JP2011212918A - Metal slider - Google Patents

Metal slider Download PDF

Info

Publication number
JP2011212918A
JP2011212918A JP2010081808A JP2010081808A JP2011212918A JP 2011212918 A JP2011212918 A JP 2011212918A JP 2010081808 A JP2010081808 A JP 2010081808A JP 2010081808 A JP2010081808 A JP 2010081808A JP 2011212918 A JP2011212918 A JP 2011212918A
Authority
JP
Japan
Prior art keywords
copper
sliding
layer
slider
layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010081808A
Other languages
Japanese (ja)
Other versions
JP5355475B2 (en
Inventor
Satoshi Tagashira
聡 田頭
Shoichi Kadani
昇一 甲谷
Tsunetoshi Suzaki
恒年 洲▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP2010081808A priority Critical patent/JP5355475B2/en
Publication of JP2011212918A publication Critical patent/JP2011212918A/en
Application granted granted Critical
Publication of JP5355475B2 publication Critical patent/JP5355475B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Laminated Bodies (AREA)
  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a slider which has good conductivity and shows a high wear-suppressing effect on both the slider and the partner material of the slider.SOLUTION: In the slider 1 composed of a laminate structure 1 in which copper-based layers 4 and steel layers 5 are alternately laminated on each other and the respective layers are bonded to each other by a metallic bond, the laminate structure 1 has, on the slide surface, a surface on which the copper-based layers 4 and the steel layers 5 are alternately exposed, wherein, on the slide surface, the slide direction 10 of the partner material of the slider is the alternately crossing direction through each layer, the number of the steel layers 5 is ≥3, the average thickness of the copper-based layers 4 in the slide direction is 0.01 to 0.20 mm, and a ratio R of the copper-based layers 4 to the steel layers 5 is 0.04 to 0.75.

Description

本発明は、トロリ線をはじめとする摺動相手材と摺動する部品であって、銅系層と鋼層が交互に積層して接合した複合金属材料を用いた「摺動子」に関するものである。   The present invention relates to a "slider" using a composite metal material that slides with a sliding mating member such as a trolley wire, in which copper layers and steel layers are alternately laminated and joined. It is.

移動物体に電力を供給する場合などには、金属材料同士を摺接させる手法が広く採用されている。電車の集電装置が最も一般的に知られているが、その他、工場やヤードの走行式クレーン、工場内の各種移動体、電動機のブラシ、遊園地の乗り物などにも金属材料同士の摺接を利用しているものがある。   In the case of supplying electric power to a moving object, a technique of bringing metal materials into sliding contact with each other is widely used. The current collectors of trains are the most commonly known, but in addition, sliding contact between metal materials is also used for traveling cranes in factories and yards, various moving objects in factories, motor brushes, and amusement park vehicles. There is something that uses.

金属材料同士の摺接においては双方の材料の耐損耗特性が極めて重要となる。また、通電用途の場合、導電性も重要である。鉄道車両のように高速の移動体の場合、摺動子(パンタグラフに取り付けられているすり板)として、耐摩耗性銅合金、焼結系材料、カーボン系材料などを採用することによって摺動子(すり板)と摺動相手材(トロリ線)の双方の損耗を抑制している。そのような材料の導電性は一般的な通電材料と比べると劣るが、トロリ線の電圧を高くすることにより(直流600〜1500V、交流20000〜25000V)、十分な通電電流が確保されている。   In sliding contact between metal materials, wear resistance characteristics of both materials are extremely important. In the case of a current application, conductivity is also important. In the case of a high-speed moving body such as a railway vehicle, the slider (slip plate attached to the pantograph) is made of a wear-resistant copper alloy, sintered material, carbon material, etc. (Slip plate) and sliding counterpart material (trolley wire) are suppressed from being worn. Although the conductivity of such a material is inferior to that of a general energizing material, a sufficient energizing current is ensured by increasing the voltage of the trolley wire (DC 600-1500 V, AC 20000-25000 V).

しかしながら、工場や遊園地の設備などでは安全上、摺動相手材の電圧を高くできない場合が多い。また、摺動子に通常の通電部品用の金属材料を使用すると、移動速度が比較的低速ではあっても摺動子または摺動相手材の損耗が大きくなる場合があり、設備稼働のランニングコスト増大の要因となる。   However, there are many cases where it is not possible to increase the voltage of the sliding material for safety in factories and amusement park facilities. In addition, if a metal material for normal current-carrying parts is used for the slider, the wear of the slider or sliding material may increase even if the moving speed is relatively low, and the running cost of operating the equipment Increase factor.

特開2009−096023号公報JP 2009-096023 A

本発明は、導電性の良好な摺動子であって、摺動子および摺動相手材双方の損耗抑制効果の高い摺動子を提供することを目的とする。   It is an object of the present invention to provide a slider having good conductivity and having a high wear-suppressing effect on both the slider and the sliding counterpart material.

上記目的は、銅系層と鋼層が交互に積層して各層が金属接合している積層構造体からなる摺動子であって、前記積層構造体は、銅系層と鋼層が交互に露出する表面を摺動面に持ち、当該摺動面内において、
摺動相手材の摺動方向:各層を交互に横切る方向、
鋼層の数:3層以上、
銅系層の摺動方向平均厚さ:0.01〜0.20mm、
銅系層/鋼層比率R:0.04〜0.75、
である金属摺動子によって達成される。摺動相手材は例えば銅系材料である。この摺動子は、例えば摺動相手材との電気的接触により通電を行う通電部材である。
The above object is a slider composed of a laminated structure in which copper layers and steel layers are alternately laminated and each layer is metal-bonded. The laminated structure has copper layers and steel layers alternately. Hold the exposed surface on the sliding surface, and within the sliding surface,
Sliding direction of sliding mating material: direction crossing each layer alternately,
Number of steel layers: 3 layers or more,
Average thickness of the copper-based layer in the sliding direction: 0.01 to 0.20 mm,
Copper-based layer / steel layer ratio R: 0.04 to 0.75,
This is achieved by a metal slider that is The sliding partner material is, for example, a copper-based material. This slider is an energizing member that energizes, for example, by electrical contact with a sliding mating member.

ここで、「銅系」とは銅または銅合金からなるものをいう。その銅合金としては銅含有量が70質量%以上のものが好適な対象となる。「金属接合」とは有機系または無機系の非金属成分を主体とする接着剤を介さずに金属同士が接合していることを意味し、具体的には電気めっき、拡散接合、ろう付けなどが挙げられる。   Here, “copper-based” means one made of copper or a copper alloy. As the copper alloy, those having a copper content of 70% by mass or more are suitable. "Metal bonding" means that metals are bonded without using an adhesive mainly composed of organic or inorganic non-metallic components. Specifically, electroplating, diffusion bonding, brazing, etc. Is mentioned.

積層構造体を構築するための素材としては銅めっき鋼板を適用することが極めて効率的である。銅系材料と鋼材を直接接合して健全な(すなわち接合欠陥の少ない)接合部を得ることは必ずしも容易ではない。例えば、拡散接合の場合は高い面圧を付与して高温で加熱しなければ銅系材料と鋼材とを直接拡散接合することができないため、低コストでの工業的実施は難しい。また、鋼シートと銅系シートを交互に重ね合わせて、銅系シート自体をろう材としてろう付け接合する場合には、鋼と銅系溶融金属(ろう材)の濡れ性が不十分となってボイドが生じやすい。これに対し、銅めっき鋼板の銅めっき層同士を重ね合わせて銅めっき層同士の接触部を拡散接合する場合、比較的低面圧かつ比較的低温で拡散接合が実現できる。銅めっき層をろう材としてろう付け接合する場合でも、双方の銅めっき層同士は反応しやすいのでろう付けも比較的容易である。必要な銅系層の厚さが銅めっき層によって賄われる銅の量だけでは不足する場合は、銅めっき層の間に銅系金属シートを挟んで、銅系材料同士の接触部で拡散接合を行えばよい。   It is extremely efficient to apply a copper-plated steel sheet as a material for constructing the laminated structure. It is not always easy to obtain a sound joint (ie, with few joint defects) by directly joining a copper-based material and a steel material. For example, in the case of diffusion bonding, a copper material and a steel material cannot be directly diffusion-bonded unless a high surface pressure is applied and heated at a high temperature, so that industrial implementation at low cost is difficult. In addition, when steel sheets and copper-based sheets are alternately overlapped and the copper-based sheet itself is brazed and joined as a brazing material, the wettability of the steel and the copper-based molten metal (brazing material) becomes insufficient. Voids are likely to occur. On the other hand, when the copper plating layers of the copper plated steel plates are overlapped and the contact portions of the copper plating layers are diffusion bonded, diffusion bonding can be realized at a relatively low surface pressure and a relatively low temperature. Even when the copper plating layer is brazed and joined as a brazing material, both copper plating layers are likely to react with each other, and brazing is relatively easy. If the required copper-based layer thickness is not enough for the copper plating layer to cover, the copper-based metal sheet is sandwiched between the copper-plating layers, and diffusion bonding is performed at the contact points between the copper-based materials. Just do it.

上記の積層構造体からなる摺動子は、摺動面に対し垂直方向に可動なように、ばね機構を介して構造物に取り付けられているものが好適に採用できる。   A slider attached to the structure via a spring mechanism so as to be movable in a direction perpendicular to the sliding surface can be suitably employed as the slider composed of the above laminated structure.

本発明によれば、摺動子および摺動相手材双方の損耗を顕著に抑制でき、また摺動子は銅系金属を含む金属材料であるから導電性も高い。また、工業的に既に量産されている汎用材料を素材として製造できるため、焼結合金をはじめとする特殊な集電材料と比べ、低コストである。本発明の摺動子は、高速移動体だけでなく、低電圧、低速の移動体における集電部材としても利用価値が高い。   According to the present invention, the wear of both the slider and the sliding counterpart material can be remarkably suppressed, and the slider is a metal material containing a copper-based metal, and therefore has high conductivity. In addition, since a general-purpose material that has already been mass-produced industrially can be manufactured as a raw material, the cost is lower than that of a special current collecting material such as a sintered alloy. The slider of the present invention has high utility value not only as a high-speed moving body but also as a current collecting member in a low-voltage, low-speed moving body.

本発明の金属摺動子およびそれに摺接する摺動相手材の断面を模式的に例示した図。The figure which illustrated typically the cross section of the metal sliding element of this invention, and the sliding other party material which slidably contacts with it. 本発明の金属摺動子およびそれに摺接する摺動相手材の断面を模式的に例示した図。The figure which illustrated typically the cross section of the metal sliding element of this invention, and the sliding other party material which slidably contacts with it. 銅めっき鋼板同士を拡散接合して得られた積層構造体の断面光学顕微鏡写真。A cross-sectional optical micrograph of a laminated structure obtained by diffusion bonding copper-plated steel sheets. 図3の一部領域を拡大した断面光学顕微鏡写真。FIG. 4 is a cross-sectional optical micrograph in which a partial region of FIG. 3 is enlarged.

図1に、本発明の金属摺動子およびそれに摺接する摺動相手材の断面を模式的に例示する。摺動子1は、銅系層4と鋼層5が交互に積層して金属接合により一体化した積層構造体からなる。摺動子1は摺動面3において摺動相手材2と摺接する。矢印10は摺動方向を示している。摺動子1を基準に見ると、摺動相手材2が摺動子1に対して相対的に摺動方向10(矢印のどちらの方向であっても構わない)に動く。その際、摺動相手材2は、摺動面3内の各銅系層4と鋼層5を交互に横切るように摺動する。図1は層界面7が摺動面3に垂直である場合を例示したものである。   FIG. 1 schematically illustrates a cross section of the metal slider of the present invention and a sliding mating member in sliding contact therewith. The slider 1 is composed of a laminated structure in which copper layers 4 and steel layers 5 are alternately laminated and integrated by metal bonding. The slider 1 is in sliding contact with the sliding partner material 2 on the sliding surface 3. An arrow 10 indicates the sliding direction. Looking at the slider 1 as a reference, the sliding counterpart material 2 moves relative to the slider 1 in the sliding direction 10 (whichever direction of the arrow may be used). At that time, the sliding counterpart 2 slides so as to alternately cross the copper layers 4 and the steel layers 5 in the sliding surface 3. FIG. 1 illustrates the case where the layer interface 7 is perpendicular to the sliding surface 3.

発明者らの研究によれば、摺動相手材2が摺動面3内の銅系層4と鋼層5を交互に擦ることにより、金属摺動子1および摺動相手材2双方の損耗を顕著に抑制することが可能となる。そのメカニズムについては現時点で十分に解明されていない。   According to the inventors' research, the wear of both the metal slider 1 and the sliding counterpart 2 is caused by the sliding counterpart 2 rubbing the copper layer 4 and the steel layer 5 in the sliding surface 3 alternately. Can be remarkably suppressed. The mechanism is not fully understood at this time.

摺動面3内に存在する銅系層4および鋼層5の積層数が少なすぎると損耗抑制効果が十分に発揮されないことがある。種々検討の結果、本発明では摺動面3内に鋼層5が3層以上存在するものを対象とする。すなわち、摺動相手材2は摺動面3内において少なくとも3層の鋼層5および少なくとも2層の銅系層4と摺接する。図1の例では摺動子1の摺動方向両端部に面取り6が形成してあり、鋼層5のうち図中にaまたはbの記号で示した層は摺動面3内に厚さ方向の一部分が存在している。このように、層の厚さ方向の一部分のみが摺動面3内に存在する鋼層5も、摺動面3内に存在する鋼層5として数える。図1の例では、摺動面3内に存在する鋼層5の数は11層となる。   If the number of the copper-based layers 4 and the steel layers 5 present in the sliding surface 3 is too small, the wear suppression effect may not be sufficiently exhibited. As a result of various studies, the present invention is directed to a case where three or more steel layers 5 exist in the sliding surface 3. That is, the sliding partner material 2 is in sliding contact with at least three steel layers 5 and at least two copper-based layers 4 in the sliding surface 3. In the example of FIG. 1, chamfers 6 are formed at both ends in the sliding direction of the slider 1, and the layer indicated by the symbol a or b in the drawing in the steel layer 5 has a thickness within the sliding surface 3. There is a part of the direction. Thus, the steel layer 5 in which only a part in the thickness direction of the layer exists in the sliding surface 3 is also counted as the steel layer 5 existing in the sliding surface 3. In the example of FIG. 1, the number of steel layers 5 present in the sliding surface 3 is 11 layers.

摺動面3内の銅系層4の厚さが厚すぎると、銅系層4の銅系金属が剥脱され、摺動相手材2に付着しやすい。発明者ら詳細な検討の結果、摺動面3内における銅系層4の摺動方向平均厚さをある程度以下に薄くすることが、摺動子1および摺動相手材2双方の損耗を顕著に抑制するうえで極めて重要であることを見出した。具体的には、銅系層4の摺動方向平均厚さが0.20mmとなるようにすることが効果的である。0.15mm以下、あるいはさらに0.10mm以下に管理しても構わない。ただし、銅系層4の厚さがあまり薄いとその存在効果が低減し、摺動相手材2の損耗が大きくなる。また、通電用途においては導電性の低下が問題となる場合も生じ得る。種々検討の結果、銅系層4の摺動方向平均厚さは0.01mm以上確保することが望まれる。   If the thickness of the copper-based layer 4 in the sliding surface 3 is too thick, the copper-based metal of the copper-based layer 4 is peeled off and easily adheres to the sliding counterpart material 2. As a result of detailed studies by the inventors, reducing the average thickness in the sliding direction of the copper-based layer 4 in the sliding surface 3 to a certain extent or less makes the wear of both the slider 1 and the sliding counterpart material 2 remarkable. It was found that it is extremely important to suppress it. Specifically, it is effective that the average thickness of the copper-based layer 4 in the sliding direction is 0.20 mm. You may manage to 0.15 mm or less, or also 0.10 mm or less. However, if the thickness of the copper-based layer 4 is too thin, the presence effect is reduced, and the wear of the sliding counterpart material 2 is increased. Further, in energization applications, there may be a case where a decrease in conductivity becomes a problem. As a result of various studies, it is desirable to secure an average thickness in the sliding direction of the copper-based layer 4 of 0.01 mm or more.

なお、摺動方向10は摺動面3内において必ずしも層界面に直角である必要はない。摺動方向10が層界面に直角である場合は、摺動面3内に現れている銅系層4の平均厚さと、銅系層4の摺動方向平均厚さが一致する。   The sliding direction 10 does not necessarily need to be perpendicular to the layer interface in the sliding surface 3. When the sliding direction 10 is perpendicular to the layer interface, the average thickness of the copper-based layer 4 appearing in the sliding surface 3 matches the average thickness of the copper-based layer 4 in the sliding direction.

摺動面3内に存在する銅系層4の存在比率が過剰になると、銅系層4の摺動方向平均厚さが上記規定範囲であっても、銅系金属が摺動相手材2に付着する現象が生じやすくなる。また、銅系層4の存在比率が大きくなると、鋼層5の存在比率が小さくなるので、用途によっては強度不足となる場合もある。検討の結果、摺動面3内において、銅系層/鋼層比率Rが0.04〜0.75であることが望ましい。0.05〜0.50であることがより好ましい。ここで、銅系層/鋼層比率Rは、「摺動面3内に存在する銅系層4の摺動方向トータル厚さ」を「摺動面3内に存在する鋼層5の摺動方向トータル厚さ」で除したものである。   If the abundance ratio of the copper-based layer 4 existing in the sliding surface 3 is excessive, the copper-based metal is applied to the sliding counterpart 2 even if the average thickness in the sliding direction of the copper-based layer 4 is within the specified range. The phenomenon of adhesion tends to occur. Moreover, since the abundance ratio of the steel layer 5 becomes small when the abundance ratio of the copper-based layer 4 increases, the strength may be insufficient depending on the application. As a result of the study, it is desirable that the copper layer / steel layer ratio R is 0.04 to 0.75 in the sliding surface 3. More preferably, it is 0.05 to 0.50. Here, the copper layer / steel layer ratio R is “the total thickness in the sliding direction of the copper layer 4 existing in the sliding surface 3” “the sliding of the steel layer 5 existing in the sliding surface 3”. It is divided by the “direction total thickness”.

図2は、図1と同様、本発明の金属摺動子およびそれに摺接する摺動相手材の断面を模式的に例示したものである。ただし、この場合、層界面7は摺動面3に対して垂直ではない。摺動面3に現れる銅系層4あるいは鋼層5の厚さを調整したい場合などに、このような態様を採用することができる。   FIG. 2 schematically illustrates a cross-section of the metal slider of the present invention and a sliding mating member slidably contacting the same as in FIG. In this case, however, the layer interface 7 is not perpendicular to the sliding surface 3. Such a mode can be adopted when it is desired to adjust the thickness of the copper-based layer 4 or the steel layer 5 appearing on the sliding surface 3.

鋼層5としては、種々の鋼種が採用できる。焼入れ処理やオーステンパー処理などの調質熱処理によって鋼層5の断面硬さを300HV以上、あるいはさらに400HV以上に硬質化させることができる鋼種を用いると、摺動子1および摺動相手材2双方の損耗を抑制する効果が向上する。そのような鋼種として例えばJIS規格鋼種を例示すれば、S35C、S55C、SCM415、SCM435、SNCM420、SK85、SUJ2、などが挙げられる。なお、銅系層4は調質熱処理によって硬化しないので、積層構造体をそのまま通常の調質熱処理に供することによって鋼層5が硬化した摺動子を得ることができる。   Various steel types can be adopted as the steel layer 5. When a steel type that can harden the cross-sectional hardness of the steel layer 5 to 300 HV or higher, or even 400 HV or higher by tempering heat treatment such as quenching or austempering, both the slider 1 and the sliding counterpart 2 are used. The effect of suppressing wear and tear is improved. For example, S35C, S55C, SCM415, SCM435, SNCM420, SK85, SUJ2, and the like can be cited as examples of such steel types. In addition, since the copper-type layer 4 is not hardened | cured by tempering heat processing, the slider with which the steel layer 5 hardened | cured can be obtained by using a laminated structure for normal tempering heat processing as it is.

銅系層4は、銅または銅合金である。銅合金としては種々のものが適用対象として考えられるが、代表的にはZn含有量が30質量%以下のCu−Zn系合金が挙げられる。素材として電気銅めっき鋼板を使用する場合、銅系層4を銅合金とするためには所定組成および厚さの銅系金属シートを間に挟んで金属接合させればよい。   The copper-based layer 4 is copper or a copper alloy. Various copper alloys can be considered as application targets. Typically, Cu-Zn alloys having a Zn content of 30% by mass or less can be cited. When using an electro-copper-plated steel sheet as a material, in order to make the copper-based layer 4 a copper alloy, metal bonding may be performed with a copper-based metal sheet having a predetermined composition and thickness interposed therebetween.

銅めっき鋼板は、一般的な電気銅めっき法によって得られる電気銅めっき鋼板を適用することができる。めっき原板である鋼板の板厚は、前記銅系層の摺動方向平均厚さ、および銅系層/鋼層比率Rの規定を満たす範囲で選択されるが、通常、一般的には0.05〜2.0mm程度のめっき原板を使用すればよい。   As the copper-plated steel sheet, an electrolytic copper-plated steel sheet obtained by a general electrolytic copper plating method can be applied. The plate thickness of the steel plate that is the plating base plate is selected within a range that satisfies the specifications of the sliding direction average thickness of the copper-based layer and the copper-based layer / steel layer ratio R, and is generally generally 0. What is necessary is just to use the plating original plate of about 05-2.0 mm.

摺動相手材2は銅系材料であることが望ましい。代表的にはトロリ線が挙げられる。   The sliding partner material 2 is preferably a copper-based material. A typical example is a trolley wire.

積層構造体の製造方法としては、前述のように複数の銅めっき鋼板を重ね合わせたのち、銅めっき層自体をろう材としてろう付け接合する方法や、銅めっき層同士を拡散接合する方法、あるいは銅めっき鋼板の間に銅系金属シートを挟んで拡散接合する方法などが適用できる。   As a manufacturing method of the laminated structure, after overlapping a plurality of copper-plated steel sheets as described above, a method of brazing and bonding the copper plating layer itself as a brazing material, a method of diffusion bonding the copper plating layers, or For example, a diffusion bonding method in which a copper-based metal sheet is sandwiched between copper-plated steel sheets can be applied.

拡散接合の場合は、例えば以下のような方法が例示できる。
複数の銅めっき鋼板を重ね合わせた積層体を真空炉に装入し、真空引きを行って10Pa以下の減圧雰囲気とする。1Pa以下とすることがより好ましく、0.5Pa以下とすることが一層好ましい。積層体に1.5〜6.0MPaの積層方向圧力を付与した状態で、780〜950℃の温度範囲に保持する。積層方向圧力は、各銅めっき層間に付与される面圧の平均(平均面圧)である。発明者らの検討によれば、銅めっき層同士の拡散接合は、比較的低面圧・低温で健全な拡散接合部が得られるという特長がある。この特長を活かすためには例えば4.0MPa以下、あるいは3.0MPa以下という比較的低い積層方向圧力で実施することが好ましい。
In the case of diffusion bonding, for example, the following method can be exemplified.
A laminated body in which a plurality of copper-plated steel plates are overlapped is placed in a vacuum furnace and evacuated to a reduced pressure atmosphere of 10 Pa or less. The pressure is more preferably 1 Pa or less, and still more preferably 0.5 Pa or less. The laminated body is maintained in a temperature range of 780 to 950 ° C. with a lamination direction pressure of 1.5 to 6.0 MPa applied. The stacking direction pressure is the average (average surface pressure) of the surface pressure applied between the copper plating layers. According to the inventors' investigation, diffusion bonding between copper plating layers has a feature that a sound diffusion bonding portion can be obtained at a relatively low surface pressure and low temperature. In order to take advantage of this feature, it is preferable to carry out at a relatively low lamination direction pressure of, for example, 4.0 MPa or less, or 3.0 MPa or less.

加熱温度については780℃を下回ると比較的高い積層方向圧力を付与して長時間保持する必要があるので、780℃以上の温度とすることが好ましい。790℃以上とすることがより好ましい。一方、950℃を超える高温加熱はコスト増の要因となり、銅めっき鋼板を使用するメリットが活かせない。900℃以下の加熱温度とすることがより好ましく、840℃以下に管理することもできる。上記温度に保持する時間は高面圧・高温ほど短縮できる。付与する積層方向圧力と加熱温度に応じて、例えば30〜300minの範囲で適正保持時間を設定すればよい。適正保持時間は予備実験のデータに基づいて設定することができる。所定時間の加熱保持が終了した後、材料温度が200℃以下となるまでは外気を遮断した炉内で冷却することが好ましい。めっき原板として焼入れ性が良好な鋼を採用した場合には、拡散処理の加熱保持後の冷却を利用して焼入れ処理を施すことも可能である。   When the heating temperature is lower than 780 ° C., it is necessary to apply a relatively high stacking direction pressure and hold it for a long time. More preferably, the temperature is 790 ° C or higher. On the other hand, high-temperature heating exceeding 950 ° C. causes an increase in cost, and the merit of using a copper-plated steel sheet cannot be utilized. More preferably, the heating temperature is 900 ° C. or lower, and the temperature can be controlled to 840 ° C. or lower. The time for maintaining the temperature can be shortened as the surface pressure and temperature increase. What is necessary is just to set an appropriate holding time in the range of 30-300 min, for example according to the lamination direction pressure and heating temperature to provide. The appropriate holding time can be set based on preliminary experiment data. After completion of heating and holding for a predetermined time, it is preferable to cool in a furnace in which outside air is shut off until the material temperature becomes 200 ° C. or lower. When steel with good hardenability is used as the plating base plate, it is possible to perform the quenching process by utilizing the cooling after the heating and holding of the diffusion process.

参考のため、図3に、銅めっき鋼板同士を800℃で拡散接合して得られた積層構造の断面写真を示す。グレーの部分が鋼層、白いライン状に見える部分が銅層である。図4に、図3の一部を拡大した断面写真を示す。銅めっき層同士の界面の形跡は確認できない。   For reference, FIG. 3 shows a cross-sectional photograph of a laminated structure obtained by diffusion bonding copper plated steel sheets at 800 ° C. The gray part is the steel layer and the white line is the copper layer. FIG. 4 shows an enlarged cross-sectional photograph of a part of FIG. The trace of the interface between the copper plating layers cannot be confirmed.

このようにして各層が金属接合により一体化した積層構造体は、必要に応じて調質熱処理に供されたのち、所定形状の摺動子に加工される。摺動子を構造物(車両など)に取り付ける際には、摺動面3に対し垂直方向(図1、図2の矢印20)に可動なように、ばね機構を介して構造物に取り付けることができる。ばね機構の代表例としてはパンタグラフが挙げられるが、コイルばねや、空気ばねなどを介して直接構造物に取り付けてもよい。   Thus, the laminated structure in which the layers are integrated by metal bonding is subjected to a tempering heat treatment as necessary, and then processed into a slider having a predetermined shape. When the slider is attached to a structure (such as a vehicle), it is attached to the structure via a spring mechanism so as to be movable in a direction perpendicular to the sliding surface 3 (arrow 20 in FIGS. 1 and 2). Can do. A typical example of the spring mechanism is a pantograph, but it may be directly attached to the structure via a coil spring, an air spring, or the like.

積層構造体を作製するための素材として、以下のものを用意した。
〔電気銅めっき鋼板〕
・めっき原板;
鋼種:S55C、SCM415(いずれもJIS規格相当材)
板厚0.25mm、1.0mm
・銅めっき層;
組成:純銅
厚さ:片面当たり2.5μm、10μm、各両面均等厚さ
〔銅シート〕
板厚0.25mm、0.06mmの純銅板
The following materials were prepared as materials for producing the laminated structure.
[Electro copper plated steel sheet]
・ Plating base plate;
Steel type: S55C, SCM415 (both JIS standard equivalent materials)
Thickness 0.25mm, 1.0mm
-Copper plating layer;
Composition: Pure copper Thickness: 2.5 μm per side, 10 μm, equal thickness on both sides [copper sheet]
Pure copper plate with thickness of 0.25mm and 0.06mm

同種の電気銅めっき鋼板を複数枚重ね合わせて銅めっき層自体をろう材としてろう付けする方法、同種の電気銅めっき鋼板を複数枚重ね合わせて拡散接合する方法、または同種の電気銅めっき鋼板と銅シートを交互に重ね合わせて拡散接合する方法により、積層構造体を作製した。拡散接合は10Pa以下の減圧下にて面圧1.5MPaを付与した状態として900℃に加熱する手法で行った。ろう付け接合は1気圧のアルゴンガス雰囲気中、1150℃加熱によって行った。一部の積層構造体についてはオーステンパー処理を施し鋼層を硬化させた。   A method of superposing a plurality of the same type of copper electroplated steel sheets and brazing the copper plating layer itself as a brazing material, a method of superposing a plurality of the same type of electro copper plated steel sheets and performing diffusion bonding, or A laminated structure was produced by a method in which copper sheets were alternately stacked and diffusion bonded. Diffusion bonding was performed by heating to 900 ° C. with a surface pressure of 1.5 MPa applied under a reduced pressure of 10 Pa or less. Brazing joining was performed by heating at 1150 ° C. in an argon gas atmosphere of 1 atm. About some laminated structures, the austemper process was performed and the steel layer was hardened.

各積層構造体から試験片を切り出し、硬さ測定、導電性測定および摺動試験を以下のように行った。
〔硬さ測定〕
積層構造体の銅系層および鋼層についてマイクロビッカース硬度計により断面硬さを測定した。
〔導電性測定〕
厚さ5mm×幅10mm×長さ120mmの試験片を用いて、JIS H0505に従い導電性を測定した。ただし、各層の層界面に平行な一方向を長さ方向、長さ方向に垂直な平面において層界面に平行な方向を厚さ方向、層界面に直角な方向を幅方向とした。
A test piece was cut out from each laminated structure, and hardness measurement, conductivity measurement, and sliding test were performed as follows.
[Hardness measurement]
The cross section hardness of the copper-based layer and the steel layer of the laminated structure was measured with a micro Vickers hardness meter.
[Conductivity measurement]
Using a test piece having a thickness of 5 mm, a width of 10 mm, and a length of 120 mm, conductivity was measured according to JIS H0505. However, one direction parallel to the layer interface of each layer was defined as a length direction, a direction parallel to the layer interface in a plane perpendicular to the length direction was defined as a thickness direction, and a direction perpendicular to the layer interface was defined as a width direction.

〔摺動試験〕
積層構造体から、層界面に垂直な摺動面を持つ摺動子を切り出し、回転するリング状の摺動相手材と摺接させた。当該摺動面の寸法は、層界面に対し平行方向約16mm×直角方向約12mmである。摺動相手材は純銅板の冷間圧延材(100HV)からリングを切り出したものである。リング寸法は外側半径115mm、内側半径105mm、リング幅5mm、リング高さ10mmである。摺動方向は摺動面内の各層を概ね直角に横切る方向とした。
[Sliding test]
A slider having a sliding surface perpendicular to the layer interface was cut out from the laminated structure and brought into sliding contact with a rotating ring-shaped sliding mating member. The dimension of the sliding surface is approximately 16 mm parallel to the layer interface and approximately 12 mm perpendicular. The sliding partner material is a ring cut from a cold rolled material (100 HV) of a pure copper plate. The ring dimensions are an outer radius of 115 mm, an inner radius of 105 mm, a ring width of 5 mm, and a ring height of 10 mm. The sliding direction was a direction that crossed each layer in the sliding surface substantially at a right angle.

試験は、無潤滑、常温大気中、荷重30N、リングの回転数1200rpmの条件で、1minの摺動を8回反復させた。摺動試験後の摺動子の比摩耗量および摺動相手材の摩耗量を測定した。   In the test, sliding for 1 min was repeated 8 times under the conditions of non-lubricated, normal temperature atmosphere, load 30 N, and ring rotation speed 1200 rpm. The specific wear amount of the slider and the wear amount of the sliding counterpart material after the sliding test were measured.

なお、比較材の摺動子として、S55Cバルク材、および高速鉄道車両のパンタグラフのすり板材として使用されている鉄系焼結材(Fe−2%Ni−2%Ti−1%W−3%Mo−10%Pb)を用意し、上記と同様の試験を行った。
結果を表1に示す。
As a comparative slider, S55C bulk material and iron-based sintered material (Fe-2% Ni-2% Ti-1% W-3%) used as a pantograph sliding plate material for high-speed railway vehicles Mo-10% Pb) was prepared, and the same test as above was performed.
The results are shown in Table 1.

表1からわかるように、本発明例のものは摺動子および摺動相手材双方の損耗が小さく、また、導電性も良好であった。
これに対し、比較例No.1は銅系層の摺動方向平均厚さが小さく、また銅系層/鋼層比率Rが小さいため、摺動相手材の損耗が大きく、導電性にも劣った。No.5は銅系層の摺動方向平均厚さが大きく、また銅系層/鋼層比率Rが大きいため、摺動子の損耗が大きく、摺動相手材に銅系層由来の銅が付着した。No.6は銅系層の摺動方向平均厚さは適正範囲であるが、銅系層/鋼層比率Rが小さいため、摺動相手材の損耗が大きく、導電性にも劣った。No.7はバルク状の鋼材であるため、摺動子および摺動相手材とも損耗が大きく、導電性にも劣った。No.8は高速鉄道車両において良好な集電が実現されるものであるが、このような比較的低速の摺動条件では摺動子および摺動相手材とも損耗が大きく、また導電性も低い。
As can be seen from Table 1, in the example of the present invention, the wear of both the slider and the sliding partner material was small, and the conductivity was also good.
On the other hand, Comparative Example No. 1 has a small average thickness in the sliding direction of the copper-based layer and a small copper-based layer / steel layer ratio R, so that the wear of the sliding counterpart material is large and the conductivity is poor. It was. No. 5 has a large average thickness in the sliding direction of the copper-based layer and a large copper-based layer / steel layer ratio R, so the wear of the slider is large, and the copper from the copper-based layer is the sliding counterpart material. Attached. In No. 6, the average thickness in the sliding direction of the copper-based layer was within an appropriate range, but since the copper-based layer / steel layer ratio R was small, the wear of the sliding counterpart material was large and the conductivity was also poor. Since No. 7 is a bulk steel material, both the slider and the sliding mating material were greatly worn and inferior in conductivity. No. 8 achieves good current collection in a high-speed railway vehicle, but under such relatively low-speed sliding conditions, both the slider and the sliding counterpart material are greatly worn and the conductivity is low. .

1 摺動子(積層構造体)
2 摺動相手材
3 摺動面
4 銅系層
5 鋼層
6 面取り
7 層界面
10 摺動方向
20 摺動面に対する垂直方向
1 Slider (laminated structure)
2 Sliding partner 3 Sliding surface 4 Copper layer 5 Steel layer 6 Chamfer 7 Layer interface 10 Sliding direction 20 Vertical direction to sliding surface

Claims (7)

銅系層と鋼層が交互に積層して各層が金属接合している積層構造体からなる摺動子であって、前記積層構造体は、銅系層と鋼層が交互に露出する表面を摺動面に持ち、当該摺動面内において、
摺動相手材の摺動方向:各層を交互に横切る方向、
鋼層の数:3層以上、
銅系層の摺動方向平均厚さ:0.01〜0.20mm、
銅系層/鋼層比率R:0.04〜0.75、
である金属摺動子。
A slider comprising a laminated structure in which copper-based layers and steel layers are alternately laminated and each layer is metal-bonded. Hold on the sliding surface and within the sliding surface,
Sliding direction of sliding mating material: direction crossing each layer alternately,
Number of steel layers: 3 layers or more,
Average thickness of the copper-based layer in the sliding direction: 0.01 to 0.20 mm,
Copper-based layer / steel layer ratio R: 0.04 to 0.75,
Is a metal slider.
摺動相手材が銅系材料である請求項1に記載の金属摺動子。   The metal slider according to claim 1, wherein the sliding partner material is a copper-based material. 積層構造体は、複数の銅めっき鋼板を重ね合わせて、各銅めっき層同士の接触部を拡散接合したものである請求項1または2に記載の金属摺動子。   3. The metal slider according to claim 1, wherein the laminated structure is obtained by superposing a plurality of copper-plated steel plates and diffusion bonding the contact portions between the copper-plated layers. 積層構造体は、複数の銅めっき鋼板を重ね合わせて、各銅めっき層をろう材としてろう付け接合したものである請求項1または2に記載の金属摺動子。   3. The metal slider according to claim 1, wherein the laminated structure is obtained by superposing a plurality of copper-plated steel plates and brazing each copper plating layer as a brazing material. 積層構造体は、銅めっき鋼板と銅系金属シートを交互に重ね合わせて、各銅めっき層と銅系金属シートの接触部を拡散接合したものである請求項1または2に記載の金属摺動子。   3. The metal sliding according to claim 1, wherein the laminated structure is obtained by alternately superimposing copper-plated steel plates and copper-based metal sheets and diffusion bonding the contact portions of the copper-plated layers and the copper-based metal sheet. Child. 当該摺動子は、摺動面に対し垂直方向に可動なように、ばね機構を介して構造物に取り付けられている請求項1〜5のいずれかに記載の金属摺動子。   The metal slider according to claim 1, wherein the slider is attached to the structure via a spring mechanism so as to be movable in a direction perpendicular to the sliding surface. 当該摺動子は、摺動相手材との電気的接触により通電を行う通電部材である請求項1〜6のいずれかに記載の金属摺動子。   The metal slider according to any one of claims 1 to 6, wherein the slider is a current-carrying member that conducts electricity by electrical contact with a sliding partner material.
JP2010081808A 2010-03-31 2010-03-31 Metal slider Active JP5355475B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010081808A JP5355475B2 (en) 2010-03-31 2010-03-31 Metal slider

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010081808A JP5355475B2 (en) 2010-03-31 2010-03-31 Metal slider

Publications (2)

Publication Number Publication Date
JP2011212918A true JP2011212918A (en) 2011-10-27
JP5355475B2 JP5355475B2 (en) 2013-11-27

Family

ID=44943179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010081808A Active JP5355475B2 (en) 2010-03-31 2010-03-31 Metal slider

Country Status (1)

Country Link
JP (1) JP5355475B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52109408A (en) * 1976-03-11 1977-09-13 Toshiba Corp Collector
JPS6248102U (en) * 1986-06-11 1987-03-25
JPH0249301U (en) * 1988-09-30 1990-04-05
JP2009096023A (en) * 2007-10-15 2009-05-07 Nisshin Steel Co Ltd High strength composite metal material and its production method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52109408A (en) * 1976-03-11 1977-09-13 Toshiba Corp Collector
JPS6248102U (en) * 1986-06-11 1987-03-25
JPH0249301U (en) * 1988-09-30 1990-04-05
JP2009096023A (en) * 2007-10-15 2009-05-07 Nisshin Steel Co Ltd High strength composite metal material and its production method

Also Published As

Publication number Publication date
JP5355475B2 (en) 2013-11-27

Similar Documents

Publication Publication Date Title
JP5307348B2 (en) Band-shaped composite, method of using the same, and composite slip element comprising the band-shaped composite
CN109849455B (en) Magnesium/steel layered composite material and preparation method thereof
Tsutsui Recent technology of powder metallurgy and applications
CN109318547B (en) MAX phase ceramic-metal layered composite material, preparation method and application
JP2013514188A (en) Conductive composite component and method of manufacturing the same
US20130175071A1 (en) Plate-like conductor for a busbar and the busbar consisting of the plate-like conductor
CN1752266A (en) Method for preparing steel/aluminium composite material
CN102886521A (en) Albronze sintering alloy sliding material and manufacture method thereof
JP2016027281A (en) Plain bearing multilayer coating structure and plain bearing multilayer coating structure manufacturing method
TW201300185A (en) Method for fabricating slidable member
CN110935728A (en) Preparation method of layered wear-resistant light steel-aluminum composite board
CN1035871A (en) A kind of thrust slide bearing and manufacture method thereof
WO1992001528A1 (en) Hot diffusion welding
JP6281451B2 (en) TERMINAL MEMBER, ITS MANUFACTURING METHOD, AND CONNECTOR TERMINAL
JP5764506B2 (en) Ceramic porous body-metal heat insulating material and manufacturing method thereof
JP5355475B2 (en) Metal slider
JP5679881B2 (en) Oil-impregnated slider
JP2001335812A (en) Lead-free plain bearing and its production method
JP5473711B2 (en) Laminated mold for resin molding and method for producing the same
KR101245743B1 (en) Wear plate and manufacturing method thereof
KR20110118283A (en) Non oil supplying and antirust sinterred bearing
WO2018180810A1 (en) Welded joint manufacturing method, and welded joint
JPS5852547B2 (en) Multi-layer sliding member
JP5570133B2 (en) Steel / copper composite material and manufacturing method thereof
JPH07256445A (en) Lining method for copper alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121130

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130821

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130827

R150 Certificate of patent or registration of utility model

Ref document number: 5355475

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350