JP2011210974A - Lighting device - Google Patents

Lighting device Download PDF

Info

Publication number
JP2011210974A
JP2011210974A JP2010077686A JP2010077686A JP2011210974A JP 2011210974 A JP2011210974 A JP 2011210974A JP 2010077686 A JP2010077686 A JP 2010077686A JP 2010077686 A JP2010077686 A JP 2010077686A JP 2011210974 A JP2011210974 A JP 2011210974A
Authority
JP
Japan
Prior art keywords
electrode
led
metal substrate
anode
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010077686A
Other languages
Japanese (ja)
Inventor
Noriaki Sakamoto
則明 坂本
Naoki Tanahashi
直樹 棚橋
Takeshi Hasegawa
剛 長谷川
Takanari Kusabe
隆也 草部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
System Solutions Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Sanyo Semiconductor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Sanyo Semiconductor Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2010077686A priority Critical patent/JP2011210974A/en
Priority to US12/905,855 priority patent/US8283681B2/en
Publication of JP2011210974A publication Critical patent/JP2011210974A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED

Abstract

PROBLEM TO BE SOLVED: To solve such a problem that a crack occurs in brazing material resulting from difference in thermal expansion coefficients between a metal substrate and an LED package, wherein an LED is a heat-generating light-emitting device, and a metal substrate made of a metal material is adopted to suppress temperature rise of the LED since drive current of the LED cannot be increased without dissipating the heat.SOLUTION: In the lighting device disclosed herein, n LED packages 22 are arranged on a thin and long metal substrate 21 made of aluminum along the long sides thereof, wherein a groove is formed in a first electrode 6a by half etching from a side more inside than the perimeter of an anode electrode 23a.

Description

本発明は、発光ダイオード(以下、LED)が列を成して設けられた照明装置に関するものである。   The present invention relates to a lighting device in which light emitting diodes (hereinafter referred to as LEDs) are provided in a row.

近年、地球温暖化の防止が叫ばれ、世界中で色々な対策が施されている。その中で、特に、太陽電池や風力発電等のいわゆる創エネ、燃料電池などの蓄エネ、そしてインバータ等の高効率使用の省エネなど、二酸化炭素の発生を抑止する技術として各社が開発を進めている。   In recent years, prevention of global warming has been screamed, and various countermeasures have been taken around the world. In particular, each company has been developing technologies to suppress the generation of carbon dioxide, such as so-called energy generation such as solar cells and wind power generation, energy storage such as fuel cells, and high-efficiency energy saving such as inverters. Yes.

そして、この省エネの一つとして、LEDが注目を浴びている。つまりこのLEDは、白熱電球や蛍光灯の電力から比べて、かなり小電力で駆動できるからである。そのため、大型液晶TVのバックライトとして用いられたり、家庭用の照明に用いられたり、更には車のヘッドライトに用いられたりする。   And as one of this energy saving, LED attracts attention. In other words, this LED can be driven with much lower power than that of incandescent bulbs and fluorescent lamps. Therefore, it is used as a backlight of a large-sized liquid crystal TV, used for home lighting, and further used as a headlight of a car.

しかしながら、このLEDは、困った温度特性を有する。例えば、特開2001−203395号公報の図5で議論されている。   However, this LED has a troublesome temperature characteristic. For example, it is discussed in FIG. 5 of Japanese Patent Laid-Open No. 2001-203395.

その説明によれば、本願図9に示すように、LEDのチップの表面温度(動作領域の温度)が、約80度〜95度Cを超えると、駆動電流を大きくしても、LEDの光量が増加せず、逆に減少してしまう特性を有している。   According to the explanation, as shown in FIG. 9, when the surface temperature of the LED chip (the temperature of the operation region) exceeds about 80 to 95 degrees C, the light quantity of the LED is increased even if the drive current is increased. Does not increase, but conversely decreases.

一番下の×でプロットしたカーブは、Al基板の電流対表面温度のカーブ、真ん中の三角でプロットしたカーブは、PCB基板の電流対表面温度のカーブ、更に上のピークを持つカーブは、電流対LEDの光量を示す
そのため、できる限りLEDの温度を下げ、駆動電流に対して、その光量が増大するようにしなければ、これ以上の光量の増大は望めない。例えばLEDの実装基板として、プリント基板を採用すると、熱伝導率が小さいが為に、表面温度が230度も一度に上昇してしまい、電流を大量に流しても光量が増大しない。しかし、金属基板であれば、熱伝導率が大きいため、LEDの表面温度を85度程度で維持できる。これは、ヒートシンクとして、そして放熱板として、金属基板が有効に働き、LEDの表面温度が下げられ、その分、駆動電流を増大できると同時に、その分、光量も拡大できる効果を有する。この様に、LEDの表面温度の低下を実現するために、何らかの方法で、LEDに発生する熱を、できる限り外へ放熱をさせなければならない。
The curve plotted with x at the bottom is the current vs. surface temperature curve of the Al substrate, the curve plotted with the middle triangle is the current vs. surface temperature curve of the PCB substrate, and the curve with the upper peak is the current Therefore, if the temperature of the LED is lowered as much as possible and the amount of light is not increased with respect to the drive current, no further increase in the amount of light can be expected. For example, when a printed circuit board is used as an LED mounting board, the surface temperature rises as much as 230 degrees because the thermal conductivity is small, and the amount of light does not increase even when a large amount of current is passed. However, since the metal substrate has a high thermal conductivity, the surface temperature of the LED can be maintained at about 85 degrees. This effectively works as a heat sink and as a heat sink, and the metal substrate effectively works to lower the surface temperature of the LED, thereby increasing the drive current and increasing the amount of light. As described above, in order to realize a reduction in the surface temperature of the LED, it is necessary to dissipate the heat generated in the LED to the outside as much as possible.

この放熱性の優れた実装基板として、AlやCu等の金属、合金、アルミナやAlN等のセラミック等が候補に挙げられるが、最近のエコ的な思考から、重量的に軽量なAlが注目されている。これは、Cuから比べると、若干熱伝導率は劣るが、コストも安く、しかも軽量であることが最大のポイントと考える。   Candidates such as Al, Cu and other metals, alloys, alumina, AlN, and other ceramics are candidates for mounting substrates with excellent heat dissipation. However, due to recent ecological considerations, weight-weight Al is attracting attention. ing. Compared to Cu, the thermal conductivity is slightly inferior, but the cost is low, and the most important point is that it is lightweight.

特開2001−203395号公報JP 2001-203395 A

しかしながら、この金属基板には、難題なポイントが立ちはだかっている。それは、熱膨張係数に関する問題である。以下に具体的な数値を列記する。   However, this metal substrate has a difficult point. That is a problem with the coefficient of thermal expansion. Specific numerical values are listed below.

Al :23〜25 ppm/度C
半導体素子 : 3.5 ppm/度C
チップ抵抗 : 7.0 ppm/度C
チップコンデンサ:10.0 ppm/度C
半田 :23 ppm/度C
つまり、LEDを金属基板に実装し、LEDから発生する熱を放出することは可能になるが、この数値からも判るように、実装基板であるAlと、LEDの熱膨張係数が異なり、一番弱い部分に大きく負荷が加わることに成る。
Al: 23-25 ppm / degree C
Semiconductor element: 3.5 ppm / degree C
Chip resistance: 7.0 ppm / degree C
Chip capacitor: 10.0 ppm / degree C
Solder: 23 ppm / degree C
In other words, it is possible to mount the LED on a metal substrate and release the heat generated from the LED. A large load is applied to the weak part.

例えば、図8が、その原理を示したもので、金属基板にチップ素子が実装された状態を示すものである。その中で示す矢印は、熱膨張係数、つまり温度に対する伸び縮みを矢印で示してみた。金属基板の伸びが大であるため、半田に負荷がかかり、特に丸で示した部分、半田延面と素子裏面との角度が鋭角である程、そこに加わる負荷は大となる。   For example, FIG. 8 shows the principle, and shows a state where a chip element is mounted on a metal substrate. The arrows shown therein indicate the thermal expansion coefficient, that is, the expansion and contraction with respect to temperature. Since the elongation of the metal substrate is large, a load is applied to the solder, and the load applied to the solder becomes larger as the angle between the part indicated by a circle, that is, the solder extended surface and the element back surface is an acute angle.

具体的には、LEDをセラミックパッケージで封止したLEDパッケージ、リードフレームに実装して樹脂封止したLEDパッケージは、実装性から半田を介して実装するが、Al基板の熱膨張係数が大きいため、半田に大きな負荷が加わる。初期は、それでも耐えているが、半田に加わる温度サイクル数は、時間の経過と共に増大し、最終的には、半田クラックが発生し、回路がオープン状態になり、LEDが発光しなくなる危惧がある。リードフレームでは、リードの柔軟性から、その応力の緩和が望めるが、セラミック基板で封止されると、一般には、セラミック基板の裏面に電極が被着された構造を採用するため、電極の裏面に設けられた半田に直接負荷が加わり、半田クラックを誘発する可能性がある。   Specifically, LED packages in which LEDs are sealed with a ceramic package and LED packages that are mounted on a lead frame and resin-sealed are mounted via solder from the viewpoint of mountability, but because the thermal expansion coefficient of the Al substrate is large A large load is applied to the solder. Although it is still able to withstand at the beginning, the number of temperature cycles applied to the solder increases with the passage of time. Eventually, a solder crack may occur, the circuit may be in an open state, and the LED may not emit light. . In the lead frame, the stress can be relaxed due to the flexibility of the lead, but when sealed with a ceramic substrate, the back surface of the electrode is generally adopted because the electrode is attached to the back surface of the ceramic substrate. There is a possibility that a load is directly applied to the solder provided in the solder and induces a solder crack.

本発明は、第1に、
セラミック基板と、前記セラミック基板の上に実装されたLEDチップと、前記LEDチップと電気的に接続され、前記セラミック基板の裏面に設けられたアノード電極(またはカソード電極)、カソード電極(またはアノード電極)および放熱電極とを有するn個のLEDパッケージと、
前記n個のLEDパッケージを配列可能な、細長のAlを主成分とする金属基板と、
前記金属基板全面に設けられた樹脂からなる絶縁層と、
前記絶縁層の表面に設けられ、前記アノード電極(またはカソード電極)、前記カソード電極(またはアノード電極)および放熱電極と対応して設けられた第1の電極、第2の電極および第3の電極とを有し、
前記第1の電極および前記アノード電極(またはカソード電極)、前記第2の電極および前記カソード電極(またはアノード電極)および第3の電極および前記放熱電極がロウ材により固着され、前記金属基板の長辺に沿って前記n個のLEDパッケージが実装された事で解決するものである。
The present invention, first,
A ceramic substrate, an LED chip mounted on the ceramic substrate, an anode electrode (or cathode electrode), a cathode electrode (or anode electrode) electrically connected to the LED chip and provided on the back surface of the ceramic substrate And n LED packages having heat radiation electrodes;
A metal substrate mainly composed of slender Al capable of arranging the n LED packages;
An insulating layer made of a resin provided on the entire surface of the metal substrate;
A first electrode, a second electrode, and a third electrode provided on the surface of the insulating layer and corresponding to the anode electrode (or cathode electrode), the cathode electrode (or anode electrode), and the heat dissipation electrode And
The first electrode and the anode electrode (or cathode electrode), the second electrode and the cathode electrode (or anode electrode), the third electrode, and the heat dissipation electrode are fixed by a brazing material, and the length of the metal substrate This is solved by mounting the n LED packages along the side.

本発明では、先ずは、LEDチップが入ったLEDパッケージには、電極以外に放熱用の電極を設けて、LEDから発生する熱を積極的に実装基板に伝える構造としている。LEDチップの裏面は、セラミック基板の電極に接続され、サーマルビアを介して、セラミック基板裏面の放熱電極に伝わる構造を採用している。   In the present invention, first, in the LED package containing the LED chip, an electrode for heat dissipation is provided in addition to the electrode, so that heat generated from the LED is positively transmitted to the mounting substrate. The back surface of the LED chip is connected to the electrode of the ceramic substrate and adopts a structure that is transmitted to the heat dissipation electrode on the back surface of the ceramic substrate through a thermal via.

しかも発光ダイオードを実装する実装基板には、導電パターンを加工することで、ロウ材に加わる応力を低減している。   Moreover, the stress applied to the brazing material is reduced by processing the conductive pattern on the mounting substrate on which the light emitting diode is mounted.

具体的には、電極の周囲をハーフエッチングすることにより、応力の集中しやすい部分の半田量を増大し、半田クラックの抑制を図るものである。   Specifically, by half-etching the periphery of the electrode, the amount of solder in a portion where stress is likely to concentrate is increased and solder cracks are suppressed.

本発明の照明装置を説明する図である。It is a figure explaining the illuminating device of this invention. 本発明の照明装置を説明する図である。It is a figure explaining the illuminating device of this invention. 本発明の照明装置を説明する図である。It is a figure explaining the illuminating device of this invention. 本発明の照明装置を説明する図である。It is a figure explaining the illuminating device of this invention. 本発明の照明装置を説明する図である。It is a figure explaining the illuminating device of this invention. 本発明の照明装置の製造方法を示す図である。It is a figure which shows the manufacturing method of the illuminating device of this invention. 本発明の照明装置を説明する図である。It is a figure explaining the illuminating device of this invention. 従来の照明装置を説明する図である。It is a figure explaining the conventional illuminating device. LEDをAl基板およびプリント基板に実装した際の、電流対光量、電流対LEDの表面温度を説明する図である。It is a figure explaining the surface temperature of light quantity with respect to current when LED is mounted on an Al substrate and a printed circuit board.

本発明は、図1(A)に示すように、LEDチップ7が封止されたパッケージであるLEDパッケージ1が金属基板2に実装されたLEDモジュール3に関しての技術であり、特にハンダを代表するロウ材の疲弊、劣化に関するものである。   As shown in FIG. 1A, the present invention is a technique related to an LED module 3 in which an LED package 1 which is a package in which an LED chip 7 is sealed is mounted on a metal substrate 2, and particularly represents solder. This relates to exhaustion and deterioration of the brazing material.

特に前記金属基板2は、CuやAlを主成分とするもの、金属の合金が考えられる。しかしながら、車載用やLCDTV等への搭載が考慮され、軽量さからAlまたはAlを主材料とするもので説明していく。このAl基板2は、厚みがおよそ1.0mm以上2.0mm以下(例えば1.5mm)で、両主面はアルミニウムの酸化膜を主とした無機系絶縁膜(アルマイト膜)4により被覆される。更に、基板2の上面は、フィラーが充填された樹脂から成る絶縁層5により全面的に被覆されており、この絶縁層の上面にCuから成る導電パターン6が形成されている。尚、無機系絶縁膜は、省略されても良い。当然ながら、絶縁層5自体は、熱抵抗が大であるが、フィラーの充填量により熱抵抗を小さくすることが可能である。   In particular, the metal substrate 2 may be composed of Cu or Al as a main component or a metal alloy. However, considering mounting on a vehicle or LCD TV, etc., the description will be made with Al or Al as the main material because of its light weight. The Al substrate 2 has a thickness of approximately 1.0 mm to 2.0 mm (for example, 1.5 mm), and both main surfaces are covered with an inorganic insulating film (alumite film) 4 mainly composed of an aluminum oxide film. . Further, the upper surface of the substrate 2 is entirely covered with an insulating layer 5 made of a resin filled with a filler, and a conductive pattern 6 made of Cu is formed on the upper surface of the insulating layer. Note that the inorganic insulating film may be omitted. As a matter of course, the insulating layer 5 itself has a large thermal resistance, but the thermal resistance can be reduced by the filling amount of the filler.

続いてLEDパッケージ1について説明する。LEDのベアチップ7は、セラミック基板8に実装される。このセラミック基板8は、このベアチップ実装のために、表面に導電パターン9a〜9cが設けられ、それに対応して裏面にも導電パターン10a〜10cが設けられている。ここで9a、10aは、LEDのアノード(またはカソード)電極(以下A電極と呼ぶ)であり、9b、10bは、カソード(またはアノード)電極(以下C電極と呼ぶ)であり、それぞれはスルーホールviaを介して電気的に接続されている。更には、ベアチップの裏面と熱的に結合されてなるアイランド9cは、セラミック基板8の裏面に設けられた放熱電極(以下Rd電極と呼ぶ)10cとサーマルvia11を介して熱的に結合されている。このサーマルvia11は、熱伝導率の高い金属ペーストが焼成されたもので、特にAgまたはCu等が採用される。更には、製造方法の簡略化を考えると、スルーホールviaと同一材料が好ましい。尚、電極10a、10bは、セラミック基板8の裏面から、側面に沿って上方に延在している。断面図では、L字を横にしたものである。   Next, the LED package 1 will be described. The bare LED chip 7 is mounted on a ceramic substrate 8. The ceramic substrate 8 is provided with conductive patterns 9a to 9c on the front surface for the bare chip mounting, and correspondingly conductive patterns 10a to 10c on the back surface. Here, 9a and 10a are anode (or cathode) electrodes (hereinafter referred to as A electrodes) of LEDs, and 9b and 10b are cathode (or anode) electrodes (hereinafter referred to as C electrodes), each of which is a through hole. It is electrically connected via via. Furthermore, the island 9c thermally coupled to the back surface of the bare chip is thermally coupled to a heat radiation electrode (hereinafter referred to as Rd electrode) 10c provided on the back surface of the ceramic substrate 8 through a thermal via 11. . The thermal via 11 is obtained by firing a metal paste having a high thermal conductivity, and in particular, Ag or Cu is adopted. Further, considering the simplification of the manufacturing method, the same material as the through hole via is preferable. The electrodes 10a and 10b extend upward from the back surface of the ceramic substrate 8 along the side surfaces. In the cross-sectional view, the L-shape is horizontal.

続いて、セラミック基板8の周囲には、LEDパッケージ1の4側面となる枠体12が設けられ、この枠体12の内側は、ベアチップ7実装用のキャビティ13と成る。更に、前記キャビティ13の密封とLED光の透過が考慮され、光透過性の蓋体14が枠体の頭部に接着剤を介して固着される。   Subsequently, a frame body 12 serving as four side surfaces of the LED package 1 is provided around the ceramic substrate 8, and an inner side of the frame body 12 serves as a cavity 13 for mounting the bare chip 7. Further, considering the sealing of the cavity 13 and the transmission of LED light, the light-transmitting lid 14 is fixed to the head of the frame body with an adhesive.

本発明は、ベアチップ7から発生する熱がサーマルvia11を介して金属基板2に放出するため、ベアチップ7の温度上昇を抑制でき、その分LEDの駆動電流を上げることが可能となる。更には、図7に示すように、LEDバーにあたっては、LEDパッケージ1を十個以上実装されるため、どうしてもLEDモジュール3全体の温度が上昇する。しかしながら、ヒートシンクや放熱板として機能する金属基板2を採用するため、温度上昇による不良を抑止することができる。特に、アンダーフィルを設ければ、半田の周りを樹脂で覆うことができ、常に半田に圧縮応力を与えることができる。   In the present invention, the heat generated from the bare chip 7 is released to the metal substrate 2 through the thermal via 11, so that the temperature rise of the bare chip 7 can be suppressed, and the drive current of the LED can be increased accordingly. Furthermore, as shown in FIG. 7, since ten or more LED packages 1 are mounted on the LED bar, the temperature of the entire LED module 3 inevitably rises. However, since the metal substrate 2 that functions as a heat sink or a heat sink is employed, it is possible to suppress defects due to temperature rise. In particular, if an underfill is provided, the periphery of the solder can be covered with resin, and a compressive stress can always be applied to the solder.

更に本発明は、裏面電極10a、10bとRd電極10cのパターンについて、Rd電極10cの半田を犠牲にする構造を採用した。つまり電極6a、6bは、金属基板2に貼着された導電パターンで、それに対応してLEDパッケージ1側のアノード電極、カソード電極10a、10bがロウ材を介して固着されている。同様に電極6cは、金属基板に貼着された導電パターンで、セラミック基板8の裏面側に設けられたRd電極10cとロウ材を介して固着されている。そしてこの放熱電極10cの半田にクラックが発生するような構造とし、その結果、両端の電極10a、10bの半田に加わる応力を緩和させて、クラックの抑制を図ったものである。   Furthermore, the present invention employs a structure in which the solder of the Rd electrode 10c is sacrificed for the patterns of the back electrodes 10a and 10b and the Rd electrode 10c. That is, the electrodes 6a and 6b are conductive patterns attached to the metal substrate 2, and correspondingly, the anode electrode and the cathode electrodes 10a and 10b on the LED package 1 side are fixed via the brazing material. Similarly, the electrode 6c is a conductive pattern adhered to a metal substrate, and is fixed to the Rd electrode 10c provided on the back side of the ceramic substrate 8 via a brazing material. The structure is such that cracks are generated in the solder of the heat radiation electrode 10c. As a result, the stress applied to the solder of the electrodes 10a and 10b at both ends is relaxed to suppress cracks.

具体的には、半田の延面と金属基板2裏面との角度で以下に説明する。先ずは、若干の定義について図1(B)を使って行う。   Specifically, the angle between the solder extended surface and the back surface of the metal substrate 2 will be described below. First, some definitions will be made with reference to FIG.

半田が溶けた面は、一般には湾曲したカーブを描く。例えば図1(A)の放熱電極10cと金属基板側の電極6cの半田の状態を図1(B)に模式的に示した。ラインL1は、セラミック基板8の底面であり、ラインL2は、金属基板2側の表面を示す。そしてセラミック基板8側には、Rd電極10cが、金属基板2側には、電極6cがある。そして両者の間には半田が濡れており、電気的に接続されている。   The surface where the solder is melted generally draws a curved curve. For example, FIG. 1B schematically shows the solder state of the heat radiation electrode 10c in FIG. 1A and the electrode 6c on the metal substrate side. The line L1 is the bottom surface of the ceramic substrate 8, and the line L2 indicates the surface on the metal substrate 2 side. An Rd electrode 10c is provided on the ceramic substrate 8 side, and an electrode 6c is provided on the metal substrate 2 side. The solder is wet between the two and is electrically connected.

ここでは、半田の延面とセラミック基板との角度を議論するのであるが、ここでは、以下の様にする。つまり半田は、放熱電極10cの点B’を起点とし、金属基板の電極6cの点Aを終点とし、その間で湾曲して濡れるか、放熱電極10cの外周とセラミック基板との当接点Bを半田の起点とし、終点Aとの間で湾曲を描いて濡れると考える。そして、前者の半田延面を直線A−B‘として見做し、後者の半田延面を直線A−Bとして見做す。そして半田はこの二つの延面の間のいずれかの位置でカーブを描いているので、これら2本の直線と水平ラインとの角度を総称してα3と定義する。この点は、図1(A)にも記載され、放熱電極10cの両側に示されたα3は、ほぼ対称なので実質同一としてα3とした。同様な方法で、アノード電極、カソード電極の内側の半田延面をα1とした。一方、α2は、セラミック基板の側壁またはパッケージの側壁と平行なラインL3と直線A−B、または直線A−B’との角度を総称してα2とした。   Here, the angle between the extended surface of the solder and the ceramic substrate is discussed, but here it is as follows. That is, the solder starts from the point B ′ of the heat radiation electrode 10c and ends at the point A of the electrode 6c of the metal substrate, and is bent and wetted between them, or the contact point B between the outer periphery of the heat radiation electrode 10c and the ceramic substrate is soldered. It is assumed that the surface is wet and draws a curve with the end point A. The former solder surface is regarded as a straight line A-B ', and the latter solder surface is regarded as a straight line AB. Since the solder draws a curve at any position between the two extended surfaces, the angle between the two straight lines and the horizontal line is collectively defined as α3. This point is also described in FIG. 1A, and α3 shown on both sides of the heat radiating electrode 10c is substantially symmetric and thus α3. In the same manner, the solder extending surface inside the anode electrode and the cathode electrode was set to α1. On the other hand, α2 is a generic term for α2 and the angle between the line L3 parallel to the side wall of the ceramic substrate or the side wall of the package and the straight line AB or straight line A-B ′.

本来、従来例でも説明したように、この角度α1〜α3は、鈍角が好ましい。しかしながら、本発明では、電極6cを放熱電極10cよりも一回り大きくし、平面的に見て、電極6Cの内側に放熱電極10cの全体が入るように設け、α3を鋭角とした。   Originally, as described in the conventional example, the angles α1 to α3 are preferably obtuse angles. However, in the present invention, the electrode 6c is made slightly larger than the heat radiation electrode 10c, and is provided so that the entire heat radiation electrode 10c enters the electrode 6C in plan view, and α3 is an acute angle.

LEDモジュール3は、常に温度サイクルが加わり、時間とともに半田が疲弊して、結局は、時間の大小の違いはあるが、最後には、半田クラックが発生する場合がある。よってその時、敢えて、α3であるこの部分でクラックを発生させることで、α1、α2の部分に加わる応力を緩和するものである。しかも放熱電極から下方へ伝導する経路は、真下へ向かうものと、角度を持ってスカート状に放射される経路がある。よって、金属基板側の放熱電極6cが一回り大きいことから、より効率の高い放熱が可能となる。   The LED module 3 is constantly subjected to a temperature cycle, and the solder is exhausted over time. Eventually, there is a difference in time, but finally, a solder crack may occur. Therefore, at that time, the stress applied to the portions α1 and α2 is relieved by generating a crack in this portion that is α3. Moreover, there are two paths that are conducted downward from the heat radiation electrode, one that is directed downward, and another that is radiated in a skirt shape with an angle. Therefore, since the heat radiation electrode 6c on the metal substrate side is one size larger, more efficient heat radiation is possible.

本実施例は、セラミックパッケージで説明しているが、樹脂パッケージであっても同じ構造であれば、適用できるものである。
≪第2の実施の形態≫
続いて、図2から図7を採用して、第2の実施の形態について説明する。この実施例は、図7に示すように、LCDTVの側辺に取り付けられ、バックライトの一構成となるLEDバー20をテーマとしたものであり、金属基板21やLEDパッケージ22は、前実施例と同様の構成である。前実施例は、半田延面との角度を議論したが、これからは、半田の厚みについて議論する。
Although the present embodiment has been described with a ceramic package, it can be applied to a resin package as long as it has the same structure.
<< Second Embodiment >>
Subsequently, a second embodiment will be described with reference to FIGS. As shown in FIG. 7, this embodiment is based on the LED bar 20 that is attached to the side of the LCDTV and constitutes one backlight, and the metal substrate 21 and the LED package 22 are the same as those in the previous embodiment. It is the same composition as. In the previous embodiment, the angle with the solder surface was discussed, but now the thickness of the solder will be discussed.

まず、前実施例と同様に、ここの基板は、AlまたはAlを主材料とした金属基板21を採用し、厚みが1.0mm程度から2.0mm程度で、平面的なサイズは、幅が0.5cm程度で、長さが50cm程度である。この長さは、TVのサイズにより増減するが、原則として図2(A)にある様に細長の形状である。またLEDバーの幅は、原則LCDTVに取り付けられる導光板の厚みと実質同じであり、近年、LCDTVの厚みが薄くなっていることから、この幅は、0.5mmから更に狭くなる傾向にある。   First, as in the previous embodiment, this substrate employs Al or a metal substrate 21 whose main material is Al, has a thickness of about 1.0 mm to about 2.0 mm, and has a planar size of width. The length is about 0.5 cm and the length is about 50 cm. Although this length varies depending on the size of the TV, in principle, it has an elongated shape as shown in FIG. The width of the LED bar is essentially the same as the thickness of the light guide plate attached to the LCDTV. In recent years, since the thickness of the LCDTV has been reduced, this width tends to be narrower from 0.5 mm.

この細長の金属基板21には、図7(A)に示したように、LEDパッケージ22が、ライン状に配列されて設けられている。特に、LEDパッケージは、一般には図7(A)下の等価回路にあるように、直列接続されている。また熱膨張係数からくる伸びをできるだけ分散させるために、図7(A)の上の等価回路図の如く、LEDバーを何本か使用し、並列接続させても良い。3つのLEDが直列接続されたものが1つのLEDバーであり、このLEDバーが並列に接続されている。ここでは、LEDが3つであるが、この数は、限定されない。これは、両端に加わる電圧が下げられる事、どれかLEDチップが動作不良になった場合でも、並列接続されたLEDバーのどれかを取替えれば良い。   The elongated metal substrate 21 is provided with LED packages 22 arranged in a line as shown in FIG. 7A. In particular, the LED packages are generally connected in series as shown in the equivalent circuit at the bottom of FIG. Further, in order to disperse the elongation resulting from the thermal expansion coefficient as much as possible, several LED bars may be used and connected in parallel as shown in the equivalent circuit diagram in FIG. One LED bar is formed by connecting three LEDs in series, and the LED bars are connected in parallel. Here, there are three LEDs, but this number is not limited. This can be done by replacing any of the LED bars connected in parallel even if the voltage applied to both ends is lowered, or if any LED chip malfunctions.

よって金属基板21の上には、前記等価回路に対応して電極および配線が形成されている。特にLEDパッケージ22は、図1(A)で説明した様に、A電極、C電極、Rd電極が設けられ、図7(C)では、符号23a、23b、23cがそれに相当し、LEDパッケージ22自体は点線で示した。   Therefore, electrodes and wirings are formed on the metal substrate 21 corresponding to the equivalent circuit. In particular, the LED package 22 is provided with an A electrode, a C electrode, and an Rd electrode as described with reference to FIG. 1A. In FIG. 7C, reference numerals 23a, 23b, and 23c correspond to the LED package 22; Itself is indicated by a dotted line.

尚図7(B)は、図7(A)の丸で示した部分の拡大図であり、1つのLEDパッケージの実装領域に設けられる導電パターンについて図示したものである。図7(C)は、Y−Y線の断面図、更に図7(D)は、X−X線の断面図である。   FIG. 7B is an enlarged view of a portion indicated by a circle in FIG. 7A, and illustrates a conductive pattern provided in a mounting region of one LED package. 7C is a cross-sectional view taken along the line YY, and FIG. 7D is a cross-sectional view taken along the line XX.

本発明のポイントは、図2(A)に示すように金属基板2側の導電パターン6a、6b、6cの厚みをコントロールしたことにある。(アノード電極に相当する導電パターン6aを第1の電極、カソード電極に相当する導電パターン6bを第2の電極、そして放熱電極に相当する導電パターン6cを第3の電極とする。)
つまり放熱電極6cの膜厚をd1とし、第1、第2の電極6a、6bの厚みをd2とし、更には、C電極10aと第3の電極6cの間に在るロウ材の厚みをt1、A電極10aと第1の電極6aの間のロウ材の厚みおよびC電極10bと第2の電極6bの間に在るロウ材の厚みをt2とした場合、
d1>d2としたことで、ロウ材の厚みの関係は、t2>t1となる。
The point of the present invention is that the thickness of the conductive patterns 6a, 6b, 6c on the metal substrate 2 side is controlled as shown in FIG. (The conductive pattern 6a corresponding to the anode electrode is the first electrode, the conductive pattern 6b corresponding to the cathode electrode is the second electrode, and the conductive pattern 6c corresponding to the heat dissipation electrode is the third electrode.)
That is, the thickness of the heat radiation electrode 6c is d1, the thickness of the first and second electrodes 6a and 6b is d2, and the thickness of the brazing material between the C electrode 10a and the third electrode 6c is t1. When the thickness of the brazing material between the A electrode 10a and the first electrode 6a and the thickness of the brazing material between the C electrode 10b and the second electrode 6b are t2,
Since d1> d2, the thickness relationship of the brazing material is t2> t1.

つまり電極として機能するところのロウ材の厚みt2が厚く形成されるため、その分ロウ材の強度が向上する。更には、t2が薄い分、ここに応力が集中し易くなり、先に薄い部分の疲弊が進み、電気的に接続として機能する所のロウ材のクラックを抑止することが可能となる。一方、アンダーフィル等でロウ材の周りを塗布しておけば、常に圧縮応力が加わり、更にクラックの抑止となる。また圧縮応力が加わるので、放熱電極の所のロウ材にクラックが発生しても、熱的結合の分断にならず、放熱の機能も持たせることができる。   That is, since the thickness t2 of the brazing material that functions as an electrode is formed thick, the strength of the brazing material is improved accordingly. Further, since t2 is thin, stress is easily concentrated here, and fatigue of the thin portion proceeds first, so that cracking of the brazing material that functions as an electrical connection can be suppressed. On the other hand, if the periphery of the brazing material is applied with underfill or the like, a compressive stress is always applied, and cracks are further suppressed. In addition, since compressive stress is applied, even if a crack occurs in the brazing material at the heat radiation electrode, the thermal coupling is not broken, and a heat radiation function can be provided.

次に、図2(B)について説明する。ここの異なる部分は、A電極10a、C電極10bがセラミック基板8の側面に延在している。またはLEDパッケージ1の側面に延在している構造である。それ以外は、図2(A)と同じである。図1(A)で説明したように、A電極10a、C電極10bの所の角度α2の部分が鈍角となるため、更にロウ材の強度が向上する。   Next, FIG. 2B will be described. In this different part, the A electrode 10 a and the C electrode 10 b extend on the side surface of the ceramic substrate 8. Or it is the structure extended to the side surface of the LED package 1. The rest is the same as FIG. As described with reference to FIG. 1A, the portion of the angle α2 at the A electrode 10a and the C electrode 10b becomes an obtuse angle, so that the strength of the brazing material is further improved.

金属基板2に貼り合わされる導電パターン6は、当初は均一な膜厚である。よって第1の電極、第2の電極の部分をエッチング等で薄くして、第1の電極と第3の電極の膜厚に差を設けても良い。逆に第3の電極にCu箔等を張り合わせて、膜厚に差を出しても良い。   The conductive pattern 6 bonded to the metal substrate 2 has a uniform film thickness at the beginning. Therefore, the first electrode and the second electrode may be thinned by etching or the like to provide a difference in film thickness between the first electrode and the third electrode. Conversely, a Cu foil or the like may be bonded to the third electrode to make a difference in film thickness.

続いて図3、図4について説明する。このケースは、A電極6a、C電極6bの形状以外は、図2(A)、図2(B)と同じであり、異なる部分だけ説明する。   Next, FIG. 3 and FIG. 4 will be described. This case is the same as FIG. 2A and FIG. 2B except for the shapes of the A electrode 6a and the C electrode 6b, and only different parts will be described.

図3は、A電極6a、C電極6bにハーフエッチングして溝を形成している。2つのタイプを右と左で図示したが、実際はどちらか一方が選択され、同じ形状が左右の電極に施される。この溝の深さは、電極の厚みよりも浅いものである。矢印の先に示したA電極6aの平面図には、点線でLEDパッケージ1を図示した。つまりLEDパッケージの外側で且つ電極6aの内側に溝の外側の側壁が位置し、LEDパッケージ1の内側に溝の内側の側壁が形成されるように溝が形成されている。更に、ソルダーレジスト等の絶縁体で外側の側壁まで、または溝の途中まで被覆すると、ロウ材の外側の延面は、溝に位置させることができる。よって放熱電極10aの側壁が下方へ濡れて延在するロウ材の厚みが厚くなり、ロウ材の強度を向上させることができる。   In FIG. 3, the A electrode 6a and the C electrode 6b are half-etched to form grooves. Although two types are illustrated on the right and left, in actuality, either one is selected and the same shape is applied to the left and right electrodes. The depth of the groove is shallower than the thickness of the electrode. In the plan view of the A electrode 6a indicated by the tip of the arrow, the LED package 1 is illustrated by a dotted line. That is, the groove is formed so that the side wall outside the groove is located outside the LED package and inside the electrode 6 a, and the side wall inside the groove is formed inside the LED package 1. Furthermore, when the outer side wall or the middle of the groove is covered with an insulator such as a solder resist, the outer extended surface of the brazing material can be positioned in the groove. Therefore, the thickness of the brazing material that the side wall of the heat radiation electrode 10a extends by being wetted downward is increased, and the strength of the brazing material can be improved.

一方、C電極の溝の形状は、外側の側壁がなく、内側の側壁から外周まで一定の深さの溝が形成されている。これもロウ材の厚みを確保でき、ロウ材の疲弊を抑止することができる。   On the other hand, the groove shape of the C electrode has no outer side wall, and a groove having a certain depth is formed from the inner side wall to the outer periphery. This can also secure the thickness of the brazing material and suppress the exhaustion of the brazing material.

図4は、図3の構造と比較すれば、A電極10a、C電極10bがセラミック基板8の側壁に延在するか、またはLEDパッケージの側壁に延在されるものである。これも角度α2が鈍角となり更なる信頼性の向上が可能となる。   FIG. 4 shows that the A electrode 10a and the C electrode 10b extend on the side wall of the ceramic substrate 8 or on the side wall of the LED package as compared with the structure of FIG. Also in this case, the angle α2 becomes an obtuse angle, and the reliability can be further improved.

最後に図5および図6のケースを説明する。ここでは、LEDパッケージに実装されるベアチップ7が、今までのチップと異なる。つまりチップ7裏面がC電極および放熱電極として働く構造である。よって2つの電極で実現でき、本来の放熱電極は、削除できる。金属基板の上に設けられたA電極とC電極のパターンは、図3と同一である。やはりどちらか一方が選択されて形成される。   Finally, the case of FIGS. 5 and 6 will be described. Here, the bare chip 7 mounted on the LED package is different from the conventional chips. That is, the back surface of the chip 7 has a structure that functions as a C electrode and a heat dissipation electrode. Therefore, it can be realized with two electrodes, and the original heat radiation electrode can be deleted. The patterns of the A electrode and the C electrode provided on the metal substrate are the same as those in FIG. Again, either one is selected and formed.

図6は、A電極、C電極がセラミック基板の側壁まで延在されたもの、またはLEDパッケージの側壁に延在されたものである。   In FIG. 6, the A electrode and the C electrode extend to the side wall of the ceramic substrate, or extend to the side wall of the LED package.

1:LEDパッケージ
2:金属基板
3:LEDモジュール
4:無機系絶縁膜
5:絶縁層
6:導電パターン
7:LEDのベアチップ
8:セラミック基板
9a、10a:A電極
9b、10b:B電極
9c、10c:Rd電極
11:サーマルvia
12:枠
13:中空部
14:蓋体
1: LED package 2: Metal substrate 3: LED module 4: Inorganic insulating film 5: Insulating layer 6: Conductive pattern 7: LED bare chip 8: Ceramic substrate 9a, 10a: A electrode 9b, 10b: B electrode 9c, 10c : Rd electrode 11: Thermal via
12: Frame 13: Hollow part 14: Lid

Claims (5)

セラミック基板と、前記セラミック基板の上に実装されたLEDチップと、前記LEDチップと電気的に接続され、前記セラミック基板の裏面に設けられたアノード電極(またはカソード電極)、カソード電極(またはアノード電極)および放熱電極とを有するn個のLEDパッケージと、
前記n個のLEDパッケージを配列可能な、細長のAlを主成分とする金属基板と、
前記金属基板全面に設けられた樹脂からなる絶縁層と、
前記絶縁層の表面に設けられ、前記アノード電極(またはカソード電極)、前記カソード電極(またはアノード電極)および放熱電極と対応して設けられた第1の電極、第2の電極および第3の電極とを有し、
前記第1の電極および前記アノード電極(またはカソード電極)、前記第2の電極および前記カソード電極(またはアノード電極)および第3の電極および前記放熱電極がロウ材により固着され、前記金属基板の長辺に沿って前記n個のLEDパッケージが実装された事を特徴とする照明装置。
A ceramic substrate, an LED chip mounted on the ceramic substrate, an anode electrode (or cathode electrode), a cathode electrode (or anode electrode) electrically connected to the LED chip and provided on the back surface of the ceramic substrate And n LED packages having heat radiation electrodes;
A metal substrate mainly composed of slender Al capable of arranging the n LED packages;
An insulating layer made of a resin provided on the entire surface of the metal substrate;
A first electrode, a second electrode, and a third electrode provided on the surface of the insulating layer and corresponding to the anode electrode (or cathode electrode), the cathode electrode (or anode electrode), and the heat dissipation electrode And
The first electrode and the anode electrode (or cathode electrode), the second electrode and the cathode electrode (or anode electrode), the third electrode, and the heat dissipation electrode are fixed by a brazing material, and the length of the metal substrate An illumination device, wherein the n LED packages are mounted along a side.
前記金属基板上には、更に配線が設けられ、前記金属基板の長辺に沿って前記n個のLEDパッケージが電気的に直列接続される請求項1に記載の照明装置。 The lighting device according to claim 1, wherein wiring is further provided on the metal substrate, and the n LED packages are electrically connected in series along a long side of the metal substrate. 前記C電極と前記放熱電極が兼ねられたLEDパッケージである請求項1に記載の照明装置。 The lighting device according to claim 1, wherein the lighting device is an LED package that serves as both the C electrode and the heat dissipation electrode. 前記放熱電極の厚みが、前記アノード電極(またはカソード電極)の膜厚よりも厚く形成されるか、または前記カソード電極(またはアノード電極)の膜厚よりも厚く形成される請求項1、請求項2または請求項3に記載の照明装置。 The thickness of the said thermal radiation electrode is formed thicker than the film thickness of the said anode electrode (or cathode electrode), or it is formed thicker than the film thickness of the said cathode electrode (or anode electrode). The lighting device according to claim 2 or claim 3. 前記第1の電極は、前記アノード電極(またはカソード電極)の外周より内側から、前記外周よりも外側まで、前記第1の電極の厚さよりも浅い溝が形成される請求項1、請求項2または請求項3に記載の照明装置。 The first electrode is formed with a groove shallower than the thickness of the first electrode from the inner periphery to the outer periphery of the anode electrode (or cathode electrode). Or the illuminating device of Claim 3.
JP2010077686A 2010-03-30 2010-03-30 Lighting device Pending JP2011210974A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010077686A JP2011210974A (en) 2010-03-30 2010-03-30 Lighting device
US12/905,855 US8283681B2 (en) 2010-03-30 2010-10-15 Lighting device and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010077686A JP2011210974A (en) 2010-03-30 2010-03-30 Lighting device

Publications (1)

Publication Number Publication Date
JP2011210974A true JP2011210974A (en) 2011-10-20

Family

ID=44941721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010077686A Pending JP2011210974A (en) 2010-03-30 2010-03-30 Lighting device

Country Status (1)

Country Link
JP (1) JP2011210974A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019235565A1 (en) * 2018-06-08 2019-12-12 日機装株式会社 Semiconductor light emitting device
JP2019216217A (en) * 2018-06-14 2019-12-19 日亜化学工業株式会社 Semiconductor device and manufacturing method of the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019235565A1 (en) * 2018-06-08 2019-12-12 日機装株式会社 Semiconductor light emitting device
US11677052B2 (en) 2018-06-08 2023-06-13 Nikkiso Co., Ltd. Semiconductor light-emitting device
JP2019216217A (en) * 2018-06-14 2019-12-19 日亜化学工業株式会社 Semiconductor device and manufacturing method of the same
JP7111957B2 (en) 2018-06-14 2022-08-03 日亜化学工業株式会社 Semiconductor device and its manufacturing method
US11581699B2 (en) 2018-06-14 2023-02-14 Nichia Corporation Semiconductor device and method of manufacturing the semiconductor device
US11949209B2 (en) 2018-06-14 2024-04-02 Nichia Corporation Semiconductor device and method of manufacturing the semiconductor device

Similar Documents

Publication Publication Date Title
US9261246B2 (en) Light-emitting module, light source device, liquid crystal display device, and method of manufacturing light-emitting module
JP3736366B2 (en) Surface mount type light emitting device and light emitting device using the same
TWI295860B (en)
JP4808550B2 (en) Light emitting diode light source device, lighting device, display device, and traffic signal device
US7408204B2 (en) Flip-chip packaging structure for light emitting diode and method thereof
JP2005158957A (en) Light emitting device
JP2008294428A (en) Light-emitting diode package
US8368110B2 (en) Side view LED package structure
US8641232B2 (en) Light emitting device and illumination apparatus
JP2010199167A (en) Package for housing light-emitting element, and light-emitting device
JP4254470B2 (en) Light emitting device
TWI390703B (en) Top view type of light emitting diode package structure and fabrication thereof
US20100301359A1 (en) Light Emitting Diode Package Structure
US20100084673A1 (en) Light-emitting semiconductor packaging structure without wire bonding
JP2006303191A (en) Led unit
KR100764461B1 (en) Semiconductor Package Having a Buffer Layer
WO2013108934A1 (en) Led light-emitting device and method for manufacturing same, and led lighting device
JP2010003946A (en) Package of light emitting element, and manufacturing method of light emitting element
JP2011210974A (en) Lighting device
JP2006222248A (en) Semiconductor light emitting device
KR101363070B1 (en) Led lighting module
JP6010891B2 (en) Semiconductor device
KR101248607B1 (en) Led array module having heat sink structure using heat well
KR101259876B1 (en) Led package having a thermoelectric element and method for manufacturin thereof
JP2011210975A (en) Method of manufacturing substrate for lighting device and substrate for lighting device

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20111027