JP2011211081A - Solar cell, and solar cell module - Google Patents

Solar cell, and solar cell module Download PDF

Info

Publication number
JP2011211081A
JP2011211081A JP2010079245A JP2010079245A JP2011211081A JP 2011211081 A JP2011211081 A JP 2011211081A JP 2010079245 A JP2010079245 A JP 2010079245A JP 2010079245 A JP2010079245 A JP 2010079245A JP 2011211081 A JP2011211081 A JP 2011211081A
Authority
JP
Japan
Prior art keywords
resin
solar cell
layer
electrode
surface side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010079245A
Other languages
Japanese (ja)
Inventor
Satoshi Tohoda
悟司 東方田
Shigeji Taira
茂治 平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2010079245A priority Critical patent/JP2011211081A/en
Priority to PCT/JP2011/057964 priority patent/WO2011122652A1/en
Publication of JP2011211081A publication Critical patent/JP2011211081A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022433Particular geometry of the grid contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/056Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means the light-reflecting means being of the back surface reflector [BSR] type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • H01L31/0745Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
    • H01L31/0747Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells comprising a heterojunction of crystalline and amorphous materials, e.g. heterojunction with intrinsic thin layer or HIT® solar cells; solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Abstract

PROBLEM TO BE SOLVED: To provide a solar cell equipped with a collector electrode having an excellent adhesion, and to provide a solar cell module using the same.SOLUTION: In the solar cell 5 including a first surface 18, a second surface 21, and the collector electrodes 222a, 222b, ... formed on the first surface 18, the collector electrodes 222a, 222b, ... contain at least a reflective conductive material and a resin, the resin consists of a first resin and a second resin having a higher elasticity than that of the first resin, and a weight concentration of the second resin in the collector electrodes 222a, 222b, ... is higher on the first surface 18 side compared with the top surface side of the collector electrodes 222a, 222b, ....

Description

本発明は、太陽電池セル及び太陽電池モジュールに関する。   The present invention relates to a solar battery cell and a solar battery module.

近年、環境に対する影響が少ないエネルギー源を求める動きが大きくなってきている中、太陽電池セルを用いた太陽電池システムや太陽電池応用製品等の太陽電池分野が注目されている。   2. Description of the Related Art In recent years, there has been a growing demand for energy sources that have little impact on the environment, and solar cell fields such as solar cell systems using solar cells and solar cell application products have attracted attention.

太陽電池システムや太陽電池応用製品等は、例えば、一又は複数の太陽電池モジュールを含んで構成されており、太陽電池モジュールは、一又は複数の太陽電池セルを含む構成である。   A solar cell system, a solar cell application product, or the like includes, for example, one or a plurality of solar cell modules, and the solar cell module includes one or a plurality of solar cells.

図11は、従来の太陽電池モジュール中の太陽電池セルの上面図である。   FIG. 11 is a top view of a solar battery cell in a conventional solar battery module.

図11に示すように、太陽電池セル100は、受光面側となる表面101上に表面側電極102を有すると共に、その裏面上には図示しない裏面側電極を有する。
表面側電極102は、太陽電池セル100に光が入射することにより生成するキャリアを収集するための集電極としての複数の細線状のフィンガー電極102a、102a、・・・・と、該キャリアを外部へ取り出すためのバスバー電極102b、102bとにより構成されている。
表面側電極102は、例えば、表面101上に導電性ペーストをオフセット印刷法、スクリーン印刷法等により印刷して形成される。
例えば、オフセット印刷法により所定範囲の粘度をもつ導電性ペーストを複数回印刷して集電極を形成する方法が記載されている(例えば、特許文献1参照)。
斯かる方法の場合、細幅で、厚みが大きい集電極を形成できることが開示されており、集電極による入射光の遮光を低減できるため、遮光による太陽電池セルの出力の低下を抑制できる。
特開2007−44974号公報
As shown in FIG. 11, the solar battery cell 100 has a surface-side electrode 102 on a surface 101 that is a light-receiving surface side, and a back-side electrode (not shown) on the back surface.
The front-side electrode 102 includes a plurality of fine-finger finger electrodes 102a, 102a,... Serving as collecting electrodes for collecting carriers generated when light enters the solar battery cell 100, and the carriers are connected to the outside. The bus bar electrodes 102b and 102b are used to take out.
For example, the front-side electrode 102 is formed by printing a conductive paste on the surface 101 by an offset printing method, a screen printing method, or the like.
For example, a method is described in which a conductive paste having a predetermined range of viscosity is printed a plurality of times by offset printing to form a collecting electrode (see, for example, Patent Document 1).
In the case of such a method, it is disclosed that a collector electrode having a small width and a large thickness can be formed, and since the shielding of incident light by the collector electrode can be reduced, a decrease in the output of the solar battery cell due to the shielding can be suppressed.
JP 2007-44974 A

太陽電池セルの長寿命化を図るため、集電極とその下地との接着性を高くすることが望ましく、特に、集電極をより細幅とする場合には、集電極とその下地との接着面積が小さくなるため、該集電極とその下地との接着性を高めることが望ましい。   In order to extend the life of the solar cell, it is desirable to increase the adhesion between the collector electrode and its base, and in particular, when the collector electrode is narrower, the adhesion area between the collector electrode and its base Therefore, it is desirable to improve the adhesion between the collector electrode and the base.

本発明は、上記課題を鑑みなされたものであり、良接着性を有する集電極を備えた太陽電池セル及びこれを用いた太陽電池モジュールを提供するものである。   This invention is made | formed in view of the said subject, and provides the photovoltaic cell provided with the collector electrode which has good adhesiveness, and a photovoltaic cell module using the same.

本発明に係る太陽電池セルは、第1の面と、第2の面と、前記第1の面上に形成された集電極とを備えた太陽電池セルであって、前記集電極は、少なくとも反射性導電材料と樹脂を含有し、該樹脂は少なくとも第1の樹脂と該第1の樹脂より高い弾性を有する第2の樹脂からなり、前記集電極中の前記第2の樹脂の重量濃度は、前記第1の面側が該集電極の上表面側よりも高いことを特徴とする。ここで、第2の樹脂からなりとは、上面側に第2の樹脂がない構成も含まれる。
本発明に係る太陽電池セルでは、第1の樹脂より高い弾性を有する第2の樹脂が、前記集電極と太陽電池セルの基体との熱膨張係数の差に起因する応力を緩和するため、前記集電極の太陽電池セルの基体上への接着性が高くなり、信頼性が向上する。
前記集電極は、複数のフィンガー電極であってよく、また他の形状でもよく、集電極に加え、バスバー電極も同様の構成にしてよい。
また、第1の樹脂として第2の樹脂に比べ良光透過性、良耐湿性または/及び良耐候性を有するものを選択してもよい。この場合、前記集電極の光反射性、耐湿性または/及び耐候性を良好にできる。
更に、前記集電極中の前記第1の樹脂の重量濃度を該集電極の上表面側が第1の面側よりも高くしてもよい。この場合、前記集電極の特性をより容易に調整できるので好ましい。また、第1の樹脂として第2の樹脂に比べ良光透過性、良耐湿性または/及び良耐候性を有するものを選択した場合、前記集電極の上表面側に良光透過性、良耐湿性または/及び良耐候性の第1の樹脂が多く存在するので、前記集電極の光反射性、耐湿性または/及び耐候性をより良好にできる。
また、前記第2の樹脂は、前記第1の樹脂に比べて平均分子量が大きくしてもよい。
この場合、第2の樹脂は第1の樹脂より高い弾性を有する構成を容易にできる。また、この場合、第1の樹脂は第2の樹脂に比べて光吸収性を小さくすることが容易にできる。
A solar battery cell according to the present invention is a solar battery cell including a first surface, a second surface, and a collector electrode formed on the first surface, wherein the collector electrode is at least A reflective conductive material and a resin are included, and the resin includes at least a first resin and a second resin having higher elasticity than the first resin, and the weight concentration of the second resin in the collector electrode is The first surface side is higher than the upper surface side of the collector electrode. Here, the term “made of the second resin” includes a configuration in which the second resin is not provided on the upper surface side.
In the solar cell according to the present invention, the second resin having higher elasticity than the first resin relieves stress caused by the difference in thermal expansion coefficient between the collector electrode and the base of the solar cell. Adhesiveness of the collector electrode to the substrate of the solar battery cell is increased, and reliability is improved.
The collector electrode may be a plurality of finger electrodes, and may have other shapes. In addition to the collector electrode, the bus bar electrode may have the same configuration.
Further, as the first resin, a resin having better light transmittance, better moisture resistance and / or better weather resistance than the second resin may be selected. In this case, the light reflectivity, moisture resistance and / or weather resistance of the collector electrode can be improved.
Furthermore, the weight concentration of the first resin in the collector electrode may be higher on the upper surface side of the collector electrode than on the first surface side. This is preferable because the characteristics of the collector electrode can be adjusted more easily. In addition, when the first resin is selected to have good light transmittance, good moisture resistance and / or good weather resistance as compared to the second resin, good light transmittance, good moisture resistance or Since there are many first resins having good weather resistance, the light reflectivity, moisture resistance and / or weather resistance of the collector electrode can be improved.
Further, the second resin may have an average molecular weight larger than that of the first resin.
In this case, the second resin can be easily configured to have higher elasticity than the first resin. In this case, the first resin can easily reduce the light absorption as compared with the second resin.

また、前記集電極は複数層からなり、前記第2の樹脂の重量濃度は該複数層のうちの最下層が該複数層のうちの最上層に比べて高くてもよい。   The collector electrode may include a plurality of layers, and the weight concentration of the second resin may be higher in the lowermost layer of the plurality of layers than in the uppermost layer of the plurality of layers.

この場合、前記集電極中の前記第1の面側で前記第2の樹脂の重量濃度を大きくする構成を容易に形成できるので、好ましい。
更に、上記第2の面上に集電極を備える構成の場合、この集電極は、少なくとも反射性導電材料と樹脂を含有し、該樹脂は少なくとも第1の樹脂と該第1の樹脂より高い弾性を有する第2の樹脂からなり、前記集電極中の前記第2の樹脂の重量濃度は、前記第2の面側がこの集電極の上表面側よりも高くてもよい。
この場合、この第1の樹脂より高い弾性を有する第2の樹脂は、この集電極と太陽電池セルの基体との熱膨張係数の差に起因する応力を緩和するため、この集電極の太陽電池セルの基体上への接着性が高くなり、信頼性が向上する。
この集電極は、複数のフィンガー電極であってよく、また他の形状でもよく、集電極に加え、バスバー電極も同様の構成にしてよい。
また、第1の樹脂として第2の樹脂に比べ良光透過性、良耐湿性または/及び良耐候性を有するものを選択してもよい。この場合、この集電極の光反射性、耐湿性または/及び耐候性を良好にできる。
更に、この集電極中の前記第1の樹脂の重量濃度を該集電極の上表面側が第1の面側よりも高くしてもよい。この場合、この集電極の特性をより容易に調整できるので好ましい。また、第1の樹脂として第2の樹脂に比べ良光透過性、良耐湿性または/及び良耐候性を有するものを選択した場合、上表面側に良光透過性、良耐湿性または/及び良耐候性の第1の樹脂が多く存在するので、この集電極の光反射性、耐湿性または/及び耐候性をより良好にできる。
また、前記第2の樹脂は、前記第1の樹脂に比べて平均分子量が大きくしてもよい。
この場合、第2の樹脂は第1の樹脂より高い弾性を有する構成を容易にできる。また、この場合、第1の樹脂は第2の樹脂に比べて光吸収性を小さくすることが容易にできる。
また、この集電極は複数層からなり、前記第2の樹脂の重量濃度は該複数層のうちの最下層が該複数層のうちの最上層に比べて高くしてもよい。
In this case, a configuration in which the weight concentration of the second resin is increased on the first surface side in the collector electrode can be easily formed, which is preferable.
Furthermore, in the case of a configuration including a collector electrode on the second surface, the collector electrode contains at least a reflective conductive material and a resin, and the resin has at least higher elasticity than the first resin and the first resin. The weight concentration of the second resin in the collector electrode may be higher on the second surface side than on the upper surface side of the collector electrode.
In this case, the second resin having higher elasticity than the first resin relieves stress caused by the difference in thermal expansion coefficient between the collector electrode and the base of the solar battery cell. Adhesion of the cell to the substrate is enhanced, and reliability is improved.
The collector electrode may be a plurality of finger electrodes, and may have other shapes. In addition to the collector electrode, the bus bar electrode may have the same configuration.
Further, as the first resin, a resin having better light transmittance, better moisture resistance and / or better weather resistance than the second resin may be selected. In this case, the light reflectivity, moisture resistance and / or weather resistance of the collector electrode can be improved.
Furthermore, the weight concentration of the first resin in the collector electrode may be higher on the upper surface side of the collector electrode than on the first surface side. This is preferable because the characteristics of the collector electrode can be adjusted more easily. In addition, when the first resin is selected to have better light transmittance, better moisture resistance and / or better weather resistance than the second resin, good light transmittance, good moisture resistance or / and good weather resistance on the upper surface side. Therefore, the light reflection property, moisture resistance, and / or weather resistance of the collector electrode can be improved.
Further, the second resin may have an average molecular weight larger than that of the first resin.
In this case, the second resin can be easily configured to have higher elasticity than the first resin. In this case, the first resin can easily reduce the light absorption as compared with the second resin.
The collector electrode may be composed of a plurality of layers, and the weight concentration of the second resin may be higher in the lowermost layer of the plurality of layers than in the uppermost layer of the plurality of layers.

この場合、この集電極中の前記第2の面側の前記第2の樹脂の重量濃度を大きくする構成を容易に形成できるので、好ましい。
更に、前記集電極の最上層は、その下層を覆うように形成されていてもよい。
この場合、最上層には第2の樹脂が少ないので、第1の樹脂が第2の樹脂に比べ良光透過性、良耐湿性または/及び良耐候性とすることにより、集電極の光反射性、耐湿性または/及び耐候性がよくなる。
更に、前記集電極の最上層の少なくとも一部は、前記第2の面に接触するように形成されてもよい。
更に、上記太陽電池セルを備えた太陽電池モジュールであって、透光性部材と、裏面側保護部材と、これらの間に複数の前記太陽電池セルを備えてもよい。
この場合、上記透光性部材と上記太陽電池セルの上面が対向する配置が好ましい。
また、前記裏面側保護部材は、透光性部材であってもよい。
この場合、裏面側からも光が入射するので、太陽電池モジュールの出力がよ
り向上する。
この場合、上記透光性部材と上記太陽電池セルの下面が対向する配置が好ましい。
特に、この場合、上記太陽電池セルは、両面受光型太陽電池セルが好ましい。
In this case, it is preferable because a configuration in which the weight concentration of the second resin on the second surface side in the collector electrode is increased can be easily formed.
Furthermore, the uppermost layer of the collector electrode may be formed so as to cover the lower layer.
In this case, since the second resin is less in the uppermost layer, the light reflectivity of the collector electrode is improved by making the first resin have better light transmission, better moisture resistance and / or better weather resistance than the second resin. Improves moisture resistance and / or weather resistance.
Furthermore, at least a part of the uppermost layer of the collector electrode may be formed so as to contact the second surface.
Furthermore, it is a solar cell module provided with the said photovoltaic cell, Comprising: You may equip a translucent member, a back surface side protection member, and the said several photovoltaic cell between these.
In this case, an arrangement in which the translucent member and the upper surface of the solar battery cell face each other is preferable.
Further, the back surface side protection member may be a translucent member.
In this case, since light also enters from the back side, the output of the solar cell module is further improved.
In this case, an arrangement in which the translucent member and the lower surface of the solar battery cell face each other is preferable.
In particular, in this case, the solar cell is preferably a double-sided light-receiving solar cell.

透光性部材としては、ガラス板、樹脂板、塗布形成された樹脂等であってよい。   The translucent member may be a glass plate, a resin plate, a resin formed by coating, or the like.

また、上記上面、上記下面は、半導体基板、半導体層または透明導電膜等の導電性体の上面、下面であってよい。また、上記上面、上記下面は、テクスチャー面であってもよい。
上記第1の樹脂としては、例えば、エポキシ系樹脂等を用いてよく、上記第2の樹脂として、該第1の樹脂に比べて弾性が高くなるように、該第1の樹脂より平均分子量の大きいエポキシ系樹脂またはウレタン系樹脂等を用いてもよい。
The upper surface and the lower surface may be the upper surface and the lower surface of a conductive body such as a semiconductor substrate, a semiconductor layer, or a transparent conductive film. The upper surface and the lower surface may be textured surfaces.
As the first resin, for example, an epoxy-based resin or the like may be used. As the second resin, an average molecular weight is higher than that of the first resin so that elasticity is higher than that of the first resin. A large epoxy resin or urethane resin may be used.

本発明は、良接着性を有する集電極を備えた太陽電池セル及びこれを用いた太陽電池モジュールを提供できる。   INDUSTRIAL APPLICABILITY The present invention can provide a solar cell provided with a collector electrode having good adhesion and a solar cell module using the solar cell.

本発明の第1実施形態に係る太陽電池モジュールの上面図である。It is a top view of the solar cell module which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る太陽電池モジュールの斜視図である。It is a perspective view of the solar cell module which concerns on 1st Embodiment of this invention. 図1のA−A’に沿った太陽電池モジュールの一部断面図である。It is a partial cross section figure of the solar cell module along A-A 'of FIG. 図4(a) は本発明の第1実施形態に係る太陽電池モジュールに用いられる太陽電池セルの上面図、図4(b)は当該太陽電池セルの裏面図、図4(c)は本発明の第1実施形態に係る太陽電池モジュール中の太陽電池セルと導電性接続部材との接続を説明するための上面図である。4 (a) is a top view of a solar battery cell used in the solar battery module according to the first embodiment of the present invention, FIG. 4 (b) is a back view of the solar battery cell, and FIG. 4 (c) is the present invention. It is a top view for demonstrating the connection of the photovoltaic cell in the solar cell module which concerns on 1st Embodiment of this, and an electroconductive connection member. 第1実施形態に係る太陽電池モジュールの一部断面図である。It is a partial cross section figure of the solar cell module which concerns on 1st Embodiment. 本発明の第3実施形態に係る太陽電池モジュールの一部断面図である。It is a partial cross section figure of the solar cell module which concerns on 3rd Embodiment of this invention. 本発明の第4実施形態に係る太陽電池モジュールの一部断面図である。It is a partial cross section figure of the solar cell module which concerns on 4th Embodiment of this invention. 本発明の第5実施形態に係る太陽電池モジュールの一部断面図である。It is a partial cross section figure of the solar cell module which concerns on 5th Embodiment of this invention. 本発明の他の実施形態に係る太陽電池モジュールの一部断面図である。It is a partial cross section figure of the solar cell module which concerns on other embodiment of this invention. 本発明の他の実施形態に係る太陽電池モジュールの一部断面図である。It is a partial cross section figure of the solar cell module which concerns on other embodiment of this invention. 従来の太陽電池モジュール中の太陽電池セルを説明するための上面図である。It is a top view for demonstrating the photovoltaic cell in the conventional solar cell module.

次に、図面を用いて、本発明の実施の形態を説明する。ただし、図面は模式的なものであり、各寸法の比率等は現実のものとは異なることに留意すべきである。又、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。
(第1実施形態)
本発明の第1実施形態に係る片面受光型太陽電池モジュールを説明する。
図1乃至図3を参照して、1は太陽電池モジュールであり、太陽電池モジュール1は、例えば、白板強化ガラス等の透明な表面側カバー2、ポリエチレンテレフタレート(PET)等の樹脂フィルムからなる耐候性の裏面側カバー3及び表面側カバー2と裏面側カバー3との間にエチレンビニルアセテート(EVA)等の充填剤4を介して配置された複数の太陽電池セル5、5、・・・が厚み1〜50μmのSn-Ag−Cu等の半田層(導電性層)で表面が被覆されてなる平板銅線等からなる幅0.5〜3mm、厚み100〜300μmのストリップ状(帯状)の導電性接続部材6、6、・・・により電気的に直列接続されてなる直線状の太陽電池群7、7、・・・からなる板状の構成体と、該構成体を支持するアルミニウム等からなる金属製枠体8から構成されている。
各太陽電池群7、7、・・・は、互いに並列に配置され、太陽電池群7、7、・・・が電気的に直列接続するように、各所定の隣り合う太陽電池群7、7、・・・の一方端側の導電性接続部材6、6、・・・が厚み1〜50μmのSn-Ag−Cu等の半田層(導電性層)で表面が被覆された平板銅線等からなる幅0.5mm〜3mm、厚み100〜300μmのストリップ状(帯状)の導電性接続部材9によって半田接続されると共に、他の所定の隣り合う太陽電池群7、7の他方端側の導電性接続部材6、6、・・・が厚み1〜50μmのSn-Ag−Cu等の半田層(導電性層)で表面が被覆された平板銅線等からなる幅0.5mm〜3mm、厚み100〜300μmのL字状の導電性接続部材10、11と半田接続されている。
この構成により、太陽電池モジュール1の複数の太陽電池セル5、5、・・・はマトリックス状に配置される。
最外側の太陽電池群7、7、・・・中の電力取り出し側の両最端の太陽電池セル5、5、・・・の導電性接続部材6、6、・・・には、太陽電池モジュール1から電気出力を取り出すための厚み1〜50μmのSn−Ag−Cu等の半田層(導電性層)で表面が被覆された平板銅線等からなる幅0.5mm〜3mm、厚み100〜300μmのL字状の接続部材(出力取り出し用接続部材) 12、13がそれぞれ半田接続されている。
なお、上記L字状の接続部材10、11とL字状の接続部材12、13との間、上記L字状の接続部材11とL字状の接続部材13の間で交差する部分は、図示しないポリエチレンテレフタレート(PET)等の絶縁シートなどの絶縁部材を介在させている。
また、図示しないが、上記L字状の接続部材10、上記L字状の接続部材11、L字状の接続部材12およびL字状の接続部材13の各先端側部分は、裏面側カバー3の切り欠きを介して太陽電池モジュール1の上部側中央に位置するように端子ボックス14内に導かれている。
前記端子ボックス内14において、上記L字状の接続部材12とL字状の接続部材10の間、上記L字状の接続部材10とL字状の接続部材11の間、およびL字状の接続部材11とL字状の接続部材13の間は、それぞれバイパスダイオード(図示しない)で接続されている。
図4乃至図6を参照して、上記太陽電池セル5は、両面受光型太陽電池セルである。一例としては、n型単結晶シリコン基板15のテクスチャー構造を有する表面の略全域上に、i型アモルファスシリコン層16、p型またはn型の一導電型アモルファスシリコン層17、錫を含有する酸化インジウム(ITO)膜等からなる透明導電膜層18をこの順に備える。また前記基板15のテクスチャー構造を有する裏面の略全域上ではi型アモルファスシリコン層19、前記一導電型とは逆導電型のアモルファスシリコン層20、錫を含有する酸化インジウム(ITO)膜等の透明導電膜層21をこの順に備えてなる、光電変換部を備えた所謂HIT(登録商標)構造の太陽電池セルである。
上記テクスチャー構造は、単結晶シリコン基板の(100)面を異方性エッチングすることにより形成された、数μm〜数十μmの高さのピラミッド形状を有する凹凸構造である。
本実施形態では、上記テクスチャー構造は、多数のピラミッド形状が不規則に配置され、ピラミッド形状は、その高さ(大きさ)が不揃いであるランダムテクスチャー構造であり、隣り合うピラミッドが一部重なりあってもよい。なお、各ピラミッド形状の頂点および谷部は、丸みを帯びていてもよい。
本実施形態のn型単結晶シリコン基板15は、例えば、約125mm角の略正方形であり、厚みは、例えば100μm〜300μmである。
太陽電池セル1には、透明導電膜18上に金属材料等の反射性導電材料及び接着剤として機能する樹脂を混合して含有してなる表面側電極22が形成されている。
前記樹脂は、主成分の樹脂と該主成分の樹脂より平均分子量が大きい副成分の樹脂を混合してなり、前記副成分の樹脂は前記主成分の樹脂より弾性が大きいと共に、前記主成分の樹脂は前記副成分の樹脂より可視光領域の光吸収が小さい。
ここで、上記反射性導電材料の重量濃度は、上記樹脂の重量濃度(上記主成分の樹脂と上記副成分の樹脂の合計の重量濃度)より高く、また主成分の樹脂の重量濃度は、副成分の樹脂の重量濃度よりも高い。
表面側電極22は、集電極としての互いに平行に配置されてなる複数の細線状のフィンガー電極221a、221a、・・・と、これら複数の細線状のフィンガー電極221a、221a、・・・と交わるように配置されたバスバー電極221b、221bとにより構成されている。
上記表面側電極22のフィンガー電極221a、221a、・・・は、その各幅が50〜200μmであり、例えば100μmであり、2mm間隔で配置されている。
また、表面側電極22のバスバー電極221b、221bは、その各幅が、0.1〜1.8mmであり、例えば1.3mmの直線状(帯状)電極である。
また、上記表面側電極22は、第1の層222a及びこの第1の層222aの主成分の樹脂及び副成分の樹脂との含有率の異なる第2の層222bがこの順に透明導電膜18上に積層されてなる2層構造である。
上記第1の層222a中の樹脂(主成分の樹脂と副成分の樹脂)と反射性導電材料との含有比率と上記第2の層222b中の樹脂(主成分の樹脂と副成分の樹脂)と反射性導電材料との含有比率は、同じである。
下地である透明導電膜18側の第1の層222aは、表面側カバー2側(光入射側)の第2の層222bに比べ、副主成分の樹脂の重量濃度が高く、主成分の樹脂の重量濃度が低い。従って、表面側カバー2側(光入射側)の第2の層222bは、下地である透明導電膜18側の第1の層222aに比べ、主成分の樹脂の重量濃度が高く、副成分の樹脂の重量濃度が低い。
また、太陽電池セル1は、透明導電膜21上に金属材料等の反射性導電材料と接着剤として機能する樹脂を混合して含有してなる裏面側電極23が形成されている。
裏面側電極23は、集電極としての互いに平行に配置されてなる複数の細線状のフィンガー電極231a、231a、・・・とこれら複数の細線状のフィンガー電極231a、231a、・・・と交わるように配置されたバスバー電極231b、231bとにより構成されている。
上記裏面側電極23のフィンガー電極231a、231a、・・・は、その各幅が50〜200μmであり、例えば150μmであり、1mm間隔で配置されている。
また、裏面側電極23のバスバー電極231b、231bは、その各幅が、0.1〜4mmであり、例えば3mmの直線状(帯状)電極である。
また、上記裏面側電極23は、第1の層232a及びこの第1の層232aと主成分の樹脂及び副成分の樹脂の含有率の異なる第2の層232bがこの順に透明導電膜21上に積層されてなる2層構造である。
上記第1の層232a中の樹脂(主成分の樹脂と副成分の樹脂)と反射性導電材料との含有比率と上記第2の層232b中の樹脂(主成分の樹脂と副成分の樹脂)と反射性導電材料との含有比率は、同じである。
下地である透明導電膜21側の第1の層232aは、裏面側カバー3側(反光入射側)の第2の層232bに比べ、副成分の樹脂の重量濃度が高く、主成分の樹脂の重量濃度が低い。従って、裏面側カバー3側(反光入射側)の第2の層232bは、下地である透明導電膜21側の第1の層232aに比べ、主成分の樹脂の重量濃度が高く、副成分の樹脂の重量濃度が低い。
本実施形態では、主成分の樹脂としてエポキシ系樹脂、副成分の樹脂として、該エポキシ樹脂に比べて弾性が高くなるように、該エポキシ系樹脂より平均分子量の大きいエポキシ系樹脂またはウレタン系樹脂を用いている。
表面側電極22の第1の層222a、222a、・・・は、主成分の樹脂の含有率が7wt%、副成分の樹脂の含有率が3wt%、平均長径5〜20μmのフレーク状銀微粉末及び平均粒径0.1〜5μmの球状銀微粉末を混合してなる反射性導電材料の含有率が90wt%である。
また、表面側電極22の第2の層222b、222b、・・・は、主成分の樹脂の含有率が9wt%、副成分の樹脂の含有率が1wt%、平均長径5〜20μmのフレーク状銀微粉末及び平均粒径0.1〜5μmの球状銀微粉末とを混合してなる反射性導電材料の含有率が90wt%である
本実施形態では、裏面側電極23の第1の層232a、232a・・・は、主成分の樹脂の含有率が7wt%、副成分の樹脂の含有率が3wt%、平均長径5〜20μmのフレーク状銀微粉末及び平均粒径0.1〜5μmの球状銀微粉末を混合してなる反射性導電材料の含有率が90wt%である。
また、裏面側電極23の第2の層232b、232b、・・・は、主成分の樹脂の含有率が9wt%、副成分の樹脂の含有率が1wt%、平均長径5〜20μmのフレーク状銀微粉末及び平均粒径0.1〜5μmの球状銀微粉末とを混合してなる反射性導電材料の含有率が90wt%である。
また、表面側電極22の第2の層222b、222b、・・・及び裏面側電極23の第2の層232b、232b、・・・中のフレーク粉状銀粉末の多くは、その長手方向が層と平行方向に配向している。
そして、隣り合う太陽電池セル5、5、・・・は、一方の太陽電池セル5の表面側電極22のバスバー電極221b、221bと他方の太陽電池セル5の裏面側電極23のバスバー電極231b、231b間とが導電性接続部材6、6により電気的に接続されるように、各該導電性接続部材6は、それぞれ該バスバー電極221b、該バスバー電極231bと対向するように配置され、半田やエポキシ系樹脂からなる接着剤により固定されている。
上述したように、本実施形態では、副成分の樹脂が主成分の樹脂より弾性が大きくなると共に、主成分の樹脂が副成分の樹脂より光吸収が小さくなるように、副成分の樹脂は主成分の樹脂より平均分子量を大きくしている。
従って、表面側電極22は下地側の第1の層222a、222a、・・・が高い弾性を有する副成分の樹脂を第2の層222b、222b、・・・より多く含むので、これらの層中の表面側電極22と基板15との熱膨張係数の差に起因する応力が緩和されるため、表面側電極22と下地となる透明導電膜18の間の接着性が高くなり、信頼性が向上する。
加えて、裏面側電極23は下地側の第1の層232a、232a、・・・が高い弾性を有する副成分の樹脂を第2の層232b、232b、・・・より多く含むので、これらの層中の裏面側電極23と基板15との熱膨張係数の差に起因する応力が緩和されるため、裏面側電極23と下地となる透明導電膜21の間の接着性が高くなり、信頼性が向上する。
また、表面側電極22は上表面側の第2の層222b、222b、・・・が光吸収の高い副成分の樹脂を第1の層222a、222a、・・・より少なく含むので、表面側電極22の上表面や上側側面の光反射率を大きくできる。
この結果、太陽電池モジュール1において、表面側カバー2から入射した光のうち、表面側電極22の上表面や上側側面、即ち第2の層222b、222b、・・・に達した光Xは該上表面や該上側側面で効率よく反射されるため、表面側カバー2又は充填材4で再反射される光Xが多くなり、結果として、太陽電池セル5へ光が多く入射するため、太陽電池セル5の出力が向上する。
加えて、裏面側電極23は上表面側の第2の層232b、232b、・・・が光吸収の高い副成分の樹脂を第2の層232a、232a、・・・より少なく含むので、裏面側電極23の上表面や上側側面の光反射率を大きくできる。
この結果、太陽電池モジュール1において、太陽電池セル5、5の間や太陽電池セル5中を透過し、裏面側カバー3等で反射した光のうち、裏面側電極23の上表面や上側側面、即ち第2の層232b、232b、・・・に達した光Yは該上表面や該上側側面で効率よく反射されるため、裏面側カバー3又は充填材4で再反射される光Yが多くなり、結果として、裏面側においても、太陽電池セル5へ光が多く入射するため、太陽電池セル5の出力がより向上する。
更に、表面側電極22の第2の層222b、222b、・・・中及び裏面側電極23の第2の層232b、232b、・・・中のフレ−ク状銀粉体は、可視光領域の光をよく反射する平均長径を有し、該フレ−ク状銀粉体の長径方向が該第2の層222b、222b、232b、232、・・・と平行方向に多く配向しているので、太陽電池セル5の出力がさらに向上する。
また、本実施形態では、前記主成分の樹脂として副成分の樹脂に比べて耐候性又は/及び耐湿性を有し、表面側電極22の第2の層222b、裏面側電極23の第2の層232bが前記主成分の樹脂を表面側電極22の第1の層222a、裏面側電極23の第1の層232aより多く含むので、高温高湿条件下で長期間使用された場合でも表面側電極22及び裏面側電極23の劣化を防止することができ、信頼性が向上する。
(太陽電池モジュールの製造方法)
以下に、本実施形態に係る太陽電池モジュールの製造方法を説明する。
まず、両表面上に透明電極膜層18、21を備えた太陽電池セル5を準備する。
次に、所定量の主成分の樹脂と副成分の樹脂が溶剤に溶けてなるペースト中に所定量の反射性導電材料が分散してなる第1の導電性ペースト及び第2の導電性ペーストを準備する。ここで、第2の導電性ペーストは、第1の導電性ペーストに比べて、主成分の樹脂より副成分の樹脂の重量濃度が低い。
続いて、上記太陽電池セル5の透明電極膜層18上に、スクリーン印刷、オフセット印刷、パット印刷等により上記第1の導電性ペーストを所定のパターンで印刷し、乾燥させた後、上記第2の導電性ペーストを該所定のパターンに重なるように印刷し、乾燥させると共に、上記太陽電池セル5の透明導電膜層21上にスクリーン印刷、オフセット印刷、パット印刷等により上記第1の導電性ペーストを所定のパターンで印刷し、乾燥させた後、上記第2の導電性ペーストを所定のパターンに重なるように印刷し、乾燥させる。
その後、200℃程度、1時間程度の加熱により上記第1、第2の導電性ペーストを硬化させて第1の層222a、222a、・・・と第2の層222b、222b、・・・からなる表面側電極22及び第1の層232a、232a、・・・と第2の層232b、232b、・・・からなる裏面側電極23を作製する。
続いて、上述のようにして表面側電極22及び裏面側電極23が作製された太陽電池セル5、5、・・・を複数準備すると共に、導電性接続部材6、6、・・・を準備する。
次に、各隣り合う太陽電池セル5、5の一方の太陽電池セル5の表面側電極22のバスバー電極221b上及び他方の太陽電池セル5の裏面側電極23のバスバー電極231b上と導電性接続部材6、6、・・・を半田、樹脂又は導電性フィラー等を含む樹脂からなる接着剤を用いて接続して太陽電池群7を作製する。
その後、太陽電池群7を複数準備し、接続部材9、接続部材10、11、12、13を取り付けた構造体を作製した後、表面側カバー2、充填材4となる封止シート、該構造体、充填材4となる封止シート、裏面側カバー3の順に積層した状態で加熱圧着する。
最後に、端子ボックス14、金属枠体8等をとりつけ、太陽電池モジュール1を完成する。
本実施形態の製造方法は、各層に応じた樹脂及び反射性導電材料を含有する第1、第2のペーストを用いる方法であるので、第1の層222a、222a、・・・と第2の層222b、222b、・・・からなる表面側電極22及び第1の層232a、232a、・・・と第2の層232b、232b、・・・からなる裏面側電極23を容易に作製できる。
また、本実施形態では第2のペーストを低粘度とし、スクリーン印刷、オフセット印刷版、パット印刷版等を用いて、表面側電極22の第2の層222b、222b、・・・及び裏面側電極23の第2の層232b、232b、・・・を形成するので、反射性導電材料中のフレーク粉状銀粉末を水平方向に多く配向させることが容易にできる。
(第2実施形態)
本発明の第2実施形態に係る両面受光型太陽電池モジュールを説明する。なお、太陽電池セル5、表面側電極22及び裏面側電極23等は第1実施形態と同様であり、第1実施形態との相違点について主に説明する。
第2実施形態において、第1実施形態との相違点は、図1乃至図3、図5の裏面側カバー3が表面側カバー2と同様に白板強化ガラス等の透明な表面側カバー2であり、表面側カバー2及び裏面側カバー3が共に透光性部材である点である。
また、本実施形態の太陽電池モジュール1は、両面受光型太陽電池モジュールであり、裏面側カバー3がガラス等からなるため、端子ボックス14は遮光ロスを低減するために枠体8の近傍に設けられ、表面側カバー2と裏面側カバー3から引き出された、接続部材10、11、12、13に相当する各出力取り出し用接続部材が該端子ボックス14内に導かれている。
本実施形態の太陽電池モジュールでは、第1実施形態と同様の効果が得られる他、裏面側カバー3からも光が入射可能であり、裏面側カバー3から入射した光のうち、裏面側電極23の上表面や上側側面、即ち第2の層232b、232b、・・・に達した光は該上表面や該上側側面で効率よく反射されるため、裏面側カバー3又は充填材4で再反射される光が多くなり、結果として、太陽電池セル5へ光が多く入射するため、第1実施形態に比べ、太陽電池セル5の出力が向上する。
(第3実施形態)
図6を参照して本発明の第3実施形態に係る太陽電池モジュールを説明する。図6は、本実施形態に係る太陽電池モジュールの一部断面図である。なお、第1実施形態との相違点について主に説明する。
第3実施形態において、第1実施形態との相違点は、裏面側電極23が第2の層232b、232b、・・・を有さず、第1の層232a、232a、・・・からなる点である。なお、その他は、第1実施形態と同じであり、同一または類似部分には同一符号を付して説明を割愛する。
本実施形態でも、表面側電極22に関して第1実施形態と同様の効果が得られる。
(第4実施形態)
図7を参照して本発明の第4実施形態に係る太陽電池モジュールを説明する。図7は、本実施形態に係る太陽電池モジュールの一部断面図である。なお、第1実施形態との相違点について主に説明する。
第4実施形態において、第1実施形態との相違点は、表面側電極22の第2の層242b、242b、・・・が第1の層242a、242a、・・・を覆うように形成されると共に、裏面側電極23の第2の層252b、252b、・・・が第1の層252a、252a、・・・を覆うように形成されている点である。その他は、第1実施形態と同様であり、同一または類似部分には同一符号を付して説明は割愛する。
図7中、表面側電極22の第1の層242a、242a、・・・は、第2の層242b、242b、・・・で覆われており、表面側電極22の上表面及び側面の全域、即ち光が当たる部分は、第2の層242b、242b、・・・となる構成である。
また、裏面側電極23の第1の層252a、252a、・・・は、第2の層252b、252b、・・・で覆われており、裏面側電極23の上表面及び側面の全域、即ち光が当たる部分は、第2の層252b、252b、・・・となる構成である。
本実施形態では、表面側電極22の第1の層242a、242a、・・・の含有する副成分の樹脂の重量濃度を第2の層242b、242b、・・・より大きくしつつ、該第1の層242a、242a、・・・を覆う第2の層242b、242b、・・・の含有する副成分の樹脂の重量濃度を第1の層242a、242a、・・・より小さくしているので、表面側電極22の太陽電池セル5の基体上への接着を強くしつつ、表面側電極22の光反射をより大きくできる。
この結果、太陽電池モジュール1において、表面側カバー2から入射した光のうち、表面側電極22の表面に達した光Xは該表面で効率よく反射されるため、表面側カバー2又は充填材4で再反射される光Xが多くなり、結果として、太陽電池セル5へ光が多く入射するため、太陽電池セル5の出力が向上する。
また、裏面側電極23の第1の層252a、252a、・・・の含有する副成分の樹脂の重量濃度を第2の層252b、252b、・・・より大きくしつつ、該第1の層252a、252a、・・・を覆う第2の層252b、252b、・・・の含有する副成分の樹脂の重量濃度を第1の層252a、252a、・・・より小さくしているので、裏面側電極23の太陽電池セル5上への接着を強くしつつ、裏面側電極23の光反射をより大きくできる。
この結果、太陽電池モジュール1において、太陽電池セル5、5の間や太陽電池セル5中を透過し、裏面側カバー3等で反射した光のうち、裏面側電極23の表面に達した光Yは該上表面や該側面で効率よく反射されるため、裏面側カバー3又は充填材4で再反射される光Yが多くなり、結果として、裏面側においても、太陽電池セル5へ光が多く入射するため、太陽電池セル5の出力がより向上する。
また、本実施形態では、前記主成分の樹脂が副成分の樹脂に比べて耐候性及び耐湿性を有し、表面側電極22においては第1の層242aを覆う第2の層242b、裏面側電極23においては第1の層252aを覆う第2の層252bが主成分の樹脂を多く含むので、高温高湿条件下で長期間使用された場合でも表面側電極22及び裏面側電極23の劣化を防止することができ、信頼性が向上する。
上述では、表面側電極22の第1の層242a、242a、・・・は、第2の層242b、242b、・・・で完全に覆われ、第2の層242b、242b、・・・の端部の全域が透明導電膜18と直接接触する形態であるが、該端部の一部のみが透明導電膜18と直接接触するように第2の層242b、242b、・・・が第1の層242a、242a、・・・を覆う形態としてもよく、効果が得られる。
また、裏面側電極23の第1の層252a、252a、・・・も、第2の層252b、252b、・・・で完全に覆われ、第2の層252b、252b、・・・の端部の全域が透明導電膜21と直接接触する形態であるが、該端部の一部のみが透明導電膜21と直接接触するように第2の層252b、252b、・・・が第1の層252a、252a、・・・を覆う形態してもよく、効果が得られる。
上記表面側電極22、裏面側電極23のバスバー電極221b、221b、231b、23も第2の層242b、252b、・・・が第1の層242a、252a、・・・を覆ってもよい。
本実施形態の太陽電池セル5の表面側電極22、裏面側電極23も、例えば、第1実施形態と同様に、第1、第2の導電性ペーストを用いて作製できる。この場合、第2層242b、242b、252b、252b、・・・用のスクリーン印刷版、オフセット印刷版、パット印刷版等は、第1層242a、242a、252a、252a、・・・用のスクリーン版、オフセット印刷版、パット印刷版等より約10μ程度パターン幅が大きいものを用いればよい。
(第5実施形態)
図8を参照して本発明の第5実施形態に係る太陽電池モジュールを説明する。図8は、本実施形態の太陽電池モジュールの一部断面図である。なお、第4実施形態との相違点について主に説明する。
第5実施形態において、第4実施形態との相違点は、裏面側電極23が第2の層252b、252b、・・・を有さず、第1の層252a、252a、・・・からなる点である。なお、その他は、第4実施形態と同じであり、同一または類似部分には同一符号を付して説明を割愛する。
本実施形態でも、表面側電極22に関して第4実施形態と同様の効果が得られる。
上記各実施形態では、表面側電極22の第1の層及び第2の層、裏面側電極23の第1の層及び第2の層に2種類の樹脂が含有されているが、例えば、3種類以上の複数の樹脂を含有したものにも適用できる。また、第1の層及び第2の層に含有する樹脂は、1種類の樹脂でもよい。
また、上記各実施形態の表面側電極22、裏面側電極23は、第1の層、第2の層の2層構造であるが、これに限らず複数の層で構成されてもよい。この場合、平均分子量が副成分の樹脂より小さい主成分の樹脂の重量濃度は、最上層が最下層に比べて高く、平均分子量が主成分の樹脂より大きい副成分の樹脂の重量濃度は、最下層が最上層に比べて高くなるようにすればよい。更には、平均分子量が副成分の樹脂より小さい主成分の樹脂の重量濃度は、最上層の上部側が最下層の下部側に比べて高く、平均分子量が主成分の樹脂より大きい副成分の樹脂の重量濃度は、最下層の下部側が最上層の上部側に比べて高くなるようにしてもよい。
また、表面側電極22、裏面側電極23は、層構造を有さない構成、1層のみの構成であってもよい。この場合、平均分子量が副成分の樹脂より小さい主成分の樹脂の重量濃度は、上部側が下部側に比べて高く、平均分子量が主成分の樹脂より大きい副成分の樹脂の重量濃度は、下部側が上部側に比べて高くなるようにすればよい。更には、平均分子量が副成分の樹脂より小さい主成分の樹脂の重量濃度は、下部側から上部側に向けて漸次的に高くなるようにし、平均分子量が主成分の樹脂より大きい副成分の樹脂の重量濃度は、上部側から下部側に向けて漸次的に高くなるようにしてもよい。
また、上記各実施形態では、第1の層中の樹脂(主成分の樹脂と副成分の樹脂)と反射性導電材料との含有比率と第2の層中の樹脂(主成分の樹脂と副成分の樹脂)と反射性導電材料との含有比率が同じであったが、異なっていてもよい。その場合、第1の層中の樹脂の含有比率を高くし、第2の層中の反射性導電材料の含有比率を高くするのが好ましい。
上記各実施形態の太陽電池セルは、所謂HIT太陽電池セルを用いて説明したが、本発明は、単結晶太陽電池セルや多結晶太陽電池セルなどの種々の太陽電池セルに利用可能であり、また両面受光型のほか、片面受光型太陽電池セルにも適用が可能である。
上記多結晶太陽電池セルまたは単結晶太陽電池は、例えば、P型多結晶またはP型単結晶からなるシリコン基板の表面から所定の深さまでn+層が形成されてpn接合が形成され、該シリコン基板の裏面から所定の深さまでp+層が形成され、前記n+層上に表面側電極22が形成され、前記p+層上に裏面側電極23が形成された太陽電池セルでもよい。
また、上記各実施形態では、本発明を、表面側電極22及びまたは裏面側電極23のフィンガー電極とバスバー電極の両方に適用したが、フィンガー電極のみに適用してもよい。
また、上記各実施形態では、表面側電極22、裏面側電極23は、フィンガー電極とバスバー電極からなるが、表面側電極又は/及び裏面側電極は、バスバー電極を有さず、フィンガー電極221a、231a、・・・のみからなるバスバーレス構造でもよい。
また、裏面側電極は、上述とは異なる他の構造の電極、例えば全面金属膜で覆われる電極とこの上に形成されるバスバー電極とで構成されるものでもよい。
更に、本発明の太陽電池モジュールは、上記各実施形態に限定されず、例えば、複数の太陽電池セルを含む構成に限らず、1つの太陽電池セルからなる太陽電池モジュールであってもよい。
また、枠体を備えないフレームレス構造であってもよい。
また、上記各実施例では、太陽電池セルの表面電極と隣り合う太陽電池セルの裏面電極とを直列に接続する場合について例を挙げて説明したが、隣り合う太陽電池セル間の接続は、上記各実施形態に限らず、太陽電池セルと隣り合う太陽電池セルの表面電極同士あるいは裏面電極同士を接続するようにしてもよい。
例えば、図9、図10のような構成であってもよい。なお、図9、図10中、第1実施形態と同一または類似部分には同一符号を付している。
図9に示す太陽電池モジュール1は、隣り合う2つの極性が同じ素子構造の太陽電池セル5、5を1組とすると共に、これらと極性が逆の素子構造の隣り合う2つの太陽電池セル5、5を1組となるように配置して、導電性接続部材6、6、・・によりこれらを電気的に直列接続している。
図10に示す太陽電池モジュール1は、隣り合う太陽電池セル5、5は、互いに極性が逆となる素子構成を有しており、導電性接続部材6、6、・・は隣り合う太陽電池セル5、5の表面側電極22、22同士及び太陽電池セル5、5の裏面側電極23、23同士を電気的に直列接続している。
また、上記太陽電池モジュールの表面側電極22及び裏面側電極23の作製方法としては、スクリーン印刷、オフセット印刷、パット印刷等の例を示したが、インクジェット印刷等で作製しても勿論よい。
Next, embodiments of the present invention will be described with reference to the drawings. However, it should be noted that the drawings are schematic and ratios of dimensions and the like are different from actual ones. Moreover, it is a matter of course that portions having different dimensional relationships and ratios are included between the drawings.
(First embodiment)
A single-sided light-receiving solar cell module according to a first embodiment of the present invention will be described.
Referring to FIGS. 1 to 3, reference numeral 1 denotes a solar cell module. The solar cell module 1 is made of, for example, a transparent surface side cover 2 such as white reinforced glass, and a weather resistance made of a resin film such as polyethylene terephthalate (PET). A plurality of solar cells 5, 5,... Disposed between the back side cover 3 and the front side cover 2 and the back side cover 3 with a filler 4 such as ethylene vinyl acetate (EVA). A strip-shaped (band-shaped) strip having a width of 0.5 to 3 mm and a thickness of 100 to 300 μm made of a flat copper wire whose surface is coated with a solder layer (conductive layer) such as Sn—Ag—Cu having a thickness of 1 to 50 μm. A plate-like structure composed of linear solar cell groups 7, 7,... Electrically connected in series by the conductive connection members 6, 6,..., Aluminum that supports the structure, etc. Metal frame made of It is constructed from.
Each of the solar cell groups 7, 7,... Is arranged in parallel with each other, and each predetermined adjacent solar cell group 7, 7 so that the solar cell groups 7, 7,. ,...,... Flat copper wire whose surface is covered with a solder layer (conductive layer) such as Sn—Ag—Cu having a thickness of 1 to 50 μm. Are connected by soldering with a strip-like (band-like) conductive connection member 9 having a width of 0.5 mm to 3 mm and a thickness of 100 to 300 μm, and the conductivity on the other end side of other predetermined adjacent solar cell groups 7 and 7. , The thickness of the conductive connecting members 6, 6,... Is 0.5 mm to 3 mm and is made of a flat copper wire whose surface is coated with a solder layer (conductive layer) such as Sn—Ag—Cu having a thickness of 1 to 50 μm. Solder-connected to 100 to 300 μm L-shaped conductive connection members 10 and 11.
With this configuration, the plurality of solar cells 5, 5,... Of the solar cell module 1 are arranged in a matrix.
In the outermost solar cell groups 7, 7,..., The conductive connection members 6, 6,. A width of 0.5 mm to 3 mm, a thickness of 100 to 100 mm, made of a flat copper wire whose surface is covered with a solder layer (conductive layer) of Sn-Ag-Cu or the like having a thickness of 1 to 50 μm for extracting electric output from the module 1. 300 μm L-shaped connection members (output extraction connection members) 12 and 13 are connected by soldering.
The portions intersecting between the L-shaped connecting members 10 and 11 and the L-shaped connecting members 12 and 13 and between the L-shaped connecting member 11 and the L-shaped connecting member 13 are as follows. An insulating member such as an insulating sheet such as polyethylene terephthalate (PET) (not shown) is interposed.
Although not shown in the drawings, the front end side portions of the L-shaped connecting member 10, the L-shaped connecting member 11, the L-shaped connecting member 12, and the L-shaped connecting member 13 are provided on the back surface side cover 3. It is led in the terminal box 14 so that it may be located in the upper center of the solar cell module 1 through the notch.
In the terminal box 14, between the L-shaped connecting member 12 and the L-shaped connecting member 10, between the L-shaped connecting member 10 and the L-shaped connecting member 11, and L-shaped The connection member 11 and the L-shaped connection member 13 are connected by a bypass diode (not shown).
With reference to FIG. 4 thru | or FIG. 6, the said photovoltaic cell 5 is a double-sided light reception type photovoltaic cell. As an example, an indium oxide containing an i-type amorphous silicon layer 16, a p-type or n-type one-conductive amorphous silicon layer 17, and tin over almost the entire surface of the n-type single crystal silicon substrate 15 having a texture structure. A transparent conductive film layer 18 made of an (ITO) film or the like is provided in this order. In addition, an i-type amorphous silicon layer 19, an amorphous silicon layer 20 having a conductivity type opposite to the one conductivity type, an indium oxide (ITO) film containing tin, etc. are transparent over substantially the entire back surface having the texture structure of the substrate 15. This is a solar cell having a so-called HIT (registered trademark) structure including a photoelectric conversion unit, which includes the conductive film layer 21 in this order.
The texture structure is a concavo-convex structure having a pyramid shape with a height of several μm to several tens of μm formed by anisotropic etching of the (100) plane of a single crystal silicon substrate.
In the present embodiment, the texture structure is a random texture structure in which a large number of pyramid shapes are irregularly arranged, and the heights (sizes) thereof are irregular, and adjacent pyramids partially overlap each other. May be. The apexes and valleys of each pyramid shape may be rounded.
The n-type single crystal silicon substrate 15 of the present embodiment is, for example, a substantially square of about 125 mm square, and the thickness is, for example, 100 μm to 300 μm.
In the solar battery cell 1, a surface-side electrode 22 is formed on the transparent conductive film 18 by mixing and containing a reflective conductive material such as a metal material and a resin that functions as an adhesive.
The resin is a mixture of a main component resin and a subcomponent resin having an average molecular weight larger than that of the main component resin. The subcomponent resin is more elastic than the main component resin, and The resin absorbs less light in the visible light region than the subcomponent resin.
Here, the weight concentration of the reflective conductive material is higher than the weight concentration of the resin (the total weight concentration of the main component resin and the sub component resin), and the weight concentration of the main component resin is It is higher than the weight concentration of the component resin.
The surface-side electrode 22 intersects with a plurality of fine-line finger electrodes 221a, 221a,... Arranged in parallel to each other as collector electrodes, and the plurality of fine-line finger electrodes 221a, 221a,. The bus bar electrodes 221b and 221b are arranged in this manner.
The finger electrodes 221a, 221a,... Of the surface side electrode 22 have a width of 50 to 200 μm, for example, 100 μm, and are arranged at intervals of 2 mm.
Further, each of the bus bar electrodes 221b and 221b of the surface side electrode 22 has a width of 0.1 to 1.8 mm, for example, a 1.3 mm straight (band) electrode.
The surface-side electrode 22 includes a first layer 222a and a second layer 222b having different contents of the main component resin and the subcomponent resin of the first layer 222a in this order on the transparent conductive film 18. It is a two-layer structure laminated.
The content ratio of the resin in the first layer 222a (main component resin and subcomponent resin) and the reflective conductive material, and the resin in the second layer 222b (main component resin and subcomponent resin) The content ratio of the reflective conductive material is the same.
The first layer 222a on the transparent conductive film 18 side, which is the base, has a higher weight concentration of the sub-principal component resin than the second layer 222b on the front side cover 2 side (light incident side). The weight concentration of is low. Therefore, the second layer 222b on the surface side cover 2 side (light incident side) has a higher weight concentration of the main component resin than the first layer 222a on the transparent conductive film 18 side which is the base, and the subcomponent The resin weight concentration is low.
Moreover, the photovoltaic cell 1 has the back surface side electrode 23 formed by mixing a transparent conductive film 21 with a reflective conductive material such as a metal material and a resin functioning as an adhesive.
The back surface side electrode 23 intersects with a plurality of fine wire finger electrodes 231a, 231a,... Arranged in parallel with each other as collector electrodes and the plurality of fine wire finger electrodes 231a, 231a,. Bus bar electrodes 231b and 231b.
The finger electrodes 231a, 231a,... Of the back surface side electrode 23 have a width of 50 to 200 μm, for example, 150 μm, and are arranged at intervals of 1 mm.
Further, the bus bar electrodes 231b and 231b of the back surface side electrode 23 each have a width of 0.1 to 4 mm, for example, a 3 mm linear (band) electrode.
The back electrode 23 includes a first layer 232a and a second layer 232b having a different content of the main component resin and the subcomponent resin from the first layer 232a on the transparent conductive film 21 in this order. It is a two-layer structure formed by laminating.
The content ratio of the resin in the first layer 232a (main component resin and subcomponent resin) and the reflective conductive material, and the resin in the second layer 232b (main component resin and subcomponent resin) The content ratio of the reflective conductive material is the same.
The first layer 232a on the transparent conductive film 21 side that is the base has a higher weight concentration of the subcomponent resin than the second layer 232b on the back surface side cover 3 side (reverse light incident side), and the main component resin Low weight concentration. Therefore, the second layer 232b on the back surface side cover 3 side (reverse light incident side) has a higher weight concentration of the main component resin than the first layer 232a on the transparent conductive film 21 side which is the base, and the subcomponent The resin weight concentration is low.
In the present embodiment, an epoxy resin or a urethane resin having an average molecular weight larger than that of the epoxy resin is used so that elasticity is higher than that of the epoxy resin as an epoxy resin as a main component resin and a resin as a secondary component. Used.
The first layers 222a, 222a,... Of the front electrode 22 are flaky silver fine particles having a main resin content of 7 wt%, an auxiliary resin content of 3 wt%, and an average major axis of 5-20 μm. The content of the reflective conductive material formed by mixing the powder and spherical silver fine powder having an average particle size of 0.1 to 5 μm is 90 wt%.
In addition, the second layers 222b, 222b,... Of the surface-side electrode 22 are flakes having a main resin content of 9 wt%, a sub resin content of 1 wt%, and an average major axis of 5 to 20 μm. The content of the reflective conductive material obtained by mixing silver fine powder and spherical silver fine powder having an average particle diameter of 0.1 to 5 μm is 90 wt%.
In the present embodiment, the first layer 232a, 232a,... Of the back surface side electrode 23 has a main resin content of 7 wt%, an auxiliary resin content of 3 wt%, and an average major axis of 5 to 20 μm. The content of the reflective conductive material obtained by mixing the flaky silver fine powder and the spherical silver fine powder having an average particle diameter of 0.1 to 5 μm is 90 wt%.
The second layers 232b, 232b,... Of the back-side electrode 23 are flakes having a main resin content of 9 wt%, a sub resin content of 1 wt%, and an average major axis of 5 to 20 μm. The content of the reflective conductive material obtained by mixing fine silver powder and fine spherical silver powder having an average particle size of 0.1 to 5 μm is 90 wt%.
In addition, most of the flaky silver powder in the second layers 222b, 222b,... Of the front side electrode 22 and the second layers 232b, 232b,. Oriented parallel to the layer.
The adjacent solar cells 5, 5,... Are bus bar electrodes 221 b and 221 b of the front surface side electrode 22 of one solar cell 5 and bus bar electrodes 231 b of the back surface side electrode 23 of the other solar cell 5. The conductive connection members 6 are disposed so as to face the bus bar electrodes 221b and the bus bar electrodes 231b, respectively, so that the conductive connection members 6 and 6 are electrically connected to each other. It is fixed with an adhesive made of epoxy resin.
As described above, in this embodiment, the subcomponent resin is the main component resin so that the elasticity of the subcomponent resin is greater than that of the main component resin, and the main component resin has less light absorption than the subcomponent resin. The average molecular weight is larger than that of the component resin.
Therefore, since the surface side electrode 22 includes more of the second layer 222b, 222b,..., The sub-component resin having higher elasticity in the first layer 222a, 222a,. Since stress caused by the difference in thermal expansion coefficient between the inner surface side electrode 22 and the substrate 15 is relieved, the adhesiveness between the surface side electrode 22 and the transparent conductive film 18 as a base is increased, and the reliability is improved. improves.
In addition, since the back-side electrode 23 includes more of the second layer 232b, 232b,..., The first layer 232a, 232a,. Since the stress caused by the difference in thermal expansion coefficient between the back surface side electrode 23 and the substrate 15 in the layer is relieved, the adhesiveness between the back surface side electrode 23 and the transparent conductive film 21 as a base is increased, and reliability is increased. Will improve.
In addition, the surface-side electrode 22 includes the second layer 222b, 222b,... On the upper surface side containing a smaller amount of sub-component resin with high light absorption than the first layers 222a, 222a,. The light reflectance of the upper surface or upper side surface of the electrode 22 can be increased.
As a result, in the solar cell module 1, among the light incident from the surface side cover 2, the light X reaching the upper surface and upper side surface of the surface side electrode 22, that is, the second layers 222 b, 222 b,. Since the light is efficiently reflected on the upper surface and the upper side surface, the amount of light X re-reflected by the surface-side cover 2 or the filler 4 increases, and as a result, a large amount of light is incident on the solar cells 5. The output of the cell 5 is improved.
In addition, since the back surface side electrode 23 includes the second layers 232b, 232b,... On the upper surface side less than the second layers 232a, 232a,. The light reflectance of the upper surface or upper side surface of the side electrode 23 can be increased.
As a result, in the solar cell module 1, among the light that is transmitted between the solar cells 5 and 5 or in the solar cell 5 and reflected by the back surface side cover 3 or the like, the upper surface or upper side surface of the back surface side electrode 23, That is, since the light Y reaching the second layers 232b, 232b,... Is efficiently reflected on the upper surface and the upper side surface, much light Y is re-reflected by the back surface side cover 3 or the filler 4. As a result, since a large amount of light is incident on the solar battery cell 5 also on the back surface side, the output of the solar battery cell 5 is further improved.
Further, the flake silver powder in the second layers 222b, 222b,... Of the front electrode 22 and the second layers 232b, 232b,. The flake silver powder has a major axis that reflects well, and the major axis direction of the flake-shaped silver powder is oriented in a direction parallel to the second layers 222b, 222b, 232b, 232,. The output of the solar battery cell 5 is further improved.
Further, in the present embodiment, the main component resin has weather resistance and / or moisture resistance as compared with the subcomponent resin, and the second layer 222b of the front surface side electrode 22 and the second layer of the rear surface side electrode 23 are provided. Since the layer 232b contains more of the main component resin than the first layer 222a of the front-side electrode 22 and the first layer 232a of the back-side electrode 23, even when used for a long time under high temperature and high humidity conditions, Deterioration of the electrode 22 and the back surface side electrode 23 can be prevented, and the reliability is improved.
(Method for manufacturing solar cell module)
Below, the manufacturing method of the solar cell module which concerns on this embodiment is demonstrated.
First, the photovoltaic cell 5 provided with the transparent electrode film layers 18 and 21 on both surfaces is prepared.
Next, a first conductive paste and a second conductive paste in which a predetermined amount of a reflective conductive material is dispersed in a paste in which a predetermined amount of a main component resin and a subcomponent resin are dissolved in a solvent. prepare. Here, in the second conductive paste, the weight concentration of the subcomponent resin is lower than that of the main component resin, as compared with the first conductive paste.
Subsequently, the first conductive paste is printed in a predetermined pattern on the transparent electrode film layer 18 of the solar battery cell 5 by screen printing, offset printing, pad printing, and the like, and then dried. The first conductive paste is printed on the transparent conductive layer 21 of the solar battery cell 5 by screen printing, offset printing, pad printing, etc. Is printed in a predetermined pattern and dried, and then the second conductive paste is printed so as to overlap the predetermined pattern and dried.
Thereafter, the first and second conductive pastes are cured by heating at about 200 ° C. for about 1 hour, and the first layers 222a, 222a,... And the second layers 222b, 222b,. .. And the second layer 232b, 232b,... And the second layer 232b, 232b,.
Subsequently, a plurality of solar cells 5, 5,... On which the front-side electrode 22 and the back-side electrode 23 are prepared as described above are prepared, and conductive connection members 6, 6,. To do.
Next, conductive connection is made on the bus bar electrode 221b of the front surface side electrode 22 of one of the adjacent solar cells 5 and 5 and on the bus bar electrode 231b of the back surface side electrode 23 of the other solar cell 5. The solar cells 7 are manufactured by connecting the members 6, 6,... Using an adhesive made of a resin containing solder, resin, conductive filler, or the like.
Thereafter, after preparing a plurality of solar cell groups 7 and producing a structure to which the connection member 9 and the connection members 10, 11, 12, and 13 are attached, the surface side cover 2, the sealing sheet that becomes the filler 4, the structure The body, the sealing sheet to be the filler 4 and the back surface side cover 3 are laminated in this order in a thermocompression bonding manner.
Finally, the terminal box 14 and the metal frame 8 are attached to complete the solar cell module 1.
Since the manufacturing method of the present embodiment is a method using the first and second pastes containing the resin and the reflective conductive material corresponding to each layer, the first layers 222a, 222a,. The front surface side electrode 22 composed of the layers 222b, 222b,... And the back surface side electrode 23 composed of the first layers 232a, 232a,.
In the present embodiment, the second paste has a low viscosity, and the second layer 222b, 222b,..., And the back surface side electrode of the front surface side electrode 22 using screen printing, offset printing plate, pad printing plate, or the like. Since the second layers 232b, 232b,... 23 are formed, the flake powdery silver powder in the reflective conductive material can be easily oriented in the horizontal direction.
(Second Embodiment)
A double-sided solar cell module according to a second embodiment of the present invention will be described. In addition, the photovoltaic cell 5, the surface side electrode 22, the back surface side electrode 23, etc. are the same as that of 1st Embodiment, and difference with 1st Embodiment is mainly demonstrated.
In the second embodiment, the difference from the first embodiment is that the back surface side cover 3 in FIGS. 1 to 3 and 5 is a transparent surface side cover 2 such as white plate tempered glass like the surface side cover 2. The front side cover 2 and the back side cover 3 are both translucent members.
In addition, the solar cell module 1 of the present embodiment is a double-sided light receiving solar cell module, and since the back cover 3 is made of glass or the like, the terminal box 14 is provided in the vicinity of the frame body 8 in order to reduce the light shielding loss. The output connection connecting members corresponding to the connection members 10, 11, 12, and 13 drawn out from the front cover 2 and the back cover 3 are led into the terminal box 14.
In the solar cell module of the present embodiment, the same effects as those of the first embodiment can be obtained, and light can also be incident from the back surface side cover 3. Of the light incident from the back surface side cover 3, the back surface side electrode 23. Since the light reaching the upper surface and upper side surface, that is, the second layers 232b, 232b,... Is efficiently reflected by the upper surface and the upper side surface, it is re-reflected by the back surface side cover 3 or the filler 4. As a result, a large amount of light is incident on the solar battery cell 5 and, as a result, the output of the solar battery cell 5 is improved as compared with the first embodiment.
(Third embodiment)
A solar cell module according to a third embodiment of the present invention will be described with reference to FIG. FIG. 6 is a partial cross-sectional view of the solar cell module according to the present embodiment. Note that differences from the first embodiment will be mainly described.
The third embodiment is different from the first embodiment in that the back-side electrode 23 does not have the second layers 232b, 232b,..., But includes the first layers 232a, 232a,. Is a point. The rest is the same as in the first embodiment, and the same or similar parts are denoted by the same reference numerals and description thereof is omitted.
Also in the present embodiment, the same effects as those in the first embodiment can be obtained with respect to the surface-side electrode 22.
(Fourth embodiment)
A solar cell module according to a fourth embodiment of the present invention will be described with reference to FIG. FIG. 7 is a partial cross-sectional view of the solar cell module according to the present embodiment. Note that differences from the first embodiment will be mainly described.
The fourth embodiment is different from the first embodiment in that the second layers 242b, 242b,... Of the surface-side electrode 22 are formed so as to cover the first layers 242a, 242a,. In addition, the second layers 252b, 252b,... Of the back-side electrode 23 are formed so as to cover the first layers 252a, 252a,. Others are the same as those in the first embodiment, and the same or similar parts are denoted by the same reference numerals and description thereof is omitted.
In FIG. 7, the first layers 242a, 242a,... Of the surface-side electrode 22 are covered with the second layers 242b, 242b,. That is, the portion that is exposed to light is configured to be the second layers 242b, 242b,.
In addition, the first layers 252a, 252a,... Of the back side electrode 23 are covered with the second layers 252b, 252b,. The portion that is exposed to light is configured to be the second layers 252b, 252b,.
In the present embodiment, the weight concentration of the subcomponent resin contained in the first layers 242a, 242a,... Of the surface side electrode 22 is made larger than that of the second layers 242b, 242b,. The weight concentration of the subcomponent resin contained in the second layers 242b, 242b,... Covering the first layers 242a, 242a,... Is smaller than that of the first layers 242a, 242a,. Therefore, the light reflection of the surface side electrode 22 can be increased while strengthening the adhesion of the surface side electrode 22 to the base of the solar battery cell 5.
As a result, in the solar cell module 1, the light X that has reached the surface of the surface-side electrode 22 out of the light incident from the surface-side cover 2 is efficiently reflected by the surface. As a result, the amount of light X that is re-reflected increases, and as a result, a large amount of light is incident on the solar cell 5, and the output of the solar cell 5 is improved.
Further, the first layer 252a, 252a,... Of the back-side electrode 23 is made so that the weight concentration of the subcomponent resin contained therein is larger than that of the second layers 252b, 252b,. Since the weight concentration of the subcomponent resin contained in the second layers 252b, 252b,... Covering the 252a, 252a,... Is smaller than that of the first layers 252a, 252a,. The light reflection of the back surface side electrode 23 can be increased while strengthening the adhesion of the side electrode 23 onto the solar battery cell 5.
As a result, in the solar cell module 1, the light Y that has passed through the solar cells 5, 5 and the solar cell 5 and has reached the surface of the back surface side electrode 23 among the light reflected by the back surface side cover 3 or the like. Is efficiently reflected on the upper surface and the side surface, and therefore, the amount of light Y re-reflected by the back surface side cover 3 or the filler 4 increases, and as a result, a large amount of light is applied to the solar cells 5 also on the back surface side. Since it injects, the output of the photovoltaic cell 5 improves more.
In the present embodiment, the main component resin has weather resistance and moisture resistance as compared to the sub component resin, and the front side electrode 22 has a second layer 242b covering the first layer 242a, and the back side. In the electrode 23, since the second layer 252b covering the first layer 252a contains a large amount of resin as a main component, the deterioration of the front side electrode 22 and the back side electrode 23 even when used for a long time under high temperature and high humidity conditions. Can be prevented and reliability is improved.
In the above description, the first layers 242a, 242a,... Of the surface-side electrode 22 are completely covered with the second layers 242b, 242b,..., And the second layers 242b, 242b,. Although the entire region of the end portion is in direct contact with the transparent conductive film 18, the second layers 242b, 242b,... Are first so that only part of the end portion is in direct contact with the transparent conductive film 18. The layers 242a, 242a,... May be covered, and an effect can be obtained.
Further, the first layers 252a, 252a,... Of the back surface side electrode 23 are also completely covered with the second layers 252b, 252b,... And the ends of the second layers 252b, 252b,. The second layer 252b, 252b,... Is the first layer so that only a part of the end portion is in direct contact with the transparent conductive film 21. The layers 252a, 252a,... May be covered to obtain an effect.
As for the bus bar electrodes 221b, 221b, 231b, and 23 of the front surface side electrode 22 and the back surface side electrode 23, the second layers 242b, 252b, and so on may cover the first layers 242a, 252a, and so on.
The front surface side electrode 22 and the back surface side electrode 23 of the solar battery cell 5 of this embodiment can also be produced using the first and second conductive pastes, for example, as in the first embodiment. In this case, screen printing plates, offset printing plates, pad printing plates, etc. for the second layers 242b, 242b, 252b, 252b,... Are screens for the first layers 242a, 242a, 252a, 252a,. A plate having a pattern width of about 10 μm larger than that of a plate, offset printing plate, pad printing plate or the like may be used.
(Fifth embodiment)
A solar cell module according to a fifth embodiment of the present invention will be described with reference to FIG. FIG. 8 is a partial cross-sectional view of the solar cell module of the present embodiment. Note that differences from the fourth embodiment will be mainly described.
The fifth embodiment is different from the fourth embodiment in that the back-side electrode 23 does not have the second layers 252b, 252b,..., But includes the first layers 252a, 252a,. Is a point. The rest is the same as in the fourth embodiment, and the same or similar parts are denoted by the same reference numerals and description thereof is omitted.
Also in the present embodiment, the same effects as those in the fourth embodiment can be obtained with respect to the surface-side electrode 22.
In each of the above embodiments, the first layer and the second layer of the front surface side electrode 22 and the first layer and the second layer of the back surface side electrode 23 contain two types of resins. It can be applied to those containing a plurality of types of resins. Further, the resin contained in the first layer and the second layer may be one kind of resin.
Moreover, although the surface side electrode 22 and the back surface side electrode 23 of said each embodiment are 2 layer structures of a 1st layer and a 2nd layer, it may be comprised not only in this but in multiple layers. In this case, the weight concentration of the main component resin whose average molecular weight is smaller than that of the subcomponent resin is higher in the uppermost layer than that of the lowermost layer, and the weight concentration of the subcomponent resin whose average molecular weight is higher than that of the main component resin is the highest. The lower layer may be made higher than the uppermost layer. Furthermore, the weight concentration of the main component resin having an average molecular weight smaller than that of the subcomponent resin is higher on the upper side of the uppermost layer than the lower side of the lowermost layer, and the weight concentration of the subcomponent resin is higher than that of the main component resin. The weight concentration may be higher on the lower side of the lowermost layer than on the upper side of the uppermost layer.
Further, the front-side electrode 22 and the back-side electrode 23 may have a configuration without a layer structure, or a configuration with only one layer. In this case, the weight concentration of the main component resin whose average molecular weight is smaller than that of the subcomponent resin is higher on the upper side than that of the lower side, and the weight concentration of the subcomponent resin whose average molecular weight is higher than that of the main component resin is lower on the lower side. What is necessary is just to make it high compared with the upper side. Furthermore, the weight concentration of the main component resin whose average molecular weight is smaller than that of the subcomponent resin is gradually increased from the lower side toward the upper side, and the subcomponent resin whose average molecular weight is larger than that of the main component resin. The weight concentration may be gradually increased from the upper side toward the lower side.
Further, in each of the above embodiments, the content ratio of the resin in the first layer (main component resin and subcomponent resin) and the reflective conductive material and the resin in the second layer (main component resin and subcomponent resin). The content ratio of the component resin) and the reflective conductive material was the same, but they may be different. In that case, it is preferable to increase the content ratio of the resin in the first layer and increase the content ratio of the reflective conductive material in the second layer.
The solar cells of the above embodiments have been described using so-called HIT solar cells, but the present invention is applicable to various solar cells such as single crystal solar cells and polycrystalline solar cells, In addition to the double-sided light receiving type, it can also be applied to single-sided light receiving solar cells.
The polycrystalline solar battery cell or the single crystal solar battery includes, for example, an n + layer formed from a surface of a silicon substrate made of P-type polycrystal or P-type single crystal to a predetermined depth to form a pn junction, and the silicon A solar cell in which a p + layer is formed from the back surface of the substrate to a predetermined depth, a front surface side electrode 22 is formed on the n + layer, and a back surface side electrode 23 is formed on the p + layer.
Moreover, in each said embodiment, although this invention was applied to both the finger electrode and bus-bar electrode of the surface side electrode 22 and / or the back surface side electrode 23, you may apply only to a finger electrode.
Moreover, in each said embodiment, although the surface side electrode 22 and the back surface side electrode 23 consist of a finger electrode and a bus-bar electrode, a surface side electrode or / and a back surface-side electrode do not have a bus-bar electrode, finger electrode 221a, A bus bar-less structure consisting only of 231a,.
Further, the back surface side electrode may be composed of an electrode having another structure different from that described above, for example, an electrode covered with a metal film on the entire surface and a bus bar electrode formed thereon.
Furthermore, the solar cell module of the present invention is not limited to the above-described embodiments. For example, the solar cell module is not limited to a configuration including a plurality of solar cells, and may be a solar cell module including one solar cell.
Further, a frameless structure without a frame may be used.
Moreover, in each said Example, although the example was given and demonstrated about the case where the surface electrode of a photovoltaic cell and the back surface electrode of an adjacent photovoltaic cell were connected in series, the connection between adjacent photovoltaic cells is the above-mentioned. Not only each embodiment but you may make it connect the surface electrodes of a photovoltaic cell adjacent to a photovoltaic cell, or back electrodes.
For example, the configuration shown in FIGS. 9 and 10 may be used. In FIG. 9 and FIG. 10, the same or similar parts as those in the first embodiment are denoted by the same reference numerals.
The solar cell module 1 shown in FIG. 9 is a set of two adjacent solar cells 5 and 5 having the same element structure, and two adjacent solar cells 5 having an element structure opposite in polarity. 5 are arranged in one set, and these are electrically connected in series by the conductive connecting members 6, 6,.
In the solar cell module 1 shown in FIG. 10, adjacent solar cells 5 and 5 have an element configuration in which the polarities are opposite to each other, and the conductive connecting members 6, 6,. 5, 5 and 5 and the back surface side electrodes 23 and 23 of the photovoltaic cells 5 and 5 are electrically connected in series.
In addition, examples of the method for producing the front surface side electrode 22 and the back surface side electrode 23 of the solar cell module include screen printing, offset printing, and pad printing.

1 太陽電池モジュール
2 表面側カバー
3 裏面側カバー
5 太陽電池セル
15 単結晶シリコン基板(半導体基板)
22 表面側電極
221a フィンガー電極
222a、242a 第1の層
222b、242b 第2の層
221b バスバー電極
23 裏面側電極
231a フィンガー電極
232a、252a 第1の層
232b、252b 第2の層
231b バスバー電極
DESCRIPTION OF SYMBOLS 1 Solar cell module 2 Front surface side cover 3 Back surface side cover 5 Solar cell 15 Single crystal silicon substrate (semiconductor substrate)
22 Front side electrode 221a Finger electrode 222a, 242a 1st layer 222b, 242b 2nd layer 221b Bus bar electrode 23 Back side electrode 231a Finger electrode 232a, 252a 1st layer 232b, 252b 2nd layer 231b Bus bar electrode

Claims (4)

第1の面と、第2の面と、前記第1の面上に形成された集電極とを備えた太陽電池セルであって、前記集電極は、少なくとも反射性導電材料と樹脂を含有し、該樹脂は少なくとも第1の樹脂と該第1の樹脂より高い弾性を有する第2の樹脂からなり、前記集電極中の前記第2の樹脂の重量濃度は、前記第1の面側が該集電極の上表面側よりも高いことを特徴とする太陽電池セル。 A solar cell comprising a first surface, a second surface, and a collector electrode formed on the first surface, wherein the collector electrode contains at least a reflective conductive material and a resin. The resin comprises at least a first resin and a second resin having higher elasticity than the first resin, and the weight concentration of the second resin in the collector electrode is such that the first surface side has the collector. A solar cell characterized by being higher than the upper surface side of the electrode. 前記第2の樹脂は、前記第1の樹脂に比べて平均分子量が大きいことを特徴とする請求項1記載の太陽電池セル。 The solar cell according to claim 1, wherein the second resin has an average molecular weight larger than that of the first resin. 前記集電極は複数層からなり、前記第2の樹脂の重量濃度は該複数層のうちの最下層が該複数層のうちの最上層に比べて高いことを特徴とする請求項1または2記載の太陽電池セル。   The said collector electrode consists of two or more layers, The weight density | concentration of the said 2nd resin is higher than the uppermost layer of this plurality of layers in the lowest layer of these multiple layers, The 1st or 2 characterized by the above-mentioned. Solar cells. 請求項1乃至請求項3のいずれか一項に記載の太陽電池セルを備えた太陽電池モジュールであって、透光性部材と、裏面側保護部材と、これらの間に1以上の前記太陽電池セルを備えたことを特徴とする太陽電池モジュール。 It is a solar cell module provided with the photovoltaic cell as described in any one of Claims 1 thru | or 3, Comprising: A translucent member, a back surface side protection member, and one or more said solar cells between these A solar cell module comprising a cell.
JP2010079245A 2010-03-30 2010-03-30 Solar cell, and solar cell module Pending JP2011211081A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010079245A JP2011211081A (en) 2010-03-30 2010-03-30 Solar cell, and solar cell module
PCT/JP2011/057964 WO2011122652A1 (en) 2010-03-30 2011-03-30 Solar cell and solar cell module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010079245A JP2011211081A (en) 2010-03-30 2010-03-30 Solar cell, and solar cell module

Publications (1)

Publication Number Publication Date
JP2011211081A true JP2011211081A (en) 2011-10-20

Family

ID=44712346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010079245A Pending JP2011211081A (en) 2010-03-30 2010-03-30 Solar cell, and solar cell module

Country Status (2)

Country Link
JP (1) JP2011211081A (en)
WO (1) WO2011122652A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140003789A (en) * 2012-06-28 2014-01-10 엘지전자 주식회사 Solar cell and method for manufacturing the same, and solar cell module
CN107799615A (en) * 2017-10-20 2018-03-13 杭州瞩日能源科技有限公司 Solar cell blade unit, photovoltaic cell module and its preparation technology
JP2018174358A (en) * 2014-08-04 2018-11-08 エルジー エレクトロニクス インコーポレイティド Solar cell module

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG10201608690XA (en) * 2011-10-25 2016-12-29 Heraeus Precious Metals North America Conshohocken Llc Electroconductive paste composition containing metal nanoparticles
CN110518077A (en) * 2019-08-30 2019-11-29 苏州阿特斯阳光电力科技有限公司 A kind of solar battery sheet and photovoltaic module

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61186255U (en) * 1985-05-09 1986-11-20
JPS6274349U (en) * 1985-10-29 1987-05-13
JPH069908B2 (en) * 1989-02-20 1994-02-09 松下電工株式会社 Surface mount laminate and method for manufacturing the same
JP4004114B2 (en) * 1997-09-26 2007-11-07 三洋電機株式会社 Method for manufacturing solar cell element and solar cell element
JP4231355B2 (en) * 2003-07-17 2009-02-25 株式会社リコー Opto-electric composite wiring board
JP4266840B2 (en) * 2004-01-29 2009-05-20 三洋電機株式会社 Solar cell module
WO2006093237A1 (en) * 2005-03-04 2006-09-08 Dai Nippon Printing Co., Ltd. Optical element
JP2009193993A (en) * 2008-02-12 2009-08-27 Mitsubishi Electric Corp Method of manufacturing solar cell electrode, and solar cell electrode

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140003789A (en) * 2012-06-28 2014-01-10 엘지전자 주식회사 Solar cell and method for manufacturing the same, and solar cell module
KR101889776B1 (en) 2012-06-28 2018-08-20 엘지전자 주식회사 Solar cell and method for manufacturing the same, and solar cell module
JP2018174358A (en) * 2014-08-04 2018-11-08 エルジー エレクトロニクス インコーポレイティド Solar cell module
CN107799615A (en) * 2017-10-20 2018-03-13 杭州瞩日能源科技有限公司 Solar cell blade unit, photovoltaic cell module and its preparation technology
CN107799615B (en) * 2017-10-20 2021-04-13 杭州瞩日能源科技有限公司 Solar cell unit, photovoltaic cell module and preparation process thereof

Also Published As

Publication number Publication date
WO2011122652A1 (en) 2011-10-06

Similar Documents

Publication Publication Date Title
JP5687506B2 (en) Solar cell and solar cell module
JP5874011B2 (en) Solar cell and solar cell module
KR20080048952A (en) Solar battery module
CN105977328B (en) Solar cell module
JP2008159895A (en) Solar cell and solar cell module
JP2011077362A (en) Solar cell, and solar cell module
WO2011122652A1 (en) Solar cell and solar cell module
EP2418689B1 (en) Solar cell panel
US20170373210A1 (en) Solar cell module
US20170365727A1 (en) Solar cell module
US20180331243A1 (en) Solar cell module
JP5359962B2 (en) Solar cell and solar cell module
US8975507B2 (en) Solar cell module
WO2017002287A1 (en) Solar battery module
WO2012073802A1 (en) Solar battery cell and solar battery module
JP5906422B2 (en) Solar cell and solar cell module
JP2017050514A (en) Solar battery module
JP2016192436A (en) Solar cell module
KR101866309B1 (en) Metal welding solar cell
CN215988779U (en) Conductive backboard and battery module for double-sided light-receiving mechanical laminated solar battery
CN113793874A (en) Conductive backboard and battery module for double-sided light-receiving mechanical laminated solar battery
JP2014116451A (en) Solar cell and manufacturing method therefor
WO2012043670A1 (en) Solar cell and solar cell module
WO2015194147A1 (en) Solar cell module
JPWO2015045263A1 (en) Solar cell and solar cell module

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20111117

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20111130