上であると判断される場合には、車輪2のキャンバ角が第2キャンバ角(第1キャンバ角よりも絶対値が小さいキャンバ角)に調整され、車輪2へのネガティブキャンバの付与が解除されるので、タイヤの偏摩耗を抑制することができる。よって、直進安定性の確保とタイヤの偏摩耗の抑制との両立を図ることができる。   Further, according to the third embodiment, when it is determined that the traveling state of the vehicle 1 is a predetermined straight traveling state, the camber angle of the wheel 2 is adjusted to the first camber angle, and the negative camber is applied to the wheel 2. Since it is given, it is possible to ensure the straight running stability of the vehicle 1 by utilizing the lateral rigidity of the wheels 2. When it is determined that the traveling state of the vehicle 1 is a predetermined straight traveling state and the ground load of the wheel 2 is determined to be equal to or greater than the predetermined ground load, the camber angle of the wheel 2 is the second camber. Since the angle (the camber angle having a smaller absolute value than the first camber angle) is adjusted and the negative camber is not applied to the wheel 2, uneven wear of the tire can be suppressed. Therefore, it is possible to achieve both of ensuring straight running stability and suppressing uneven wear of the tire.

また、第3実施の形態によれば、バッテリ64が充電不足であるか又は劣化していると判断される場合には、車両1の走行速度が閾値S2以上であり、且つ、ステアリング63の操作量が閾値θ2以下である場合に、車両1の走行状態が所定の直進状態であると判断する。閾値S2は、バッテリ64が充電不足ではなく劣化もしていないと判断される場合の閾値S1より大きい値であり、閾値θ2は閾値θ1より小さい値である。そのため、バッテリ64が充電不足であるか又は劣化していると判断される場合には、バッテリ64が充電不足ではなく劣化もしていないと判断される場合より遅いタイミングで、車両1の走行状態が所定の直進状態であると判断される。これにより、バッテリ64が充電不足であるか又は劣化していると判断される場合には、キャンバ角調整装置44の駆動タイミングを遅らせることができる。その結果、キャンバ角調整装置44の駆動頻度を減らして電力消費量を抑制できる。よって、車両1の走行安定性を確保すると共に、バッテリ64の残存容量の低下やバッテリの劣化を抑制できる。   Further, according to the third embodiment, when it is determined that the battery 64 is insufficiently charged or deteriorated, the traveling speed of the vehicle 1 is equal to or higher than the threshold value S2, and the steering 63 is operated. When the amount is equal to or less than the threshold value θ2, it is determined that the traveling state of the vehicle 1 is a predetermined straight traveling state. The threshold value S2 is a value larger than the threshold value S1 when it is determined that the battery 64 is not insufficiently charged and has not deteriorated, and the threshold value θ2 is a value smaller than the threshold value θ1. Therefore, when it is determined that the battery 64 is insufficiently charged or deteriorated, the traveling state of the vehicle 1 is delayed at a later timing than when it is determined that the battery 64 is not insufficiently charged and has not deteriorated. It is determined that the vehicle is in a predetermined straight traveling state. Thereby, when it is determined that the battery 64 is insufficiently charged or deteriorated, the drive timing of the camber angle adjusting device 44 can be delayed. As a result, the driving frequency of the camber angle adjusting device 44 can be reduced and the power consumption can be suppressed. Therefore, while ensuring the running stability of the vehicle 1, it is possible to suppress the decrease in the remaining capacity of the battery 64 and the deterioration of the battery.

また、第3実施の形態によれば、車両1の走行状態が所定の直進状態であると判断される条件は、通常モードの場合の条件が、バッテリ低下モードの場合の条件を満たすための必要条件となるように設定されている。その結果、通常モードのときであれば車輪2のキャンバ角が調整されるような走行状態であっても、バッテリ低下モードの場合には、車輪2のキャンバ角が調整されないように設定することができる。これにより、バッテリ64の残存容量の低下やバッテリ64の劣化の抑制を重視するのか、バッテリ64の残存容量の低下やバッテリ64の劣化の抑制と車両1の走行安定性の確保とを両立させるのか等、条件設定によって任意に選択することができ、車両設計の自在性を向上できる。   Further, according to the third embodiment, the condition for determining that the traveling state of the vehicle 1 is the predetermined straight traveling state is necessary for the condition in the normal mode to satisfy the condition in the battery low mode. It is set to be a condition. As a result, even in a traveling state in which the camber angle of the wheel 2 is adjusted in the normal mode, the camber angle of the wheel 2 can be set not to be adjusted in the battery low mode. it can. Accordingly, whether importance is placed on the reduction of the remaining capacity of the battery 64 and the suppression of the deterioration of the battery 64, or the reduction of the remaining capacity of the battery 64 and the suppression of the deterioration of the battery 64 and the securing of the running stability of the vehicle 1 are both achieved. Etc., and can be arbitrarily selected depending on the condition setting, and the flexibility of vehicle design can be improved.

また、第3実施の形態によれば、キャンバ角調整装置44により後輪2RL,2RRのキャンバ角が調整され、後輪2RL,2RRにネガティブキャンバが付与されるので、後輪2RL,2RRに発生するキャンバスラストを利用して車両1の特性を安定したアンダーステア傾向にすることができる。これにより、車両1の直進安定性や限界走行性能を向上させることができる。   Further, according to the third embodiment, the camber angle adjusting device 44 adjusts the camber angles of the rear wheels 2RL and 2RR, and a negative camber is applied to the rear wheels 2RL and 2RR, so that the camber angle adjusting device 44 generates the rear wheels 2RL and 2RR. The canvas last can be used to make the characteristics of the vehicle 1 have a stable understeer tendency. Thereby, the straight running stability and the limit running performance of the vehicle 1 can be improved.

次いで、図16から図18を参照して、第4実施の形態について説明する。図16は第4実施の形態における車両用制御装置400の電気的構成を示したブロック図である。車両用制御装置400は、第1実施の形態で説明した車両用制御装置100に代えて車両1に搭載されているものとする。なお、第1実施の形態と同一の部分については同一の符号を付して、その説明を省略する。   Next, a fourth embodiment will be described with reference to FIGS. 16 to 18. FIG. 16 is a block diagram showing an electrical configuration of the vehicle control apparatus 400 according to the fourth embodiment. It is assumed that the vehicle control device 400 is mounted on the vehicle 1 instead of the vehicle control device 100 described in the first embodiment. In addition, the same code | symbol is attached | subjected about the part same as 1st Embodiment, and the description is abbreviate | omitted.

車両用制御装置400は、図16に示すように、CPU71、ROM472及びRAM73を備え、それらがバスライン74を介して入出力ポート75に接続されている。また、入出力ポート75には、車輪駆動装置3等の装置が接続されている。ROM472は、CPU71により実行される制御プログラム(例えば、図5、図6、図7、図15及び図18に図示されるフローチャートのプログラム)や固定値データ等を格納した書き換え不能な不揮発性のメモリである。また、ROM472には、上限抵抗値および下限残存容量(いずれも図示せず)に加え、図16に示すように、状態量閾値マップ472aが設けられている。   As shown in FIG. 16, the vehicle control device 400 includes a CPU 71, a ROM 472, and a RAM 73, which are connected to the input / output port 75 via the bus line 74. The input / output port 75 is connected to a device such as the wheel drive device 3. The ROM 472 is a non-rewritable nonvolatile memory that stores a control program executed by the CPU 71 (for example, the programs in the flowcharts shown in FIGS. 5, 6, 7, 15, and 18), fixed value data, and the like. It is. In addition to the upper limit resistance value and the lower limit remaining capacity (both not shown), the ROM 472 is provided with a state quantity threshold map 472a as shown in FIG.

ここで、図17を参照して、状態量閾値マップ472aについて説明する。図17は状態量閾値マップ472aの内容を模式的に示した模式図である。状態量閾値マップ472aは、アクセルペダル61、ブレーキペダル62及びステアリング63の操作量に対して後輪2RL,2RRのキャンバ角を制御する閾値を規定したマップである。CPU71は、この状態量閾値マップ472aの内容に基づいて、キャンバ角を第1キャンバ角または第2キャンバ角に調整する閾値を決定する。   Here, the state quantity threshold map 472a will be described with reference to FIG. FIG. 17 is a schematic diagram schematically showing the contents of the state quantity threshold map 472a. The state quantity threshold map 472a is a map that defines thresholds for controlling the camber angles of the rear wheels 2RL and 2RR with respect to the operation amounts of the accelerator pedal 61, the brake pedal 62, and the steering 63. The CPU 71 determines a threshold for adjusting the camber angle to the first camber angle or the second camber angle based on the contents of the state quantity threshold map 472a.

また、状態量閾値マップ472aには、通常モードでの閾値とバッテリ低下モードでの閾値とが、アクセルペダル61、ブレーキペダル62及びステアリング63の操作量に対して規定されており、CPU71は後述する状態量判断処理(図18参照)において、通常モードでの閾値およびバッテリ低下モードでの閾値をそれぞれ読み出して、アクセルペダル61、ブレーキペダル62及びステアリング63の操作量に対する閾値を決定する。   In the state amount threshold map 472a, a threshold value in the normal mode and a threshold value in the battery reduction mode are defined for the operation amounts of the accelerator pedal 61, the brake pedal 62, and the steering 63, and the CPU 71 will be described later. In the state quantity determination process (see FIG. 18), the threshold value in the normal mode and the threshold value in the battery low mode are read out to determine the threshold values for the operation amounts of the accelerator pedal 61, the brake pedal 62, and the steering 63.

この状態量閾値マップ472aによれば、図17に示すように、アクセルペダル61の操作量(踏み込み量)に対して、通常モードでの閾値A1が50%に、バッテリ低下モードでの閾値A2が30%にそれぞれ規定されている。また、ブレーキペダル62の操作量(踏み込み量)に対して、通常モードでの閾値B1が50%に、バッテリ低下モードでの閾値B2が30%にそれぞれ規定されている。また、ステアリング63の操作量(ステア角)に対して、通常モードでの閾値θ3が90度(中心線に対して左右に90度)に、バッテリ低下モードでの閾値θ2が30度(中心線に対して左右に30度)にそれぞれ規定されている。   According to this state quantity threshold map 472a, as shown in FIG. 17, the threshold A1 in the normal mode is 50% and the threshold A2 in the battery reduction mode is 50% of the operation amount (depression amount) of the accelerator pedal 61. 30% is specified respectively. Further, the threshold value B1 in the normal mode is defined as 50% and the threshold value B2 in the battery reduction mode is defined as 30% with respect to the operation amount (depression amount) of the brake pedal 62. Further, the threshold θ3 in the normal mode is 90 degrees (90 degrees left and right with respect to the center line) with respect to the operation amount (steer angle) of the steering 63, and the threshold θ2 in the battery reduction mode is 30 degrees (center line). And 30 degrees to the left and right).

後述する状態量判断処理(図18参照)において、通常モードでは、アクセルペダル61、ブレーキペダル62及びステアリング63の操作量の少なくとも1の操作量が閾値A1(50%)、B1(50%)、θ3(90度)以上のときに車輪2のキャンバ角が第1キャンバ角に調整され車輪2にネガティブキャンバが付与されるように規定されている。一方、バッテリ低下モードでは、アクセルペダル61、ブレーキペダル62及びステアリング63の操作量の少なくとも1の操作量が閾値A2(30%)、B2(30%)、θ4(30度)以上のときに車輪2のキャンバ角が第1キャンバ角に調整され車輪2にネガティブキャンバが付与されるように規定されている。   In the state amount determination process (see FIG. 18) described later, in the normal mode, at least one of the operation amounts of the accelerator pedal 61, the brake pedal 62, and the steering 63 is the threshold value A1 (50%), B1 (50%), It is specified that the camber angle of the wheel 2 is adjusted to the first camber angle and a negative camber is given to the wheel 2 when θ3 (90 degrees) or more. On the other hand, in the battery lowering mode, when the operation amount of at least one of the operation amounts of the accelerator pedal 61, the brake pedal 62, and the steering 63 is greater than or equal to the threshold values A2 (30%), B2 (30%), and θ4 (30 degrees) The camber angle of 2 is adjusted to the first camber angle so that a negative camber is applied to the wheel 2.

即ち、車輪2のキャンバ角が第1キャンバ角に調整される条件は、バッテリ低下モード(バッテリ低下状態)の場合の条件が、通常モード(通常状態)の場合の条件を満たすための必要条件であり、通常モードの場合の条件が、バッテリ低下モードの場合の条件を満たすための十分条件である。換言すれば、車輪2のキャンバ角が第1キャンバ角に調整され車輪2にネガティブキャンバが付与される条件は、バッテリ低下モードより通常モードが厳格である。従って、後述するキャンバ制御処理(図15参照)では、車輪2のキャンバ角が第1キャンバ角に調整され車輪2にネガティブキャンバが付与されるのは、バッテリ低下モード(バッテリ低下状態)が通常モード(通常状態)よりも早いタイミングとなるように設定されている。   That is, the condition for adjusting the camber angle of the wheel 2 to the first camber angle is a necessary condition for the condition in the battery low mode (battery low state) to satisfy the condition in the normal mode (normal state). Yes, the condition in the normal mode is a sufficient condition for satisfying the condition in the battery low mode. In other words, the condition in which the camber angle of the wheel 2 is adjusted to the first camber angle and the negative camber is applied to the wheel 2 is stricter in the normal mode than in the battery reduction mode. Accordingly, in the camber control process (see FIG. 15) described later, the camber angle of the wheel 2 is adjusted to the first camber angle and the negative camber is applied to the wheel 2 because the battery low mode (battery low state) is in the normal mode. The timing is set to be earlier than (normal state).

次いで、図18を参照して、状態量判断処理について説明する。図18は状態量判断処理を示すフローチャートである。この処理は、車両用制御装置400の電源が投入されている間、CPU71によって繰り返し(例えば、0.2秒間隔で)実行される処理であり、車両1の状態量が所定の条件を満たすかを判断する処理である。なお、第1実施の形態で説明した走行状態判断処理(図5参照)、偏磨耗荷重判断処理(図6参照)及びバッテリ低下判断処理(図7参照)も、車両用制御装置400の電源が投入されている間、CPU71によって繰り返し(例えば、0.2秒間隔で)実行されているものとする。   Next, the state quantity determination process will be described with reference to FIG. FIG. 18 is a flowchart showing the state quantity determination process. This process is a process that is repeatedly executed by the CPU 71 (for example, at intervals of 0.2 seconds) while the power of the vehicle control device 400 is turned on, and whether the state quantity of the vehicle 1 satisfies a predetermined condition. Is a process for determining. Note that the driving state determination process (see FIG. 5), the uneven wear load determination process (see FIG. 6) and the battery decrease determination process (see FIG. 7) described in the first embodiment are also performed by the power source of the vehicle control device 400. It is assumed that it is repeatedly executed by the CPU 71 (for example, at intervals of 0.2 seconds) while it is being charged.

CPU71は、状態量判断処理に関し、まず、アクセルペダル61の操作量(踏み込み量)、ブレーキペダル62の操作量(踏み込み量)及びステアリング63の操作量(ステア角)をそれぞれ取得する(S111、S112、S113)。次いで、バッテリフラグ73eがオンであるか否かを判断する(S114)。その結果、バッテリフラグ73eがオフであると判断される場合には(S114:No)、取得した各ペダル61,62の操作量およびステアリング63の操作量の内の少なくとも1の操作量が、通常モードでの閾値A1,B1,θ3以上であるか否かを判断する(S115)。なお、S115の処理では、S111〜S113の処理でそれぞれ取得した各ペダル61,62の操作量およびステアリング63の操作量と、それら各ペダル61,62の操作量およびステアリング63の操作量にそれぞれ対応してROM472に予め記憶されている状態量閾値マップ472aの閾値A1,B1,θ3(本実施の形態では、車輪2のキャンバ角が第2キャンバ角の状態で車両1が加速、制動または旋回する場合に、車輪2がスリップする恐れがあると判断される限界値)とを比較して、現在の各ペダル61,62の操作量およびステアリング63の操作量が閾値A1,B1,θ3以上であるか否かを判断する。   Regarding the state quantity determination process, the CPU 71 first acquires the operation amount (depression amount) of the accelerator pedal 61, the operation amount (depression amount) of the brake pedal 62, and the operation amount (steer angle) of the steering 63 (S111, S112). , S113). Next, it is determined whether or not the battery flag 73e is on (S114). As a result, when it is determined that the battery flag 73e is off (S114: No), at least one of the acquired operation amounts of the pedals 61 and 62 and the operation amount of the steering 63 is normally It is determined whether or not the threshold values A1, B1, and θ3 in the mode are greater than or equal to (S115). In the process of S115, the operation amount of each pedal 61 and 62 and the operation amount of the steering 63 acquired in the processes of S111 to S113 respectively correspond to the operation amount of each of the pedals 61 and 62 and the operation amount of the steering 63. Then, the thresholds A1, B1, and θ3 of the state quantity threshold map 472a stored in advance in the ROM 472 (in this embodiment, the vehicle 1 accelerates, brakes, or turns while the camber angle of the wheel 2 is the second camber angle). In this case, the current operation amount of each pedal 61 and 62 and the operation amount of the steering 63 are equal to or greater than the threshold values A1, B1, and θ3. Determine whether or not.

その結果、各ペダル61,62の操作量およびステアリング63の操作量の内の少なくとも1の操作量が閾値A1,B1,θ3以上であると判断される場合には(S115:Yes)、状態量フラグ73bをオンして(S116)、この状態量判断処理を終了する。即ち、この状態量判断処理では、バッテリ64が充電不足ではなく劣化もしていないと判断される場合には、各ペダル61,62の操作量およびステアリング63の操作量の内の少なくとも1の操作量が閾値A1,B1,θ3以上である場合に、車両1の状態量が所定の条件を満たすと判断する。   As a result, when it is determined that at least one of the operation amounts of the pedals 61 and 62 and the operation amount of the steering 63 is greater than or equal to the threshold values A1, B1, and θ3 (S115: Yes), the state amount The flag 73b is turned on (S116), and the state quantity determination process is terminated. That is, in this state amount determination process, when it is determined that the battery 64 is not insufficiently charged and has not deteriorated, at least one of the operation amounts of the pedals 61 and 62 and the operation amount of the steering 63 is determined. Is greater than or equal to threshold values A1, B1, and θ3, it is determined that the state quantity of the vehicle 1 satisfies a predetermined condition.

一方、S115の処理の結果、各ペダル61,62の操作量およびステアリング63の操作量のいずれもが閾値A1,B1,θ3より小さいと判断される場合には(S115:No)、状態量フラグ73bをオフして(S117)、この状態量判断処理を終了する。   On the other hand, as a result of the processing of S115, if it is determined that both the operation amount of each pedal 61, 62 and the operation amount of the steering 63 are smaller than the threshold values A1, B1, θ3 (S115: No), the state amount flag 73b is turned off (S117), and this state quantity determination process is terminated.

これに対しS114の処理の結果、バッテリフラグ73eがオンであると判断される場合には(S114:Yes)、取得した各ペダル61,62の操作量およびステアリング63の操作量の内の少なくとも1の操作量が、バッテリ低下モードでの閾値A2,B2,θ4以上であるか否かを判断する(S118)。なお、S118の処理では、S111〜S113の処理でそれぞれ取得した各ペダル61,62の操作量およびステアリング63の操作量と、それら各ペダル61,62の操作量およびステアリング63の操作量にそれぞれ対応してROM472に予め記憶されている状態量閾値マップ472aの閾値A2,B2,θ4(通常モードでの閾値A1,B1,θ3よりそれぞれ小さい値)とを比較して、現在の各ペダル61,62の操作量およびステアリング63の操作量が閾値A2,B2,θ4以上であるか否かを判断する。   On the other hand, when it is determined that the battery flag 73e is on as a result of the process of S114 (S114: Yes), at least one of the acquired operation amounts of the pedals 61 and 62 and the operation amount of the steering 63 is obtained. It is determined whether or not the operation amount is equal to or greater than the threshold values A2, B2, and θ4 in the battery reduction mode (S118). Note that the processing of S118 corresponds to the operation amount of each pedal 61 and 62 and the operation amount of the steering 63 respectively acquired in the processing of S111 to S113, and the operation amount of each of the pedals 61 and 62 and the operation amount of the steering 63, respectively. The thresholds A2, B2, and θ4 (values smaller than the thresholds A1, B1, and θ3 in the normal mode) of the state quantity threshold map 472a stored in advance in the ROM 472 are compared, and the current pedals 61 and 62 are compared. It is determined whether or not the operation amount of the steering wheel 63 and the operation amount of the steering 63 are greater than or equal to threshold values A2, B2, and θ4.

その結果、各ペダル61,62の操作量およびステアリング63の操作量の内の少なくとも1の操作量が閾値A2,B2,θ4以上であると判断される場合には(S118:Yes)、状態量フラグ73bをオンして(S116)、この状態量判断処理を終了する。即ち、この状態量判断処理では、バッテリ64が充電不足であるか又は劣化していると判断される場合には、各ペダル61,62の操作量およびステアリング63の操作量の内の少なくとも1の操作量が閾値A2,B2,θ4以上である場合に、車両1の状態量が所定の条件を満たすと判断する。   As a result, when it is determined that at least one of the operation amounts of the pedals 61 and 62 and the operation amount of the steering 63 is greater than or equal to the threshold values A2, B2, and θ4 (S118: Yes), the state amount The flag 73b is turned on (S116), and the state quantity determination process is terminated. That is, in this state amount determination process, when it is determined that the battery 64 is insufficiently charged or deteriorated, at least one of the operation amount of each pedal 61 and 62 and the operation amount of the steering 63 is selected. When the operation amount is greater than or equal to the threshold values A2, B2, and θ4, it is determined that the state amount of the vehicle 1 satisfies a predetermined condition.

一方、S118の処理の結果、各ペダル61,62の操作量およびステアリング63の操作量のいずれもが閾値A2,B2,θ4より小さいと判断される場合には(S118:No)、状態量フラグ73bをオフして(S119)、この状態量判断処理を終了する。   On the other hand, as a result of the processing of S118, when it is determined that both the operation amount of each pedal 61, 62 and the operation amount of the steering 63 are smaller than the threshold values A2, B2, θ4 (S118: No), the state amount flag 73b is turned off (S119), and this state quantity determination process is terminated.

次いで、キャンバ制御処理について説明する。第4実施の形態におけるキャンバ制御処理は、第3実施の形態におけるキャンバ制御処理と同様であるので、図15を参照して説明する。図15はキャンバ制御処理を示すフローチャートである。この処理は、車両用制御装置400の電源が投入されている間、CPU71によって繰り返し(例えば、0.2秒間隔で)実行される処理であり、車輪2(左右の後輪2RL,2RR)のキャンバ角を調整する処理である。   Next, camber control processing will be described. The camber control process in the fourth embodiment is similar to the camber control process in the third embodiment, and will be described with reference to FIG. FIG. 15 is a flowchart showing camber control processing. This process is a process that is repeatedly executed by the CPU 71 (for example, at intervals of 0.2 seconds) while the power of the vehicle control device 400 is turned on, and the wheels 2 (left and right rear wheels 2RL, 2RR) are processed. This is a process for adjusting the camber angle.

CPU71は、キャンバ制御処理に関し、まず、状態量フラグ73bがオンであるか否かを判断し(S91)、状態量フラグ73bがオンであると判断される場合には(S91:Yes)、キャンバフラグ73aがオンであるか否かを判断する(S92)。その結果、キャンバフラグ73aがオフであると判断される場合には(S92:No)、RL〜RRモータ44RL,44RRを作動させて、左右の後輪2RL,2RRのキャンバ角を第1キャンバ角に調整し、後輪2RL,2RRにネガティブキャンバを付与すると共に(S93)、キャンバフラグ73aをオンして(S94)、このキャンバ制御処理を終了する。   Regarding the camber control process, the CPU 71 first determines whether or not the state quantity flag 73b is on (S91). If it is determined that the state quantity flag 73b is on (S91: Yes), It is determined whether or not the flag 73a is on (S92). As a result, when it is determined that the camber flag 73a is off (S92: No), the RL to RR motors 44RL and 44RR are operated to set the camber angles of the left and right rear wheels 2RL and 2RR to the first camber angle. To the rear wheels 2RL, 2RR (S93), the camber flag 73a is turned on (S94), and the camber control process is terminated.

これにより、車両1の状態量が所定の条件を満たす場合、即ち、各ペダル61,62の操作量およびステアリング63の操作量の内の少なくとも1の操作量が所定の操作量(通常モードの場合は閾値A1,B1,θ3)以上であり、車輪2のキャンバ角が第2キャンバ角の状態で車両1が加速、制動または旋回すると車輪2がスリップする恐れがあると判断される場合には、後輪2RL,2RRにネガティブキャンバを付与することで、後輪2RL,2RRに発生するキャンバスラストを利用して、車両1の走行安定性を確保することができる。   Thereby, when the state quantity of the vehicle 1 satisfies a predetermined condition, that is, at least one of the operation quantities of the pedals 61 and 62 and the operation quantity of the steering 63 is a predetermined operation quantity (in the normal mode). Is greater than or equal to the threshold values A1, B1, θ3), and it is determined that there is a risk of the wheels 2 slipping when the vehicle 1 is accelerated, braked or turned while the camber angle of the wheels 2 is the second camber angle. By giving a negative camber to the rear wheels 2RL and 2RR, the running stability of the vehicle 1 can be ensured using the canvas last generated in the rear wheels 2RL and 2RR.

また、バッテリ低下モードの場合は、各ペダル61,62の操作量およびステアリング63の操作量の内の少なくとも1の操作量が所定の操作量(閾値A2,B2,θ4)以上であると判断される場合にキャンバ角調整装置44を駆動する。即ち、車輪2がスリップする恐れがあると判断される以前であって、車両1の前後加速度や横加速度が小さなときにキャンバ角調整装置44を駆動する。これにより、キャンバ角調整装置44の瞬間的な負荷を減らし、電力消費量を抑制できる。   In the battery low mode, it is determined that at least one of the operation amounts of the pedals 61 and 62 and the operation amount of the steering 63 is equal to or greater than a predetermined operation amount (threshold values A2, B2, and θ4). In this case, the camber angle adjusting device 44 is driven. That is, the camber angle adjusting device 44 is driven when it is determined that there is a possibility that the wheel 2 may slip and when the longitudinal acceleration and lateral acceleration of the vehicle 1 are small. Thereby, the instantaneous load of the camber angle adjusting device 44 can be reduced, and the power consumption can be suppressed.

一方、S92の処理の結果、キャンバフラグ73aがオンであると判断される場合には(S92:Yes)、後輪2RL,2RRのキャンバ角は既に第1キャンバ角に調整されているので、S93及びS94の処理をスキップして、このキャンバ制御処理を終了する。   On the other hand, if it is determined that the camber flag 73a is on (S92: Yes) as a result of the process of S92, the camber angles of the rear wheels 2RL and 2RR have already been adjusted to the first camber angle, so S93 And the process of S94 is skipped and this camber control process is complete | finished.

これに対し、S91の処理の結果、状態量フラグ73bがオフであると判断される場合には(S91:No)、走行状態フラグ73cがオンであるか否かを判断し(S95)、走行状態フラグ73cがオンであると判断される場合には(S95:Yes)、キャンバフラグ73aがオンであるか否かを判断する(S96)。その結果、キャンバフラグ73aがオフであると判断される場合には(S96:No)、RL〜RRモータ44RL,44RRを作動させて、左右の後輪2RL,2RRのキャンバ角を第1キャンバ角に調整し、後輪2RL,2RRにネガティブキャンバを付与すると共に(S97)、キャンバフラグ73aをオンして(S98)、S99の処理を実行する。   On the other hand, when it is determined that the state quantity flag 73b is off as a result of the process of S91 (S91: No), it is determined whether or not the travel state flag 73c is on (S95). When it is determined that the status flag 73c is on (S95: Yes), it is determined whether the camber flag 73a is on (S96). As a result, when it is determined that the camber flag 73a is off (S96: No), the RL to RR motors 44RL and 44RR are operated to set the camber angles of the left and right rear wheels 2RL and 2RR to the first camber angle. The negative camber is assigned to the rear wheels 2RL and 2RR (S97), the camber flag 73a is turned on (S98), and the process of S99 is executed.

これにより、車両1の走行状態が所定の直進状態である場合、即ち、車両1の走行速度が所定の速度以上であると共にステアリング63の操作量が所定の操作量以下であり、車両1が比較的高速で直進している場合には、後輪2RL,2RRにネガティブキャンバを付与することで、車輪2の横剛性を利用して、車両1の直進安定性を確保することができる。   Thereby, when the traveling state of the vehicle 1 is a predetermined straight traveling state, that is, the traveling speed of the vehicle 1 is equal to or higher than the predetermined speed and the operation amount of the steering 63 is equal to or smaller than the predetermined operation amount. When the vehicle is traveling straight at a high speed, it is possible to ensure the straight running stability of the vehicle 1 by using the lateral rigidity of the wheels 2 by applying a negative camber to the rear wheels 2RL and 2RR.

一方、S96の処理の結果、キャンバフラグ73aがオンであると判断される場合には(S96:Yes)、後輪2RL,2RRのキャンバ角は既に第1キャンバ角に調整されているので、S97及びS98の処理をスキップして、偏摩耗荷重フラグ73dがオンであるか否かを判断する(S99)。その結果、偏摩耗荷重フラグ73dがオンであると判断される場合には(S99:Yes)、RL〜RRモータ44RL,44RRを作動させて、後輪2RL,2RRのキャンバ角を第2キャンバ角に調整し、後輪2RL,2RRへのネガティブキャンバの付与を解除すると共に(S100)、キャンバフラグ73aをオフして(S101)、このキャンバ制御処理を終了する。   On the other hand, if it is determined that the camber flag 73a is on as a result of the process of S96 (S96: Yes), the camber angles of the rear wheels 2RL and 2RR have already been adjusted to the first camber angle, so S97 And the process of S98 is skipped and it is judged whether the partial wear load flag 73d is ON (S99). As a result, when it is determined that the uneven wear load flag 73d is on (S99: Yes), the RL to RR motors 44RL and 44RR are operated to set the camber angles of the rear wheels 2RL and 2RR to the second camber angle. The negative camber is no longer assigned to the rear wheels 2RL and 2RR (S100), the camber flag 73a is turned off (S101), and the camber control process is terminated.

これにより、車輪2の接地荷重が偏摩耗荷重である場合、即ち、後輪2RL,2RRにネガティブキャンバが付与された状態で車両1が走行すると、タイヤ(トレッド)に偏摩耗を引き起こす恐れがある場合には、後輪2RL,2RRへのネガティブキャンバの付与を解除することで、タイヤの偏摩耗を抑制することができる。   Thereby, when the ground contact load of the wheel 2 is an uneven wear load, that is, when the vehicle 1 travels with the negative camber applied to the rear wheels 2RL and 2RR, there is a risk of causing uneven wear on the tire (tread). In such a case, uneven wear of the tire can be suppressed by releasing the negative camber from being applied to the rear wheels 2RL and 2RR.

一方、S99の処理の結果、偏摩耗荷重フラグ73dがオフであると判断される場合には(S99:No)、車輪2の接地荷重は偏摩耗荷重ではなく、後輪2RL,2RRにネガティブキャンバが付与された状態で車両1が走行しても、タイヤ(トレッド)が偏摩耗する恐れはないと判断されるので、S100及びS101の処理をスキップして、このキャンバ制御処理を終了する。   On the other hand, if it is determined that the uneven wear load flag 73d is OFF as a result of the process of S99 (S99: No), the ground contact load of the wheel 2 is not the uneven wear load, and the negative camber is applied to the rear wheels 2RL and 2RR. Even if the vehicle 1 travels in a state where is given, it is determined that there is no possibility that the tire (tread) will be unevenly worn, so the processing of S100 and S101 is skipped and the camber control processing is terminated.

これに対し、S95の処理の結果、走行状態フラグ73cがオフであると判断される場合には(S95:No)、キャンバフラグ73aがオンであるか否かを判断する(S102)。その結果、キャンバフラグ73aがオンであると判断される場合には(S102:Yes)、RL〜RRモータ44RL,44RRを作動させて、後輪2RL,2RRのキャンバ角を第2キャンバ角に調整し、後輪2RL,2RRへのネガティブキャンバの付与を解除すると共に(S103)、キャンバフラグ73aをオフして(S104)、このキャンバ制御処理を終了する。   On the other hand, when it is determined as a result of the process of S95 that the traveling state flag 73c is off (S95: No), it is determined whether or not the camber flag 73a is on (S102). As a result, when it is determined that the camber flag 73a is ON (S102: Yes), the RL to RR motors 44RL and 44RR are operated to adjust the camber angles of the rear wheels 2RL and 2RR to the second camber angle. Then, the application of the negative camber to the rear wheels 2RL and 2RR is canceled (S103), the camber flag 73a is turned off (S104), and the camber control process is terminated.

これにより、車両1の状態量が所定の条件を満たしておらず車両1の走行状態が所定の直進状態でない場合、即ち、車両1の走行安定性を優先して確保する必要がない場合には、後輪2RL,2RRへのネガティブキャンバの付与を解除することで、キャンバスラストの影響を回避して、省燃費化を図ることができる。   Thereby, when the state quantity of the vehicle 1 does not satisfy the predetermined condition and the traveling state of the vehicle 1 is not the predetermined straight traveling state, that is, when it is not necessary to prioritize the traveling stability of the vehicle 1. By releasing the negative camber from the rear wheels 2RL and 2RR, the influence of the canvas last can be avoided and fuel consumption can be reduced.

一方、S102の処理の結果、キャンバフラグ73aがオフであると判断される場合には(S102:No)、後輪2RL,2RRのキャンバ角は既に第2キャンバ角に調整されているので、S103及びS104の処理をスキップして、このキャンバ制御処理を終了する。   On the other hand, if it is determined that the camber flag 73a is OFF as a result of the process of S102 (S102: No), the camber angles of the rear wheels 2RL and 2RR have already been adjusted to the second camber angle. And the process of S104 is skipped and this camber control process is complete | finished.

以上説明したように、第4実施の形態によれば、車輪2の接地荷重が所定の接地荷重以上であると判断される場合に、車輪2のキャンバ角が第2キャンバ角(第1キャンバ角よりも絶対値が小さいキャンバ角)に調整され、車輪2へのネガティブキャンバの付与が解除されるので、タイヤの偏摩耗を抑制することができる。即ち、車輪2の接地荷重が大きいほどタイヤの摩耗が進行し易いので、車輪2の接地荷重が所定の接地荷重以上である場合には、車輪2へのネガティブキャンバの付与を解除することで、タイヤの偏摩耗を抑制することができる。その結果、タイヤの寿命を向上させることができる。また、タイヤの偏摩耗を抑制することで、タイヤの接地面が不均一となるのを防止して、車両1の走行安定性を確保することができる。更に、タイヤの偏摩耗を抑制できるので、その分、省燃費化を図ることができる。   As described above, according to the fourth embodiment, when it is determined that the ground load of the wheel 2 is equal to or greater than the predetermined ground load, the camber angle of the wheel 2 is the second camber angle (first camber angle). (The camber angle having a smaller absolute value) is adjusted and the application of the negative camber to the wheel 2 is released, so that uneven wear of the tire can be suppressed. That is, since the wear of the tire is more likely to progress as the contact load of the wheel 2 is larger, when the contact load of the wheel 2 is equal to or greater than the predetermined contact load, by canceling the application of the negative camber to the wheel 2, Uneven wear of the tire can be suppressed. As a result, the life of the tire can be improved. Further, by suppressing uneven wear of the tire, it is possible to prevent the ground contact surface of the tire from becoming uneven and to ensure the running stability of the vehicle 1. Furthermore, since uneven wear of the tire can be suppressed, fuel saving can be achieved correspondingly.

また、第4実施の形態によれば、車両1の状態量が所定の条件を満たすと判断される場合に、車輪2のキャンバ角が第1キャンバ角に調整され、車輪2にネガティブキャンバが付与されるので、車輪2に発生するキャンバスラストを利用して、車両1の走行安定性を確保することができる。また、車両1の状態量が所定の条件を満たしていないと判断され、且つ、車輪2の接地荷重が所定の接地荷重以上であると判断される場合には、車輪2のキャンバ角が第2キャンバ角(第1キャンバ角よりも絶対値が小さいキャンバ角)に調整され、車輪2へのネガティブキャンバの付与が解除されるので、タイヤの偏摩耗を抑制することができる。よって、走行安定性の確保とタイヤの偏摩耗の抑制との両立を図ることができる。   Further, according to the fourth embodiment, when it is determined that the state quantity of the vehicle 1 satisfies the predetermined condition, the camber angle of the wheel 2 is adjusted to the first camber angle, and a negative camber is imparted to the wheel 2. Therefore, the running stability of the vehicle 1 can be ensured using the canvas last generated on the wheels 2. Further, when it is determined that the state quantity of the vehicle 1 does not satisfy the predetermined condition and it is determined that the ground load of the wheel 2 is equal to or greater than the predetermined ground load, the camber angle of the wheel 2 is the second Since the camber angle is adjusted to a camber angle (a camber angle having a smaller absolute value than the first camber angle) and the application of the negative camber to the wheel 2 is released, uneven wear of the tire can be suppressed. Therefore, it is possible to achieve both of ensuring traveling stability and suppressing uneven wear of the tire.

また、第4実施の形態によれば、車両1の走行状態が所定の直進状態であると判断される場合に、車輪2のキャンバ角が第1キャンバ角に調整され、車輪2にネガティブキャンバが付与されるので、車輪2の横剛性を利用して、車両1の直進安定性を確保することができる。また、車両1の走行状態が所定の直進状態であると判断され、且つ、車輪2の接地荷重が所定の接地荷重以上であると判断される場合には、車輪2のキャンバ角が第2キャンバ角(第1キャンバ角よりも絶対値が小さいキャンバ角)に調整され、車輪2へのネガティブキャンバの付与が解除されるので、タイヤの偏摩耗を抑制することができる。よって、直進安定性の確保とタイヤの偏摩耗の抑制との両立を図ることができる。   Further, according to the fourth embodiment, when it is determined that the traveling state of the vehicle 1 is a predetermined straight traveling state, the camber angle of the wheel 2 is adjusted to the first camber angle, and the negative camber is applied to the wheel 2. Since it is given, it is possible to ensure the straight running stability of the vehicle 1 by utilizing the lateral rigidity of the wheels 2. When it is determined that the traveling state of the vehicle 1 is a predetermined straight traveling state and the ground load of the wheel 2 is determined to be equal to or greater than the predetermined ground load, the camber angle of the wheel 2 is the second camber. Since the angle (the camber angle having a smaller absolute value than the first camber angle) is adjusted and the negative camber is not applied to the wheel 2, uneven wear of the tire can be suppressed. Therefore, it is possible to achieve both of ensuring straight running stability and suppressing uneven wear of the tire.

また、第4実施の形態によれば、バッテリ64が充電不足であるか又は劣化していると判断される場合は、各ペダル61,62の操作量およびステアリング63の操作量の内の少なくとも1の操作量が閾値A2,B2,θ4以上である場合に、車両1の状態量が所定の条件を満たすと判断する。閾値A2,B2,θ4は、バッテリ64が充電不足ではなく劣化もしていないと判断される場合の閾値A1,B1,θ3より小さい値である。そのため、バッテリ64が充電不足であるか又は劣化していると判断される場合には、バッテリ64が充電不足ではなく劣化もしていないと判断される場合より早いタイミングで、車両1の状態量が所定の条件を満たすと判断される。これにより、バッテリ64が充電不足であるか又は劣化していると判断される場合には、キャンバ角調整装置44の駆動タイミングを早めることができる。その結果、車両1の前後加速度や横加速度が小さなときにキャンバ角調整装置44を駆動することができる。これにより、キャンバ角調整装置44の瞬間的な負荷を減らし、電力消費量を抑制できる。よって、バッテリ64の残存容量の低下やバッテリの劣化を抑制できる。   Further, according to the fourth embodiment, when it is determined that the battery 64 is insufficiently charged or deteriorated, at least one of the operation amounts of the pedals 61 and 62 and the operation amount of the steering 63 is determined. Is determined to satisfy the predetermined condition when the operation amount is equal to or greater than the threshold values A2, B2, and θ4. The threshold values A2, B2, and θ4 are smaller than the threshold values A1, B1, and θ3 when it is determined that the battery 64 is not insufficiently charged and has not deteriorated. Therefore, when it is determined that the battery 64 is insufficiently charged or deteriorated, the state quantity of the vehicle 1 is determined at an earlier timing than when it is determined that the battery 64 is not insufficiently charged and has not deteriorated. It is determined that a predetermined condition is satisfied. As a result, when it is determined that the battery 64 is insufficiently charged or deteriorated, the drive timing of the camber angle adjusting device 44 can be advanced. As a result, the camber angle adjusting device 44 can be driven when the longitudinal acceleration and lateral acceleration of the vehicle 1 are small. Thereby, the instantaneous load of the camber angle adjusting device 44 can be reduced, and the power consumption can be suppressed. Therefore, a decrease in the remaining capacity of the battery 64 and a deterioration of the battery can be suppressed.

さらに、第4実施の形態によれば、バッテリ64が充電不足であるか又は劣化していると判断される場合は、車両1の前後加速度や横加速度が小さく路面と車輪2との摩擦が小さいタイミングでキャンバ角調整装置44を駆動し車輪2のキャンバ角を調整するので、キャンバ角調整装置44の負荷を減らすことができる。これにより、バッテリ64がキャンバ角調整装置44に供給する電圧や電流が不安定になったとしても、車輪2のキャンバ角を確実に調整することができ車両1の走行安定性を確保できる。   Furthermore, according to the fourth embodiment, when it is determined that the battery 64 is insufficiently charged or deteriorated, the longitudinal acceleration and lateral acceleration of the vehicle 1 are small, and the friction between the road surface and the wheels 2 is small. Since the camber angle adjusting device 44 is driven at the timing to adjust the camber angle of the wheel 2, the load on the camber angle adjusting device 44 can be reduced. Thereby, even if the voltage and electric current which the battery 64 supplies to the camber angle adjusting device 44 become unstable, the camber angle of the wheel 2 can be adjusted reliably and the running stability of the vehicle 1 can be ensured.

また、第4実施の形態によれば、車両1の状態量について判断される所定の条件は、バッテリ低下モード(バッテリ低下状態)の場合の条件が、通常モード(通常状態)の場合の条件を満たすための必要条件となるように設定されている。その結果、バッテリ64が充電不足である又は劣化していると判断されるバッテリ低下状態のときであれば車輪2のキャンバ角が調整されるような状態量であっても、バッテリ64が充電不足でない又は劣化していないと判断される通常状態の場合には、車輪2のキャンバ角が調整されないように設定することができる。これにより、バッテリ64の残存容量の低下やバッテリ64の劣化の抑制を重視するのか、バッテリ64の残存容量の低下やバッテリ64の劣化の抑制と車両1の走行安定性の確保とを両立させるのか等、条件設定によって任意に選択することができ、車両設計の自在性を向上できる。   Further, according to the fourth embodiment, the predetermined condition determined for the state quantity of the vehicle 1 is the condition when the battery low mode (battery low state) is the normal mode (normal state). It is set to be a necessary condition to satisfy. As a result, if the battery 64 is in a low battery state where it is determined that the battery 64 is insufficiently charged or deteriorated, the battery 64 is insufficiently charged even if the camber angle of the wheel 2 is adjusted. In a normal state where it is determined that the wheel 2 is not deteriorated or not deteriorated, the camber angle of the wheel 2 can be set not to be adjusted. Accordingly, whether importance is placed on the reduction of the remaining capacity of the battery 64 and the suppression of the deterioration of the battery 64, or the reduction of the remaining capacity of the battery 64 and the suppression of the deterioration of the battery 64 and the securing of the running stability of the vehicle 1 are both achieved. Etc., and can be arbitrarily selected depending on the condition setting, and the flexibility of vehicle design can be improved.

また、第4実施の形態によれば、キャンバ角調整装置44により後輪2RL,2RRのキャンバ角が調整され、後輪2RL,2RRにネガティブキャンバが付与されるので、後輪2RL,2RRに発生するキャンバスラストを利用して車両1の特性を安定したアンダーステア傾向にすることができる。これにより、車両1の直進安定性や限界走行性能を向上させることができる。   Further, according to the fourth embodiment, the camber angle adjusting device 44 adjusts the camber angles of the rear wheels 2RL and 2RR, and a negative camber is applied to the rear wheels 2RL and 2RR, so that the camber angle adjusting device 44 generates the rear wheels 2RL and 2RR. The canvas last can be used to make the characteristics of the vehicle 1 have a stable understeer tendency. Thereby, the straight running stability and the limit running performance of the vehicle 1 can be improved.

次いで、図19から図21を参照して、第5実施の形態について説明する。図19は第5実施の形態における車両用制御装置500の電気的構成を示したブロック図である。車両用制御装置500は、第1実施の形態で説明した車両用制御装置100に代えて車両1に搭載されているものとする。なお、第1実施の形態と同一の部分については同一の符号を付して、その説明を省略する。   Next, a fifth embodiment will be described with reference to FIGS. FIG. 19 is a block diagram showing an electrical configuration of the vehicle control apparatus 500 according to the fifth embodiment. It is assumed that the vehicle control device 500 is mounted on the vehicle 1 in place of the vehicle control device 100 described in the first embodiment. In addition, the same code | symbol is attached | subjected about the part same as 1st Embodiment, and the description is abbreviate | omitted.

車両用制御装置500は、図19に示すように、CPU71、ROM72及びRAM73を備え、それらがバスライン74を介して入出力ポート75に接続されている。ROM72は、CPU71により実行される制御プログラム(例えば、図4、図5、図6、図7、図20及び図21に図示されるフローチャートのプログラム)や上限抵抗値および下限残存容量(いずれも図示せず)等の固定値データ等を格納した書き換え不能な不揮発性のメモリである。また、入出力ポート75には、車輪駆動装置3等の装置が接続されている。   As shown in FIG. 19, the vehicle control device 500 includes a CPU 71, a ROM 72, and a RAM 73, which are connected to an input / output port 75 via a bus line 74. The ROM 72 is a control program executed by the CPU 71 (for example, the programs in the flowcharts shown in FIGS. 4, 5, 6, 7, 20, and 21), the upper limit resistance value, and the lower limit remaining capacity (both shown in FIG. It is a non-rewritable nonvolatile memory storing fixed value data and the like. The input / output port 75 is connected to a device such as the wheel drive device 3.

ナビゲーション装置87は、車両1の現在位置および車両1の進行先の道路情報を取得するための装置であり、GPS衛星から電波を受信して車両1の現在位置を取得する現在位置取得部(図示せず)と、道路情報が記憶された地図データを取得する地図データ取得部(図示せず)と、その地図データ取得部により取得した地図データ及び現在位置取得部により取得した車両1の現在位置に基づいて車両1の現在位置の道路情報(勾配情報)を取得する道路情報取得部(図示せず)と、その道路情報取得部により取得した車両1の現在位置の道路情報を処理してCPU71に出力する出力回路(図示せず)とを主に備えている。   The navigation device 87 is a device for acquiring the current position of the vehicle 1 and road information of the destination of the vehicle 1, and receives a radio wave from a GPS satellite to acquire the current position of the vehicle 1 (see FIG. A map data acquisition unit (not shown) for acquiring map data in which road information is stored, the map data acquired by the map data acquisition unit, and the current position of the vehicle 1 acquired by the current position acquisition unit CPU 71 obtains the road information (gradient information) of the current position of the vehicle 1 based on the road information acquisition section (not shown), and the road information of the current position of the vehicle 1 acquired by the road information acquisition section. And an output circuit (not shown) for outputting to the main.

傾斜角センサ装置88は、水平面に対する車両1の傾斜角を検出すると共に、その検出結果をCPU71に出力するための装置であり、車両1の前後方向(図1矢印F−B方向)の傾斜角を検出する傾斜角センサ88aと、その傾斜角センサ88aの検出結果を処理してCPU71に出力する出力回路(図示せず)とを備えている。なお、本実施の形態では、静電容量型の傾斜角センサとして構成されている。   The tilt angle sensor device 88 is a device for detecting the tilt angle of the vehicle 1 with respect to the horizontal plane and outputting the detection result to the CPU 71. The tilt angle of the vehicle 1 in the front-rear direction (the arrow FB direction in FIG. 1). And an output circuit (not shown) for processing the detection result of the tilt angle sensor 88a and outputting it to the CPU 71. In this embodiment, it is configured as a capacitance type tilt angle sensor.

次いで、図20を参照して、キャンバ制御処理について説明する。図20はキャンバ制御処理を示すフローチャートである。この処理は、車両用制御装置500の電源が投入されている間、CPU71によって繰り返し(例えば、0.2秒間隔で)実行される処理であり、車輪2(左右の後輪2RL,2RR)のキャンバ角を調整する処理である。なお、第1実施の形態で説明した状態量判断処理(図4)、走行状態判断処理(図5参照)、偏磨耗荷重判断処理(図6参照)及びバッテリ低下判断処理(図7参照)も、車両用制御装置500の電源が投入されている間、CPU71によって繰り返し(例えば、0.2秒間隔で)実行されているものとする。   Next, the camber control process will be described with reference to FIG. FIG. 20 is a flowchart showing camber control processing. This process is a process that is repeatedly executed by the CPU 71 (for example, at intervals of 0.2 seconds) while the power of the vehicle control device 500 is turned on, and the wheels 2 (left and right rear wheels 2RL, 2RR) are processed. This is a process for adjusting the camber angle. The state quantity determination process (FIG. 4), the travel state determination process (see FIG. 5), the uneven wear load determination process (see FIG. 6), and the battery decrease determination process (see FIG. 7) described in the first embodiment are also included. The CPU 71 is repeatedly executed (for example, at intervals of 0.2 seconds) while the power source of the vehicle control device 500 is turned on.

CPU71は、キャンバ制御処理に関し、まず、状態量フラグ73bがオンであるか否かを判断し(S121)、状態量フラグ73bがオンであると判断される場合には(S121:Yes)、キャンバフラグ73aがオンであるか否かを判断する(S122)。その結果、キャンバフラグ73aがオフであると判断される場合には(S122:No)、RL〜RRモータ44RL,44RRを作動させて、左右の後輪2RL,2RRのキャンバ角を第1キャンバ角に調整し、後輪2RL,2RRにネガティブキャンバを付与すると共に(S123)、キャンバフラグ73aをオンして(S124)、このキャンバ制御処理を終了する。   Regarding the camber control process, the CPU 71 first determines whether or not the state quantity flag 73b is on (S121), and if it is determined that the state quantity flag 73b is on (S121: Yes), It is determined whether or not the flag 73a is on (S122). As a result, when it is determined that the camber flag 73a is off (S122: No), the RL to RR motors 44RL, 44RR are operated to set the camber angles of the left and right rear wheels 2RL, 2RR to the first camber angle. To the rear wheels 2RL, 2RR (S123), the camber flag 73a is turned on (S124), and the camber control process is terminated.

これにより、車両1の状態量が所定の条件を満たす場合、即ち、各ペダル61,62の操作量およびステアリング63の操作量の内の少なくとも1の操作量が所定の操作量以上であり、車輪2のキャンバ角が第2キャンバ角の状態で車両1が加速、制動または旋回すると車輪2がスリップする恐れがあると判断される場合には、後輪2RL,2RRにネガティブキャンバを付与することで、後輪2RL,2RRに発生するキャンバスラストを利用して、車両1の走行安定性を確保することができる。   Thereby, when the state quantity of the vehicle 1 satisfies a predetermined condition, that is, at least one of the operation quantities of the pedals 61 and 62 and the operation quantity of the steering 63 is equal to or greater than the predetermined operation quantity. When it is determined that there is a risk of the wheels 2 slipping when the vehicle 1 is accelerated, braked or turned with the second camber angle being the second camber angle, a negative camber is applied to the rear wheels 2RL and 2RR. The running stability of the vehicle 1 can be ensured by using the canvas last generated in the rear wheels 2RL and 2RR.

一方、S122の処理の結果、キャンバフラグ73aがオンであると判断される場合には(S122:Yes)、後輪2RL,2RRのキャンバ角は既に第1キャンバ角に調整されているので、S123及びS124の処理をスキップして、このキャンバ制御処理を終了する。   On the other hand, if it is determined that the camber flag 73a is on (S122: Yes) as a result of the process of S122, the camber angles of the rear wheels 2RL and 2RR have already been adjusted to the first camber angle, so S123 And the process of S124 is skipped and this camber control process is complete | finished.

これに対し、S121の処理の結果、状態量フラグ73bがオフであると判断される場合には(S121:No)、走行状態フラグ73cがオンであるか否かを判断し(S125)、走行状態フラグ73cがオンであると判断される場合には(S125:Yes)、キャンバフラグ73aがオンであるか否かを判断する(S126)。その結果、キャンバフラグ73aがオフであると判断される場合には(S126:No)、RL〜RRモータ44RL,44RRを作動させて、左右の後輪2RL,2RRのキャンバ角を第1キャンバ角に調整し、後輪2RL,2RRにネガティブキャンバを付与すると共に(S127)、キャンバフラグ73aをオンして(S128)、S129の処理を実行する。   On the other hand, as a result of the process of S121, when it is determined that the state quantity flag 73b is off (S121: No), it is determined whether or not the travel state flag 73c is on (S125). If it is determined that the status flag 73c is on (S125: Yes), it is determined whether the camber flag 73a is on (S126). As a result, when it is determined that the camber flag 73a is off (S126: No), the RL to RR motors 44RL and 44RR are operated to set the camber angles of the left and right rear wheels 2RL and 2RR to the first camber angle. The negative camber is assigned to the rear wheels 2RL and 2RR (S127), the camber flag 73a is turned on (S128), and the process of S129 is executed.

これにより、車両1の走行状態が所定の直進状態である場合、即ち、車両1の走行速度が所定の速度以上であると共にステアリング63の操作量が所定の操作量以下であり、車両1が比較的高速で直進している場合には、後輪2RL,2RRにネガティブキャンバを付与することで、車輪2の横剛性を利用して、車両1の直進安定性を確保することができる。   Thereby, when the traveling state of the vehicle 1 is a predetermined straight traveling state, that is, the traveling speed of the vehicle 1 is equal to or higher than the predetermined speed and the operation amount of the steering 63 is equal to or smaller than the predetermined operation amount. When the vehicle is traveling straight at a high speed, it is possible to ensure the straight running stability of the vehicle 1 by using the lateral rigidity of the wheels 2 by applying a negative camber to the rear wheels 2RL and 2RR.

一方、S126の処理の結果、キャンバフラグ73aがオンであると判断される場合には(S126:Yes)、後輪2RL,2RRのキャンバ角は既に第1キャンバ角に調整されているので、S127及びS128の処理をスキップして、偏摩耗荷重フラグ73dがオンであるか否かを判断する(S129)。その結果、偏摩耗荷重フラグ73dがオンであると判断される場合には(S129:Yes)、後述するキャンバ解除処理(図21参照)を実行し(S130)、このキャンバ制御処理を終了する。   On the other hand, if it is determined that the camber flag 73a is on as a result of the process of S126 (S126: Yes), the camber angles of the rear wheels 2RL and 2RR have already been adjusted to the first camber angle, so S127 Then, the process of S128 is skipped, and it is determined whether or not the uneven wear load flag 73d is on (S129). As a result, when it is determined that the uneven wear load flag 73d is on (S129: Yes), a camber release process (see FIG. 21) described later is executed (S130), and the camber control process is terminated.

一方、S49の処理の結果、偏摩耗荷重フラグ73dがオフであると判断される場合には(S129:No)、車輪2の接地荷重は偏摩耗荷重ではなく、後輪2RL,2RRにネガティブキャンバが付与された状態で車両1が走行しても、タイヤ(トレッド)が偏摩耗する恐れはないと判断されるので、S130の処理をスキップして、このキャンバ制御処理を終了する。   On the other hand, if it is determined as a result of the processing of S49 that the uneven wear load flag 73d is off (S129: No), the ground contact load of the wheel 2 is not the uneven wear load, and the negative camber is applied to the rear wheels 2RL and 2RR. Even if the vehicle 1 travels in a state where the mark is applied, it is determined that there is no risk of uneven wear on the tire (tread), so the process of S130 is skipped and the camber control process is terminated.

これに対し、S125の処理の結果、走行状態フラグ73cがオフであると判断される場合には(S125:No)、キャンバフラグ73aがオンであるか否かを判断する(S131)。その結果、キャンバフラグ73aがオンであると判断される場合には(S131:Yes)、後述するキャンバ解除処理(図21参照)を実行し(S130)、このキャンバ制御処理を終了する。一方、S131の処理の結果、キャンバフラグ73aがオフであると判断される場合には(S131:No)、後輪2RL,2RRのキャンバ角は既に第2キャンバ角に調整されているので、S130の処理をスキップして、このキャンバ制御処理を終了する。   On the other hand, when it is determined as a result of the processing of S125 that the traveling state flag 73c is off (S125: No), it is determined whether or not the camber flag 73a is on (S131). As a result, when it is determined that the camber flag 73a is on (S131: Yes), a camber release process (see FIG. 21) described later is executed (S130), and the camber control process is terminated. On the other hand, if it is determined that the camber flag 73a is OFF as a result of the process of S131 (S131: No), the camber angles of the rear wheels 2RL and 2RR have already been adjusted to the second camber angle, so S130 This process is skipped and the camber control process is terminated.

次いで、図21を参照して、キャンバ解除処理について説明する。図21はキャンバ解除処理を示すフローチャートである。この処理は、後輪2RL,2RRにネガティブキャンバが付与された状態で車両1が走行する場合に、車両1の前後荷重情報を取得すると共に、どのようにして後輪2RL,2RRのキャンバ角を第2キャンバ角に調整するかを判断する処理である。   Next, the camber cancellation process will be described with reference to FIG. FIG. 21 is a flowchart showing camber release processing. This process obtains the longitudinal load information of the vehicle 1 when the vehicle 1 travels with a negative camber applied to the rear wheels 2RL, 2RR, and how to set the camber angle of the rear wheels 2RL, 2RR. This is a process for determining whether to adjust to the second camber angle.

CPU71は、キャンバ解除処理に関し、まず、バッテリフラグ73eがオンであるか否かを判断し(S141)、バッテリフラグ73eがオンであると判断される場合には(S141:Yes)、ナビゲーション装置87から入力される車両1の現在位置の道路情報(勾配情報)、傾斜角センサ装置88から入力される車両1の前後方向(図1矢印F−B方向)の傾斜角および接地荷重センサ装置84から入力される車輪2(後輪2RL,2RR)の接地荷重を取得する(S142)。   Regarding the camber release process, the CPU 71 first determines whether or not the battery flag 73e is on (S141). If it is determined that the battery flag 73e is on (S141: Yes), the navigation device 87. From the road information (gradient information) of the current position of the vehicle 1 inputted from the vehicle, the inclination angle of the vehicle 1 in the front-rear direction (arrow FB direction in FIG. 1) and the ground load sensor device 84 inputted from the inclination angle sensor device 88. The ground load of the input wheel 2 (rear wheels 2RL, 2RR) is acquired (S142).

次にCPU71は、取得した車両1の現在位置の道路情報に基づいて、現在位置(走行中の道路)が所定の下り勾配以上の道路であるか否かを判断する(S143)。なお、S143の処理では、現在位置の道路情報(勾配情報)と、ROM72に予め記憶されている閾値とを比較して、道路の勾配が所定の閾値以上であるか否かを判断する。その結果、道路の勾配が所定の下り勾配以上であると判断される場合には(S143:Yes)、車両1の前後荷重が前輪2FL,2FR側に移動し、後輪2RL,2RR側の前後荷重が減少していると判断される。この場合は、後輪2RL,2RRの接地部位と路面との摩擦が小さくなるため、RL〜RRモータ44RL,44RRを一度に作動させて、後輪2RL,2RRのキャンバ角を第2キャンバ角に調整し、後輪2RL,2RRへのネガティブキャンバの付与を解除すると共に(S150)、キャンバフラグ73aをオフして(S149)、このキャンバ解除処理を終了する。   Next, the CPU 71 determines whether or not the current position (traveling road) is a road having a predetermined downward slope or more based on the acquired road information of the current position of the vehicle 1 (S143). In the process of S143, the road information (gradient information) at the current position is compared with a threshold value stored in advance in the ROM 72, and it is determined whether or not the road gradient is equal to or greater than a predetermined threshold value. As a result, when it is determined that the road gradient is equal to or greater than the predetermined downward gradient (S143: Yes), the front-rear load of the vehicle 1 moves to the front wheels 2FL, 2FR side, and the front-rear side of the rear wheels 2RL, 2RR side. It is determined that the load is decreasing. In this case, since the friction between the ground contact portion of the rear wheels 2RL and 2RR and the road surface becomes small, the camber angles of the rear wheels 2RL and 2RR are set to the second camber angle by operating the RL to RR motors 44RL and 44RR at a time. Adjustment is made to release the negative camber from the rear wheels 2RL and 2RR (S150), the camber flag 73a is turned off (S149), and the camber release process is terminated.

一方、S143の処理の結果、道路の勾配が所定の下り勾配より小さいと判断される場合には(S143:No)、車両1の前後方向の傾斜角が所定の下り傾斜角以上であるか否かを判断する(S144)。なお、S144の処理では、取得された傾斜角とROM72に予め記憶されている閾値とを比較して、車両1の前後方向の傾斜角が所定の下り傾斜角以上であるか否かを判断する。その結果、傾斜角が所定の下り傾斜角以上であると判断される場合には(S144:Yes)、車両1の前後荷重が前輪2FL,2FR側に移動し、後輪2RL,2RR側の前後荷重が減少していると判断される。この場合は、後輪2RL,2RRの接地部位と路面との摩擦が小さくなるため、RL〜RRモータ44RL,44RRを一度に作動させて、後輪2RL,2RRのキャンバ角を第2キャンバ角に調整し、後輪2RL,2RRへのネガティブキャンバの付与を解除すると共に(S150)、キャンバフラグ73aをオフして(S149)、このキャンバ解除処理を終了する。   On the other hand, as a result of the processing of S143, if it is determined that the road gradient is smaller than the predetermined downward gradient (S143: No), whether or not the inclination angle in the front-rear direction of the vehicle 1 is greater than or equal to the predetermined downward inclination angle. Is determined (S144). In the process of S144, the acquired inclination angle is compared with a threshold value stored in advance in the ROM 72, and it is determined whether or not the inclination angle in the front-rear direction of the vehicle 1 is equal to or greater than a predetermined downward inclination angle. . As a result, when it is determined that the inclination angle is equal to or greater than the predetermined downward inclination angle (S144: Yes), the front / rear load of the vehicle 1 moves to the front wheels 2FL, 2FR side, and the front / rear side of the rear wheels 2RL, 2RR side. It is determined that the load is decreasing. In this case, since the friction between the ground contact portion of the rear wheels 2RL and 2RR and the road surface becomes small, the camber angles of the rear wheels 2RL and 2RR are set to the second camber angle by operating the RL to RR motors 44RL and 44RR at a time. Adjustment is made to release the negative camber from the rear wheels 2RL and 2RR (S150), the camber flag 73a is turned off (S149), and the camber release process is terminated.

一方、S144の処理の結果、車両1の前後方向の傾斜角が所定の下り傾斜角より小さいと判断される場合には(S144:No)、後輪2RL,2RRの接地荷重が所定の接地荷重以下であるか否かを判断する(S145)。なお、S145の処理では、取得された接地荷重とROM72に予め記憶されている閾値とを比較して、後輪2RL,2RRの接地荷重が所定の接地荷重以上であるか否かを判断する。その結果、接地荷重が所定の接地荷重以下であると判断される場合には(S145:Yes)、後輪2RL,2RRの接地部位と路面との摩擦が小さくなるため、RL〜RRモータ44RL,44RRを一度に作動させて、後輪2RL,2RRのキャンバ角を第2キャンバ角に調整し、後輪2RL,2RRへのネガティブキャンバの付与を解除すると共に(S150)、キャンバフラグ73aをオフして(S149)、このキャンバ解除処理を終了する。   On the other hand, as a result of the process of S144, when it is determined that the front-rear direction inclination angle of the vehicle 1 is smaller than the predetermined downward inclination angle (S144: No), the ground load of the rear wheels 2RL and 2RR is the predetermined ground load. It is determined whether or not the following is true (S145). In the process of S145, the acquired ground load is compared with a threshold value stored in advance in the ROM 72 to determine whether or not the ground loads of the rear wheels 2RL and 2RR are equal to or greater than a predetermined ground load. As a result, when it is determined that the ground load is equal to or less than the predetermined ground load (S145: Yes), the friction between the ground contact portion of the rear wheels 2RL and 2RR and the road surface is reduced, and therefore the RL to RR motors 44RL, 44RR is operated at a time to adjust the camber angle of the rear wheels 2RL and 2RR to the second camber angle, release of the negative camber from the rear wheels 2RL and 2RR is released (S150), and the camber flag 73a is turned off. (S149), and the camber cancellation process is terminated.

一方、S145の処理の結果、後輪2RL,2RRの接地荷重が所定の接地荷重より大きいと判断される場合には(S145:No)、アクセルペダル61の操作量の変化が所定値より大きいか否かを判断する(S146)。なお、S146の処理では、具体的には、アクセルペダル61の操作量が少なくなる変化(操作量を時間微分した踏み込み速度(符号はマイナス))と、ROM72に予め記憶されている閾値(符号がマイナスの閾値)とを比較する。アクセルペダル61の操作量が少なくなることで車両1にエンジンブレーキによる制動力が加わり、車両1の前後荷重が前輪2FL,2FR側に移動し、後輪2RL,2RR側の前後荷重が減少する。この後輪2RL,2RR側の前後荷重の減少を、アクセルペダル61の操作量の変化を指標として判断する。   On the other hand, if it is determined that the ground load of the rear wheels 2RL, 2RR is greater than the predetermined ground load as a result of the process of S145 (S145: No), is the change in the operation amount of the accelerator pedal 61 greater than the predetermined value? It is determined whether or not (S146). In the process of S146, specifically, a change in which the operation amount of the accelerator pedal 61 is reduced (a stepping speed obtained by time-differentiating the operation amount (a sign is minus)) and a threshold value (a sign is stored in advance) in the ROM 72. (Minus threshold). By reducing the amount of operation of the accelerator pedal 61, braking force by engine braking is applied to the vehicle 1, the longitudinal load of the vehicle 1 moves to the front wheels 2FL, 2FR, and the longitudinal load on the rear wheels 2RL, 2RR decreases. The decrease in the longitudinal load on the rear wheels 2RL, 2RR side is determined using the change in the operation amount of the accelerator pedal 61 as an index.

S146の処理の結果、アクセルペダル61の操作量の変化が所定値より大きいと判断される場合には(S146:Yes)、後輪2RL,2RRの接地部位と路面との摩擦が小さくなると判断されるため、RL〜RRモータ44RL,44RRを一度に作動させて、後輪2RL,2RRのキャンバ角を第2キャンバ角に調整し、後輪2RL,2RRへのネガティブキャンバの付与を解除すると共に(S150)、キャンバフラグ73aをオフして(S149)、このキャンバ解除処理を終了する。   As a result of the processing of S146, when it is determined that the change in the operation amount of the accelerator pedal 61 is larger than the predetermined value (S146: Yes), it is determined that the friction between the ground contact portion of the rear wheels 2RL and 2RR and the road surface is reduced. Therefore, the RL to RR motors 44RL and 44RR are operated at a time to adjust the camber angle of the rear wheels 2RL and 2RR to the second camber angle, and release of the negative camber to the rear wheels 2RL and 2RR is released ( (S150), the camber flag 73a is turned off (S149), and the camber release process is terminated.

一方、S146の処理の結果、アクセルペダル61の操作量の変化が所定値以下であると判断される場合には(S146:No)、ブレーキペダル62の操作量の変化が所定値より大きいかを判断する(S147)。なおS147の処理では、具体的には、ブレーキペダル62の操作量が多くなる変化(操作量を時間微分した踏み込み速度(符号はプラス))と、ROM72に予め記憶されている閾値(符号がプラスの閾値)とを比較する。ブレーキペダル62の操作量が多くなることで車両1に制動力が加わり、車両1の前後荷重が前輪2FL,2FR側に移動し、後輪2RL,2RR側の前後荷重が減少する。この後輪2RL,2RR側の前後荷重の減少を、ブレーキペダル62の操作量の変化を指標として判断する。   On the other hand, as a result of the process of S146, when it is determined that the change in the operation amount of the accelerator pedal 61 is equal to or less than the predetermined value (S146: No), it is determined whether the change in the operation amount of the brake pedal 62 is greater than the predetermined value. Judgment is made (S147). In the process of S147, specifically, a change in which the operation amount of the brake pedal 62 increases (a stepping speed obtained by time-differentiating the operation amount (a sign is a plus)) and a threshold value (a sign is a plus) stored in advance in the ROM 72. The threshold). As the amount of operation of the brake pedal 62 increases, a braking force is applied to the vehicle 1, the longitudinal load on the vehicle 1 moves to the front wheels 2FL, 2FR, and the longitudinal load on the rear wheels 2RL, 2RR decreases. This decrease in the longitudinal load on the rear wheels 2RL, 2RR side is determined using the change in the operation amount of the brake pedal 62 as an index.

S147の処理の結果、ブレーキペダル62の操作量の変化が所定値より大きいと判断される場合には(S147:Yes)、後輪2RL,2RRの接地部位と路面との摩擦が小さくなると判断されるため、RL〜RRモータ44RL,44RRを一度に作動させて、後輪2RL,2RRのキャンバ角を第2キャンバ角に調整し、後輪2RL,2RRへのネガティブキャンバの付与を解除すると共に(S150)、キャンバフラグ73aをオフして(S149)、このキャンバ解除処理を終了する。   As a result of the process of S147, when it is determined that the change in the operation amount of the brake pedal 62 is larger than the predetermined value (S147: Yes), it is determined that the friction between the ground contact portion of the rear wheels 2RL and 2RR and the road surface is reduced. Therefore, the RL to RR motors 44RL and 44RR are operated at a time to adjust the camber angle of the rear wheels 2RL and 2RR to the second camber angle, and release of the negative camber to the rear wheels 2RL and 2RR is released ( (S150), the camber flag 73a is turned off (S149), and the camber release process is terminated.

一方、S147の処理の結果、ブレーキペダル62の操作量の変化が所定値以下であると判断される場合には(S147:No)、車両1の後輪2RL,2RR側の前後荷重は減少していないと判断される。この場合は後輪2RL,2RRの接地部位と路面との摩擦は大きいので、キャンバ角調整装置44の瞬間的な負荷を抑制するため、RL〜RRモータ44RL,44RRを片方ずつ作動させて、後輪2RL,2RRのキャンバ角を一輪ずつ第2キャンバ角に調整し、後輪2RL,2RRへのネガティブキャンバの付与を解除すると共に(S148)、キャンバフラグ73aをオフして(S149)、このキャンバ解除処理を終了する。   On the other hand, when it is determined that the change in the operation amount of the brake pedal 62 is equal to or less than the predetermined value as a result of the process of S147 (S147: No), the longitudinal loads on the rear wheels 2RL and 2RR side of the vehicle 1 are reduced. It is judged that it is not. In this case, since the friction between the ground contact portion of the rear wheels 2RL and 2RR and the road surface is large, the RL to RR motors 44RL and 44RR are operated one by one in order to suppress the instantaneous load of the camber angle adjusting device 44. The camber angles of the wheels 2RL and 2RR are adjusted to the second camber angle one by one, release of the negative camber to the rear wheels 2RL and 2RR is canceled (S148), and the camber flag 73a is turned off (S149). Terminate the release process.

これにより、車輪2の接地荷重が偏摩耗荷重である場合、即ち、車輪2にネガティブキャンバが付与された状態で車両1が走行すると、タイヤ(トレッド)に偏摩耗を引き起こす恐れがある場合には、後輪2RL,2RRへのネガティブキャンバの付与を解除することで、タイヤの偏摩耗を抑制することができる。また、車両1の状態量が所定の条件を満たしておらず車両1の走行状態が所定の直進状態でない場合、即ち、車両1の走行安定性を優先して確保する必要がない場合にも、後輪2RL,2RRのキャンバ角を第2キャンバ角に維持することで、キャンバスラストの影響を回避して、省燃費化を図ることができる。   Thereby, when the ground contact load of the wheel 2 is uneven wear load, that is, when the vehicle 1 travels in a state where a negative camber is applied to the wheel 2, there is a risk of causing uneven wear on the tire (tread). By releasing the negative camber from the rear wheels 2RL and 2RR, uneven wear of the tire can be suppressed. Further, when the state quantity of the vehicle 1 does not satisfy a predetermined condition and the traveling state of the vehicle 1 is not a predetermined straight traveling state, that is, when it is not necessary to prioritize traveling stability of the vehicle 1, By maintaining the camber angles of the rear wheels 2RL and 2RR at the second camber angle, it is possible to avoid the influence of the canvas last and to save fuel.

以上説明したように、第5実施の形態によれば、車両1の状態量が所定の条件を満たしていない場合であって、車両1の前後荷重の移動が所定の条件を満たし、且つ、バッテリ64が充電不足であるか又は劣化している場合に、前後荷重が減少する側に位置する後輪2RL,2RRのキャンバ角を、第1キャンバ角から第2キャンバ角(第1キャンバ角よりも絶対値が小さいキャンバ角)に調整する。車輪2のキャンバ角を第1キャンバ角から第2キャンバ角に調整するには重力に抗して車高をわずかに上昇させる必要があるため、キャンバ角調整装置44の負荷が大きくなるが、前後荷重が減少する側に位置する接地荷重の小さな後輪2RL,2RRのキャンバ角を第1キャンバ角から第2キャンバ角に調整するので、後輪2RL,2RRの接地部位と路面との摩擦を小さくできる。これにより、キャンバ角調整装置44の瞬間的な負荷を小さくすることができ、電力消費量を抑制できる。よって、バッテリ64の残存容量の低下やバッテリ64の劣化を抑制できる。   As described above, according to the fifth embodiment, the state quantity of the vehicle 1 does not satisfy the predetermined condition, and the movement of the longitudinal load of the vehicle 1 satisfies the predetermined condition, and the battery When 64 is undercharged or deteriorated, the camber angle of the rear wheels 2RL and 2RR located on the side where the longitudinal load decreases is changed from the first camber angle to the second camber angle (more than the first camber angle). Adjust the camber angle to a smaller absolute value. In order to adjust the camber angle of the wheel 2 from the first camber angle to the second camber angle, it is necessary to slightly increase the vehicle height against gravity, so the load on the camber angle adjusting device 44 increases. Since the camber angle of the rear wheels 2RL and 2RR with a small ground load located on the side where the load decreases is adjusted from the first camber angle to the second camber angle, the friction between the ground contact portion of the rear wheels 2RL and 2RR and the road surface is reduced. it can. Thereby, the instantaneous load of the camber angle adjusting device 44 can be reduced, and the power consumption can be suppressed. Therefore, a decrease in the remaining capacity of the battery 64 and deterioration of the battery 64 can be suppressed.

また、第5実施の形態によれば、車両の状態量が所定の条件を満たしていない場合であり、且つ、バッテリが充電不足であるか又は劣化している場合に、後輪2RL,2RRのキャンバ角を、一輪ずつ第1キャンバ角から第2キャンバ角(第1キャンバ角よりも絶対値が小さいキャンバ角)に調整する。車輪2のキャンバ角を第1キャンバ角から第2キャンバ角に調整するには重力に抗して車高をわずかに上昇させる必要があるため、キャンバ角調整装置44の負荷が大きくなるが、後輪2RL,2RRのキャンバ角を一輪ずつ第1キャンバ角から第2キャンバ角に調整するので、後輪2RL,2RR側の前後荷重が減少していない場合であっても、キャンバ角調整装置44の瞬間的な負荷を小さくすることができる。従って、電力消費量を抑制でき、バッテリ64の残存容量の低下やバッテリ64の劣化を抑制できる。   Further, according to the fifth embodiment, when the vehicle state quantity does not satisfy the predetermined condition and the battery is insufficiently charged or deteriorated, the rear wheels 2RL and 2RR are The camber angle is adjusted from the first camber angle to the second camber angle (a camber angle having an absolute value smaller than the first camber angle) one by one. In order to adjust the camber angle of the wheel 2 from the first camber angle to the second camber angle, it is necessary to slightly raise the vehicle height against gravity, so that the load on the camber angle adjusting device 44 increases. Since the camber angles of the wheels 2RL and 2RR are adjusted from the first camber angle to the second camber angle one by one, even if the front and rear loads on the rear wheels 2RL and 2RR are not reduced, the camber angle adjusting device 44 The instantaneous load can be reduced. Therefore, power consumption can be suppressed, and a decrease in remaining capacity of the battery 64 and deterioration of the battery 64 can be suppressed.

また、第5実施の形態によれば、キャンバ角調整装置44により後輪2RL,2RRのキャンバ角が調整され、後輪2RL,2RRにネガティブキャンバが付与されるので、後輪2RL,2RRに発生するキャンバスラストを利用して車両1の特性を安定したアンダーステア傾向にすることができる。よって、車両1の直進安定性や限界走行性能を向上させることができる。   Further, according to the fifth embodiment, the camber angle adjusting device 44 adjusts the camber angles of the rear wheels 2RL and 2RR, and a negative camber is applied to the rear wheels 2RL and 2RR, so that the camber angle adjusting device 44 generates the rear wheels 2RL and 2RR. The canvas last can be used to make the characteristics of the vehicle 1 have a stable understeer tendency. Therefore, the straight running stability and the limit running performance of the vehicle 1 can be improved.

また、第5実施の形態によれば、車輪2の接地荷重が所定の接地荷重以上であると判断される場合に、後輪2RL,2RRのキャンバ角が第2キャンバ角に調整され、後輪2RL,2RRへのネガティブキャンバの付与が解除されるので、タイヤの偏摩耗を抑制することができる。即ち、車輪2の接地荷重が大きいほどタイヤの摩耗が進行し易いので、車輪2の接地荷重が所定の接地荷重以上である場合には、後輪2RL,2RRへのネガティブキャンバの付与を解除することで、タイヤの偏摩耗を抑制することができる。その結果、タイヤの寿命を向上させることができる。また、タイヤの偏摩耗を抑制することで、タイヤの接地面が不均一となるのを防止して、車両1の走行安定性を確保することができる。更に、タイヤの偏摩耗を抑制できるので、その分、省燃費化を図ることができる。   Further, according to the fifth embodiment, when it is determined that the ground contact load of the wheel 2 is equal to or greater than the predetermined ground load, the camber angles of the rear wheels 2RL and 2RR are adjusted to the second camber angle, and the rear wheel Since the application of the negative camber to 2RL and 2RR is canceled, uneven wear of the tire can be suppressed. That is, as the wheel 2 has a larger ground load, the tire wears more easily. Therefore, when the ground load of the wheel 2 is greater than or equal to a predetermined ground load, the application of the negative camber to the rear wheels 2RL and 2RR is canceled. Thus, uneven wear of the tire can be suppressed. As a result, the life of the tire can be improved. Further, by suppressing uneven wear of the tire, it is possible to prevent the ground contact surface of the tire from becoming uneven and to ensure the running stability of the vehicle 1. Furthermore, since uneven wear of the tire can be suppressed, fuel saving can be achieved correspondingly.

また、第5実施の形態によれば、車両1の状態量が所定の条件を満たすと判断される場合に、後輪2RL,2RRのキャンバ角が第1キャンバ角に調整され、後輪2RL,2RRにネガティブキャンバが付与されるので、後輪2RL,2RRに発生するキャンバスラストを利用して、車両1の走行安定性を確保することができる。また、車両1の状態量が所定の条件を満たしていないと判断され、且つ、車輪2の接地荷重が所定の接地荷重以上であると判断される場合には、後輪2RL,2RRのキャンバ角が第2キャンバ角に調整され、後輪2RL,2RRへのネガティブキャンバの付与が解除されるので、タイヤの偏摩耗を抑制することができる。よって、走行安定性の確保とタイヤの偏摩耗の抑制との両立を図ることができる。   Further, according to the fifth embodiment, when it is determined that the state quantity of the vehicle 1 satisfies the predetermined condition, the camber angles of the rear wheels 2RL, 2RR are adjusted to the first camber angle, and the rear wheels 2RL, Since the negative camber is given to 2RR, the running stability of the vehicle 1 can be ensured by using the canvas last generated in the rear wheels 2RL and 2RR. Further, when it is determined that the state quantity of the vehicle 1 does not satisfy the predetermined condition and the ground load of the wheel 2 is determined to be equal to or greater than the predetermined ground load, the camber angles of the rear wheels 2RL and 2RR are determined. Is adjusted to the second camber angle and the application of the negative camber to the rear wheels 2RL and 2RR is released, so that uneven wear of the tire can be suppressed. Therefore, it is possible to achieve both of ensuring traveling stability and suppressing uneven wear of the tire.

また、第5実施の形態によれば、車両1の走行状態が所定の直進状態であると判断される場合に、後輪2RL,2RRのキャンバ角が第1キャンバ角に調整され、後輪2RL,2RRにネガティブキャンバが付与されるので、車輪2の横剛性を利用して、車両1の直進安定性を確保することができる。また、車両1の走行状態が所定の直進状態であると判断され、且つ、車輪2の接地荷重が所定の接地荷重以上であると判断される場合には、車輪2のキャンバ角が第2キャンバ角に調整され、車輪2へのネガティブキャンバの付与が解除されるので、タイヤの偏摩耗を抑制することができる。よって、直進安定性の確保とタイヤの偏摩耗の抑制との両立を図ることができる。   Further, according to the fifth embodiment, when it is determined that the traveling state of the vehicle 1 is a predetermined straight traveling state, the camber angles of the rear wheels 2RL and 2RR are adjusted to the first camber angle, and the rear wheel 2RL is adjusted. , 2RR is provided with a negative camber, the lateral rigidity of the wheel 2 can be used to ensure the straight running stability of the vehicle 1. When it is determined that the traveling state of the vehicle 1 is a predetermined straight traveling state and the ground load of the wheel 2 is determined to be equal to or greater than the predetermined ground load, the camber angle of the wheel 2 is the second camber. Since the adjustment to the corner and the application of the negative camber to the wheel 2 are released, uneven wear of the tire can be suppressed. Therefore, it is possible to achieve both of ensuring straight running stability and suppressing uneven wear of the tire.

なお、図7に示すフローチャート(バッテリ低下判断処理)において、請求項1記載のバッテリ情報取得手段としてはS42,S43,S47の処理が、バッテリ状態判断手段としてはS46,S49の処理がそれぞれ該当する。図18に示すフローチャート(状態量判断処理)において、請求項1記載の状態量取得手段としてはS111,S112及びS113の処理が該当する。図15に示すフローチャート(キャンバ制御処理)において、請求項1記載の状態量判断手段としてはS91の処理が該当する。図18に示すフローチャート(状態量判断処理)及び図15に示すフローチャート(キャンバ制御処理)において、請求項1記載の通常状態調整手段としてはS115の処理を経由して走行状態フラグ73cがオンされ(S116)、S91の処理を経由してキャンバ角が調整されるS93の処理が該当し、バッテリ低下状態調整手段としてはS118の処理を経由して走行状態フラグ73cがオンされ(S116)、S91の処理を経由してキャンバ角が調整されるS93の処理がそれぞれ該当する。   In the flowchart shown in FIG. 7 (battery decrease determination process), the battery information acquisition unit according to claim 1 corresponds to the processes of S42, S43, and S47, and the battery state determination unit corresponds to the processes of S46 and S49. . In the flowchart (state quantity determination process) shown in FIG. 18, the process of S111, S112, and S113 corresponds to the state quantity acquisition unit according to the first aspect. In the flowchart (camber control process) shown in FIG. 15, the state quantity determination means according to claim 1 corresponds to the process of S91. In the flowchart shown in FIG. 18 (state quantity determination process) and the flowchart shown in FIG. 15 (camber control process), the running state flag 73c is turned on via the process of S115 as the normal state adjusting means according to claim 1 ( S116), the process of S93 in which the camber angle is adjusted via the process of S91 corresponds, and the running state flag 73c is turned on via the process of S118 as the battery low state adjusting means (S116). The processing of S93 in which the camber angle is adjusted via the processing corresponds to the processing.

以上、実施の形態に基づき本発明を説明したが、本発明は上記実施の形態に何ら限定されるものではなく、本発明の趣旨を逸脱しない範囲内で種々の改良変形が可能であることは容易に推察できるものである。   The present invention has been described above based on the embodiments. However, the present invention is not limited to the above embodiments, and various improvements and modifications can be made without departing from the spirit of the present invention. It can be easily guessed.

上記各実施の形態で挙げた数値は一例であり、他の数値を採用することは当然可能である。例えば、上記各実施の形態で説明した第1キャンバ角および第2キャンバ角の値は任意に設定することができる。   The numerical values given in the above embodiments are merely examples, and other numerical values can naturally be adopted. For example, the values of the first camber angle and the second camber angle described in the above embodiments can be set arbitrarily.

上記各実施の形態では、アクセルペダル61、ブレーキペダル62及びステアリング63の操作量に基づいて、車両1,201の状態量が所定の条件を満たすか否かを判断する場合を説明したが、必ずしもこれに限られるものではなく、各ペダル61,62及びステアリング63の操作量に代えて、他の状態量に基づいて車両1,201の状態量が所定の条件を満たすか否かを判断することは当然可能である。他の状態量としては、例えば、各ペダル61,62及びステアリング63の操作速度や操作加速度のように、運転者により操作される操作部材の状態を示すものでも良く、或いは、車両1,201自体の状態を示すものでも良い。車両1,201自体の状態を示すものとしては、車両1,201の前後G、横G、ヨーレート、ロール角などが例示される。「車両の状態量」とは、以上説明したように、車両1,201の前後方向加速度や横方向加速度のように車両自体の状態を示すものに限られず、運転者により操作される操作部材の状態を示すもの、例えば、アクセルペダル61やブレーキペダル62の踏み込み量、ステアリング63の操作量などでも良い。   In each of the above embodiments, a case has been described in which it is determined whether or not the state quantities of the vehicles 1 and 201 satisfy a predetermined condition based on the operation amounts of the accelerator pedal 61, the brake pedal 62, and the steering 63. The present invention is not limited to this, and it is determined whether or not the state quantities of the vehicles 1 and 201 satisfy a predetermined condition based on other state quantities instead of the operation quantities of the pedals 61 and 62 and the steering 63. Is of course possible. As another state quantity, for example, it may indicate the state of the operation member operated by the driver, such as the operation speed or the operation acceleration of each pedal 61, 62 and the steering 63, or the vehicle 1,201 itself. It may indicate the state of Examples of the state of the vehicle 1,201 itself include the front and rear G, the lateral G, the yaw rate, and the roll angle of the vehicle 1,201. As described above, the “vehicle state quantity” is not limited to the state of the vehicle itself such as the longitudinal acceleration and lateral acceleration of the vehicles 1, 201, but the operating member operated by the driver. For example, an indication of the state, for example, the depression amount of the accelerator pedal 61 or the brake pedal 62, the operation amount of the steering 63, or the like may be used.

上記各実施の形態では、車両1,201の走行速度およびステアリング63の操作量に基づいて、車両1,201の状態量が所定の直進状態を示す条件を満たすか否かを判断する場合を説明したが、必ずしもこれに限られるものではなく、ステアリング63の操作量のみに基づいて、車両1,201の状態量が所定の直進状態を示す条件を満たすか否かを判断しても良い。また、ステアリング63の操作量に代えて、ステアリング63の操作速度や操作加速度のように、ステアリング63の操作状態に基づいて、車両1,201の状態量が所定の直進状態を示す条件を満たすか否かを判断しても良く、或いは、車両1,201の横G、ヨーレートなどのように、車両1,201自体の状態量に基づいて、車両1,201の状態量が所定の直進状態を示す条件を満たすか否かを判断しても良い。「所定の直進状態」とは、以上説明したように、車両1,201の横方向加速度やヨーレート等が所定値以下である場合、車両1,201の進行方向を左右に転換するために運転者により操作される操作部材(例えば、ステアリング63等)の操作量が所定の操作量以下である場合、車両1,201の現在位置が地図データの高速道路上や幹線道路上など所定の区間において車両1,201が直進すると判断される直線道路上に位置する場合などが例示される。   In each of the above-described embodiments, a case where it is determined whether or not the state quantity of the vehicle 1, 201 satisfies a condition indicating a predetermined straight traveling state based on the traveling speed of the vehicle 1, 201 and the operation amount of the steering 63 is described. However, the present invention is not necessarily limited to this. Based on only the operation amount of the steering 63, it may be determined whether or not the state quantity of the vehicles 1 and 201 satisfies a condition indicating a predetermined straight traveling state. Whether the state quantity of the vehicles 1 and 201 satisfies a condition indicating a predetermined straight traveling state based on the operation state of the steering wheel 63, such as the operation speed and the operation acceleration of the steering wheel 63, instead of the operation amount of the steering wheel 63. Alternatively, the state quantity of the vehicle 1, 201 may be set to a predetermined straight traveling state based on the state quantity of the vehicle 1, 201 itself, such as the lateral G of the vehicle 1, 201, and the yaw rate. It may be determined whether the conditions shown are satisfied. As described above, the “predetermined straight traveling state” means that when the lateral acceleration or yaw rate of the vehicles 1, 201 is less than a predetermined value, the driver changes the traveling direction of the vehicles 1, 201 to the left and right. When the operation amount of the operation member (for example, the steering 63) operated by is less than or equal to a predetermined operation amount, the current position of the vehicles 1 and 201 is a vehicle in a predetermined section such as on a highway or a main road of map data. The case where it is located on the straight road where 1,201 is judged to go straight on is illustrated.

また、車両1,201の走行速度およびステアリング63の操作量に代えて、他の情報に基づいて車両1,201の状態量が所定の直進状態を示す条件を満たすか否かを判断することは当然可能である。他の情報としては、例えば、ナビゲーション装置87により取得される情報であって、車両1,201の現在位置が地図データの高速道路上や幹線道路上など所定の区間において車両1,201が直進すると判断される直線道路上に位置する場合などが例示される。この場合には、直線道路の先にカーブが存在したり右左折を必要とする道路状況において、車両1,201が旋回するたびにキャンバ角調整装置44,244を作動させてしまうことがなく、キャンバ角の頻繁な切り替わりを防止することができる。   It is also possible to determine whether or not the state quantity of the vehicle 1,201 satisfies a condition indicating a predetermined straight traveling state based on other information instead of the traveling speed of the vehicle 1,201 and the operation amount of the steering 63. Of course it is possible. The other information is, for example, information acquired by the navigation device 87, and the current position of the vehicle 1,201 is when the vehicle 1,201 goes straight in a predetermined section such as on a highway or a main road of map data. The case where it is located on the judged straight road etc. is illustrated. In this case, the camber angle adjusting devices 44 and 244 are not operated each time the vehicles 1 and 201 turn in a road situation where there is a curve ahead or a left or right turn is required, It is possible to prevent frequent switching of the camber angle.

上記各実施の形態では、車両1,201の状態量が所定の条件を満たすか否かを判断する状態量判断処理において、アクセルペダル61の操作量、ブレーキペダル62の操作量およびステアリング63の操作量が所定の操作量以上であるか否かを判断するための各操作量の判断基準を、車輪2のキャンバ角が第2キャンバ角の状態で車両1,201が加速、制動または旋回する場合に、車輪2がスリップする恐れがあると判断される限界値とする場合を説明したが、必ずしもこれに限られるものではなく、例えば、単に車両1,201の状態量(例えば、各ペダル61,62の操作量やステアリング63の操作量など)に基づいて設定しても良い。   In each of the above embodiments, in the state amount determination process for determining whether or not the state amounts of the vehicles 1 and 201 satisfy a predetermined condition, the operation amount of the accelerator pedal 61, the operation amount of the brake pedal 62, and the operation of the steering 63 When the vehicle 1, 201 is accelerated, braked or turned with the camber angle of the wheel 2 being the second camber angle, based on the criteria for determining each operation amount for determining whether the amount is equal to or greater than the predetermined operation amount. However, the present invention is not necessarily limited to this. For example, the state quantities of the vehicles 1 and 201 (for example, each pedal 61, 62, the operation amount of the steering 63, etc.).

上記第2実施の形態では、キャンバ制御処理において前輪2FL,2FRにポジティブキャンバを付与すると共に、後輪2RL,2RRにネガティブキャンバを付与する場合について説明したが、必ずしもこれに限られるものではなく、各状態量の大きさや変化量に基づいて、状態量や変化量が小さな場合は後輪2RL,2RRだけにネガティブキャンバを付与し、状態量や変化量が大きな場合は前輪2FL,2FRにネガティブキャンバを付与すると共に、後輪2RL,2RRにネガティブキャンバを付与するようにすることも可能である。また、前輪2FL,2FRの懸架装置40を、後輪2RL,2RRと同様の懸架装置4に代えることで、前輪2FL,2FRにネガティブキャンバを付与するようにすることも可能である。同様に、第3実施の形態、第4実施の形態、第5実施の形態においても、懸架装置を変更することで、前輪2FL,2FRにネガティブキャンバやポジティブキャンバを付与する構成とすることも可能である。   In the second embodiment, the case where the positive camber is applied to the front wheels 2FL and 2FR and the negative camber is applied to the rear wheels 2RL and 2RR in the camber control process has been described, but the present invention is not necessarily limited thereto. Based on the magnitude and change amount of each state quantity, a negative camber is applied only to the rear wheels 2RL and 2RR when the state quantity and change amount are small, and a negative camber is applied to the front wheels 2FL and 2FR when the state quantity and change amount is large. It is also possible to give a negative camber to the rear wheels 2RL and 2RR. Further, by replacing the suspension device 40 of the front wheels 2FL and 2FR with the suspension device 4 similar to the rear wheels 2RL and 2RR, a negative camber can be applied to the front wheels 2FL and 2FR. Similarly, in the third embodiment, the fourth embodiment, and the fifth embodiment, it is also possible to adopt a configuration in which a negative camber or a positive camber is imparted to the front wheels 2FL and 2FR by changing the suspension device. It is.

上記各実施の形態では、車両用制御装置100,200,300,400,500が適用される車両1,201が前輪駆動方式である場合について説明したが、これらに限定されるものでははく、後輪駆動方式の車両や4輪駆動方式の車両に適用することも可能である。   In each of the above-described embodiments, the case where the vehicle 1,201 to which the vehicle control devices 100, 200, 300, 400, 500 are applied is the front wheel drive system, but is not limited thereto. The present invention can also be applied to a rear-wheel drive vehicle or a four-wheel drive vehicle.

上記各実施の形態では、車輪2のキャンバ角は、キャンバ角調整装置44,244により第1キャンバ角または第2キャンバ角に調整され、車両1,201が通常走行をするときは、車輪2が第2キャンバ角に設定される場合について説明した。即ち、車両1,201が通常走行をするときのキャンバ角の所定角と、第2キャンバ角とが同一の場合を説明したが、必ずしもこれに限られるものではない。懸架装置およびキャンバ角調整装置が、車輪2のキャンバ角を任意の角度に調整可能な場合は、車輪2のキャンバ角(第2キャンバ角)を第1キャンバ角よりも所定角(車両1,201が通常走行をするときのキャンバ角)に近い角度に調整することが可能である。この場合は、車両1,201が通常走行をするときのキャンバ角の所定角と、第2キャンバ角とは同一でないが、車輪2のキャンバ角が第2キャンバ角に調整されることで、キャンバスラストを減少させて操舵応答性を確保できる。また、車輪2のキャンバ角が第2キャンバ角に調整されることで、タイヤの接地面積を増加させることができ、タイヤの偏磨耗を抑制してタイヤの寿命を向上させることができる。   In each of the above embodiments, the camber angle of the wheel 2 is adjusted to the first camber angle or the second camber angle by the camber angle adjusting devices 44 and 244, and when the vehicle 1,201 travels normally, the wheel 2 The case where the second camber angle is set has been described. That is, although the case where the predetermined camber angle when the vehicles 1 and 201 are traveling normally and the second camber angle are the same has been described, the present invention is not necessarily limited thereto. When the suspension device and the camber angle adjusting device can adjust the camber angle of the wheel 2 to an arbitrary angle, the camber angle (second camber angle) of the wheel 2 is set to a predetermined angle (vehicles 1,201) rather than the first camber angle. Can be adjusted to an angle close to the camber angle during normal travel. In this case, the predetermined camber angle when the vehicles 1 and 201 are traveling normally is not the same as the second camber angle, but the camber angle of the wheel 2 is adjusted to the second camber angle, so that the canvas The steering response can be secured by reducing the last. Further, by adjusting the camber angle of the wheel 2 to the second camber angle, the contact area of the tire can be increased, and uneven wear of the tire can be suppressed and the life of the tire can be improved.

上記各実施の形態では、前輪2FL,2FR又は後輪2RL,2RRの接地荷重と、ROM72に記憶された閾値とを比較する場合について説明したが、必ずしもこれに限られるものではない。例えば、前輪2FL,2FR、後輪2RL,2RR各々の接地荷重を取得してRAM73に記憶しておき、RAM73に記憶されたそれぞれの接地荷重と、走行中の前輪2FL,2FR、後輪2RL,2RR各々の接地荷重とを比較することも可能である。この場合は、その差が所定値以上か否かを判断することにより、車両1,201の乗員数や積載量の変動の影響を受けることなく、車両1,201の走行中の前後荷重の移動を判断できる。   In each of the above embodiments, the case where the ground load of the front wheels 2FL, 2FR or the rear wheels 2RL, 2RR is compared with the threshold value stored in the ROM 72 has been described, but the present invention is not necessarily limited thereto. For example, the contact loads of the front wheels 2FL, 2FR and the rear wheels 2RL, 2RR are acquired and stored in the RAM 73, and the respective contact loads stored in the RAM 73 and the front wheels 2FL, 2FR, 2RL, 2RL, It is also possible to compare the ground load of each of the 2RRs. In this case, it is determined whether or not the difference is greater than or equal to a predetermined value, so that the movement of the front and rear loads during traveling of the vehicles 1 and 201 is not affected by fluctuations in the number of passengers and loading capacity of the vehicles 1 and 201 Can be judged.

上記第1実施の形態では、キャンバ制御処理(図8参照)のS63の処理において、ステアリング63の操作量が所定の操作量以下である場合に、車両1の状態量が所定の直進状態を示す条件を満たすかを判断する場合について説明したが、必ずしもこれに限られるものではなく、他の状態量を用いて判断することも可能である。他の状態量としては、例えば、ステアリング63の操作状態を示すステアリング63の操作速度や操作加速度など、車両1,201自体の状態量である車両1,201の横Gやヨーレートなどが挙げられる。   In the first embodiment, when the operation amount of the steering 63 is equal to or smaller than the predetermined operation amount in the processing of S63 of the camber control process (see FIG. 8), the state amount of the vehicle 1 indicates a predetermined straight traveling state. Although the case of determining whether the condition is satisfied has been described, the present invention is not necessarily limited to this, and it is also possible to determine using other state quantities. Examples of other state quantities include the lateral G and yaw rate of the vehicle 1,201, which are the state quantities of the vehicles 1,201 themselves, such as the operation speed and the operation acceleration of the steering 63 indicating the operation state of the steering 63.

また、上記第1実施の形態では、キャンバ制御処理(図8参照)のS63の処理において、ステアリング63の操作量が所定の操作量以下である場合に、後輪2RL,2RRにネガティブキャンバを付与する場合について説明したが、必ずしもこれに限られるものではなく、車両1の前後荷重が前輪2FL,2FR側に移動したときに、後輪2RL,2RRにネガティブキャンバを付与することも可能である。この場合も、車輪2の接地部位と路面との摩擦を小さくでき、車輪2のキャンバ角を調整するキャンバ角調整装置44の負荷を小さくできるからである。なお、前後荷重の移動は、キャンバ解除処理(図21参照)で説明したS142〜S147の処理と同様にすることで検出が可能である。   In the first embodiment, in the process of S63 of the camber control process (see FIG. 8), when the operation amount of the steering 63 is equal to or less than the predetermined operation amount, a negative camber is assigned to the rear wheels 2RL and 2RR. However, the present invention is not necessarily limited to this, and it is also possible to give a negative camber to the rear wheels 2RL and 2RR when the longitudinal load of the vehicle 1 moves to the front wheels 2FL and 2FR. In this case as well, the friction between the ground contact portion of the wheel 2 and the road surface can be reduced, and the load on the camber angle adjusting device 44 that adjusts the camber angle of the wheel 2 can be reduced. Note that the movement of the longitudinal load can be detected in the same manner as the processes of S142 to S147 described in the camber release process (see FIG. 21).

上記各実施の形態では、閾値A1,A2,B1,B2,S1,S2,θ1〜θ4等の各閾値がROM72,372,472に記憶された固定値である場合について説明したが、必ずしもこれに限られるものではなく、車両1,201の走行速度等に関係付けられて変動する変動値とすることも当然可能である。この場合、CPU71は、ROM72,372,472に記憶されたマップや関数に基づいて各閾値を決定する。   In each of the above embodiments, the case where each threshold value such as the threshold values A1, A2, B1, B2, S1, S2, θ1 to θ4 is a fixed value stored in the ROM 72, 372, 472 has been described. Of course, the value is not limited, and may be a fluctuation value that fluctuates in relation to the traveling speed of the vehicles 1, 201. In this case, the CPU 71 determines each threshold value based on a map or function stored in the ROMs 72, 372, 472.

上記第5実施の形態では、後輪2RL,2RRに付与されたキャンバを解除するため、前後荷重を検出して、後輪2RL,2RR側の前後荷重が減少したと判断される場合にキャンバを解除することを説明した(キャンバ解除処理。図21参照)。しかしながら、これに限られるものではなく、他の形態を採用することも可能である。例えば、前輪2FL,2FRに付与されたキャンバを解除するのであれば、同様に前後荷重の移動を検出して、前輪2FL,2FR側の前後荷重が減少したと判断される場合にキャンバを解除することが可能である。また、車輪2の荷重を各々検出し、荷重が減少した車輪2のキャンバ角をそれぞれ調整することも可能である。各々の車輪2の荷重は、サスストロークセンサ装置83,283や接地荷重センサ装置84,284等を用いて検出できる。さらに、前後荷重の検出に加え、若しくは前後荷重の検出に代えて、旋回時のサイドフォースによる左右荷重を検出し、左右荷重が減少した車輪2のキャンバ角を調整することも可能である。左右荷重は、加速度センサ装置80やヨーレートセンサ装置81等を用いて検出できる。   In the fifth embodiment, in order to release the camber applied to the rear wheels 2RL and 2RR, the front and rear loads are detected, and when it is determined that the front and rear loads on the rear wheels 2RL and 2RR are reduced, the camber is removed. The cancellation has been described (camber cancellation processing, see FIG. 21). However, the present invention is not limited to this, and other forms can be adopted. For example, if the camber applied to the front wheels 2FL and 2FR is to be released, the movement of the front and rear load is similarly detected, and the camber is released when it is determined that the front and rear load on the front wheels 2FL and 2FR has decreased. It is possible. It is also possible to detect the load on each wheel 2 and adjust the camber angle of the wheel 2 on which the load has been reduced. The load of each wheel 2 can be detected using the suspension stroke sensor devices 83 and 283, the ground load sensor devices 84 and 284, and the like. Further, in addition to detecting the longitudinal load, or instead of detecting the longitudinal load, it is also possible to detect the lateral load due to the side force during turning and adjust the camber angle of the wheel 2 in which the lateral load is reduced. The lateral load can be detected using the acceleration sensor device 80, the yaw rate sensor device 81, and the like.

上記各実施の形態では、バッテリ低下判断処理(図7参照)のS47及びS48の処理において、負荷電圧および負荷電流を取得して残存容量を算出する場合について説明したが、必ずしもこれに限られるものではなく、他の方法により残存容量を算出することも可能である。他の方法としては、例えば、負荷電圧および負荷電流に加えバッテリの温度を使って温度補正を行う方法、負荷電圧および負荷電流に加えそれらの相関係数を考慮する方法、電流積算によって残存容量を算出する方法が挙げられる。   In each of the above embodiments, the case where the load voltage and the load current are acquired and the remaining capacity is calculated in the processes of S47 and S48 of the battery decrease determination process (see FIG. 7) is described. Instead, the remaining capacity can be calculated by other methods. Other methods include, for example, a method of performing temperature correction using the battery voltage in addition to the load voltage and load current, a method of considering the correlation coefficient in addition to the load voltage and load current, and the remaining capacity by calculating the current. The method of calculating is mentioned.

なお、上記各実施の形態の内の一部を、上記各実施の形態の内の他の実施の形態に適用することは当然可能である。また、上記各実施の形態の内の一の形態における変形例を、上記各実施の形態の内の他の実施の形態に適用することも当然可能である。この場合、各実施の形態における複数の部分や複数の変形例を組み合わせることは当然可能である。   Note that it is naturally possible to apply a part of each of the above embodiments to other embodiments of the above embodiments. In addition, it is naturally possible to apply a modification of one of the above embodiments to another embodiment of the above embodiments. In this case, it is naturally possible to combine a plurality of parts and a plurality of modifications in each embodiment.

以下に本発明の変形例Aを示す。特許文献1Aには、車両が所定の速度以上で走行するときにネガティブキャンバを車輪に付与することで、車両の走行安定性を向上させる技術が開示されている。特許文献1A:特開昭60−193781号公報。   Modification A of the present invention is shown below. Patent Document 1A discloses a technique for improving traveling stability of a vehicle by applying a negative camber to a wheel when the vehicle travels at a predetermined speed or higher. Patent Document 1A: Japanese Patent Application Laid-Open No. 60-193781.

しかしながら、上述した特許文献1Aに開示される技術では、車両が所定の速度以上になると車輪にネガティブキャンバが付与され、所定の速度未満になると車輪へのネガティブキャンバの付与が解除されるので、加速や減速を繰り返して車両の速度が増減すると、ネガティブキャンバの付与と解除とが繰り返される。車輪へのネガティブキャンバの付与および解除は、バッテリから供給される電力でキャンバ角調整装置が駆動されて行われるので、ネガティブキャンバの付与と解除とが繰り返されると電力消費量が増加する。バッテリが充電不足の場合は、電力消費量が増加するとバッテリの残存容量がさらに低下するという問題点があった。また、バッテリが劣化している場合は、ネガティブキャンバの付与と解除とが繰り返されるとバッテリの負荷が増加してバッテリの劣化が加速されるという問題点があった。   However, in the technology disclosed in Patent Document 1A described above, since the negative camber is applied to the wheel when the vehicle exceeds a predetermined speed, and the negative camber is applied to the wheel when the vehicle is less than the predetermined speed, acceleration is performed. When the vehicle speed is increased or decreased by repeating or decelerating, the negative camber is repeatedly applied and released. The application and release of the negative camber to the wheel is performed by driving the camber angle adjusting device with the power supplied from the battery. Therefore, the power consumption increases when the application and release of the negative camber are repeated. When the battery is insufficiently charged, there is a problem that the remaining capacity of the battery further decreases as the power consumption increases. In addition, when the battery is deteriorated, there is a problem that when the negative camber is repeatedly applied and released, the load on the battery increases and the deterioration of the battery is accelerated.

さらに、バッテリの充電不足やバッテリが劣化している場合は、バッテリがキャンバ角調整装置に供給する電圧や電流が不安定になるため、キャンバ角調整装置の動作が不安定になり、キャンバ角を調整するタイミングが遅れるおそれがあった。   Furthermore, when the battery is insufficiently charged or the battery has deteriorated, the voltage and current supplied to the camber angle adjustment device by the battery become unstable, so the operation of the camber angle adjustment device becomes unstable and the camber angle is reduced. There was a possibility that the adjustment timing would be delayed.

本発明の変形例Aは、上述した問題点を解決するためになされたものであり、バッテリの残存容量の低下やバッテリの劣化を抑制すると共に、車両の走行安定性を確保できる車両用制御装置を提供することを目的としている。   Modification A of the present invention is made to solve the above-described problems, and controls the vehicle for suppressing the decrease in the remaining capacity of the battery and the deterioration of the battery and ensuring the running stability of the vehicle. The purpose is to provide.

車体と、その車体を支持する前輪および後輪と、それら前輪および後輪の少なくとも一つの車輪のキャンバ角を各々調整するキャンバ角調整装置と、そのキャンバ角調整装置に電力を供給するバッテリと、を備えた車両に用いられる車両用制御装置であって、前記キャンバ角調整装置を駆動させて前記車輪のキャンバ角を絶対値が大きくなるように調整するキャンバ角調整手段と、前記バッテリの情報を取得するバッテリ情報取得手段と、そのバッテリ情報取得手段により取得された情報に基づいて前記バッテリが充電不足であるか又は劣化しているかを判断するバッテリ状態判断手段と、前記キャンバ角調整手段により前記キャンバ角調整装置が駆動され前記車輪のキャンバ角が絶対値が大きくなるように調整されているかを判断するキャンバ判断手段と、そのキャンバ判断手段により前記車輪のキャンバ角が絶対値が大きくなるように調整されていると判断され、且つ、前記バッテリ状態判断手段により前記バッテリが充電不足である又は劣化していると判断される場合に、前記車輪のキャンバ角を維持するキャンバ維持手段と、を備えていることを特徴とする車両用制御装置A1。   A vehicle body, a front wheel and a rear wheel that support the vehicle body, a camber angle adjusting device that adjusts a camber angle of at least one of the front and rear wheels, and a battery that supplies power to the camber angle adjusting device, A camber angle adjusting means for driving the camber angle adjusting device to adjust the camber angle of the wheel so that the absolute value is increased, and information on the battery. The battery information acquisition means to acquire, the battery state determination means to determine whether the battery is undercharged or deteriorated based on the information acquired by the battery information acquisition means, and the camber angle adjustment means to A camber angle adjustment device is driven to determine whether the camber angle of the wheel has been adjusted to increase the absolute value. It is determined that the camber angle of the wheel is adjusted so as to increase the absolute value by the determination unit and the camber determination unit, and the battery is insufficient or deteriorated by the battery state determination unit. And a camber maintaining means for maintaining the camber angle of the wheel when it is determined that the vehicle control device A1 is present.

車両用制御装置A1によれば、バッテリが供給する電力によりキャンバ角調整装置が駆動され車輪のキャンバ角が調整される車両において、バッテリ情報取得手段によりバッテリの情報が取得され、取得された情報に基づいてバッテリ状態判断手段によりバッテリが充電不足であるか又は劣化しているか判断される。一方、キャンバ角調整手段によりキャンバ角調整装置が駆動されて、車輪のキャンバ角が絶対値が大きくなるように調整されているかキャンバ判断手段により判断される。判断の結果、車輪のキャンバ角が絶対値が大きくなるように調整され、且つ、バッテリが充電不足である又は劣化している場合に、キャンバ維持手段により車輪のキャンバ角が維持される。これにより、バッテリが充電不足である又は劣化している場合は、キャンバ角の調整が繰り返されることを防止して電力消費量を抑制できる。よって、バッテリの残存容量の低下やバッテリの劣化を抑制できる効果がある。   According to the vehicle control device A1, in the vehicle in which the camber angle adjusting device is driven by the power supplied by the battery and the camber angle of the wheel is adjusted, the battery information is acquired by the battery information acquisition means, and the acquired information is converted into the acquired information. Based on this, the battery state determination means determines whether the battery is insufficiently charged or deteriorated. On the other hand, the camber angle adjusting device is driven by the camber angle adjusting means, and it is determined by the camber determining means whether the camber angle of the wheel has been adjusted to increase the absolute value. As a result of the determination, the camber angle of the wheel is adjusted so as to increase the absolute value, and the camber angle of the wheel is maintained by the camber maintaining means when the battery is insufficiently charged or deteriorated. Thereby, when the battery is insufficiently charged or deteriorated, the adjustment of the camber angle can be prevented and the power consumption can be suppressed. Therefore, there is an effect that a decrease in the remaining capacity of the battery and deterioration of the battery can be suppressed.

さらに、バッテリの充電不足やバッテリが劣化している場合は、車輪のキャンバ角が維持されるので、キャンバ角を調整するタイミングが遅れるということがなく、車両の走行安定性を確保できる効果がある。   Furthermore, when the battery is insufficiently charged or when the battery is deteriorated, the camber angle of the wheel is maintained, so that the timing for adjusting the camber angle is not delayed, and the running stability of the vehicle can be ensured. .

車両用制御装置A1において、前記車両の状態量を取得する状態量取得手段と、その状態量取得手段により取得された前記車両の状態量が所定の直進状態を示す条件を満たすかを判断する直進状態判断手段と、を備え、前記キャンバ角調整手段は、前記直進状態判断手段により前記車両の状態量が所定の直進状態を示す条件を満たすと判断され、且つ、前記バッテリ状態判断手段により前記バッテリが充電不足である又は劣化していると判断される場合に、前記キャンバ角調整装置により前記車輪のキャンバ角を絶対値が大きくなるように調整することを特徴とする車両用制御装置A2。   In the vehicle control device A1, a straight running for determining whether or not the state quantity obtaining means for obtaining the state quantity of the vehicle and whether the state quantity of the vehicle obtained by the state quantity obtaining means satisfies a condition indicating a predetermined straight running state State determining means, wherein the camber angle adjusting means is determined by the straight traveling state determining means that the state quantity of the vehicle satisfies a condition indicating a predetermined straight traveling state, and the battery state determining means has the battery When the vehicle is determined to be insufficiently charged or deteriorated, the camber angle adjusting device adjusts the camber angle of the wheel so that the absolute value becomes large.

車両用制御装置A2によれば、状態量取得手段により車両の状態量が取得され、その車両の状態量が直進状態判断手段により所定の直進状態を示す条件を満たすか判断される。判断の結果、車両の状態量が所定の直進状態を示す条件を満たし、且つ、バッテリが充電不足である又は劣化している場合に、キャンバ角調整手段によってキャンバ角調整装置が駆動され、車輪のキャンバ角が絶対値が大きくなるように調整される。   According to the vehicle control device A2, a state quantity of the vehicle is acquired by the state quantity acquisition unit, and it is determined whether the state quantity of the vehicle satisfies a condition indicating a predetermined straight traveling state by the straight traveling state determination unit. As a result of the determination, the camber angle adjusting device is driven by the camber angle adjusting means when the vehicle state quantity satisfies a condition indicating a predetermined straight traveling state and the battery is insufficiently charged or deteriorated, and the wheel The camber angle is adjusted to increase the absolute value.

ところで、車輪のキャンバ角は、キャンバ角調整装置により路面に対する車輪の接地部位を車両の進行方向とは略垂直な方向(横方向)にずらすことで、車輪が傾けられて調整される。このとき車輪の接地部位と路面との間に摩擦が生じる。キャンバ角調整装置は、この摩擦に抗する力を車輪に付与することにより車輪のキャンバ角を調整する。   By the way, the camber angle of the wheel is adjusted by tilting the wheel by shifting the ground contact portion of the wheel with respect to the road surface in a direction (lateral direction) substantially perpendicular to the traveling direction of the vehicle by the camber angle adjusting device. At this time, friction occurs between the ground contact portion of the wheel and the road surface. The camber angle adjusting device adjusts the camber angle of the wheel by applying a force against the friction to the wheel.

ここで、車両が旋回状態にあるときは、車両が直進状態にあるときと比較して、車両の進行方向とは垂直な方向の加速度(横加速度)が大きくなり、旋回外輪の接地荷重が増加するため、車輪(旋回外輪)の接地部位と路面との間の摩擦も大きくなり、キャンバ角調整装置の負荷が大きくなる。これに対し、車両が直進状態にあるときは、車輪のキャンバ角を調整するキャンバ角調整装置の負荷を、車両が旋回状態にあるときと比較して小さくできる。   Here, when the vehicle is in a turning state, the acceleration in the direction perpendicular to the traveling direction of the vehicle (lateral acceleration) is larger than when the vehicle is in a straight traveling state, and the ground load on the turning outer wheel is increased. Therefore, the friction between the ground contact portion of the wheel (the turning outer wheel) and the road surface also increases, and the load on the camber angle adjusting device increases. On the other hand, when the vehicle is in a straight traveling state, the load of the camber angle adjusting device that adjusts the camber angle of the wheel can be reduced compared to when the vehicle is in a turning state.

以上のように車両用制御装置A2によれば、車両の状態量が所定の直進状態を示す条件を満たすと共に、バッテリが充電不足である又は劣化していると判断される場合に、キャンバ角調整手段によってキャンバ角調整装置が駆動され、車輪のキャンバ角を絶対値が大きくなるように調整するので、キャンバ角調整装置の負荷を小さくすることができ電力消費量を抑制できる。よって、車両用制御装置A1の効果に加え、バッテリの残存容量の低下やバッテリの劣化を抑制できる効果がある。   As described above, according to the vehicle control device A2, the camber angle adjustment is performed when it is determined that the state quantity of the vehicle satisfies the condition indicating the predetermined straight traveling state and the battery is insufficiently charged or deteriorated. The camber angle adjusting device is driven by the means and the camber angle of the wheel is adjusted so as to increase the absolute value. Therefore, the load of the camber angle adjusting device can be reduced and the power consumption can be suppressed. Therefore, in addition to the effect of the vehicle control device A1, there is an effect of suppressing a decrease in the remaining capacity of the battery and a deterioration of the battery.

車両用制御装置A1又はA2において、前記キャンバ角調整装置は、後輪のキャンバ角を調整するものであり、前記キャンバ角調整手段は、前記キャンバ角調整装置により前記後輪のキャンバ角を調整して、前記後輪にネガティブキャンバを付与することを特徴とする車両用制御装置A3。   In the vehicle control device A1 or A2, the camber angle adjusting device adjusts the camber angle of the rear wheel, and the camber angle adjusting means adjusts the camber angle of the rear wheel by the camber angle adjusting device. The vehicle control device A3 is characterized in that a negative camber is applied to the rear wheel.

車両用制御装置A3によれば、キャンバ角調整手段によって駆動されるキャンバ角調整装置により後輪のキャンバ角が調整され、後輪にネガティブキャンバが付与される。後輪にネガティブキャンバが付与されることにより、後輪に発生するキャンバスラストを利用して車両の特性を安定したアンダーステア傾向にすることができるので、車両用制御装置A1又はA2の効果に加え、車両の直進安定性や限界走行性能を向上させる効果がある。   According to the vehicle control device A3, the camber angle adjusting device driven by the camber angle adjusting means adjusts the camber angle of the rear wheel, and gives a negative camber to the rear wheel. By giving a negative camber to the rear wheel, the canvas last generated on the rear wheel can be used to make the vehicle characteristics have a stable understeer tendency, so in addition to the effects of the vehicle control device A1 or A2, This has the effect of improving the straight running stability and limit running performance of the vehicle.

なお、図4に示すフローチャート(状態量判断処理)において、車両用制御装置A2記載の状態量取得手段としてはS1〜S3の処理が該当する。図7に示すフローチャート(バッテリ低下判断処理)において、車両用制御装置A1記載のバッテリ情報取得手段としてはS42,S43,S47の処理が、バッテリ状態判断手段としてはS46,S49の処理がそれぞれ該当する。図8に示すフローチャート(キャンバ制御処理)において、車両用制御装置A1記載のキャンバ角調整手段としてはS64,S68,S72の処理が、キャンバ判断手段としてはS62の処理が、キャンバ維持手段としてはS62の処理においてキャンバフラグがオンである(S62:Yes)と判断される場合の処理が、車両用制御装置A2記載の直進状態判断手段としてはS63の処理がそれぞれ該当する。   In the flowchart shown in FIG. 4 (state quantity determination process), the process of S1 to S3 corresponds to the state quantity acquisition unit described in the vehicle control device A2. In the flowchart (battery decrease determination process) shown in FIG. 7, the battery information acquisition means described in the vehicle control device A1 corresponds to the processes of S42, S43, and S47, and the battery state determination means corresponds to the processes of S46 and S49. . In the flowchart (camber control process) shown in FIG. 8, the processes of S64, S68, and S72 are performed as the camber angle adjusting means described in the vehicle control device A1, the process of S62 is performed as the camber determining means, and S62 is performed as the camber maintaining means. The process when the camber flag is determined to be on (S62: Yes) in the above process corresponds to the process of S63 as the straight traveling state determination means described in the vehicle control device A2.

以下に、本発明の変形例Bを示す。ここで、特許文献1Bには、車両が所定の速度以上で走行するときにネガティブキャンバを車輪に付与することで、車両の走行安定性を向上させる技術が開示されている。特許文献1B:特開昭60−193781号公報。   Below, the modification B of this invention is shown. Here, Patent Document 1B discloses a technique for improving the running stability of a vehicle by applying a negative camber to a wheel when the vehicle runs at a predetermined speed or higher. Patent Document 1B: Japanese Patent Laid-Open No. 60-193781.

しかしながら、上述した特許文献1Bに開示される技術では、車両が所定の速度以上になると車輪にネガティブキャンバが付与され、所定の速度未満になると車輪へのネガティブキャンバの付与が解除されるので、加速や減速を繰り返して車両の速度が増減すると、ネガティブキャンバの付与と解除とが繰り返される。車輪へのネガティブキャンバの付与および解除は、バッテリから供給される電力でキャンバ角調整装置が駆動されて行われるので、ネガティブキャンバの付与と解除とが繰り返されると電力消費量が増加する。バッテリの充電不足の場合は、電力消費量が増加するとバッテリの残存容量が低下するという問題点があった。また、バッテリが劣化している場合は、ネガティブキャンバの付与と解除とが繰り返されるとバッテリの負荷が増加してバッテリの劣化が加速されるという問題点があった。   However, in the technique disclosed in Patent Document 1B described above, since the negative camber is applied to the wheel when the vehicle exceeds a predetermined speed, and the negative camber is applied to the wheel when the vehicle is less than the predetermined speed, acceleration is performed. When the vehicle speed is increased or decreased by repeating or decelerating, the negative camber is repeatedly applied and released. The application and release of the negative camber to the wheel is performed by driving the camber angle adjusting device with the power supplied from the battery. Therefore, the power consumption increases when the application and release of the negative camber are repeated. When the battery is insufficiently charged, there is a problem that the remaining capacity of the battery decreases as the power consumption increases. In addition, when the battery is deteriorated, there is a problem that when the negative camber is repeatedly applied and released, the load on the battery increases and the deterioration of the battery is accelerated.

本発明の変形例Bは、上述した問題点を解決するためになされたものであり、車両の走行安定性を確保すると共に、バッテリの残存容量の低下やバッテリの劣化を抑制する車両用制御装置を提供することを目的としている。   The modified example B of the present invention is made to solve the above-described problems, and ensures a vehicle running stability and suppresses a decrease in remaining battery capacity and battery deterioration. The purpose is to provide.

車体と、その車体を支持する前輪および後輪と、それら前輪および後輪の少なくとも一つの車輪のキャンバ角を各々調整するキャンバ角調整装置と、そのキャンバ角調整装置に電力を供給するバッテリと、を備えた車両に用いられる車両用制御装置であって、前記車両の走行状態を取得する走行状態取得手段と、その走行状態取得手段により取得された車両の走行状態が所定の直進状態であるかを判断する走行状態判断手段と、前記バッテリの情報を取得するバッテリ情報取得手段と、そのバッテリ情報取得手段により取得された情報に基づいて前記バッテリが充電不足であるか又は劣化しているかを判断するバッテリ状態判断手段と、そのバッテリ状態判断手段により前記バッテリが充電不足でない又は劣化していないと判断され、且つ、前記走行状態判断手段により前記車両の走行状態が所定の直進状態であると判断される場合に、前記キャンバ角調整装置により前記車輪のキャンバ角を絶対値が大きくなるように調整する通常モード調整手段と、前記バッテリ状態判断手段により前記バッテリが充電不足である又は劣化していると判断され、且つ、前記走行状態判断手段により前記車両の走行状態が所定の直進状態であると判断される場合に、前記通常モード調整手段により前記車輪のキャンバ角が調整される場合よりも遅いタイミングで、前記キャンバ角調整装置により前記車輪のキャンバ角を絶対値が大きくなるように調整するバッテリ低下モード調整手段と、を備えていることを特徴とする車両用制御装置B1。   A vehicle body, a front wheel and a rear wheel that support the vehicle body, a camber angle adjusting device that adjusts a camber angle of at least one of the front and rear wheels, and a battery that supplies power to the camber angle adjusting device, A vehicle control device for use in a vehicle comprising: a traveling state acquisition unit that acquires a traveling state of the vehicle; and whether the traveling state of the vehicle acquired by the traveling state acquisition unit is a predetermined straight traveling state Based on the information acquired by the battery state acquisition means, the battery information acquisition means for acquiring the battery information, and the information acquired by the battery information acquisition means, it is determined whether the battery is insufficiently charged or deteriorated Battery state determining means for determining that the battery is not insufficiently charged or deteriorated by the battery state determining means, and The normal mode adjusting means for adjusting the camber angle of the wheel so that the absolute value is increased by the camber angle adjusting device when the running state of the vehicle is determined to be a predetermined straight traveling state by the running state determining means. And when the battery state determining means determines that the battery is insufficiently charged or deteriorated, and the traveling state determining means determines that the traveling state of the vehicle is a predetermined straight traveling state. Battery lowering mode adjusting means for adjusting the camber angle of the wheel by the camber angle adjusting device so as to increase the absolute value at a later timing than when the camber angle of the wheel is adjusted by the normal mode adjusting means; And a vehicle control device B1.

車両用制御装置B1によれば、バッテリが供給する電力によりキャンバ角調整装置が駆動され車輪のキャンバ角が調整される車両において、バッテリ情報取得手段によりバッテリの情報が取得され、取得された情報に基づいてバッテリ状態判断手段によりバッテリが充電不足であるか又は劣化しているか判断される。一方、走行状態取得手段により車両の走行状態が取得され、取得された車両の走行状態が走行状態判断手段により所定の直進状態であるか判断される。判断の結果、バッテリが充電不足でない又は劣化しておらず、且つ、車両の走行状態が所定の直進状態である場合に、通常モード調整手段によってキャンバ角調整装置が駆動され、車輪のキャンバ角が絶対値が大きくなるように調整される。   According to the vehicle control device B1, in the vehicle in which the camber angle adjusting device is driven by the power supplied by the battery and the camber angle of the wheel is adjusted, the battery information is acquired by the battery information acquisition means, and the acquired information is converted into the acquired information. Based on this, the battery state determination means determines whether the battery is insufficiently charged or deteriorated. On the other hand, the traveling state of the vehicle is acquired by the traveling state acquisition unit, and it is determined whether the acquired traveling state of the vehicle is a predetermined straight traveling state by the traveling state determination unit. As a result of the determination, when the battery is not insufficiently charged or deteriorated and the traveling state of the vehicle is a predetermined straight traveling state, the camber angle adjusting device is driven by the normal mode adjusting means, and the camber angle of the wheel is The absolute value is adjusted to be large.

これに対し、バッテリが充電不足である又は劣化しており、且つ、車両の走行状態が所定の直進状態である場合に、通常モード調整手段により車輪のキャンバ角が調整される場合よりも遅いタイミングで、バッテリ低下モード調整手段によってキャンバ角調整装置が駆動され、車輪のキャンバ角が絶対値が大きくなるように調整される。   On the other hand, when the battery is undercharged or deteriorated and the vehicle running state is a predetermined straight running state, the timing is slower than when the camber angle of the wheel is adjusted by the normal mode adjusting means. Thus, the camber angle adjusting device is driven by the battery lowering mode adjusting means, and the camber angle of the wheel is adjusted so that the absolute value becomes large.

従って、車両の走行状態が所定の直進状態であると判断される場合に、車輪のキャンバ角が絶対値が大きくなるように調整されるので、車両の走行安定性を確保できる。さらに、バッテリが充電不足である又は劣化していると判断される場合は、通常モード調整手段により車輪のキャンバ角が調整される場合よりも遅いタイミングで、バッテリ低下モード調整手段により車輪のキャンバ角が絶対値が大きくなるように調整されるので、キャンバ角調整装置の駆動タイミングを遅らせることで、キャンバ角調整装置の駆動頻度を減らして電力消費量を抑制できる。よって、車両の走行安定性を確保すると共に、バッテリの残存容量の低下やバッテリの劣化を抑制できる効果がある。   Therefore, when the traveling state of the vehicle is determined to be a predetermined straight traveling state, the camber angle of the wheel is adjusted so that the absolute value becomes large, so that the traveling stability of the vehicle can be ensured. Further, when it is determined that the battery is insufficiently charged or deteriorated, the wheel camber angle is adjusted by the battery lowering mode adjusting means at a later timing than when the wheel camber angle is adjusted by the normal mode adjusting means. Since the absolute value is adjusted, the drive timing of the camber angle adjusting device can be delayed to reduce the drive frequency of the camber angle adjusting device, thereby suppressing the power consumption. Therefore, there is an effect that it is possible to ensure the running stability of the vehicle and to suppress the decrease in the remaining capacity of the battery and the deterioration of the battery.

車両用制御装置B1において、前記走行状態判断手段により前記車両の走行状態が所定の直進状態であると判断される条件は、前記バッテリ状態判断手段により前記バッテリが充電不足でない又は劣化していないと判断される通常モードの場合の条件が、前記バッテリ状態判断手段により前記バッテリが充電不足である又は劣化していると判断されるバッテリ低下モードの場合の条件を満たすための必要条件となるように設定されていることを特徴とする車両用制御装置B2。   In the vehicle control device B1, the condition that the traveling state of the vehicle is determined to be a predetermined straight traveling state by the traveling state determining unit is that the battery is not insufficiently charged or deteriorated by the battery state determining unit. The condition in the normal mode determined is a necessary condition for satisfying the condition in the battery low mode in which the battery state determining unit determines that the battery is insufficiently charged or deteriorated. A vehicle control device B2 that is set.

車両用制御装置B2によれば、走行状態判断手段により車両の走行状態が所定の直進状態であると判断される条件は、バッテリ状態判断手段によりバッテリが充電不足でない又は劣化していないと判断される通常モードの場合の条件が、バッテリ状態判断手段によりバッテリが充電不足である又は劣化していると判断されるバッテリ低下モードの場合の条件を満たすための必要条件となるように設定されている。その結果、バッテリが充電不足でない又は劣化していないと判断される通常モードのときであれば車輪のキャンバ角が調整されるような走行状態であっても、バッテリが充電不足である又は劣化していると判断されるバッテリ低下モードの場合には、車輪のキャンバ角が調整されないように設定することができる。これにより、車両用制御装置B1の効果に加え、バッテリの残存容量の低下やバッテリの劣化の抑制を重視するのか、バッテリの残存容量の低下やバッテリの劣化の抑制と車両の走行安定性の確保とを両立させるのか等、条件設定によって任意に選択することができ、車両設計の自在性を向上させる効果がある。   According to the vehicle control device B2, the condition for determining that the traveling state of the vehicle is the predetermined straight traveling state by the traveling state determining means is determined by the battery state determining means that the battery is not insufficiently charged or deteriorated. The condition in the normal mode is set to be a necessary condition for satisfying the condition in the battery lowering mode in which the battery state determining means determines that the battery is insufficiently charged or deteriorated. . As a result, the battery is undercharged or deteriorated even in a driving state in which the camber angle of the wheel is adjusted in the normal mode where it is determined that the battery is not undercharged or deteriorated. In the case of the battery lowering mode that is determined to be, the camber angle of the wheel can be set not to be adjusted. As a result, in addition to the effects of the vehicle control device B1, whether importance is placed on the reduction of the remaining capacity of the battery and the suppression of the deterioration of the battery, the reduction of the remaining capacity of the battery and the suppression of the deterioration of the battery, and the ensuring of vehicle running stability Can be arbitrarily selected according to the condition setting, such as whether to make the vehicle compatible, and there is an effect of improving the flexibility of vehicle design.

車両用制御装置B1又はB2において、前記キャンバ角調整装置は、後輪のキャンバ角を調整するものであり、前記通常モード調整手段および前記バッテリ低下モード調整手段は、前記キャンバ角調整装置により前記後輪のキャンバ角を調整して、前記後輪にネガティブキャンバを付与することを特徴とする車両用制御装置B3。   In the vehicle control device B1 or B2, the camber angle adjusting device adjusts the camber angle of the rear wheel, and the normal mode adjusting means and the battery lowering mode adjusting means are controlled by the camber angle adjusting device. A vehicle control device B3 that adjusts a camber angle of a wheel to give a negative camber to the rear wheel.

車両用制御装置B3によれば、通常モード調整手段およびバッテリ低下モード調整手段によって駆動されるキャンバ角調整装置により後輪のキャンバ角が調整され、後輪にネガティブキャンバが付与される。後輪にネガティブキャンバが付与されることにより、後輪に発生するキャンバスラストを利用して車両の特性を安定したアンダーステア傾向にすることができるので、車両用制御装置B1又はB2の効果に加え、車両の直進安定性や限界走行性能を向上させる効果がある。   According to the vehicle control apparatus B3, the camber angle of the rear wheel is adjusted by the camber angle adjusting device driven by the normal mode adjusting means and the battery lowering mode adjusting means, and a negative camber is given to the rear wheel. By giving a negative camber to the rear wheel, it is possible to make the vehicle characteristics stable understeer using canvas last generated on the rear wheel, so in addition to the effect of the vehicle control device B1 or B2, This has the effect of improving the straight running stability and limit running performance of the vehicle.

なお、図7に示すフローチャート(バッテリ低下判断処理)において、車両用制御装置B1記載のバッテリ情報取得手段としてはS42,S43,S47の処理が、バッテリ状態判断手段としてはS46,S49の処理がそれぞれ該当する。図14に示すフローチャート(走行状態判断処理)において、車両用制御装置B1記載の走行状態取得手段としてはS81及びS82の処理が該当する。図15に示すフローチャート(キャンバ制御処理)において、車両用制御装置B1記載の走行状態判断手段としてはS95の処理が該当する。図14に示すフローチャート(走行状態判断処理)及び図15に示すフローチャート(キャンバ制御処理)において、車両用制御装置B1記載の通常モード調整手段としてはS84,S85の処理を経由して走行状態フラグ73cがオンされ(S86)、S95の処理を経由してキャンバ角が調整されるS97の処理が該当し、バッテリ低下モード調整手段としてはS88,S89の処理を経由して走行状態フラグ73cがオンされ(S86)、S95の処理を経由してキャンバ角が調整されるS97の処理がそれぞれ該当する。   In the flowchart shown in FIG. 7 (battery decrease determination process), the battery information acquisition means described in the vehicle control device B1 is S42, S43, S47, and the battery status determination means is S46, S49. Applicable. In the flowchart shown in FIG. 14 (traveling state determination processing), the processing of S81 and S82 corresponds to the traveling state acquisition means described in the vehicle control device B1. In the flowchart (camber control process) shown in FIG. 15, the process of S95 corresponds to the traveling state determination means described in the vehicle control device B1. In the flowchart (running state determination process) shown in FIG. 14 and the flowchart (camber control process) shown in FIG. 15, the running mode flag 73c is passed through the processes of S84 and S85 as the normal mode adjusting means described in the vehicle control device B1. Is turned on (S86), and the process of S97 in which the camber angle is adjusted via the process of S95 is applicable, and the running state flag 73c is turned on via the processes of S88 and S89 as the battery reduction mode adjusting means. (S86) and S97 processing in which the camber angle is adjusted through the processing of S95 respectively correspond.

以下に、本発明の変形例Dを示す。ここで、特許文献1Dには、車両が所定の速度以上で走行するときにネガティブキャンバを車輪に付与することで、車両の走行安定性を向上させる技術が開示されている。車輪のキャンバ角は、バッテリから供給される電力でキャンバ角調整装置が駆動され、路面に対する車輪の接地部位を車両の進行方向とは略垂直な方向(横方向)にずらすことで、車輪が傾けられて調整される。このとき車輪の接地部位と路面との間に摩擦が生じる。キャンバ角調整装置は、この摩擦に抗する力を車輪に付与することにより車輪のキャンバ角を調整する。車輪にネガティブキャンバを付与する場合は、車高がわずかに低下するので、車体の位置エネルギの変化により路面と車輪との摩擦が相殺され、キャンバ角調整装置の負荷は軽減される。特許文献1D:特開昭60−193781号公報。   Below, the modification D of this invention is shown. Here, Patent Document 1D discloses a technique for improving running stability of a vehicle by applying a negative camber to a wheel when the vehicle runs at a predetermined speed or higher. The camber angle of the wheel is driven by the power supplied from the battery and the camber angle adjustment device is driven, and the wheel is tilted by shifting the ground contact portion of the wheel with respect to the road surface in a direction (lateral direction) substantially perpendicular to the traveling direction of the vehicle. Adjusted. At this time, friction occurs between the ground contact portion of the wheel and the road surface. The camber angle adjusting device adjusts the camber angle of the wheel by applying a force against the friction to the wheel. When a negative camber is applied to the wheel, the vehicle height slightly decreases, so that the friction between the road surface and the wheel is canceled by the change in the positional energy of the vehicle body, and the load on the camber angle adjusting device is reduced. Patent Document 1D: Japanese Patent Laid-Open No. 60-193781.

しかしながら、上述した特許文献1Dに開示される技術では、車両が所定の速度未満で走行するときに、車輪に付与したネガティブキャンバが解除される。車輪に付与したネガティブキャンバを解除する場合は、重力に抗して車高をわずかに上昇させる必要があり、車輪の接地部位と路面との摩擦が大きくなるため、キャンバ角調整装置の負荷が大きくなる。キャンバ角調整装置の負荷が大きくなると、電力消費量が瞬間的に増加する。バッテリが充電不足の場合は、電力消費量が増加するとバッテリの残存容量が低下するという問題点があった。また、バッテリが劣化している場合は、電力消費量が瞬間的に増加するとバッテリの劣化が加速されるという問題点があった。   However, in the technique disclosed in Patent Document 1D described above, when the vehicle travels below a predetermined speed, the negative camber applied to the wheel is released. When releasing the negative camber applied to the wheel, it is necessary to slightly raise the vehicle height against gravity, and the friction between the ground contact part of the wheel and the road surface increases, so the load on the camber angle adjustment device is large. Become. When the load on the camber angle adjusting device increases, the power consumption increases instantaneously. When the battery is insufficiently charged, there is a problem that the remaining capacity of the battery decreases as the power consumption increases. Further, when the battery is deteriorated, there is a problem that the deterioration of the battery is accelerated when the power consumption increases momentarily.

本発明の変形例Dは、上述した問題点を解決するためになされたものであり、バッテリの残存容量の低下やバッテリの劣化を抑制できる車両用制御装置を提供することを目的としている。   Modification D of the present invention has been made in order to solve the above-described problems, and an object thereof is to provide a vehicle control device that can suppress a decrease in remaining battery capacity and battery deterioration.

車体と、その車体を支持する前輪および後輪と、それら前輪および後輪の少なくとも一つの車輪のキャンバ角を各々調整するキャンバ角調整装置と、そのキャンバ角調整装置に電力を供給するバッテリと、を備えた車両に用いられる車両用制御装置であって、前記バッテリの情報を取得するバッテリ情報取得手段と、そのバッテリ情報取得手段により取得された情報に基づいて前記バッテリが充電不足であるか又は劣化しているかを判断するバッテリ状態判断手段と、前記車両の状態量を取得する状態量取得手段と、その状態量取得手段により取得された車両の状態量が所定の条件を満たすかを判断する状態量判断手段と、その状態量判断手段により前記車両の状態量が所定の条件を満たすと判断される場合に、前記キャンバ角調整装置により前記車輪のキャンバ角を絶対値が大きくなるように調整する第1キャンバ角調整手段と、前記キャンバ角調整装置が設けられた車輪の荷重に関する荷重情報を取得する荷重情報取得手段と、その荷重情報取得手段により取得された荷重情報に基づいて前記車輪の荷重が所定の条件を満たすかを判断する荷重判断手段と、前記状態量判断手段により前記車両の状態量が所定の条件を満たしていないと判断される場合であって、前記荷重判断手段により前記車輪の荷重が所定の条件を満たすと判断され、且つ、前記バッテリ状態判断手段により前記バッテリが充電不足である又は劣化していると判断される場合に、前記車輪のキャンバ角を、前記第1キャンバ角調整手段により前記キャンバ角調整装置を駆動させて調整されるキャンバ角よりも絶対値が小さくなるように、前記キャンバ角調整装置により調整するキャンバ角修正手段と、を備えていることを特徴とする車両用制御装置D1。   A vehicle body, a front wheel and a rear wheel that support the vehicle body, a camber angle adjusting device that adjusts a camber angle of at least one of the front and rear wheels, and a battery that supplies power to the camber angle adjusting device, A battery information acquisition unit that acquires information on the battery, and whether the battery is insufficiently charged based on the information acquired by the battery information acquisition unit, or A battery state determination unit that determines whether the vehicle is deteriorated, a state amount acquisition unit that acquires the state amount of the vehicle, and whether the vehicle state amount acquired by the state amount acquisition unit satisfies a predetermined condition When the state quantity determining means and the state quantity judging means determine that the state quantity of the vehicle satisfies a predetermined condition, the camber angle adjusting device First camber angle adjusting means for adjusting the camber angle of the wheel so as to increase an absolute value, load information acquiring means for acquiring load information relating to the load of the wheel provided with the camber angle adjusting device, and the load information Load determination means for determining whether the load of the wheel satisfies a predetermined condition based on the load information acquired by the acquisition means, and if the state quantity of the vehicle does not satisfy the predetermined condition by the state quantity determination means In this case, it is determined that the load of the wheel satisfies a predetermined condition by the load determination unit, and the battery state determination unit determines that the battery is insufficiently charged or deteriorated. The camber angle of the wheel is more than the camber angle adjusted by driving the camber angle adjusting device by the first camber angle adjusting means. As paired value becomes smaller, the camber angle adjustment and camber angle correction means for adjusting the device, the vehicle control device, characterized in that it comprises a D1.

車両用制御装置D1によれば、バッテリが供給する電力によりキャンバ角調整装置が駆動され車輪のキャンバ角が調整される車両において、状態量取得手段により車両の状態量が取得され、その車両の状態量が状態量判断手段により所定の条件を満たすか判断される。判断の結果、車両の状態量が所定の条件を満たす場合に、第1キャンバ角調整手段によってキャンバ角調整装置が駆動され車輪のキャンバ角が絶対値が大きくなるように調整される。   According to the vehicle control device D1, in the vehicle in which the camber angle adjusting device is driven by the power supplied by the battery and the camber angle of the wheel is adjusted, the state quantity of the vehicle is obtained by the state quantity obtaining means, and the state of the vehicle It is determined whether the amount satisfies a predetermined condition by the state amount determination means. As a result of the determination, when the state quantity of the vehicle satisfies a predetermined condition, the camber angle adjusting device is driven by the first camber angle adjusting means to adjust the camber angle of the wheel so that the absolute value becomes large.

一方、バッテリ情報取得手段によりバッテリの情報が取得され、取得された情報に基づいてバッテリ状態判断手段によりバッテリが充電不足であるか又は劣化しているか判断される。また、荷重情報取得手段によりキャンバ角調整装置が設けられた車輪の荷重に関する荷重情報が取得され、取得された荷重情報に基づいて荷重判断手段により荷重情報が所定の条件を満たすか判断される。   On the other hand, battery information is acquired by the battery information acquisition means, and based on the acquired information, it is determined by the battery state determination means whether the battery is insufficiently charged or deteriorated. Further, load information related to the load of the wheel provided with the camber angle adjusting device is acquired by the load information acquisition means, and it is determined by the load determination means whether the load information satisfies a predetermined condition based on the acquired load information.

以上の判断の結果、車両の状態量が所定の条件を満たしていない場合であって、荷重情報が所定の条件を満たし、且つ、バッテリが充電不足である又は劣化している場合に、その車輪のキャンバ角を、第1キャンバ角調整手段によりキャンバ角調整装置を駆動させて調整されるキャンバ角よりも絶対値が小さくなるように、キャンバ角修正手段によりキャンバ角調整装置が駆動されて調整される。   As a result of the above determination, if the vehicle state quantity does not satisfy the predetermined condition, the load information satisfies the predetermined condition, and the battery is insufficiently charged or deteriorated, the wheel The camber angle adjusting means is driven to adjust the camber angle so that the absolute value becomes smaller than the camber angle adjusted by driving the camber angle adjusting apparatus by the first camber angle adjusting means. The

ここで、車輪のキャンバ角を絶対値が小さくなるように調整するには、重力に抗して車高をわずかに上昇させる必要がある。この場合は、車輪の接地部位と路面との摩擦が大きくなるため、キャンバ角調整装置の負荷が大きくなる。車両用制御装置D1によれば、荷重情報が所定の条件を満たす場合に、その車輪のキャンバ角を絶対値が小さくなるように調整するので、車輪の接地部位と路面との摩擦を小さくできる。これにより、キャンバ角調整装置の瞬間的な負荷を小さくすることができ、電力消費量を抑制できる。よって、バッテリの残存容量の低下やバッテリの劣化を抑制できる効果がある。   Here, in order to adjust the camber angle of the wheel so that the absolute value becomes small, it is necessary to slightly increase the vehicle height against gravity. In this case, since the friction between the ground contact part of the wheel and the road surface increases, the load on the camber angle adjusting device increases. According to the vehicle control device D1, when the load information satisfies a predetermined condition, the camber angle of the wheel is adjusted so that the absolute value becomes small, so that the friction between the ground contact portion of the wheel and the road surface can be reduced. Thereby, the instantaneous load of the camber angle adjusting device can be reduced, and the power consumption can be suppressed. Therefore, there is an effect that a decrease in the remaining capacity of the battery and deterioration of the battery can be suppressed.

車両用制御装置D1において、前記荷重情報取得手段は、前記車両の前後荷重の移動に関する情報を取得する前後荷重情報取得手段を備え、前記荷重判断手段は、前記前後荷重情報取得手段により取得された前後荷重が所定の条件を満たすかを判断する前後荷重判断手段を備え、前記キャンバ角修正手段は、前記状態量判断手段により前記車両の状態量が所定の条件を満たしていないと判断される場合であって、前記前後荷重判断手段により前後荷重が所定の条件を満たすと判断され、且つ、前記バッテリ状態判断手段により前記バッテリが充電不足である又は劣化していると判断される場合に、前記前後荷重が減少する側に位置する前輪または後輪のキャンバ角を、前記第1キャンバ角調整手段により前記キャンバ角調整装置を駆動させて調整されるキャンバ角よりも絶対値が小さくなるように、前記キャンバ角調整装置により調整することを特徴とする車両用制御装置D2。   In the vehicle control device D1, the load information acquisition means includes front / rear load information acquisition means for acquiring information related to movement of the front / rear load of the vehicle, and the load determination means is acquired by the front / rear load information acquisition means. A longitudinal load determination unit that determines whether the longitudinal load satisfies a predetermined condition, and the camber angle correction unit determines that the state quantity of the vehicle does not satisfy a predetermined condition by the state quantity determination unit And when the front-rear load determining means determines that the front-rear load satisfies a predetermined condition and the battery state determining means determines that the battery is insufficiently charged or deteriorated, By driving the camber angle adjusting device by the first camber angle adjusting means, the camber angle of the front wheel or the rear wheel located on the side where the longitudinal load decreases is driven. As absolute value than the camber angle to be integer decreases, the vehicle control system and adjusting the camber angle adjustment device D2.

車両用制御装置D2によれば、前後荷重情報取得手段により車両の前後荷重の移動に関する情報が取得され、取得された前後荷重が所定の条件を満たすか前後荷重判断手段により判断される。その結果、状態量判断手段により車両の状態量が所定の条件を満たしていないと判断される場合であって、前後荷重判断手段により前後荷重が所定の条件を満たし、且つ、バッテリ状態判断手段によりバッテリが充電不足である又は劣化していると判断される場合に、前後荷重が減少する側に位置する前輪または後輪のキャンバ角が、第1キャンバ角調整手段によりキャンバ角調整装置を駆動させて調整されるキャンバ角よりも絶対値が小さくなるように、キャンバ角調整装置により調整される。以上のように、前後荷重判断手段による前後荷重が所定の条件を満たすかの判断に基づいて、前輪または後輪のキャンバ角を調整するので、請求項1記載の効果に加え、簡易に制御できる効果がある。   According to the vehicle control device D2, information related to movement of the longitudinal load of the vehicle is acquired by the longitudinal load information acquisition unit, and it is determined by the longitudinal load determination unit whether the acquired longitudinal load satisfies a predetermined condition. As a result, when the state quantity determination means determines that the vehicle state quantity does not satisfy the predetermined condition, the longitudinal load determination means satisfies the predetermined condition, and the battery condition determination means When it is determined that the battery is insufficiently charged or deteriorated, the camber angle of the front wheel or the rear wheel located on the side where the longitudinal load is reduced causes the camber angle adjusting device to drive the camber angle adjusting device. The camber angle adjusting device adjusts the camber angle so that the absolute value is smaller than the camber angle that is adjusted. As described above, since the camber angle of the front wheel or the rear wheel is adjusted based on the determination of whether the longitudinal load satisfies the predetermined condition by the longitudinal load determining means, in addition to the effect of the first aspect, it can be easily controlled. effective.

車体と、その車体を支持する前輪および後輪と、それら前輪および後輪の少なくとも一つの車輪のキャンバ角を各々調整するキャンバ角調整装置と、そのキャンバ角調整装置に電力を供給するバッテリと、を備えた車両に用いられる車両用制御装置であって、前記バッテリの情報を取得するバッテリ情報取得手段と、そのバッテリ情報取得手段により取得された情報に基づいて前記バッテリが充電不足であるか又は劣化しているかを判断するバッテリ状態判断手段と、前記車両の状態量を取得する状態量取得手段と、その状態量取得手段により取得された車両の状態量が所定の条件を満たすかを判断する状態量判断手段と、その状態量判断手段により前記車両の状態量が所定の条件を満たすと判断される場合に、前記キャンバ角調整装置により前記車輪のキャンバ角を絶対値が大きくなるように調整する第1キャンバ角調整手段と、前記状態量判断手段により前記車両の状態量が所定の条件を満たしていないと判断され、且つ、前記バッテリ状態判断手段により前記バッテリが充電不足である又は劣化していると判断される場合に、前記車輪のキャンバ角を、前記第1キャンバ角調整手段により前記キャンバ角調整装置を駆動させて調整されるキャンバ角よりも絶対値が小さくなるように、前記キャンバ角調整装置により一輪ずつ調整する第2キャンバ角調整手段と、を備えていることを特徴とする車両用制御装置D3。   A vehicle body, a front wheel and a rear wheel that support the vehicle body, a camber angle adjusting device that adjusts a camber angle of at least one of the front and rear wheels, and a battery that supplies power to the camber angle adjusting device, A battery information acquisition unit that acquires information on the battery, and whether the battery is insufficiently charged based on the information acquired by the battery information acquisition unit, or A battery state determination unit that determines whether the vehicle is deteriorated, a state amount acquisition unit that acquires the state amount of the vehicle, and whether the vehicle state amount acquired by the state amount acquisition unit satisfies a predetermined condition When the state quantity determining means and the state quantity judging means determine that the state quantity of the vehicle satisfies a predetermined condition, the camber angle adjusting device A first camber angle adjusting means for adjusting the camber angle of the wheel so as to increase an absolute value; and the state quantity judging means judges that the state quantity of the vehicle does not satisfy a predetermined condition, and the battery When it is determined by the state determination means that the battery is insufficiently charged or deteriorated, the camber angle of the wheel is adjusted by driving the camber angle adjustment device by the first camber angle adjustment means. A vehicle control device D3, comprising: a second camber angle adjusting means for adjusting one wheel at a time by the camber angle adjusting device so that the absolute value becomes smaller than the camber angle.

車両用制御装置D3によれば、バッテリが供給する電力によりキャンバ角調整装置が駆動され車輪のキャンバ角が調整される車両において、状態量取得手段により車両の状態量が取得され、その車両の状態量が状態量判断手段により所定の条件を満たすか判断される。判断の結果、車両の状態量が所定の条件を満たす場合に、第1キャンバ角調整手段によってキャンバ角調整装置が駆動され車輪のキャンバ角が絶対値が大きくなるように調整される。   According to the vehicle control device D3, in the vehicle in which the camber angle adjusting device is driven by the power supplied by the battery and the camber angle of the wheel is adjusted, the state quantity of the vehicle is obtained by the state quantity obtaining means, and the state of the vehicle It is determined whether the amount satisfies a predetermined condition by the state amount determination means. As a result of the determination, when the state quantity of the vehicle satisfies a predetermined condition, the camber angle adjusting device is driven by the first camber angle adjusting means to adjust the camber angle of the wheel so that the absolute value becomes large.

一方、バッテリ情報取得手段によりバッテリの情報が取得され、取得された情報に基づいてバッテリ状態判断手段によりバッテリが充電不足であるか又は劣化しているか判断される。   On the other hand, battery information is acquired by the battery information acquisition means, and based on the acquired information, it is determined by the battery state determination means whether the battery is insufficiently charged or deteriorated.

以上の判断の結果、車両の状態量が所定の条件を満たしていない場合であり、且つ、バッテリが充電不足である又は劣化している場合に、第1キャンバ角調整手段によりキャンバ角調整装置を駆動させて調整されるキャンバ角よりも絶対値が小さくなるように、車輪のキャンバ角が、第2キャンバ角調整手段によりキャンバ角調整装置が駆動されて一輪ずつ調整される。   As a result of the above determination, when the vehicle state quantity does not satisfy the predetermined condition and the battery is insufficiently charged or has deteriorated, the camber angle adjusting device is adjusted by the first camber angle adjusting means. The camber angle adjusting device is driven by the camber angle adjusting device by the second camber angle adjusting means so that the absolute value becomes smaller than the camber angle adjusted by driving.

ここで、前輪または後輪のキャンバ角を絶対値が小さくなるように調整するには、重力に抗して車高をわずかに上昇させる必要がある。この場合は、車輪の接地部位と路面との摩擦が大きくなるため、キャンバ角調整装置の負荷が大きくなる。車両用制御装置D3によれば、車輪のキャンバ角を絶対値が小さくなるように一輪ずつ調整するので、キャンバ角調整装置の瞬間的な負荷を小さくすることができ、電力消費量を抑制できる。よって、バッテリの残存容量の低下やバッテリの劣化を抑制できる効果がある。   Here, in order to adjust the camber angle of the front wheel or the rear wheel so that the absolute value becomes small, it is necessary to slightly increase the vehicle height against gravity. In this case, since the friction between the ground contact part of the wheel and the road surface increases, the load on the camber angle adjusting device increases. According to the vehicle control device D3, since the wheel camber angle is adjusted one by one so that the absolute value becomes smaller, the instantaneous load of the camber angle adjusting device can be reduced, and the power consumption can be suppressed. Therefore, there is an effect that a decrease in the remaining capacity of the battery and deterioration of the battery can be suppressed.

車両用制御装置D1からD3のいずれかにおいて、前記キャンバ角調整装置は、後輪のキャンバ角を調整するものであり、前記第1キャンバ角調整手段は、前記キャンバ角調整装置により前記後輪のキャンバ角を調整して、前記後輪にネガティブキャンバを付与することを特徴とする車両用制御装置D4。   In any one of the vehicle control devices D1 to D3, the camber angle adjusting device adjusts a camber angle of the rear wheel, and the first camber angle adjusting means is configured to adjust the rear wheel by the camber angle adjusting device. A vehicle control device D4 that adjusts a camber angle to give a negative camber to the rear wheel.

車両用制御装置D4によれば、第1キャンバ角調整手段によって駆動されるキャンバ角調整装置により後輪のキャンバ角が調整され、後輪にネガティブキャンバが付与される。後輪にネガティブキャンバが付与されることにより、後輪に発生するキャンバスラストを利用して車両の特性を安定したアンダーステア傾向にすることができるので、車両用制御装置D1からD3のいずれかの効果に加え、車両の直進安定性や限界走行性能を向上させる効果がある。   According to the vehicle control device D4, the camber angle adjusting device driven by the first camber angle adjusting means adjusts the camber angle of the rear wheel, and gives a negative camber to the rear wheel. Since the negative camber is applied to the rear wheel, the canvas last generated on the rear wheel can be used to make the vehicle characteristics have a stable understeer tendency. Therefore, any of the effects of the vehicle control devices D1 to D3 can be achieved. In addition, it has the effect of improving the straight running stability and the limit running performance of the vehicle.

なお、図4に示すフローチャート(状態量判断処理)において、車両用制御装置D1及びD3に記載の状態量取得手段としてはS1〜S3の処理が該当する。図7に示すフローチャート(バッテリ低下判断処理)において、車両用制御装置D1及びD3に記載のバッテリ情報取得手段としてはS42,S43,S47の処理が、バッテリ状態判断手段としてはS46,S49の処理がそれぞれ該当する。図20に示すフローチャート(キャンバ制御処理)において、車両用制御装置D1及びD3に記載の状態量判断手段としてはS121の処理が、第1キャンバ角調整手段としてはS123の処理がそれぞれ該当する。図21に示すフローチャート(キャンバ解除処理)において、車両用制御装置D1記載の荷重情報取得手段および車両用制御装置D2記載の前後荷重情報取得手段としてはS142の処理、S146の処理においてアクセルペダル61の操作量の変化を検出する処理およびブレーキペダル62の操作量の変化を検出する処理が、車両用制御装置D1記載の荷重判断手段および車両用制御装置D2記載の前後荷重判断手段としてはS143,S144,S145,S146及びS147の処理が、キャンバ角修正手段としてはS150の処理が、車両用制御装置D3記載の第2キャンバ角調整手段としてはS148の処理がそれぞれ該当する。   In the flowchart shown in FIG. 4 (state quantity determination process), the process of S1 to S3 corresponds to the state quantity acquisition means described in the vehicle control devices D1 and D3. In the flowchart shown in FIG. 7 (battery decrease determination process), the battery information acquisition means described in the vehicle control devices D1 and D3 is processed in S42, S43, S47, and the battery state determination means is processed in S46, S49. Each is applicable. In the flowchart (camber control process) shown in FIG. 20, the process of S121 corresponds to the state quantity determination means described in the vehicle control devices D1 and D3, and the process of S123 corresponds to the first camber angle adjustment means. In the flowchart (camber release process) shown in FIG. 21, the load information acquisition means described in the vehicle control device D1 and the front and rear load information acquisition means described in the vehicle control device D2 are the processes of S142 and the accelerator pedal 61 in the process of S146. The process for detecting the change in the operation amount and the process for detecting the change in the operation amount of the brake pedal 62 are the load judging means described in the vehicle control device D1 and the front and rear load judgment means described in the vehicle control device D2. , S145, S146 and S147 correspond to the process of S150 as the camber angle correcting means, and the process of S148 as the second camber angle adjusting means described in the vehicle control device D3.

100,200,300,400,500 車両用制御装置
1,201 車両
2 車輪
2FL,2FR 前輪
2RL,2RR 後輪
44,244 キャンバ角調整装置
44FL FLモータ(キャンバ角調整装置の一部)
44FR FRモータ(キャンバ角調整装置の一部)
44RL RLモータ(キャンバ角調整装置の一部)
44RR RRモータ(キャンバ角調整装置の一部)
BF 車体の一部
100, 200, 300, 400, 500 Vehicle control device 1,201 Vehicle 2 Wheel 2FL, 2FR Front wheel 2RL, 2RR Rear wheel 44, 244 Camber angle adjusting device 44FL FL motor (part of camber angle adjusting device)
44FR FR motor (part of camber angle adjustment device)
44RL RL motor (part of camber angle adjustment device)
44RR RR motor (part of camber angle adjustment device)
Part of BF body

Claims (3)

車体と、その車体を支持する前輪および後輪と、それら前輪および後輪の少なくとも一つの車輪のキャンバ角を各々調整するキャンバ角調整装置と、そのキャンバ角調整装置に電力を供給するバッテリと、を備えた車両に用いられる車両用制御装置であって、
前記車両の状態量を取得する状態量取得手段と、
その状態量取得手段により取得された車両の状態量が所定の条件を満たすかを判断する状態量判断手段と、
前記バッテリの情報を取得するバッテリ情報取得手段と、
そのバッテリ情報取得手段により取得された情報に基づいて前記バッテリが充電不足であるか又は劣化しているかを判断するバッテリ状態判断手段と、
そのバッテリ状態判断手段により前記バッテリが充電不足でない又は劣化していないと判断され、且つ、前記状態量判断手段により前記車両の状態量が所定の条件を満たすと判断される場合に、前記キャンバ角調整装置により前記車輪のキャンバ角を絶対値が大きくなるように調整する通常状態調整手段と、
前記バッテリ状態判断手段により前記バッテリが充電不足である又は劣化していると判断され、且つ、前記状態量判断手段により前記車両の状態量が所定の条件を満たすと判断される場合に、前記通常状態調整手段により前記車輪のキャンバ角が調整される場合よりも早いタイミングで、前記キャンバ角調整装置により前記車輪のキャンバ角を絶対値が大きくなるように調整するバッテリ低下状態調整手段と、を備えていることを特徴とする車両用制御装置。
A vehicle body, a front wheel and a rear wheel that support the vehicle body, a camber angle adjusting device that adjusts a camber angle of at least one of the front and rear wheels, and a battery that supplies power to the camber angle adjusting device, A vehicle control device used in a vehicle equipped with
State quantity acquisition means for acquiring a state quantity of the vehicle;
State quantity determination means for determining whether the vehicle state quantity acquired by the state quantity acquisition means satisfies a predetermined condition;
Battery information acquisition means for acquiring information of the battery;
Battery state determination means for determining whether the battery is insufficiently charged or deteriorated based on information acquired by the battery information acquisition means;
The camber angle is determined when the battery state determining means determines that the battery is not insufficiently charged or has not deteriorated, and the state amount determining means determines that the vehicle state quantity satisfies a predetermined condition. Normal state adjusting means for adjusting the camber angle of the wheel so as to increase the absolute value by an adjusting device;
When the battery state determining means determines that the battery is undercharged or deteriorated, and the state amount determining means determines that the state quantity of the vehicle satisfies a predetermined condition, the normal Battery lowering state adjusting means for adjusting the camber angle of the wheel so that the absolute value becomes larger by the camber angle adjusting device at a timing earlier than when the camber angle of the wheel is adjusted by the state adjusting means. A vehicular control device.
前記状態量判断手段により満たすか判断される所定の条件は、前記バッテリ状態判断手段により前記バッテリが充電不足である又は劣化していると判断されるバッテリ低下状態の場合の条件が、前記バッテリ状態判断手段により前記バッテリが充電不足でない又は劣化していないと判断される通常状態の場合の条件を満たすための必要条件となるように設定されていることを特徴とする請求項1記載の車両用制御装置。   The predetermined condition for determining whether or not the state quantity determining unit satisfies the condition is the battery state in which the battery state determining unit determines that the battery is insufficiently charged or deteriorated. 2. The vehicle according to claim 1, wherein the battery is set to be a necessary condition for satisfying a condition in a normal state in which it is determined by the determining means that the battery is not insufficiently charged or deteriorated. Control device. 前記キャンバ角調整装置は、後輪のキャンバ角を調整するものであり、前記通常状態調整手段および前記バッテリ低下状態調整手段は、前記キャンバ角調整装置により前記後輪のキャンバ角を調整して、前記後輪にネガティブキャンバを付与することを特徴とする請求項1又は2に記載の車両用制御装置。   The camber angle adjusting device adjusts the camber angle of the rear wheel, and the normal state adjusting means and the battery lowering state adjusting means adjust the camber angle of the rear wheel by the camber angle adjusting device, The vehicle control device according to claim 1, wherein a negative camber is imparted to the rear wheel.
JP2010084302A 2010-03-31 2010-03-31 Vehicular control device Withdrawn JP2011213268A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010084302A JP2011213268A (en) 2010-03-31 2010-03-31 Vehicular control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010084302A JP2011213268A (en) 2010-03-31 2010-03-31 Vehicular control device

Publications (1)

Publication Number Publication Date
JP2011213268A true JP2011213268A (en) 2011-10-27

Family

ID=44943452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010084302A Withdrawn JP2011213268A (en) 2010-03-31 2010-03-31 Vehicular control device

Country Status (1)

Country Link
JP (1) JP2011213268A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60114004U (en) * 1984-01-12 1985-08-01 トヨタ自動車株式会社 car suspension
JP2005280569A (en) * 2004-03-30 2005-10-13 Toyota Motor Corp Electric brake controlling device
JP2009056914A (en) * 2007-08-31 2009-03-19 Toyota Motor Corp Control unit of vehicle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60114004U (en) * 1984-01-12 1985-08-01 トヨタ自動車株式会社 car suspension
JP2005280569A (en) * 2004-03-30 2005-10-13 Toyota Motor Corp Electric brake controlling device
JP2009056914A (en) * 2007-08-31 2009-03-19 Toyota Motor Corp Control unit of vehicle

Similar Documents

Publication Publication Date Title
JP5499842B2 (en) Vehicle control device
JP2011213268A (en) Vehicular control device
JP2011213266A (en) Vehicular control device
JP2011213269A (en) Vehicular control device
JP5246437B2 (en) Camber angle control device for vehicle
JP2011116164A (en) Vehicle control device
WO2010113694A1 (en) Control device for vehicle
JP5223855B2 (en) Vehicle control device
JP5387335B2 (en) Vehicle control device
JP2011251592A (en) Vehicle control system
JP2012076500A (en) Camber angle control device
JP2011131850A (en) Control device for vehicle
JP2011073542A (en) Control device for vehicle
JP5370681B2 (en) Camber angle control device for vehicle
JP2012206553A (en) Controller for vehicle
JP5447156B2 (en) Vehicle control device
JP2011201342A (en) Vehicle
JP5434635B2 (en) Vehicle control device
JP2012011890A (en) Vehicle control device
JP5447189B2 (en) Vehicle control device
JP5201156B2 (en) Vehicle control device
JP5671917B2 (en) Vehicle control device
JP2012214080A (en) Vehicular control device
JP5668574B2 (en) Vehicle control device
JP2013071713A (en) Controller for vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130903

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20131002