JP2011210968A - Multilayer circuit board - Google Patents

Multilayer circuit board Download PDF

Info

Publication number
JP2011210968A
JP2011210968A JP2010077530A JP2010077530A JP2011210968A JP 2011210968 A JP2011210968 A JP 2011210968A JP 2010077530 A JP2010077530 A JP 2010077530A JP 2010077530 A JP2010077530 A JP 2010077530A JP 2011210968 A JP2011210968 A JP 2011210968A
Authority
JP
Japan
Prior art keywords
anisotropic conductive
group
wiring board
multilayer wiring
insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010077530A
Other languages
Japanese (ja)
Other versions
JP5301490B2 (en
Inventor
Yoshinori Hotta
吉則 堀田
Yusuke Hatanaka
優介 畠中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2010077530A priority Critical patent/JP5301490B2/en
Publication of JP2011210968A publication Critical patent/JP2011210968A/en
Application granted granted Critical
Publication of JP5301490B2 publication Critical patent/JP5301490B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Wire Bonding (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a multilayer circuit board having high interlayer adhesive properties of anisotropic conductive films and high reliability of a semiconductor package obtained by using the circuit board.SOLUTION: A multilayer circuit board 10, which includes two or more anisotropic conductive films 1 is a component formed in a manner, wherein the anisotropic conductive films penetrate an insulating substrate 2, consisting of anode oxidation coating of an aluminum substrate in the thickness direction with a plurality of conduction paths 3 consisting of conductive members being insulated from each other; and an end of each of the conduction paths projects on one surface of the insulating substrate while the other end of each of the conduction paths projects on the other surface of the insulating substrate. An insulating layer 11, which is formed by using a polymer material having a reactive functional group, is provided on a part of a contact surface between the respective anisotropic conductive films, and the surfaces of the anisotropic conductive films are surface-treated by a compound having a functional group reactive with the reactive functional group.

Description

本発明は、多層配線基板に関し、より詳しくは半導体パッケージのインターポーザに用いることができる多層配線基板に関する。   The present invention relates to a multilayer wiring board, and more particularly to a multilayer wiring board that can be used for an interposer of a semiconductor package.

近年、半導体素子等の電子部品は、高集積化が一層進むことに伴い、電極(端子)サイズはより小さくなり、電極(端子)数はより増加し、端子間の距離もより狭くなってきている。
そのため、半導体パッケージにおいても半導体チップが三次元的に積層されたチップ積層型のパッケージが開発されている。
また、このようなチップ積層型の半導体パッケージを製造する方法としては、例えば、下段の半導体素子を配線基板にフリップチップ接続し、上段の半導体素子をワイヤボンディングによって接続する方法;インターポーザを使用して半導体素子を積み重ね、インターポーザと半導体素子との間を電気的に接続して搭載する方法;等が知られている。
In recent years, as electronic components such as semiconductor elements are further integrated, the size of electrodes (terminals) has become smaller, the number of electrodes (terminals) has increased, and the distance between terminals has also become narrower. Yes.
Therefore, a chip stack type package in which semiconductor chips are three-dimensionally stacked has also been developed for semiconductor packages.
In addition, as a method of manufacturing such a chip stacked type semiconductor package, for example, a method in which a lower semiconductor element is flip-chip connected to a wiring board and an upper semiconductor element is connected by wire bonding; an interposer is used. A method of stacking semiconductor elements and mounting them by electrically connecting the interposer and the semiconductor elements is known.

そして、本出願人は、インターポーザと半導体素子との間の電気的接点として用いることができる異方導電性部材として、「絶縁性基材中に、導電性部材からなる複数の導通路が、互いに絶縁された状態で前記絶縁性基材を厚み方向に貫通し、かつ、前記各導通路の一端が前記絶縁性基材の一方の面において露出し、前記各導通路の他端が前記絶縁性基材の他方の面において露出した状態で設けられる異方導電性部材であって、前記導通路の密度が200万個/mm2以上であり、前記絶縁性基材が規則的に配列したマイクロポアを有するアルミニウム基板の陽極酸化皮膜からなる構造体である、異方導電性部材。」等を提供している(例えば、特許文献1〜5参照。)。 The applicant of the present invention, as an anisotropic conductive member that can be used as an electrical contact between the interposer and the semiconductor element, states that “in the insulating base material, a plurality of conductive paths made of conductive members are mutually connected. The insulating base material is penetrated in the thickness direction in an insulated state, one end of each conductive path is exposed on one surface of the insulating base material, and the other end of each conductive path is the insulating property. An anisotropic conductive member provided in an exposed state on the other surface of the substrate, wherein the density of the conduction paths is 2 million pieces / mm 2 or more, and the insulating substrate is a regularly arranged micro An anisotropic conductive member that is a structure made of an anodized film of an aluminum substrate having pores "is provided (for example, see Patent Documents 1 to 5).

特開2008−270157号公報JP 2008-270157 A 特開2008−270158号公報JP 2008-270158 A 特開2009−140866号公報JP 2009-140866 A 特開2009−140869号公報JP 2009-140869 A 特開2009−164095号公報JP 2009-164095 A

しかしながら、本発明者は、特許文献1〜5に記載された異方導電性部材について検討したところ、上述したインターポーザと半導体素子との電気的接点やインターポーザ自体として使用するために異方導電性部材(以下、本発明においては「異方導電膜」という。)を積層させると、層間の密着性が低く、半導体パッケージの信頼性に改善の余地があることを明らかとした。   However, the present inventor examined the anisotropic conductive members described in Patent Documents 1 to 5, and found that the anisotropic conductive member is used as an electrical contact between the above-described interposer and the semiconductor element or the interposer itself. (Hereinafter, in the present invention, it is referred to as “anisotropic conductive film”.) It has been clarified that the adhesion between the layers is low and there is room for improvement in the reliability of the semiconductor package.

そこで、本発明は、異方導電膜の層間の密着性が高く、得られる半導体パッケージの信頼性が高い多層配線基板を提供することを目的とする。   Accordingly, an object of the present invention is to provide a multilayer wiring board having high adhesion between layers of anisotropic conductive films and high reliability of the obtained semiconductor package.

本発明者は、上記目的を達成すべく鋭意研究した結果、特定の異方導電膜同士の接触面の一部に特定の反応性官能基を有する絶縁層を設けて積層させることにより、異方導電膜の層間の密着性が高く、信頼性の高い半導体パッケージが得られることを見出し、本発明を完成させた。
すなわち、本発明は、以下の(1)〜(7)を提供する。
As a result of diligent research to achieve the above object, the present inventor has provided an insulating layer having a specific reactive functional group on a part of the contact surface between specific anisotropic conductive films, and laminated it. It was found that a highly reliable semiconductor package with high adhesion between conductive film layers was obtained, and the present invention was completed.
That is, the present invention provides the following (1) to (7).

(1)2層以上の異方導電膜が積層された多層配線基板であって、
上記異方導電膜が、アルミニウム基板の陽極酸化皮膜からなる絶縁性基材中に、導電性部材からなる複数の導通路を互いに絶縁された状態で上記絶縁性基材を厚み方向に貫通し、かつ、上記各導通路の一端が上記絶縁性基材の一方の面において突出し、上記各導通路の他端が上記絶縁性基材の他方の面において突出した状態で設けられる部材であり、
上記異方導電膜同士の接触面の一部に絶縁層を有し、
上記絶縁層が、反応性官能基を有する高分子材料を用いて形成され、
上記異方導電膜の表面が、上記反応性官能基と反応しうる官能基を有する化合物で表面処理されている多層配線基板。
(1) A multilayer wiring board in which two or more anisotropic conductive films are laminated,
The anisotropic conductive film penetrates the insulating base material in the thickness direction in a state where a plurality of conductive paths made of a conductive member are insulated from each other in an insulating base material made of an anodized film of an aluminum substrate, And one end of each of the conductive paths protrudes on one surface of the insulating base material, the other end of the conductive path is a member provided in a state of protruding on the other surface of the insulating base material,
Having an insulating layer in part of the contact surface between the anisotropic conductive films,
The insulating layer is formed using a polymer material having a reactive functional group,
The multilayer wiring board by which the surface of the said anisotropically conductive film is surface-treated with the compound which has a functional group which can react with the said reactive functional group.

(2)上記絶縁性基材の厚みが1〜1000μmであり、上記導通路の直径が1μm以下であり、上記導通路の上記絶縁性基材の両面から突出した部分の高さが10nm以上である上記(1)に記載の多層配線基板。   (2) The thickness of the insulating base is 1 to 1000 μm, the diameter of the conduction path is 1 μm or less, and the height of the portion protruding from both surfaces of the insulating base of the conduction path is 10 nm or more. The multilayer wiring board according to (1) above.

(3)上記絶縁層の厚みが、0.1〜100μmである上記(1)または(2)に記載の多層配線基板。   (3) The multilayer wiring board according to (1) or (2), wherein the insulating layer has a thickness of 0.1 to 100 μm.

(4)上記高分子材料の反応性官能基が、アクリレート基、メタクリレート基、ビニル基、アリル基、エポキシ基、アミノ基、ヒドロキシ基、カルボキシ基、イソシアネート基および酸無水物基からなる群から選択される上記(1)〜(3)のいずれかに記載の多層配線基板。   (4) The reactive functional group of the polymer material is selected from the group consisting of acrylate group, methacrylate group, vinyl group, allyl group, epoxy group, amino group, hydroxy group, carboxy group, isocyanate group and acid anhydride group. The multilayer wiring board according to any one of (1) to (3) above.

(5)上記高分子材料が、エポキシ樹脂である上記(1)〜(4)のいずれかに記載の多層配線基板。   (5) The multilayer wiring board according to any one of (1) to (4), wherein the polymer material is an epoxy resin.

(6)上記異方導電膜の表面を表面処理する上記化合物が、アミノ基を有するシランカップリング剤である上記(1)〜(5)のいずれかに記載の多層配線基板。   (6) The multilayer wiring board according to any one of (1) to (5), wherein the compound for surface-treating the surface of the anisotropic conductive film is a silane coupling agent having an amino group.

(7)半導体パッケージのインターポーザとして用いる上記(1)〜(6)のいずれかに記載の多層配線基板。   (7) The multilayer wiring board according to any one of (1) to (6), which is used as an interposer for a semiconductor package.

以下に示すように、本発明によれば、異方導電膜の層間の密着性が高く、得られる半導体パッケージの信頼性が高い多層配線基板を提供することができる。
また、本発明の多層配線基板は、陽極酸化皮膜(アルミナ)のマイクロポアの内部に金属を充填した異方導電膜を有しているため、線膨張係数(CTE)を樹脂基板(例えば、ポリイミド樹脂等)よりも1桁近くシリコンウェハに近くすることができ、その結果、低誘電率膜のベアチップ側と熱応力で整合性を有することになるため非常に有用である。
更に、本発明の多層配線基板は、異方導電膜の導通路が膜の厚み方向にのみ形成されているため、機械的加工やレーザー加工によるビア形成を伴うことなく、表裏同位置に電極を形成するだけで微小ビアとしての機能を果たすことができ、非常に有用である。
As described below, according to the present invention, it is possible to provide a multilayer wiring board having high adhesion between layers of anisotropic conductive films and high reliability of a semiconductor package obtained.
In addition, since the multilayer wiring board of the present invention has an anisotropic conductive film filled with metal inside the micropores of the anodized film (alumina), the linear expansion coefficient (CTE) is set to a resin substrate (for example, polyimide). This is very useful because it can be closer to a silicon wafer by an order of magnitude than a resin or the like, and as a result, it is compatible with the bare chip side of the low dielectric constant film by thermal stress.
Furthermore, in the multilayer wiring board of the present invention, since the conductive path of the anisotropic conductive film is formed only in the thickness direction of the film, the electrodes are placed at the same position on the front and back sides without via formation by mechanical processing or laser processing. It is very useful because it can function as a micro via simply by forming.

図1は、本発明の多層配線基板の好適な実施態様の一例を示す簡略図である。FIG. 1 is a simplified diagram showing an example of a preferred embodiment of the multilayer wiring board of the present invention. 図2は、異方導電膜の好適な実施態様の一例を示す簡略図である。FIG. 2 is a simplified diagram showing an example of a preferred embodiment of the anisotropic conductive film. 図3は、ポアの規則化度を算出する方法の説明図である。FIG. 3 is an explanatory diagram of a method for calculating the degree of ordering of pores. 図4は、本発明の多層配線基板の使用態様の一例を説明する概念図である。FIG. 4 is a conceptual diagram illustrating an example of usage of the multilayer wiring board of the present invention. 図5は、実施例で作製した多層配線基板の作製手順を説明する概念図である。FIG. 5 is a conceptual diagram for explaining a production procedure of the multilayer wiring board produced in the example.

以下に、本発明の多層配線基板およびその製造方法ならびに使用態様を詳細に説明する。
本発明の多層配線基板は、2層以上の異方導電膜が絶縁層を積層された多層配線基板であって、上記異方導電膜が、アルミニウム基板の陽極酸化皮膜からなる絶縁性基材中に、導電性部材からなる複数の導通路を互いに絶縁された状態で上記絶縁性基材を厚み方向に貫通し、かつ、上記各導通路の一端が上記絶縁性基材の一方の面において突出し、上記各導通路の他端が上記絶縁性基材の他方の面において突出した状態で設けられる部材であり、上記異方導電膜同士の接触面の一部に絶縁層を有し、上記絶縁層が反応性官能基を有する高分子材料を用いて形成され、上記異方導電膜の表面が上記反応性官能基と反応しうる官能基を有する化合物で表面処理されている多層配線基板である。
次に、本発明の多層配線基板について、図1および図2を用いて説明する。
Below, the multilayer wiring board of the present invention, its manufacturing method, and usage mode will be described in detail.
The multilayer wiring board of the present invention is a multilayer wiring board in which two or more anisotropic conductive films are laminated with an insulating layer, and the anisotropic conductive film is an insulating base material made of an anodized film of an aluminum substrate. In addition, a plurality of conductive paths made of conductive members are penetrated in the thickness direction while being insulated from each other, and one end of each of the conductive paths protrudes on one surface of the insulating base. , A member provided in a state where the other end of each conduction path protrudes on the other surface of the insulating base material, and has an insulating layer on a part of the contact surface between the anisotropic conductive films, A multilayer wiring board in which a layer is formed using a polymer material having a reactive functional group, and the surface of the anisotropic conductive film is surface-treated with a compound having a functional group capable of reacting with the reactive functional group .
Next, the multilayer wiring board of the present invention will be described with reference to FIGS.

図1は、本発明の多層配線基板の好適な実施態様の一例を示す簡略図である。
本発明の多層配線基板10は、2層以上の異方導電膜1を層間の接触面一部に絶縁層11を設けて積層させた構造を有するものである。
本発明においては、異方導電膜1の積層数は特に限定されず、半導体素子(例えば、マイクロプロセッサ等)が有する出力電極の数に応じて適宜選択することができる。
FIG. 1 is a simplified diagram showing an example of a preferred embodiment of the multilayer wiring board of the present invention.
The multilayer wiring board 10 of the present invention has a structure in which two or more anisotropic conductive films 1 are laminated by providing an insulating layer 11 on a part of a contact surface between layers.
In the present invention, the number of stacked anisotropic conductive films 1 is not particularly limited, and can be appropriately selected according to the number of output electrodes of a semiconductor element (for example, a microprocessor).

〔異方導電膜〕
図2は、本発明の多層配線基板が有する異方導電膜の好適な実施態様の一例を示す簡略図であり、図2(A)は正面図、図2(B)は図1(A)の切断面線Ib−Ibからみた断面図である。
異方導電膜1は、絶縁性基材2および導電性部材からなる複数の導通路3を具備するものである。
この導通路3は、軸線方向の長さが絶縁性基材2の厚み方向Zの長さ(厚み)より長く、かつ、互いに絶縁された状態で絶縁性基材2を貫通して設けられる。
また、この導通路3は、各導通路3の一端が絶縁性基材2の一方の面2aから突出し、各導通路3の他端が絶縁性基材2の他方の面2bから突出した状態で設けられる。すなわち、各導通路3の両端は、絶縁性基材の主面である2aおよび2bから突出する各突出部4aおよび4bを有する。
更に、この導通路3は、少なくとも絶縁性基材2内の部分(以下、「基材内導通部5」ともいう。)が、該絶縁性基材2の厚み方向Zと略平行(図2においては平行)となるように設けられるのが好ましい。具体的には、絶縁性基材2の厚みに対する基材内導通部5の中心線の長さ(長さ/厚み)が、1.0〜1.2であるのが好ましく、1.0〜1.05であるのがより好ましい。
次に、絶縁性基材および導通路のぞれぞれについて、材料、寸法、形成方法等について説明する。
[Anisotropic conductive film]
FIG. 2 is a simplified diagram showing an example of a preferred embodiment of the anisotropic conductive film included in the multilayer wiring board of the present invention, FIG. 2 (A) is a front view, and FIG. 2 (B) is FIG. 1 (A). It is sectional drawing seen from the cut surface line Ib-Ib.
The anisotropic conductive film 1 includes a plurality of conductive paths 3 composed of an insulating base material 2 and a conductive member.
The conduction path 3 is provided so as to penetrate the insulating base material 2 in a state where the length in the axial direction is longer than the length (thickness) in the thickness direction Z of the insulating base material 2 and is insulated from each other.
In addition, in the conductive path 3, one end of each conductive path 3 protrudes from one surface 2 a of the insulating base 2, and the other end of each conductive path 3 protrudes from the other surface 2 b of the insulating base 2. Provided. That is, both ends of each conduction path 3 have projections 4a and 4b that project from the main surfaces 2a and 2b of the insulating base.
Further, in this conduction path 3, at least a portion in the insulating base material 2 (hereinafter also referred to as “in-base conduction portion 5”) is substantially parallel to the thickness direction Z of the insulating base material 2 (FIG. 2). Are preferably provided so as to be parallel). Specifically, the length (length / thickness) of the center line of the conductive portion 5 in the base material with respect to the thickness of the insulating base material 2 is preferably 1.0 to 1.2, and preferably 1.0 to 1.2. More preferably, it is 1.05.
Next, materials, dimensions, formation methods, and the like will be described for each of the insulating base material and the conduction path.

<絶縁性基材>
上記異方導電膜を構成する上記絶縁性基材は、マイクロポアを有するアルミニウム基板の陽極酸化皮膜からなる構造体である。
本発明においては、平面方向の導電部の絶縁性をより確実に担保する観点から、上記マイクロポアについて下記式(i)により定義される規則化度が50%以上であるのが好ましく、70%以上であるのがより好ましく、80%以上であるのが更に好ましい。
<Insulating base material>
The said insulating base material which comprises the said anisotropic conductive film is a structure which consists of an anodic oxide film of the aluminum substrate which has a micropore.
In the present invention, the degree of ordering defined by the following formula (i) for the micropore is preferably 50% or more from the viewpoint of ensuring the insulation of the conductive portion in the planar direction more reliably, and 70% More preferably, it is more preferably 80% or more.

規則化度(%)=B/A×100 (i)   Ordering degree (%) = B / A × 100 (i)

上記式(i)中、Aは、測定範囲におけるマイクロポアの全数を表す。Bは、一のマイクロポアの重心を中心とし、他のマイクロポアの縁に内接する最も半径が短い円を描いた場合に、その円の内部に上記一のマイクロポア以外のマイクロポアの重心を6個含むことになる上記一のマイクロポアの測定範囲における数を表す。   In the above formula (i), A represents the total number of micropores in the measurement range. B is centered on the center of gravity of one micropore, and when a circle with the shortest radius inscribed in the edge of another micropore is drawn, the center of gravity of the micropore other than the one micropore is placed inside the circle. This represents the number in the measurement range of the one micropore to be included.

図3は、ポアの規則化度を算出する方法の説明図である。図3を用いて、上記式(1)をより具体的に説明する。
図3(A)に示されるマイクロポア101は、マイクロポア101の重心を中心とし、他のマイクロポアの縁に内接する最も半径が短い円103(マイクロポア102に内接している。)を描いた場合に、円3の内部にマイクロポア101以外のマイクロポアの重心を6個含んでいる。したがって、マイクロポア101は、Bに算入される。
図3(B)に示されるマイクロポア104は、マイクロポア104の重心を中心とし、他のマイクロポアの縁に内接する最も半径が短い円106(マイクロポア105に内接している。)を描いた場合に、円106の内部にマイクロポア104以外のマイクロポアの重心を5個含んでいる。したがって、マイクロポア104は、Bに算入されない。
また、図3(B)に示されるマイクロポア107は、マイクロポア107の重心を中心とし、他のマイクロポアの縁に内接する最も半径が短い円109(マイクロポア108に内接している。)を描いた場合に、円109の内部にマイクロポア107以外のマイクロポアの重心を7個含んでいる。したがって、マイクロポア107は、Bに算入されない。
FIG. 3 is an explanatory diagram of a method for calculating the degree of ordering of pores. The above formula (1) will be described more specifically with reference to FIG.
The micropore 101 shown in FIG. 3A is drawn with a circle 103 (inscribed in the micropore 102) having the shortest radius centered on the center of gravity of the micropore 101 and inscribed in the edge of another micropore. In this case, the center of gravity of the micropores other than the micropores 101 is included in the circle 3. Therefore, the micropore 101 is included in B.
The micropore 104 shown in FIG. 3B draws a circle 106 having the shortest radius (inscribed in the micropore 105) that is centered on the center of gravity of the micropore 104 and inscribed in the edge of another micropore. In such a case, the center of gravity of the micropores other than the micropores 104 is included inside the circle 106. Therefore, the micropore 104 is not included in B.
Further, the micropore 107 shown in FIG. 3B is centered on the center of gravity of the micropore 107 and has the shortest radius 109 inscribed in the edge of the other micropore (inscribed in the micropore 108). Is drawn, the circle 109 includes seven centroids of micropores other than the micropore 107. Therefore, the micropore 107 is not included in B.

また、後述する導通路を直管構造とする観点から、上記マイクロポアが分岐構造を有しないこと、すなわち、陽極酸化皮膜の一方の表面の単位面積あたりのマイクロポア数Aと、別表面の単位面積あたりのマイクロポア数Bの比率が、A/B=0.90〜1.10であるのが好ましく、A/B=0.95〜1.05であるのがより好ましく、A/B=0.98〜1.02であるのが特に好ましい。   In addition, from the viewpoint of making the conduction path described later have a straight tube structure, the micropores do not have a branched structure, that is, the number A of micropores per unit area of one surface of the anodized film and the unit of another surface The ratio of the number of micropores B per area is preferably A / B = 0.90 to 1.10, more preferably A / B = 0.95 to 1.05, and A / B = It is particularly preferably 0.98 to 1.02.

更に、アルミニウムの陽極酸化皮膜の素材であるアルミナは、従来公知の異方導電性フィルム等を構成する絶縁性基材(例えば、熱可塑性エラストマー等)と同様、電気抵抗率は1014Ω・cm程度である。 Further, alumina, which is a material of an anodized aluminum film, has an electrical resistivity of 10 14 Ω · cm, as in the case of an insulating base material (for example, a thermoplastic elastomer) that constitutes a conventionally known anisotropic conductive film. Degree.

本発明においては、上記絶縁性基材の厚み(図2(B)においては符号6で表される部分)は、1〜1000μmであるのが好ましく、5〜500μmであるのがより好ましく、10〜300μmであるのが更に好ましい。絶縁性基材の厚みがこの範囲であると、絶縁性基材の取り扱い性が良好となる。   In the present invention, the thickness of the insulating substrate (the portion represented by reference numeral 6 in FIG. 2B) is preferably 1-1000 μm, more preferably 5-500 μm. More preferably, it is -300 micrometers. When the thickness of the insulating substrate is within this range, the handleability of the insulating substrate is improved.

また、本発明においては、上記絶縁性基材における上記導通路間の幅(図2(B)においては符号7で表される部分)は、10nm以上であるのが好ましく、20〜200nmであるのがより好ましい。絶縁性基材における導通路間の幅がこの範囲であると、絶縁性基材が絶縁性の隔壁として十分に機能する。   Moreover, in this invention, it is preferable that the width | variety between the said conduction paths in the said insulating base material (part represented by the code | symbol 7 in FIG. 2 (B)) is 10 nm or more, and is 20-200 nm. Is more preferable. When the width between the conductive paths in the insulating substrate is within this range, the insulating substrate sufficiently functions as an insulating partition.

本発明においては、上記絶縁性基材は、例えば、アルミニウム基板を陽極酸化し、陽極酸化により生じたマイクロポアを貫通化することにより製造することができる。   In the present invention, the insulating base material can be produced, for example, by anodizing an aluminum substrate and penetrating micropores generated by the anodization.

<導通路>
上記異方導電膜を構成する上記導通路は導電性部材からなるものである。
上記導電性部材は、電気抵抗率が103Ω・cm以下の材料であれば特に限定されず、その具体例としては、金(Au)、銀(Ag)、銅(Cu)、アルミニウム(Al)、マグネシウム(Mg)、ニッケル(Ni)、インジウムがドープされたスズ酸化物(ITO)等が好適に例示される。
中でも、電気伝導性の観点から、銅、金、アルミニウム、ニッケルが好ましく、銅、金がより好ましい。
また、コストの観点から、導通路の上記絶縁性基材の両面から露出した面や突出した面(以下、「端面」ともいう。)の表面だけが金で形成されるのがより好ましい。
<Conduction path>
The conduction path constituting the anisotropic conductive film is made of a conductive member.
The conductive member is not particularly limited as long as the electrical resistivity is 10 3 Ω · cm or less, and specific examples thereof include gold (Au), silver (Ag), copper (Cu), aluminum (Al ), Magnesium (Mg), nickel (Ni), indium-doped tin oxide (ITO), and the like.
Among these, from the viewpoint of electrical conductivity, copper, gold, aluminum, and nickel are preferable, and copper and gold are more preferable.
Further, from the viewpoint of cost, it is more preferable that only the surfaces of the conductive path exposed from both surfaces of the insulating substrate or the surfaces of the protruding surfaces (hereinafter also referred to as “end faces”) are formed of gold.

本発明においては、上記導通路は柱状であり、その直径(図2(B)においては符号8で表される部分)は1μm以下であるのが好ましく、5〜500nmであるのがより好ましく、20〜400nmであるのが更に好ましく、40〜200nmであるのが特に好ましく、50〜100nmであるのが最も好ましい。導通路の直径がこの範囲であると、電気信号を流した際に十分な応答が得ることができるため、本発明の多層配線基板を用いた半導体パッケージの信頼性をより高くすることができる。
また、上述したように、上記絶縁性基材の厚みに対する上記導通路(上記絶縁性基材内の部分に限る。以下、本段落において同様。)の中心線の長さ(長さ/厚み)は1.0〜1.2であるのが好ましく、1.0〜1.05であるのがより好ましい。上記絶縁性基材の厚みに対する上記導通路の中心線の長さがこの範囲であると、上記導通路が直管構造であると評価でき、電気信号を流した際に1対1の応答を確実に得ることができるため、本発明の多層配線基板を用いた半導体パッケージの信頼性を更に高くすることができる。
In the present invention, the conduction path is columnar, and the diameter (portion represented by reference numeral 8 in FIG. 2B) is preferably 1 μm or less, more preferably 5 to 500 nm. It is more preferably 20 to 400 nm, particularly preferably 40 to 200 nm, and most preferably 50 to 100 nm. When the diameter of the conduction path is within this range, a sufficient response can be obtained when an electric signal is passed, so that the reliability of the semiconductor package using the multilayer wiring board of the present invention can be further increased.
In addition, as described above, the length (length / thickness) of the center line of the conduction path (limited to the portion in the insulating base material; hereinafter the same applies in this paragraph) with respect to the thickness of the insulating base material. Is preferably 1.0 to 1.2, more preferably 1.0 to 1.05. When the length of the center line of the conduction path with respect to the thickness of the insulating substrate is within this range, it can be evaluated that the conduction path has a straight pipe structure, and a one-to-one response is obtained when an electric signal is passed. Since it can be obtained reliably, the reliability of the semiconductor package using the multilayer wiring board of the present invention can be further increased.

また、本発明においては、上記導通路(両端)の上記絶縁性基材の両面から突出している部分(図2(B)においては符号4aおよび4bで表される部分。以下、「バンプ」ともいう。)の高さは、10nm以上であるのが好ましく、100nm〜10μmであるのがより好ましい。特に、後述する絶縁層が介在する面(異方導電膜同士の接触面)においては、バンプ高さは1〜10μmであるのが好ましい。バンブの高さがこの範囲であると、異方導電膜の層間の密着性がより高くなり、本発明の多層配線基板を用いた半導体パッケージの信頼性をより高くすることができる。   In the present invention, the portion of the conductive path (both ends) protruding from both surfaces of the insulating base (the portion represented by reference numerals 4a and 4b in FIG. 2B. Hereinafter, also referred to as "bump". Is preferably 10 nm or more, and more preferably 100 nm to 10 μm. In particular, the bump height is preferably 1 to 10 μm on the surface where the insulating layer described later is interposed (contact surface between the anisotropic conductive films). If the bump height is within this range, the adhesion between the layers of the anisotropic conductive film becomes higher, and the reliability of the semiconductor package using the multilayer wiring board of the present invention can be further increased.

本発明においては、上記導通路は上記絶縁性基材によって互いに絶縁された状態で存在するものであるが、その密度は200万個/mm2以上であるのが好ましく、1000万個/mm2以上であるのがより好ましく、5000万個/mm2以上であるのが更に好ましく、1億個/mm2以上であるのが特に好ましい。導通路の密度がこの範囲であると、電気信号を流した際に1対1の応答を確実に得ることができるため、本発明の多層配線基板を用いた半導体パッケージの信頼性を更に高くすることができる。 In the present invention, the conductive paths exist in a state of being insulated from each other by the insulating base material, and the density is preferably 2 million pieces / mm 2 or more, and 10 million pieces / mm 2. More preferably, it is more preferably 50 million pieces / mm 2 or more, and particularly preferably 100 million pieces / mm 2 or more. When the density of the conductive paths is within this range, a one-to-one response can be obtained with certainty when an electric signal is passed, so that the reliability of the semiconductor package using the multilayer wiring board of the present invention is further increased. be able to.

本発明においては、隣接する各導通路の中心間距離(図2においては符号9で表される部分。以下、「ピッチ」ともいう。)は、20〜500nmであるのが好ましく、40〜200nmであるのがより好ましく、50〜140nmであるのが更に好ましい。ピッチがこの範囲であると、導通路直径と導通路間の幅(絶縁性の隔壁厚)とのバランスがとりやすい。   In the present invention, the distance between the centers of adjacent conductive paths (the portion represented by reference numeral 9 in FIG. 2; hereinafter also referred to as “pitch”) is preferably 20 to 500 nm, and preferably 40 to 200 nm. Is more preferable, and it is still more preferable that it is 50-140 nm. When the pitch is within this range, it is easy to balance the conduction path diameter and the width between the conduction paths (insulating partition wall thickness).

本発明においては、上記導通路は、例えば、上記絶縁性基材における貫通化したマイクロポアによる孔の内部に導電性部材である金属を充填することにより製造することができる。   In the present invention, the conduction path can be manufactured by, for example, filling a metal which is a conductive member into a hole formed by a micropore formed in the insulating base material.

本発明においては、このような絶縁性基材および導通路を有する上記異方導電膜は、例えば、特許文献2(特開2008−270158号公報)の[0040]段落に記載された製造方法、すなわち、少なくとも、
アルミニウム基板を陽極酸化する陽極酸化処理工程、
上記陽極酸化処理工程の後に、上記陽極酸化により生じたマイクロポアによる孔を貫通化して上記絶縁性基材を得る貫通化処理工程、および、
上記貫通化処理工程の後に、得られた上記絶縁性基材における貫通化した孔の内部に導電性部材である金属を充填して上記異方導電膜を得る金属充填工程、を具備する方法;等により製造することができる。
本発明においては、上記異方導電膜の製造方法に用いられるアルミニウム基板ならびにアルミニウム基板に施す各処理工程については、同号公報の[0041]〜[0141]段落に記載したものと同様のものを採用することができる。
In the present invention, the anisotropic conductive film having such an insulating substrate and a conduction path is, for example, a production method described in paragraph [0040] of Patent Document 2 (Japanese Patent Laid-Open No. 2008-270158), That is, at least
An anodizing process for anodizing an aluminum substrate;
After the anodizing treatment step, a penetrating treatment step for penetrating holes by the micropores generated by the anodizing to obtain the insulating substrate, and
A method of filling a metal which is a conductive member into the inside of the penetrated hole in the obtained insulating base material after the penetrating treatment step to obtain the anisotropic conductive film; Etc. can be manufactured.
In this invention, about the aluminum substrate used for the manufacturing method of the said anisotropically conductive film, and each process process performed to an aluminum substrate, the thing similar to what was described in the [0041]-[0141] paragraph of the gazette is mentioned. Can be adopted.

また、本発明においては、上記異方導電膜は、その表面が後述する絶縁層(高分子材料)が有する反応性官能基と反応しうる官能基を有する化合物(以下、「表面処理化合物」ともいう。)で表面処理されている。   In the present invention, the anisotropic conductive film has a surface having a functional group capable of reacting with a reactive functional group of an insulating layer (polymer material) described later (hereinafter referred to as “surface treatment compound”). Surface treatment).

ここで、上記表面処理化合物は、上記異方導電膜(特に、絶縁性基材)の表面との吸着性にも優れ、異方導電膜の層間の密着性がより高くなる理由から、例えば、後述する絶縁層(高分子材料)が有する反応性官能基と反応しうる官能基を有するシランカップリング剤であるのが好ましく、その具体例としては、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、3−(アミノエチルアミノ)プロピルトリメトキシシラン、3−(アミノエチルアミノ)プロピルトリエトキシシラン、3−(アミノエチルアミノエチルアミノ)プロピルトリメトキシシラン、3−(アミノエチルアミノエチルアミノ)プロピルトリエトキシシラン、3−アミノプロピルシルセスキオキサン、ビス−(3−トリメトキシシリルプロピル)アミン、N−ベンジル−N−アミノエチル−3−アミノプロピルトリメトキシシランヒドロクロリド、N−フェニル−3−アミノプロピルトリメトキシシラン、N−(2−アミノエチル)−3−アミノプロピルトリメトキシシラン、3−(トリエトキシシリルプロピル)−ジエチレントリアミン、ポリ(エチレンイミン)トリメトキシシラン;γ―イソシアネートプロピルトリエトキシシラン、3−アクリロイルオキシプロピルトリメトキシシラン、3−メタクリロキシプロピルトリメトキシシラン、ビニルトリクロロシラン、ビニルトリス(β−メトキシエトキシ)シラン、ビニルトリエトキシシラン、ビニルトリメトキシシランなどのビニルシラン;γ−メタクリロキシプロピルトリメトキシシラン、γ−メタクリロキシプロピルメチルジメトキシシランなどのアクリルシラン;β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルメチルジエトキシシランなどのエポキシシラン;等が挙げられる。
これらのうち、後述する絶縁層がエポキシ樹脂で形成されることが多いため、エポキシ基との反応性に優れるアミノシラン(アミノ基を有するシランカップリング剤)であるのが好ましい。
Here, the surface treatment compound is excellent in the adsorptivity with the surface of the anisotropic conductive film (particularly, the insulating base material), and the adhesion between the layers of the anisotropic conductive film becomes higher. A silane coupling agent having a functional group capable of reacting with a reactive functional group included in an insulating layer (polymer material) described later is preferable. Specific examples thereof include 3-aminopropyltrimethoxysilane, 3-amino Propyltriethoxysilane, 3- (aminoethylamino) propyltrimethoxysilane, 3- (aminoethylamino) propyltriethoxysilane, 3- (aminoethylaminoethylamino) propyltrimethoxysilane, 3- (aminoethylaminoethyl) Amino) propyltriethoxysilane, 3-aminopropylsilsesquioxane, bis- (3-trimethoxysilylop) Pyr) amine, N-benzyl-N-aminoethyl-3-aminopropyltrimethoxysilane hydrochloride, N-phenyl-3-aminopropyltrimethoxysilane, N- (2-aminoethyl) -3-aminopropyltrimethoxy Silane, 3- (triethoxysilylpropyl) -diethylenetriamine, poly (ethyleneimine) trimethoxysilane; γ-isocyanatopropyltriethoxysilane, 3-acryloyloxypropyltrimethoxysilane, 3-methacryloxypropyltrimethoxysilane, vinyltri Vinylsilanes such as chlorosilane, vinyltris (β-methoxyethoxy) silane, vinyltriethoxysilane, vinyltrimethoxysilane; γ-methacryloxypropyltrimethoxysilane, γ-methacryloxypropylmeth Acrylic silanes such as tildimethoxysilane; epoxy silanes such as β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane; Can be mentioned.
Among these, since an insulating layer to be described later is often formed of an epoxy resin, it is preferably an aminosilane (a silane coupling agent having an amino group) that is excellent in reactivity with an epoxy group.

また、上記表面処理化合物を用いた異方導電膜の表面処理方法は特に限定されず、例えば、上記シランカップリング剤を有機溶媒(例えば、イソプロピルアルコール、メチルエチルケトン等)に溶解させた溶液中に異方導電膜を浸漬する方法や、この溶液を異方導電膜にスプレー塗布する方法等が挙げられる。   Further, the surface treatment method of the anisotropic conductive film using the surface treatment compound is not particularly limited. For example, the anisotropic treatment is performed in a solution in which the silane coupling agent is dissolved in an organic solvent (for example, isopropyl alcohol, methyl ethyl ketone, etc.). The method of immersing an anisotropic conductive film, the method of spray-coating this solution on an anisotropic conductive film, etc. are mentioned.

〔絶縁層〕
一方、本発明の多層配線基板が有する絶縁層は、反応性官能基を有する高分子材料を用いて形成されている。
ここで、反応性官能基としては、具体的には、例えば、アクリレート基、メタクリレート基、ビニル基、アリル基、エポキシ基、アミノ基、ヒドロキシ基、カルボキシ基、イソシアネート基、酸無水物基等が挙げられ、これらを1種単独で有していてもよく、2種以上を有していてもよい。
[Insulating layer]
On the other hand, the insulating layer included in the multilayer wiring board of the present invention is formed using a polymer material having a reactive functional group.
Here, specific examples of the reactive functional group include an acrylate group, a methacrylate group, a vinyl group, an allyl group, an epoxy group, an amino group, a hydroxy group, a carboxy group, an isocyanate group, and an acid anhydride group. These may be included alone or in combination of two or more.

本発明においては、上記高分子材料は、反応性官能基を有するものであれば特に限定されず、熱硬化性樹脂、熱可塑性樹脂、エラストマー樹脂およびゴムのいずれであってもよい。
上記高分子材料としては、具体的には、例えば、エポキシ樹脂;ポリイミド樹脂;シリコーン樹脂;耐熱性の高いポリジメチルシロキサンなどを骨格としたシロキサン結合を含む樹脂;シリコーンゴム;フッ素ゴム;等が挙げられる。
また、上記高分子材料としては、低誘電率膜のベアチップ側と熱応力で整合性を有する樹脂材料であるのが好ましく、例えば、多孔性樹脂や中空シリカ粒子を添加した樹脂等が好適に挙げられる。
更に、上記高分子材料としては、後述する使用態様に示す配線の形成と絶縁処理が同時にできる理由から、感光性を有する樹脂材料であるのが好ましく、高分子材料とともに感光性成分を添加して絶縁層を形成してもよい。
In the present invention, the polymer material is not particularly limited as long as it has a reactive functional group, and may be any of a thermosetting resin, a thermoplastic resin, an elastomer resin, and rubber.
Specific examples of the polymer material include, for example, epoxy resins; polyimide resins; silicone resins; resins containing a siloxane bond having a skeleton of polydimethylsiloxane having high heat resistance; silicone rubbers; fluororubbers; It is done.
The polymer material is preferably a resin material that is compatible with the bare chip side of the low dielectric constant film by thermal stress, and examples thereof include porous resins and resins to which hollow silica particles are added. It is done.
Further, the polymer material is preferably a resin material having photosensitivity because the formation of wiring and insulation treatment shown in the usage mode described later can be performed simultaneously, and a photosensitive component is added together with the polymer material. An insulating layer may be formed.

また、本発明においては、上記高分子材料としては、例えば、エポキシ基を含む成分とともにアルカリ可溶性成分としてフェノール性水酸基含有構成単位を配合した樹脂;不飽和カルボン酸、不飽和カルボン酸無水物、オキシラニル基を有する重合性不飽和化合物、オキセタニル基を有する重合性不飽和化合物などの共重合体;1,2−キノンジアジド化合物を含む樹脂組成物;ポリイミド樹脂に感光性組成物としてアルカリ可溶性成分としてフェノール性水酸基含有構成単位を配合した樹脂;等を用いることができる。   In the present invention, the polymer material includes, for example, a resin containing an epoxy group-containing component and a phenolic hydroxyl group-containing constituent unit as an alkali-soluble component; unsaturated carboxylic acid, unsaturated carboxylic acid anhydride, oxiranyl Copolymer having unsaturated group, polymerizable unsaturated compound having oxetanyl group, etc .; resin composition containing 1,2-quinonediazide compound; phenolic resin as alkali-soluble component as photosensitive composition A resin containing a hydroxyl group-containing structural unit can be used.

上記ポリイミド樹脂としては、東レ・デュポン社製のポリイミドフイルム(商品名:カプトン)等の市販品を用いることができ、これらをレーザーなどで加工し、貫通孔を空けたフィルムも好適に使用できる。
また、シリコーンゴムとして、例えば、扶桑ゴム産業社製の極薄シリコーンゴムシート(厚み30μm〜10μm単位)、信越化学工業社製のゲル状シリコーンゴム(型番:X−32−2129)等の市販品を用いることができ、これらをレーザーなどで加工し、貫通孔を空けたフィルムも好適に使用できる。
また、フッ素ゴムとして、例えば、クレハエラストマー社製のフッ素ゴムシート(FB780N)等の市販品を用いることができる。
また、上記感光性を有する樹脂材料として、例えば、旭硝子社製のAL−Polymer、日立化成・デュポンマイクロシステムズ社製のHDシリーズ、PLシリーズ、JSR社製のWPRシリーズ等の市販品を用いることができる。
As the polyimide resin, commercially available products such as polyimide film (trade name: Kapton) manufactured by Toray DuPont can be used, and a film obtained by processing these with a laser or the like so as to have a through hole can also be suitably used.
Examples of the silicone rubber include commercially available products such as ultra-thin silicone rubber sheet (thickness 30 μm to 10 μm unit) manufactured by Fuso Rubber Industrial Co., Ltd. and gel-like silicone rubber (model number: X-32-2129) manufactured by Shin-Etsu Chemical Co., Ltd. The film which processed these with the laser etc. and opened the through-hole can also be used conveniently.
Moreover, as a fluororubber, commercial items, such as a fluororubber sheet (FB780N) by a Kureha elastomer company, can be used, for example.
As the resin material having photosensitivity, commercially available products such as AL-Polymer manufactured by Asahi Glass Co., Ltd., HD series manufactured by Hitachi Chemical and DuPont Microsystems, PL series, and WPR series manufactured by JSR may be used. it can.

本発明においては、上記絶縁層の厚みは、0.1〜100μmであるのが好ましく、0.5〜50μmであるのがより好ましく、1〜5μmであるのが更に好ましい。絶縁層の厚みがこの範囲であると、絶縁を維持しつつ、上記異方導電膜の層間の密着性がより高くなり、レーザー、レジストなどによる配線加工時の処理時間を短縮することができる。   In this invention, it is preferable that the thickness of the said insulating layer is 0.1-100 micrometers, It is more preferable that it is 0.5-50 micrometers, It is still more preferable that it is 1-5 micrometers. When the thickness of the insulating layer is in this range, the adhesion between the layers of the anisotropic conductive film becomes higher while maintaining insulation, and the processing time during wiring processing using a laser, resist, or the like can be shortened.

また、本発明においては、上記絶縁層の形成方法は特に限定されず、例えば、ラミネータ装置を用いて上記異方導電膜の上に積層させる方法、スピンコータ装置を用いて上記異方導電膜の上に塗布する方法等が挙げられる。   In the present invention, the method for forming the insulating layer is not particularly limited. For example, a method of laminating on the anisotropic conductive film using a laminator device, or a method for forming the insulating layer on the anisotropic conductive film using a spin coater device. And the like.

このような絶縁層を介して上述した異方導電膜を積層させることにより、異方導電膜の層間の密着性が高くなり、得られる半導体パッケージの信頼性を高くすることができる。
これは、上記絶縁層が有する反応性官能基(例えば、エポキシ基)と、上記異方導電膜を表面処理した表面処理化合物が有する官能基(例えば、アミン基)とが上記絶縁層の形成時や加熱時に反応して共有結合等を形成するためであると考えられる。
By laminating the above-described anisotropic conductive film through such an insulating layer, the adhesion between the layers of the anisotropic conductive film is increased, and the reliability of the obtained semiconductor package can be increased.
This is because the reactive functional group (for example, epoxy group) of the insulating layer and the functional group (for example, amine group) of the surface treatment compound that has surface-treated the anisotropic conductive film are formed when the insulating layer is formed. It is thought that this is because it reacts during heating to form a covalent bond or the like.

次に、本発明の多層配線基板の使用態様について、図4を用いて説明する。
図4は、本発明の多層配線基板の使用態様の一例を説明する概念図である。なお、図4においては、説明のしやすさの観点から、半導体素子20と複数の電極異方電電膜1a〜1dとが、それぞれ間隔を開けた状態に記載されているが、実際の使用態様においては、これらは密着した状態で設けられるものである。
Next, how the multilayer wiring board of the present invention is used will be described with reference to FIG.
FIG. 4 is a conceptual diagram illustrating an example of usage of the multilayer wiring board of the present invention. In FIG. 4, from the viewpoint of ease of explanation, the semiconductor element 20 and the plurality of electrode anisotropic conductive films 1 a to 1 d are illustrated in a state where they are spaced apart from each other. In this case, these are provided in close contact with each other.

図4に示すように、まず、半導体素子20の4つの電極21a〜dのうち、電極21aと接する(直下にくる)導通路3aに接続する金属配線パターン22aを設けて電極23aを引き出し、その直下に導通路3を利用して取出電極24aを形成する。なお、絶縁層11は、少なくとも、導通路3aおよび金属配線パターン22aが形成された部分に存する導通路3の下端を覆うように設けられる。
次いで、異方導電膜1aを介して電極21bと接続している導通路3bに接続する金属配線パターン22bを設けて電極23bを引き出し、その直下に導通路3を利用して取出電極24bを形成する。なお、絶縁層11は、少なくとも、導通路3bおよび金属配線パターン22bが形成された部分に存する導通路3の下端を覆うように設けられる。
次いで、異方導電膜1aおよび1bを介して電極21cと接続している導通路3cに接続する金属配線パターン22cを設けて電極23cを引き出し、その直下に導通路3を利用して取出電極24cを形成する。なお、絶縁層11は、少なくとも、導通路3cおよび金属配線パターン22cが形成された部分に存する導通路3の下端を覆うように設けられる。
次いで、異方導電膜1a〜1cを介して電極21dと接続している導通路3dに接続する金属配線パターン22dを設けて電極23dを引き出し、その直下に導通路3を利用して取出電極24dを形成する。
As shown in FIG. 4, first, among the four electrodes 21a to 21d of the semiconductor element 20, a metal wiring pattern 22a connected to the conductive path 3a in contact with the electrode 21a is provided, and the electrode 23a is drawn out. An extraction electrode 24a is formed directly below using the conduction path 3. The insulating layer 11 is provided so as to cover at least the lower end of the conduction path 3 existing in the portion where the conduction path 3a and the metal wiring pattern 22a are formed.
Next, a metal wiring pattern 22b connected to the conduction path 3b connected to the electrode 21b through the anisotropic conductive film 1a is provided to draw out the electrode 23b, and a lead-out electrode 24b is formed directly below it using the conduction path 3 To do. The insulating layer 11 is provided so as to cover at least the lower end of the conduction path 3 existing in the portion where the conduction path 3b and the metal wiring pattern 22b are formed.
Next, a metal wiring pattern 22c connected to the conduction path 3c connected to the electrode 21c through the anisotropic conductive films 1a and 1b is provided to draw out the electrode 23c, and the extraction path 24c using the conduction path 3 directly below it. Form. The insulating layer 11 is provided so as to cover at least the lower end of the conduction path 3 existing in the portion where the conduction path 3c and the metal wiring pattern 22c are formed.
Next, a metal wiring pattern 22d connected to the conductive path 3d connected to the electrode 21d via the anisotropic conductive films 1a to 1c is provided to draw out the electrode 23d, and the extraction electrode 24d using the conductive path 3 immediately below it. Form.

図4に示すように、絶縁層11を介して複数の異方導電膜1a〜1dを積層させた本発明の多層配線基板10は、半導体素子20の電極21a〜dの間隔を広げた取出電極24a〜dを形成することができるため、インターポーザ自体や従来公知のインターポーザと組み合わせて利用することができる。   As shown in FIG. 4, the multilayer wiring board 10 of the present invention in which a plurality of anisotropic conductive films 1 a to 1 d are laminated via an insulating layer 11 is a take-out electrode in which the distance between the electrodes 21 a to 21 d of the semiconductor element 20 is widened. Since 24a to d can be formed, the interposer itself or a conventionally known interposer can be used in combination.

(実施例1〜8、比較例1〜4)
(A)鏡面仕上げ処理(電解研磨処理)
高純度アルミニウム基板(住友軽金属社製、純度99.99質量%、厚さ0.4mm)を10cm四方の面積で陽極酸化処理できるようカットし、以下組成の電解研磨液を用い、電圧25V、液温度65℃、液流速3.0m/minの条件で電解研磨処理を施した。
陰極はカーボン電極とし、電源は、GP0110−30R(高砂製作所社製)を用いた。また、電解液の流速は渦式フローモニターFLM22−10PCW(AS ONE製)を用いて計測した。
(Examples 1-8, Comparative Examples 1-4)
(A) Mirror finish (electropolishing)
A high-purity aluminum substrate (manufactured by Sumitomo Light Metal Co., Ltd., purity 99.99 mass%, thickness 0.4 mm) is cut so that it can be anodized in an area of 10 cm square, using an electropolishing liquid having the following composition, voltage 25 V, liquid The electropolishing treatment was performed under conditions of a temperature of 65 ° C. and a liquid flow rate of 3.0 m / min.
The cathode was a carbon electrode, and GP0110-30R (manufactured by Takasago Seisakusho) was used as the power source. The flow rate of the electrolytic solution was measured using a vortex flow monitor FLM22-10PCW (manufactured by AS ONE).

(電解研磨液組成)
・85質量%リン酸(和光純薬社製試薬) 660mL
・純水 160mL
・硫酸 150mL
・エチレングリコール 30mL
(Electrolytic polishing liquid composition)
-660 mL of 85% by mass phosphoric acid (reagent manufactured by Wako Pure Chemical Industries, Ltd.)
・ Pure water 160mL
・ Sulfuric acid 150mL
・ Ethylene glycol 30mL

(B)陽極酸化処理
次いで、上記電解研磨処理後のアルミニウム基板に、0.50mol/L濃度のマロン酸の電解液で、電圧115V、液温度3℃の条件で、6時間の陽極酸化処理を施し、陽極酸化皮膜厚さ60μmの陽極酸化皮膜を得た。
得られた陽極酸化皮膜には、平均周期が300nmのマイクロポアが形成されていた。
なお、陽極酸化処理は、陰極はステンレス電極とし、電源は高砂製作所社製直流安定化電源を用いた。また、冷却装置にはNeoCool BD36(ヤマト科学社製)、かくはん加温装置にはペアスターラー PS−100(EYELA社製)を用いた。
(B) Anodizing treatment Next, the aluminum substrate after the electrolytic polishing treatment was subjected to an anodizing treatment for 6 hours with a 0.50 mol / L malonic acid electrolytic solution at a voltage of 115 V and a liquid temperature of 3 ° C. And an anodic oxide film having a thickness of 60 μm was obtained.
In the obtained anodic oxide film, micropores having an average period of 300 nm were formed.
In the anodizing treatment, the cathode was a stainless electrode, and the power source was a DC stabilized power source manufactured by Takasago Seisakusho. Moreover, NeoCool BD36 (made by Yamato Kagaku) was used for the cooling device, and Pear Stirrer PS-100 (made by EYELA) was used for the stirring and heating device.

(C)貫通化処理工
次いで、20%塩酸水溶液に0.1mol/Lの塩化銅をブレンドした処理液を用い、液温15℃で、目視によりアルミニウムが除去されるまで浸漬させることによりアルミニウム基板を溶解し、更に、5質量%リン酸に30℃、30分間浸漬させることにより陽極酸化皮膜の底部を除去し、ポア径を拡大したマイクロポアを有する陽極酸化皮膜からなる構造体(絶縁性基材)を作製した。
貫通化処理後の構造体の厚み(マイクロポアの深さ)は50μmであり、マイクロポアの平均周期は280nmであり、マイクロポアの平均開口径は60nmであり、マイクロポアの規則化度は70%であった。
(C) Penetration treatment process Next, an aluminum substrate was immersed by using a treatment solution in which 0.1 mol / L copper chloride was blended in a 20% hydrochloric acid aqueous solution at a liquid temperature of 15 ° C. until the aluminum was visually removed. In addition, the bottom of the anodized film is removed by immersing in 5% by mass phosphoric acid at 30 ° C. for 30 minutes to form a structure (insulating group) having an anodized film having micropores with an enlarged pore diameter. Material).
The thickness of the structure after the penetration treatment (depth of the micropores) is 50 μm, the average period of the micropores is 280 nm, the average opening diameter of the micropores is 60 nm, and the degree of ordering of the micropores is 70 %Met.

(D)加熱処理
次いで、上記で得られた構造体に、温度400℃で1時間の加熱処理を施した。
(D) Heat treatment Next, the structure obtained above was subjected to a heat treatment at a temperature of 400 ° C for 1 hour.

(E)金属充填処理
次いで、上記加熱処理後の構造体の一方の表面に金を0.1μm厚でスパッタリングして金電極を形成した。この金電極を陰極にし、周囲をマスキングして金電極を形成していない構造体の表面のみが露出するようにして、銅板(純度99.9%)を正極にして電解めっきを行なった。
600g/Lの硫酸銅飽和溶液を60℃に保った状態で電解液として使用し、直流電解を実施することにより、マイクロポアからなる細孔に銅が充填された構造体(異方導電膜)を製造した。
ここで、直流電解には、山本鍍金社製のめっき装置を用い、AMEL社製のポテンショスタット/ガルバノスタット(Model 7060)を使用した。標準電極はAg/AgClタイプを使用した。
電解は、Cu:0Vから負側に1mV/secの走査速度で走査し、電気量が4000C/dm2になるまで行った。
金属充填処理後の構造体の破断面を光学顕微鏡にて観察したところ、マイクロポアの内部に銅が金電極側からの高さが70μm(絶縁性基材の表面から20μm分オーバーフロー)となる量で充填されていた。
(E) Metal filling treatment Subsequently, gold was sputtered to a thickness of 0.1 μm on one surface of the structure after the heat treatment to form a gold electrode. The gold electrode was used as a cathode, and the surroundings were masked to expose only the surface of the structure on which the gold electrode was not formed, and electrolytic plating was performed using a copper plate (purity 99.9%) as a positive electrode.
A structure (anisotropic conductive film) in which micropores are filled with copper by using a 600 g / L copper sulfate saturated solution kept at 60 ° C. as an electrolyte and performing direct current electrolysis. Manufactured.
Here, for direct current electrolysis, a potentiostat / galvanostat (Model 7060) manufactured by AMEL was used by using a plating apparatus manufactured by Yamamoto Sekin Co., Ltd. The standard electrode was an Ag / AgCl type.
Electrolysis, Cu: scanning at a scan rate of 1 mV / sec on the negative side from 0V, the quantity of electricity was conducted until 4000C / dm 2.
When the fracture surface of the structure after metal filling treatment was observed with an optical microscope, the amount of copper inside the micropore from the gold electrode side was 70 μm (overflow of 20 μm from the surface of the insulating substrate). It was filled with.

(F)表面平滑化処理
次いで、金充填処理後の構造体の表面を5μm研磨し、その反対の面を25μm研磨する表面平滑化処理を施した。
具体的には、研磨剤の種類がシリコンカーバイトのシート(#1200)でラッピング研磨を行なった後、粒子径2μmのダイヤモンドスラリーでポリッシングを行い、さらに、粒子径0.25μmのダイヤモンドスラリーでポリッシングを行なって鏡面状態とした。
表面平滑化処理後の構造体の破断面を光学顕微鏡で観察したところ、導通路(銅)および絶縁性基材(陽極酸化皮膜)の厚さがいずれも40μmとなる表面が平滑な構造体であることが分かった。
(F) Surface smoothing treatment Next, the surface of the structure after the gold filling treatment was polished by 5 μm, and the opposite surface was polished by 25 μm.
Specifically, after lapping polishing with a sheet of silicon carbide (# 1200), polishing is performed with diamond slurry having a particle diameter of 2 μm, and further polishing is performed with diamond slurry having a particle diameter of 0.25 μm. To obtain a mirror state.
When the fracture surface of the structure after the surface smoothing treatment was observed with an optical microscope, it was a structure with a smooth surface where the thickness of the conductive path (copper) and the insulating base material (anodized film) were both 40 μm. I found out.

(G)バンプ形成処理
上記表面平滑化処理後の構造体を予め純粋で十分洗浄した後、ドライオーブン内で保存した。
また、ポリエチレングリコール(分子量1000、和光純薬社製)の30質量%水溶液を、水酸化カリウム(KOH)を用いてpH12.5に調整した溶液を調製した。
次いで、オーブンから取り出し、クリーンベンチ内で予め室温まで冷却させた構造体を、上記溶液(液温:35℃)に浸漬し、陽極酸化皮膜(絶縁性基材)を選択的に溶解することにより、導通路を下記第1表に示す突出高さに調整した。
なお、導通路の突出高さは、浸漬時間を5分、15分、30分と変えることにより調整し、構造体を破断した断面から走査電子顕微鏡で観察して求めた。また、下記第1表中、比較例1および4ではバンプ形成処理を行なかったため、突出高さ0μmとした。
(G) Bump formation treatment The structure after the surface smoothing treatment was previously pure and sufficiently washed, and then stored in a dry oven.
Further, a solution in which a 30% by mass aqueous solution of polyethylene glycol (molecular weight 1000, manufactured by Wako Pure Chemical Industries, Ltd.) was adjusted to pH 12.5 using potassium hydroxide (KOH) was prepared.
Next, the structure that has been removed from the oven and previously cooled to room temperature in a clean bench is immersed in the above solution (liquid temperature: 35 ° C.) to selectively dissolve the anodized film (insulating base material). The conduction path was adjusted to the protruding height shown in Table 1 below.
In addition, the protrusion height of the conduction path was adjusted by changing the immersion time to 5 minutes, 15 minutes, and 30 minutes, and was obtained by observing with a scanning electron microscope from the cross section of the structure. In Table 1 below, in Comparative Examples 1 and 4, the bump formation process was performed, so the protrusion height was set to 0 μm.

(F)表面処理
上記バンプ形成処理後の構造体(比較例1および4については「上記表面平滑化処理後の構造体」をいう。以下同様。)を予め純粋で十分洗浄した後、ドライオーブン内で保存した。
また、下記第1表に示す表面処理化合物を、イソプロピルアルコール90質量部および純水10質量部を含有する溶液中に、それぞれを0.2gずつ添加した処理液を調製した。
次いで、オーブンから取り出し、クリーンベンチ内で予め室温まで冷却させた構造体を、上記処理液中に10分間浸漬した。
その後、構造体を処理液から取り出し、純水をかけ流しながら5分間洗浄し、ドライオーブン内で乾燥させることにより、異方導電膜を作製した。
表面処理化合物の表面への修飾の程度は、エネルギー分散型分光分析装置(EDX)を用い、Si、NおよびAlを測定することで、被覆の程度、表面へのアミノ基の導入を確認した。また、赤外分光測定により直接アミノ基起因の吸収ピークも確認した。
なお、表面処理を施さなかった比較例2〜4については、下記第1表中、「−」と表記した。
(F) Surface treatment The structure after the bump formation process (Comparative Examples 1 and 4 refer to “the structure after the surface smoothing process”, the same shall apply hereinafter) is washed in advance and thoroughly, and then dried in a dry oven. Saved in.
In addition, a treatment liquid was prepared by adding 0.2 g of each of the surface treatment compounds shown in Table 1 below to a solution containing 90 parts by mass of isopropyl alcohol and 10 parts by mass of pure water.
Subsequently, the structure which was taken out from the oven and cooled in advance to room temperature in a clean bench was immersed in the treatment solution for 10 minutes.
Then, the anisotropic conductive film was produced by taking out the structure from the treatment liquid, washing for 5 minutes while pouring pure water, and drying in a dry oven.
The degree of modification of the surface treatment compound on the surface was confirmed by measuring Si, N and Al using an energy dispersive spectroscopic analyzer (EDX) to confirm the degree of coating and the introduction of amino groups on the surface. In addition, absorption peaks directly attributable to amino groups were also confirmed by infrared spectroscopy.
In addition, about Comparative Examples 2-4 which did not surface-treat, it described with "-" in the following Table 1.

(G)絶縁層の形成処理
以上で作製した異方導電膜を予め純粋で十分洗浄した後、130℃のドライオーブン内で30分間保存した。
次いで、ドライフィルムレジスト(DFR)用オートカットラミネータを使用し、保護膜を取り除いた絶縁層(厚さ:10μm)を異方導電膜に貼りつけた。なお、絶縁層としては、下記第1表に示すように、エポキシ樹脂(ABF GX−13、味の素ファインテクノ社製)、オキサゾール樹脂(CRA−9000、住友ベークライト社製)、フェノール樹脂(KL−225MB、JSR社製品)、ポリイミド樹脂(HD4000、日立化成社製)を用いた。
絶縁層を貼りつけた後、加圧式真空ラミネータ(ニチゴーモートン社製V130)により180℃、30分間の条件でラミネートを行ない、室温まで徐冷した後、絶縁層を支持していた支持フィルム(PET)を剥離した。
(G) Insulating layer formation treatment The anisotropic conductive film produced as described above was purely and sufficiently washed in advance, and then stored in a dry oven at 130 ° C. for 30 minutes.
Next, using an auto cut laminator for dry film resist (DFR), the insulating layer (thickness: 10 μm) from which the protective film was removed was attached to the anisotropic conductive film. In addition, as shown in the following Table 1, as the insulating layer, epoxy resin (ABF GX-13, manufactured by Ajinomoto Fine Techno Co., Ltd.), oxazole resin (CRA-9000, manufactured by Sumitomo Bakelite Co., Ltd.), phenol resin (KL-225MB) , JSR product) and polyimide resin (HD4000, manufactured by Hitachi Chemical Co., Ltd.).
After the insulating layer was attached, the laminate was laminated at 180 ° C. for 30 minutes using a pressure-type vacuum laminator (Nichigo Morton V130), slowly cooled to room temperature, and then the supporting film (PET) supporting the insulating layer ) Was peeled off.

<密着性>
異方導電膜と絶縁層との密着性は、JIS−K5600−5−6(2006年版 JISハンドブック30 塗料)「塗料一般試験方法−第5部:塗膜の機械的性質−第6節:付着性(クロスカット法)」に従い評価した。
具体的には、異方導電膜に貼りつけた絶縁層に予め5mm角の碁盤目状にカッターで切り込みをいれ、その上からテープを貼りつけ剥離した際に剥がれた状態を目視で観察し、上記規格の分類に従って1−5段階で評価した。
ここで、1がテープの剥がれがまったく観察されず、5の場合が全面的に剥離してしまうケースに該当する。その結果を下記第1表に示す。
<Adhesion>
The adhesion between the anisotropic conductive film and the insulating layer is determined according to JIS-K5600-5-6 (2006 edition JIS Handbook 30 Paint) “Paint General Test Method-Part 5: Mechanical Properties of Coating Film—Section 6: Adhesion Property (cross-cut method) ".
Specifically, the insulating layer pasted on the anisotropic conductive film was cut in advance in a 5 mm square grid shape with a cutter, and the state peeled off when the tape was stuck and peeled from above was visually observed, Evaluation was made on a scale of 1-5 according to the classification of the above standards.
Here, 1 corresponds to a case in which peeling of the tape is not observed at all and 5 is peeled off entirely. The results are shown in Table 1 below.

第1表に示すように、導通路が突出していない比較例1および4は、異方導電膜の表面処理の有無を問わず、絶縁層との密着性が低くなることが分かった。また、導通路を突出させた場合であっても、異方導電膜に表面処理を施していない比較例2および3は、絶縁層との密着性が低くなることが分かった。
これに対し、導通路を突出させ、かつ、表面処理を施した異方導電膜を用いた実施例1〜8は、絶縁層との密着性が高くなることが分かった。なお、実施例3、5および6では、カッターによる切れ込みが交差する部分に小さな剥離が確認されたが、剥離した部分は全体を5%以下であったため、実用上、問題ない密着性を有していることが分かった。
As shown in Table 1, it was found that Comparative Examples 1 and 4 in which the conduction path did not protrude had low adhesion to the insulating layer regardless of the surface treatment of the anisotropic conductive film. Moreover, even if it was a case where a conduction path was protruded, it turned out that the adhesiveness with an insulating layer becomes low in the comparative examples 2 and 3 which have not surface-treated the anisotropic conductive film.
On the other hand, it turned out that the adhesiveness with an insulating layer becomes high in Examples 1-8 using the anisotropic conductive film which made the conduction path protrude and surface-treated. In Examples 3, 5 and 6, small peeling was confirmed at the part where the cuts by the cutter intersect, but the peeled part was 5% or less of the whole, so that it has practically no problem adhesion. I found out.

(H)積層処理
上記のように作製した異方導電膜を用い、以下の手順に従い多層配線基板を作製した。
図5に、多層配線基板の作製手順を説明する概念図を示す。
ここで、図5(A)は、1枚目(1層目)の異方導電膜の表面を表し、図5(B)〜(F)は、異方導電膜の1枚目〜5枚目の裏面を表す。また、図5(B)〜(F)においては、実線で表された配線パターン(22a等)や取出電極(24a等)以外の部分は、図示しない絶縁層で覆われているものである。
(H) Lamination process Using the anisotropic conductive film produced as described above, a multilayer wiring board was produced according to the following procedure.
FIG. 5 is a conceptual diagram for explaining a manufacturing procedure of a multilayer wiring board.
Here, FIG. 5A shows the surface of the first (first layer) anisotropic conductive film, and FIGS. 5B to 5F show the first to fifth anisotropic conductive films. Represents the back of the eye. In FIGS. 5B to 5F, portions other than the wiring pattern (22a and the like) and the extraction electrode (24a and the like) represented by a solid line are covered with an insulating layer (not shown).

具体的には、まず、1辺が10mmの正方形に加工した異方導電膜を5枚用意し、それぞれの3辺にダイシングにより位置合わせに必要なアライメントマーク30となる切り込みを形成した。
次いで、異方導電膜(1枚目/1層目)の裏面に、ポリイミド樹脂を配合した感光性の絶縁層形成材料(PW−3000シリーズ、東レ社製)をスピンコートし、感光性の絶縁層(厚み:1μm)(2層目)を設けた。
次いで、絶縁層(2層目)に、予め用意したマスクを用いて所定の配線パターンを形成させた後、金の無電解メッキ浴(プレシャスハブACG2000、田中貴金属社製)中に浸漬させることにより、配線パターンが露出した異方導電膜(1枚目の裏面)に金の配線パターン22aを設けて、そこから取出電極24aを設けた(図5(B)参照)。
次いで、異方導電膜(2枚目/3層目)を重ね、過熱しながら加圧することで圧着させた後、3層構造となった構造体の3層目に、絶縁層(2層目)と同様のプロセスを施し、絶縁層(4層目)を設けた。
その後、上述した作業を繰り返して、配線パターン(22b〜22d)および取出電極(24b〜24d)を形成し、10層構造(異方導電膜5枚と絶縁層5層)の構造体を作製した。
積層後、再度全体を加圧し、180℃の条件で絶縁膜層を加熱硬化させ、同時に各取出電極と異方導電膜の表面(上面)の突出した導通路(銅)との拡散接合を進め、多層配線基板を完成させた。
Specifically, first, five anisotropic conductive films processed into a square having a side of 10 mm were prepared, and cuts to be alignment marks 30 necessary for alignment were formed by dicing on each of the three sides.
Next, the back surface of the anisotropic conductive film (first sheet / first layer) is spin-coated with a photosensitive insulating layer forming material (PW-3000 series, manufactured by Toray Industries, Inc.) blended with a polyimide resin, and photosensitive insulating. A layer (thickness: 1 μm) (second layer) was provided.
Next, a predetermined wiring pattern is formed on the insulating layer (second layer) using a mask prepared in advance, and then immersed in a gold electroless plating bath (Precious Hub ACG2000, manufactured by Tanaka Kikinzoku Co., Ltd.). A gold wiring pattern 22a was provided on the anisotropic conductive film (first back surface) from which the wiring pattern was exposed, and an extraction electrode 24a was provided therefrom (see FIG. 5B).
Next, after the anisotropic conductive film (second / third layer) is stacked and pressed while being heated, the insulating layer (second layer) is formed on the third layer of the three-layer structure. ), And an insulating layer (fourth layer) was provided.
Thereafter, the above-described operations were repeated to form wiring patterns (22b to 22d) and extraction electrodes (24b to 24d), and a 10-layer structure (5 anisotropic conductive films and 5 insulating layers) was produced. .
After stacking, pressurize the whole again and heat cure the insulating film layer at 180 ° C. At the same time, proceed with diffusion bonding between each extraction electrode and the conductive path (copper) protruding from the surface (upper surface) of the anisotropic conductive film. A multilayer wiring board was completed.

得られた多層配線基板の最上面(1枚目の異方導電膜の表面)の中心部に、テスト用のICチップ(電極パッドサイズ:1μm四方、スペース:1μm)を実装した。なお、図5(A)中、符号25はICチップの各電極パッドを表す。
その結果、最上面において電極間距離が1μmであった電極パッド(サイズ:1μm四方)を、最下面において電極間距離を100μm(電極サイズ:100μm四方)で再配置することができた。
このように電極を再配置したデバイスの通電抵抗を調べたところ、配線抵抗は純銅抵抗の10倍以内に収まっていた。また、10GHzの高周波信号を負荷し、隣接するパッド間のクロストークがないことが確認でき、その際の信号劣化も確認されなかった。
A test IC chip (electrode pad size: 1 μm square, space: 1 μm) was mounted on the center of the uppermost surface (surface of the first anisotropic conductive film) of the obtained multilayer wiring board. In FIG. 5A, reference numeral 25 represents each electrode pad of the IC chip.
As a result, the electrode pad (size: 1 μm square) whose electrode distance was 1 μm on the uppermost surface could be rearranged with the electrode distance of 100 μm (electrode size: 100 μm square) on the lowermost surface.
When the energization resistance of the device in which the electrodes were rearranged in this way was examined, the wiring resistance was within 10 times the pure copper resistance. Further, it was confirmed that there was no crosstalk between adjacent pads when a high-frequency signal of 10 GHz was loaded, and no signal deterioration was observed at that time.

1,1a,1b,1c,1d 異方導電膜
2 絶縁性基材
3,3a,3b,3c,3d 導通路
4a,4b 突出部
5 基材内導通部
6 絶縁性基材の厚み
7 導通路間の幅
8 導通路の直径
9 導通路の中心間距離(ピッチ)
10 多層配線基板
11 絶縁層
20 半導体素子
21a、21b、21c、21d 電極
22a、22b、22c、22d 金属配線パターン
23a、23b、23c、23d 電極
24a、24b、24c、24d 取出電極
25 ICチップの電極パッド
30 アライメントマーク
101、102、104、105、107、108 マイクロポア
103、106、109 円
1, 1a, 1b, 1c, 1d Anisotropic conductive film 2 Insulating substrate 3, 3a, 3b, 3c, 3d Conducting path 4a, 4b Protruding part 5 In-substrate conducting part 6 Insulating substrate thickness 7 Conducting path Width between 8 conductive channel diameter 9 distance between conductive channel centers (pitch)
DESCRIPTION OF SYMBOLS 10 Multilayer wiring board 11 Insulating layer 20 Semiconductor element 21a, 21b, 21c, 21d Electrode 22a, 22b, 22c, 22d Metal wiring pattern 23a, 23b, 23c, 23d Electrode 24a, 24b, 24c, 24d Extraction electrode 25 IC chip electrode Pad 30 Alignment mark 101, 102, 104, 105, 107, 108 Micropore 103, 106, 109 yen

Claims (7)

2層以上の異方導電膜が積層された多層配線基板であって、
前記異方導電膜が、アルミニウム基板の陽極酸化皮膜からなる絶縁性基材中に、導電性部材からなる複数の導通路を互いに絶縁された状態で前記絶縁性基材を厚み方向に貫通し、かつ、前記各導通路の一端が前記絶縁性基材の一方の面において突出し、前記各導通路の他端が前記絶縁性基材の他方の面において突出した状態で設けられる部材であり、
前記異方導電膜同士の接触面の一部に絶縁層を有し、
前記絶縁層が、反応性官能基を有する高分子材料を用いて形成され、
前記異方導電膜の表面が、前記反応性官能基と反応しうる官能基を有する化合物で表面処理されている多層配線基板。
A multilayer wiring board in which two or more anisotropic conductive films are laminated,
The anisotropic conductive film penetrates the insulating base material in the thickness direction in a state where a plurality of conductive paths made of a conductive member are insulated from each other in the insulating base material made of an anodized film of an aluminum substrate, And, one end of each conduction path protrudes on one surface of the insulating base material, the other end of each conduction path is a member provided in a state protruding on the other surface of the insulating base material,
Having an insulating layer in part of the contact surface between the anisotropic conductive films;
The insulating layer is formed using a polymer material having a reactive functional group,
A multilayer wiring board in which a surface of the anisotropic conductive film is surface-treated with a compound having a functional group capable of reacting with the reactive functional group.
前記絶縁性基材の厚みが1〜1000μmであり、前記導通路の直径が1μm以下であり、前記導通路の前記絶縁性基材の両面から突出した部分の高さが10nm以上である請求項1に記載の多層配線基板。   The thickness of the insulating substrate is 1-1000 μm, the diameter of the conduction path is 1 μm or less, and the height of the portion of the conduction path protruding from both surfaces of the insulating substrate is 10 nm or more. 2. The multilayer wiring board according to 1. 前記絶縁層の厚みが、0.1〜100μmである請求項1または2に記載の多層配線基板。   The multilayer wiring board according to claim 1, wherein the insulating layer has a thickness of 0.1 to 100 μm. 前記高分子材料の反応性官能基が、アクリレート基、メタクリレート基、ビニル基、アリル基、エポキシ基、アミノ基、ヒドロキシ基、カルボキシ基、イソシアネート基および酸無水物基からなる群から選択される請求項1〜3のいずれかに記載の多層配線基板。   The reactive functional group of the polymer material is selected from the group consisting of an acrylate group, a methacrylate group, a vinyl group, an allyl group, an epoxy group, an amino group, a hydroxy group, a carboxy group, an isocyanate group, and an acid anhydride group. Item 4. The multilayer wiring board according to any one of Items 1 to 3. 前記高分子材料が、エポキシ樹脂である請求項1〜4のいずれかに記載の多層配線基板。   The multilayer wiring board according to claim 1, wherein the polymer material is an epoxy resin. 前記異方導電膜の表面を表面処理する前記化合物が、アミノ基を有するシランカップリング剤である請求項1〜5のいずれかに記載の多層配線基板。   The multilayer wiring board according to claim 1, wherein the compound that surface-treats the surface of the anisotropic conductive film is a silane coupling agent having an amino group. 半導体パッケージのインターポーザとして用いる請求項1〜6のいずれかに記載の多層配線基板。   The multilayer wiring board according to claim 1, which is used as an interposer for a semiconductor package.
JP2010077530A 2010-03-30 2010-03-30 Multilayer wiring board Expired - Fee Related JP5301490B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010077530A JP5301490B2 (en) 2010-03-30 2010-03-30 Multilayer wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010077530A JP5301490B2 (en) 2010-03-30 2010-03-30 Multilayer wiring board

Publications (2)

Publication Number Publication Date
JP2011210968A true JP2011210968A (en) 2011-10-20
JP5301490B2 JP5301490B2 (en) 2013-09-25

Family

ID=44941716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010077530A Expired - Fee Related JP5301490B2 (en) 2010-03-30 2010-03-30 Multilayer wiring board

Country Status (1)

Country Link
JP (1) JP5301490B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013027354A1 (en) * 2011-08-25 2013-02-28 パナソニック株式会社 Bonded body, power semiconductor device and method for manufacturing bonded body and power semiconductor device
JP2016171139A (en) * 2015-03-11 2016-09-23 株式会社東芝 Semiconductor device
KR101832717B1 (en) * 2014-01-08 2018-02-28 주하이 어드밴스드 칩 캐리어스 앤드 일렉트로닉 서브스트레이트 솔루션즈 테크놀러지즈 컴퍼니 리미티드 utilayer Composite Electronic Structure and Method of Terminating a Side of The Same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005166902A (en) * 2003-12-02 2005-06-23 Hitachi Chem Co Ltd Semiconductor chip mounting substrate, semiconductor package, and manufacturing method of them
JP2006108702A (en) * 2000-03-31 2006-04-20 Toshiba Corp Manufacturing method of composite member, photosensitive composition, insulator for manufacturing the composite member, the composite member, multilayer wiring substrate and electronic package

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006108702A (en) * 2000-03-31 2006-04-20 Toshiba Corp Manufacturing method of composite member, photosensitive composition, insulator for manufacturing the composite member, the composite member, multilayer wiring substrate and electronic package
JP2005166902A (en) * 2003-12-02 2005-06-23 Hitachi Chem Co Ltd Semiconductor chip mounting substrate, semiconductor package, and manufacturing method of them

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013027354A1 (en) * 2011-08-25 2013-02-28 パナソニック株式会社 Bonded body, power semiconductor device and method for manufacturing bonded body and power semiconductor device
US9013029B2 (en) 2011-08-25 2015-04-21 Panasonic Intellectual Property Management Co., Ltd. Joined body having an anti-corrosion film formed around a junction portion, and a semiconductor device having the same
KR101832717B1 (en) * 2014-01-08 2018-02-28 주하이 어드밴스드 칩 캐리어스 앤드 일렉트로닉 서브스트레이트 솔루션즈 테크놀러지즈 컴퍼니 리미티드 utilayer Composite Electronic Structure and Method of Terminating a Side of The Same
JP2016171139A (en) * 2015-03-11 2016-09-23 株式会社東芝 Semiconductor device

Also Published As

Publication number Publication date
JP5301490B2 (en) 2013-09-25

Similar Documents

Publication Publication Date Title
JP6166826B2 (en) Method for manufacturing anisotropic conductive member
CN101897083B (en) Anisotropic conductive joint package
JP5435493B2 (en) Fine structure and manufacturing method thereof
JP2014082447A (en) Multilayer substrate and semiconductor package
US20110043239A1 (en) Probe card
JP5164878B2 (en) Anisotropic conductive member and manufacturing method thereof
JPWO2015111542A1 (en) MICROSTRUCTURE, MULTILAYER WIRING BOARD, SEMICONDUCTOR PACKAGE, AND MICROSTRUCTURE MANUFACTURING METHOD
JP6818707B2 (en) Metal film, structure, composite material, method of manufacturing structure, and method of manufacturing composite material
WO2016006660A1 (en) Anisotropic conductive member and multilayer wiring substrate
WO2010004981A1 (en) Microstructure, and method for production thereof
TWI816769B (en) Wiring substrate and method of manufacturing wiring substrate
JP5301490B2 (en) Multilayer wiring board
JP6798003B2 (en) Manufacturing method of metal-filled microstructure
TW201901784A (en) Method for manufacturing treated member and laminated body
JP5363131B2 (en) Anisotropic conductive member and manufacturing method thereof
Lee et al. Heat dissipation performance of metal-core printed circuit board prepared by anodic oxidation and electroless deposition
WO2018159186A1 (en) Semiconductor device, laminate, semiconductor device manufacturing method, and laminate manufacturing method
JP5824435B2 (en) Anisotropic conductive member and multilayer wiring board
JP6055552B2 (en) Multilayer structure, interposer, and manufacturing method of interposer
JP7336584B2 (en) Method for manufacturing metal-filled microstructure
JPWO2019065095A1 (en) Manufacturing method of metal-filled microstructure and insulating base material
TW200426958A (en) Semiconductor module and method for making same
McPherson Flexible, Ultra-Thin, Embedded Die Packaging

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120629

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130611

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130619

R150 Certificate of patent or registration of utility model

Ref document number: 5301490

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees