JP2011210870A - Double phase thermoelectric conversion material - Google Patents

Double phase thermoelectric conversion material Download PDF

Info

Publication number
JP2011210870A
JP2011210870A JP2010075825A JP2010075825A JP2011210870A JP 2011210870 A JP2011210870 A JP 2011210870A JP 2010075825 A JP2010075825 A JP 2010075825A JP 2010075825 A JP2010075825 A JP 2010075825A JP 2011210870 A JP2011210870 A JP 2011210870A
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
phase
conversion material
multiphase
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010075825A
Other languages
Japanese (ja)
Other versions
JP5922323B2 (en
Inventor
Keien Ko
慧遠 耿
Toshikiyo Kaku
俊清 郭
Shunichi Ochi
俊一 越智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Co Ltd
Original Assignee
Furukawa Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Co Ltd filed Critical Furukawa Co Ltd
Priority to JP2010075825A priority Critical patent/JP5922323B2/en
Publication of JP2011210870A publication Critical patent/JP2011210870A/en
Application granted granted Critical
Publication of JP5922323B2 publication Critical patent/JP5922323B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a double phase thermoelectric conversion material which independently controls the Seebeck coefficient S, the electric resistivity ρ, and the thermal conductivity κ of materials which decide the capacity ZT of the thermoelectric conversion material, in contrast to the conventional thermoelectric conversion material of a single substance phase, and further can be used in a moderate high temperature area of a relatively high temperature, for example, 200°C or higher with the excellent thermoelectric capacity.SOLUTION: In the thermoelectric conversion material having a half Heusler crystal structure consisting of at least one type or more of elements selected from a group consisting of Ti, Zr, Hf, V, Nb, Ta, Mn, Fe, Co, Ni, Cu, Si, Ge, Sn, Sb, and Bi, the double phase thermoelectric conversion material consists of a plurality of types of phases, and is formed that a volume ratio of a first phase to a second phase of the different type from the first phase is in a range of 80:20 to 20:80.

Description

本発明は、熱エネルギーを電気に、または電気を熱エネルギーに直接変換できる複相熱電変換材料に関する。   The present invention relates to a multiphase thermoelectric conversion material that can directly convert thermal energy into electricity or electricity into thermal energy.

熱電変換材料とは、熱エネルギーを電気に直接変換できる、あるいは電気エネルギーを熱エネルギーに直接変換し、即ち電気を印加することによって加熱及び冷却できる材料である。p型熱電変換材料とn型熱電変換材料とを組み合わせたp/n熱電変換材料のペアを多数、電気的に直列に接続することで、一つの熱電変換モジュールが形成される。熱電変換モジュールを使用すれば、従来あまり利用されていなかった廃熱を電気に変換してエネルギーを有効に活用することができる。   A thermoelectric conversion material is a material that can directly convert thermal energy into electricity, or that can directly convert electrical energy into thermal energy, that is, can be heated and cooled by applying electricity. One thermoelectric conversion module is formed by electrically connecting a number of pairs of p / n thermoelectric conversion materials obtained by combining p-type thermoelectric conversion materials and n-type thermoelectric conversion materials in series. If a thermoelectric conversion module is used, waste heat, which has not been used so far, can be converted into electricity to effectively use energy.

熱電変換材料の性能は、性能指数Zによって評価される。性能指数Zは、ゼーベック係数S、熱伝導率κ及び電気抵抗率ρを用いた以下の式(1)によって表される。
Z=S/(κρ) 式(1)
The performance of the thermoelectric conversion material is evaluated by the figure of merit Z. The figure of merit Z is represented by the following formula (1) using the Seebeck coefficient S, the thermal conductivity κ, and the electrical resistivity ρ.
Z = S 2 / (κρ) Equation (1)

また、熱電変換材料の性能は、性能指数Zと温度Tとの積によって評価されることがある。この場合には、式(1)の両辺に温度T(ここで、Tは絶対温度)を乗じた以下の式(2)によって表される。式(2)に示されたZTは、無次元性能指数と呼ばれ、熱電変換材料の性能を示す指標になる。熱電変換材料は、このZTの値が大きいほど、その温度Tにおける熱電性能が高いことになる。
ZT=ST/(κρ) 式(2)
Further, the performance of the thermoelectric conversion material may be evaluated by the product of the figure of merit Z and the temperature T. In this case, it is expressed by the following equation (2) obtained by multiplying both sides of equation (1) by temperature T (where T is an absolute temperature). ZT shown in Formula (2) is called a dimensionless figure of merit and serves as an index indicating the performance of the thermoelectric conversion material. The thermoelectric conversion material has higher thermoelectric performance at the temperature T as the ZT value is larger.
ZT = S 2 T / (κρ) Equation (2)

式(1)および式(2)から、優れた熱電変換材料とは、性能指数ZTの値を大きくできる材料、すなわちゼーベック係数Sが大きく、熱伝導率κおよび電気抵抗率ρが小さい材料であるといえる。   From Equations (1) and (2), an excellent thermoelectric conversion material is a material that can increase the value of the figure of merit ZT, that is, a material that has a large Seebeck coefficient S, and a small thermal conductivity κ and electrical resistivity ρ. It can be said.

さらに、電気的な観点から熱電変換材料の性能を評価する場合、以下の式(3)で表される出力因子Pを用いる場合がある。
P=S/ρ 式(3)
Furthermore, when evaluating the performance of the thermoelectric conversion material from an electrical viewpoint, the output factor P represented by the following formula (3) may be used.
P = S 2 / ρ Formula (3)

また、熱電変換材料の最大変換効率ηmaxは、以下の式(4)で表される。
ηmax={(T−T)/T}{(M−1)/(M+(T/T))} 式(4)
Moreover, the maximum conversion efficiency η max of the thermoelectric conversion material is expressed by the following formula (4).
η max = {(T h −T c ) / T h } {(M−1) / (M + (T c / T h ))} Equation (4)

式(4)のMは、以下の式(5)によって表される。ここでTは熱電変換材料の高温端の温度、Tは低温端の温度である。
M={1+Z(T+T)/2}−0.5 式(5)
M in the equation (4) is represented by the following equation (5). Here, Th is the temperature at the high temperature end of the thermoelectric conversion material, and T c is the temperature at the low temperature end.
M = {1 + Z (T h + T c ) / 2} −0.5 formula (5)

上記の式(1)〜(5)から、熱電変換材料の熱電変換効率は、性能指数及び高温端と低温端との温度差が大きいほど、向上することが分かる。   From the above formulas (1) to (5), it can be seen that the thermoelectric conversion efficiency of the thermoelectric conversion material improves as the performance index and the temperature difference between the high temperature end and the low temperature end increase.

今まで研究されてきた代表的な熱電変換材料には、BiTe系、PbTe系、AgSbTe−GeTe系、SiGe系、CoSbを代表とするスクッテルダイト系、ZnSb系、FeSi系、BC系、NaCo系酸化物、CaCo系酸化物などがある。しかしながら、この中で実用化されているのはBiTe系のみである。BiTe系熱電変換材料を用いた熱電変換モジュールは、発電用途として使用できる温度範囲は、室温付近からBiTe系材料が耐えうる最大250℃の範囲に限られる。 Typical thermoelectric conversion materials that have been studied so far include Bi 2 Te 3 system, PbTe system, AgSbTe 2 -GeTe system, SiGe system, skutterudite system represented by CoSb 3 , Zn 4 Sb 3 system, There are FeSi 2 -based, B 4 C-based, NaCo 2 O 4 -based oxide, Ca 3 Co 4 O 9 -based oxide, and the like. However, only the Bi 2 Te 3 system is put into practical use among them. In the thermoelectric conversion module using the Bi 2 Te 3 series thermoelectric conversion material, the temperature range that can be used as a power generation application is limited to the range of about 250 ° C. that the Bi 2 Te 3 series material can withstand from near room temperature.

そこで種々の廃熱を有効利用するという点で、室温〜1000℃の広い温度範囲で使用可能な熱電変換材料が求められている。今まで研究開発されてきた熱電変換材料は、熱電変換材料の性能を向上させるため、不純物相をできるだけ少なくし、ほぼ同一な結晶構造を有する単一物質相からなるものであった。そのため、その熱電変換性能は単一物質相によって制限されていた。   Therefore, a thermoelectric conversion material that can be used in a wide temperature range from room temperature to 1000 ° C. has been demanded in that various waste heat is effectively used. Thermoelectric conversion materials that have been researched and developed so far consist of a single substance phase having almost the same crystal structure with as few impurity phases as possible in order to improve the performance of the thermoelectric conversion material. Therefore, the thermoelectric conversion performance is limited by a single material phase.

一方、熱電変換材料の性能を向上させるために、人工的に2種類の物質相の超格子構造を構築し、超格子構造によるゼーベック係数の増大及び熱伝導率の低減効果を利用して、より性能の良い熱電変換材料が開発されてきた(非特許文献1)。   On the other hand, in order to improve the performance of thermoelectric conversion materials, a superlattice structure of two kinds of material phases is artificially constructed, and the increase in Seebeck coefficient and the reduction in thermal conductivity by the superlattice structure are utilized, Thermoelectric conversion materials with good performance have been developed (Non-Patent Document 1).

R.Venkatasubramanianら,Nature、Vol.413(2001),P.597〜602R. Venkatasuburamanian et al., Nature, Vol. 413 (2001), p. 597-602

しかしながら、ゼーベック係数S、電気抵抗率ρおよび熱伝導率κはキャリア濃度の関数によって決まるため、従来の単一物質相の熱電変換材料では、この三つのパラメーターを独立に制御することができなかった。すなわち、上記式(2)から明らかなように、熱電変換材料の性能ZTは、材料のゼーベック係数S、電気抵抗率ρおよび熱伝導率κによって決まるため、より高い熱電性能を得る点でなお改善の余地があった。   However, since the Seebeck coefficient S, the electrical resistivity ρ, and the thermal conductivity κ are determined by a function of the carrier concentration, these three parameters cannot be controlled independently in the conventional single-material thermoelectric conversion material. . That is, as is clear from the above equation (2), the performance ZT of the thermoelectric conversion material is determined by the Seebeck coefficient S, the electrical resistivity ρ, and the thermal conductivity κ of the material, so that it is still improved in terms of obtaining higher thermoelectric performance. There was room for.

また非特許文献1に記載されたような人工的に構築された超格子構造は、熱力学的に化合物を形成したり、互いに固溶したりする性質があるため、高温になると互いに反応してしまう等、熱力学的に不安定であった。そのため、比較的高い温度で、例えば200℃以上の温度で使用すると、元素の拡散により超格子構造の崩壊が発生し、200℃以上の中高温領域での使用は困難であるといった問題があった。   In addition, an artificially constructed superlattice structure as described in Non-Patent Document 1 has a property of forming a compound thermodynamically or forming a solid solution with each other. It was thermodynamically unstable. Therefore, when used at a relatively high temperature, for example, at a temperature of 200 ° C. or higher, the superlattice structure collapses due to element diffusion, and there is a problem that it is difficult to use in a medium to high temperature region of 200 ° C. or higher. .

本発明者らは、超格子構造を人工的に構築することなく熱電性能を向上させるために、鋭意検討を重ねた結果、次に示す知見を得た。すなわち、従来の熱電変換材料では、より不純物相を低減して単一相とすることで熱電性能が高められるとされているのに対し、単一相ではなく複数の相を共存させることで良好な熱電性能が得られるという新たな知見を見出した。   As a result of intensive studies in order to improve the thermoelectric performance without artificially constructing a superlattice structure, the present inventors have obtained the following knowledge. That is, in the conventional thermoelectric conversion material, it is said that the thermoelectric performance can be improved by reducing the impurity phase to a single phase, but it is good by coexisting multiple phases instead of a single phase. We found new knowledge that a good thermoelectric performance can be obtained.

本発明によれば、複数種類の相からなり、第1の相と、前記第1の相とは異なる種類の第2の相との体積比率が、80:20〜20:80の範囲内である複合熱電変換材料が提供される。   According to the present invention, the volume ratio between the first phase and the second phase different from the first phase is in the range of 80:20 to 20:80. A composite thermoelectric conversion material is provided.

すなわち、本発明によれば、二種類以上の相を組み合わせることによって、電気伝導性能と熱伝導性能を個別に制御できるため、電気抵抗率ρおよび熱伝導率κを小さくして無次元性能指数ZTを大きくすることができる。また、熱力学的に不安定な超格子構造の代わりに熱力学的に安定な二種類以上の相からなる複合熱電変換材料を用いることができる。   That is, according to the present invention, the electrical conductivity performance and the thermal conductivity performance can be individually controlled by combining two or more kinds of phases. Therefore, the dimensionless figure of merit ZT can be reduced by reducing the electrical resistivity ρ and the thermal conductivity κ. Can be increased. Further, a composite thermoelectric conversion material composed of two or more kinds of thermodynamically stable phases can be used instead of the thermodynamically unstable superlattice structure.

本発明によれば、広い温度範囲で熱電性能が優れた熱電変換材料が提供される。   According to the present invention, a thermoelectric conversion material having excellent thermoelectric performance in a wide temperature range is provided.

実施例1の熱電変換材料の組織図である。1 is a structure diagram of a thermoelectric conversion material of Example 1. FIG. 比較例1の熱電変換材料の組織図である。4 is a structural diagram of a thermoelectric conversion material of Comparative Example 1. FIG. n型熱電変換材料のゼーベック係数の温度依存性を表した図である。It is a figure showing the temperature dependence of the Seebeck coefficient of n-type thermoelectric conversion material. n型熱電変換材料の電気抵抗率の温度依存性を表した図である。It is a figure showing the temperature dependence of the electrical resistivity of an n-type thermoelectric conversion material. n型熱電変換材料の出力因子の温度依存性を表した図である。It is a figure showing the temperature dependence of the output factor of an n-type thermoelectric conversion material. n型熱電変換材料の熱伝導率の温度依存性を表した図である。It is a figure showing the temperature dependence of the thermal conductivity of an n-type thermoelectric conversion material. n型熱電変換材料の無次元性能指数の温度依存性を表した図である。It is a figure showing the temperature dependence of the dimensionless figure of merit of n type thermoelectric conversion material.

本発明の複相熱電変換材料は、複数種類の相からなり、少なくとも2種類以上であればよい。第1の相と異なる種類の第2の相とは、第1の相と異なる組成の相である。   The multiphase thermoelectric conversion material of the present invention is composed of a plurality of types of phases, and may be at least two types. The second phase of a type different from the first phase is a phase having a composition different from that of the first phase.

従来の複相熱電変換材料において2種類の相を含む場合、量の少ない相と量の多い相との体積比率は20:80よりも、量の少ない相の体積比率が20未満であった。これに対し、本発明の複相熱電変換材料では、第1の相と第2の相との体積比率は、80:20〜20:80の範囲内が好ましく、70:30〜30:70、さらには、65:35〜35:65の範囲内がより好ましい。これにより、より高い熱電性能が得られる。   When two types of phases were included in the conventional multiphase thermoelectric conversion material, the volume ratio of the phase with a small amount and the phase with a large amount was less than 20 and the volume ratio of the phase with a small amount was less than 20. On the other hand, in the multiphase thermoelectric conversion material of the present invention, the volume ratio of the first phase and the second phase is preferably in the range of 80:20 to 20:80, 70:30 to 30:70, Furthermore, the range of 65:35 to 35:65 is more preferable. Thereby, higher thermoelectric performance is obtained.

本発明の複相熱電変換材料において、最も体積率が高い相は、複相熱電変換材料全体に対して、80%以下が好ましく、70%以下がより好ましい。これにより、さらに高い熱電性能が得られる。また、二番目に体積率が高い相は、複相熱電変換材料全体に対して、20%以上が好ましく、30%以上がより好ましい。これにより、さらに安定的な熱電性能が得られる。   In the multiphase thermoelectric conversion material of the present invention, the phase with the highest volume ratio is preferably 80% or less, and more preferably 70% or less with respect to the entire multiphase thermoelectric conversion material. Thereby, higher thermoelectric performance can be obtained. In addition, the phase having the second highest volume fraction is preferably 20% or more, and more preferably 30% or more with respect to the entire multiphase thermoelectric conversion material. Thereby, more stable thermoelectric performance can be obtained.

本発明の複相熱電変換材料は、複数種類の相は、Ti、Zr、Hf、V、Nb、Ta、Mn、Fe、Co、Ni、Cu、Si、Ge、Sn、Sb、及びBiからなる群から選択される少なくとも一種以上の元素からなる。この中でも、ハーフホイスラー構造が形成できる観点から、Ti、Zr、Hf、Fe、Co、Ni、Si、Ge、Sn、Sb、及びBiが特に好ましい。   In the multiphase thermoelectric conversion material of the present invention, the plurality of types of phases are composed of Ti, Zr, Hf, V, Nb, Ta, Mn, Fe, Co, Ni, Cu, Si, Ge, Sn, Sb, and Bi. It consists of at least one element selected from the group. Among these, Ti, Zr, Hf, Fe, Co, Ni, Si, Ge, Sn, Sb, and Bi are particularly preferable from the viewpoint that a half-Heusler structure can be formed.

本発明の複相熱電変換材料は、第1の相及び/又は第2の相が、下記式(6)で表される構造を有する。例えば、(Ti,Zr,Hf,Ta)NiSn系の複相熱電変換材料が好ましい。   In the multiphase thermoelectric conversion material of the present invention, the first phase and / or the second phase has a structure represented by the following formula (6). For example, a (Ti, Zr, Hf, Ta) NiSn based multiphase thermoelectric conversion material is preferable.

式(6)
式(6)中、0.5≦t≦1.5、0.5≦m≦1.5、0.5≦x≦1.5、Tは、Ti、Zr、Hf、V、Nb及びTaからなる群から選択される少なくとも一種の元素であり、Mは、Mn、Fe、Co、Ni及びCuからなる群から選択される少なくとも一種の元素であり、Xは、Si、Ge、Sn、Sb及びBiからなる群から選択される少なくとも一種である。
T t M m X x formula (6)
In formula (6), 0.5 ≦ t ≦ 1.5, 0.5 ≦ m ≦ 1.5, 0.5 ≦ x ≦ 1.5, T is Ti, Zr, Hf, V, Nb and Ta M is at least one element selected from the group consisting of Mn, Fe, Co, Ni and Cu, and X is Si, Ge, Sn, Sb. And at least one selected from the group consisting of Bi.

また、本発明の複相熱電変換材料は、第1の相及び/又は第2の相が、ハーフホイスラーの結晶構造を有する。これにより、大きい出力因子を得ることができる。ハーフホイスラー化合物としては、例えば、(Ti,Zr,Hf)NiSnが挙げられる。 In the multiphase thermoelectric conversion material of the present invention, the first phase and / or the second phase have a half-Heusler crystal structure. Thereby, a large output factor can be obtained. Examples of the half-Heusler compound include (Ti, Zr, Hf) 1 Ni 1 Sn 1 .

次に、本発明の複相熱電変換材料の製造方法について説明する。   Next, the manufacturing method of the double phase thermoelectric conversion material of this invention is demonstrated.

本発明の複相熱電変換材料は、共晶反応、共析反応、包晶反応、包析反応、偏晶反応、偏析反応、非平衡状態の物質相の分解、固溶体の分解及びこれらの複合プロセスによって形成できる。そのため、例えば、溶解法、急冷凝固法(ガスアトマイズ、水アトマイズ、単ロール法、双ロール法)、メカニカルアロイング法(ボールミル法)、ホットプレス法、加熱焼結法、放電プラズマ成型法、または熱処理法などを適宜組み合わせることによって製造することができる。   The multiphase thermoelectric conversion material of the present invention comprises eutectic reaction, eutectoid reaction, peritectic reaction, peritectic reaction, segregation reaction, segregation reaction, decomposition of non-equilibrium material phase, decomposition of solid solution, and composite processes thereof. Can be formed. Therefore, for example, dissolution method, rapid solidification method (gas atomization, water atomization, single roll method, twin roll method), mechanical alloying method (ball mill method), hot press method, heat sintering method, discharge plasma molding method, or heat treatment It can be manufactured by appropriately combining methods.

さらに具体的な製造方法について、以下説明する。   A more specific manufacturing method will be described below.

まず、上記溶解法と熱処理法とを組み合わせた例について説明する。
所定比率で純金属の原料をアーク溶解炉内に入れ、Arガス雰囲気中において、加熱溶解し、目的のインゴットを得る。このインゴットを真空もしくは不活性ガス雰囲気中において、1000〜1200℃の温度まで加熱し、100時間保持した後、室温まで冷却し、目的の複相熱電変換材料を得ることができる。
First, an example in which the melting method and the heat treatment method are combined will be described.
Pure metal raw material is put in an arc melting furnace at a predetermined ratio, and heated and melted in an Ar gas atmosphere to obtain a target ingot. The ingot is heated to 1000 to 1200 ° C. in a vacuum or an inert gas atmosphere, held for 100 hours, and then cooled to room temperature to obtain the desired double-phase thermoelectric conversion material.

次に、上記急冷凝固法と放電プラズマ成型法とを組み合わせた例について説明する。
所定比率で純金属の原料をガスアトマイズ装置の坩堝に入れ、不活性ガス雰囲気中において、加熱溶解した後、ガスアトマイズして原材料の粉末を得る。得られた粉末をカーボンダイスに入れ、真空もしくは不活性ガス雰囲気中において、40MPa〜60MPaの圧力の下でパルス電流をかけながら600℃〜1000℃の温度まで加熱する。10分〜60分間保持した後、室温まで冷却することで目的の広い温度範囲で高い熱電性能である熱電変換材料を得ることができる。
Next, an example in which the rapid solidification method and the discharge plasma molding method are combined will be described.
Pure metal raw material is put in a crucible of a gas atomizer at a predetermined ratio, heated and dissolved in an inert gas atmosphere, and then gas atomized to obtain a raw material powder. The obtained powder is put into a carbon die and heated to a temperature of 600 ° C. to 1000 ° C. while applying a pulse current under a pressure of 40 MPa to 60 MPa in a vacuum or an inert gas atmosphere. After holding for 10 minutes to 60 minutes, a thermoelectric conversion material having high thermoelectric performance in a wide temperature range of interest can be obtained by cooling to room temperature.

上述した何れの製法を用いた場合も、得られた複相熱電変換材料は二種類以上の物質相からなることが粉末X線回折によって確認された。   It was confirmed by powder X-ray diffraction that the obtained multiphase thermoelectric conversion material was composed of two or more kinds of substance phases in any of the above-described production methods.

本発明の複相熱電変換材料は、複相共存の組織が材料の熱力学的な性質に由来し、材料の組成を制御することによって異なる種類の相の体積比率を調整することができる。   In the multiphase thermoelectric conversion material of the present invention, the structure of the multiphase coexistence is derived from the thermodynamic properties of the material, and the volume ratio of different types of phases can be adjusted by controlling the composition of the material.

以上、実施の形態および実施例を用いて本発明の複相熱電変換材料を詳細に説明したが、本発明の複相熱電変換材料は上記内容に限定されるものではなく、本発明の範疇を逸脱しない範囲においてあらゆる変形や変更が可能である。   As described above, the multiphase thermoelectric conversion material of the present invention has been described in detail using the embodiments and examples. However, the multiphase thermoelectric conversion material of the present invention is not limited to the above contents, and the scope of the present invention is not limited thereto. All modifications and changes are possible without departing from the scope.

以下、実施例によって本発明の複相熱電変換材料を具体的に説明する。   Hereinafter, the multiphase thermoelectric conversion material of the present invention will be specifically described with reference to examples.

(実施例1〜4、比較例1)
表1に示すような所定比率になるように、純金属Ti、Zr、Hf、Ta、NiおよびSnをそれぞれ秤量して、アーク溶解炉内に入れ、Arガス雰囲気中において、加熱溶解し、目的のインゴットをそれぞれ得た。このインゴットを真空中において、1100℃の温度まで加熱し、100時間保持した後、室温まで冷却し、目的の複相熱電変換材料を得た。
(Examples 1-4, Comparative Example 1)
Pure metals Ti, Zr, Hf, Ta, Ni and Sn were weighed so as to have a predetermined ratio as shown in Table 1, respectively, put in an arc melting furnace, and heated and melted in an Ar gas atmosphere. Each ingot was obtained. This ingot was heated to a temperature of 1100 ° C. in a vacuum, held for 100 hours, and then cooled to room temperature to obtain a target multiphase thermoelectric conversion material.

得られた複相熱電変換材料について、粉末X線回折および走査電子顕微鏡観察を行い、複数相の体積比率を算出した。また、熱電性能評価装置(アルバック理工株式会社製 熱電能測定装置ZEM−2及びレーザフラッシュ法熱定数測定装置TC−7000H)を用いて、室温〜700℃の温度範囲で、熱電変換材料のゼーベック係数S、電気抵抗率ρおよび熱伝導率κを測定し、無次元性能指数ZTと出力因子P(P=S/ρ)を算出した。これらの結果を、下記(結果)及び図1〜7に示す。 About the obtained multiphase thermoelectric conversion material, powder X-ray diffraction and scanning electron microscope observation were performed, and the volume ratio of multiple phases was computed. Moreover, the Seebeck coefficient of the thermoelectric conversion material in the temperature range of room temperature to 700 ° C. using a thermoelectric performance evaluation apparatus (Thermoelectric measurement apparatus ZEME-2 manufactured by ULVAC-RIKO, Inc. and laser flash method thermal constant measurement apparatus TC-7000H). S, electrical resistivity ρ, and thermal conductivity κ were measured, and dimensionless figure of merit ZT and output factor P (P = S 2 / ρ) were calculated. These results are shown below (results) and FIGS.

(結果)
実施例1
(第1の相)(Ti0.33Zr0.33Hf0.33Ta0.01)NiSn
(第2の相)(Ti0.76Zr0.12Hf0.12)NiSn
体積比率(第1の相):(第2の相)=60:40
実施例2
(第1の相)(Ti0.33Zr0.33Hf0.33Ta0.01)NiSn
(第2の相)(Ti0.76Zr0.12Hf0.12)NiSn
体積比率(第1の相):(第2の相)=65:35
実施例3
(第1の相)(Ti0.33Zr0.33Hf0.33Ta0.01)NiSn
(第2の相)(Ti0.76Zr0.12Hf0.12)NiSn
体積比率(第1の相):(第2の相)=55:45
実施例4
(第1の相)(Ti0.33Zr0.33Hf0.33Ta0.01)NiSn
(第2の相)(Ti0.76Zr0.12Hf0.12)NiSn
体積比率(第1の相):(第2の相)=50:50
比較例1
(第1の相)(Ti0.33Zr0.33Hf0.33Ta0.01)NiSn
(第2の相)(Ti0.76Zr0.12Hf0.12)NiSn
体積比率(第1の相):(第2の相)=5:95
(result)
Example 1
(First Phase) (Ti 0.33 Zr 0.33 Hf 0.33 Ta 0.01 ) Ni 1 Sn 1
(Second Phase) (Ti 0.76 Zr 0.12 Hf 0.12 ) Ni 1 Sn 1
Volume ratio (first phase): (second phase) = 60: 40
Example 2
(First Phase) (Ti 0.33 Zr 0.33 Hf 0.33 Ta 0.01 ) Ni 1 Sn 1
(Second Phase) (Ti 0.76 Zr 0.12 Hf 0.12 ) Ni 1 Sn 1
Volume ratio (first phase): (second phase) = 65: 35
Example 3
(First Phase) (Ti 0.33 Zr 0.33 Hf 0.33 Ta 0.01 ) Ni 1 Sn 1
(Second Phase) (Ti 0.76 Zr 0.12 Hf 0.12 ) Ni 1 Sn 1
Volume ratio (first phase): (second phase) = 55: 45
Example 4
(First Phase) (Ti 0.33 Zr 0.33 Hf 0.33 Ta 0.01 ) Ni 1 Sn 1
(Second Phase) (Ti 0.76 Zr 0.12 Hf 0.12 ) Ni 1 Sn 1
Volume ratio (first phase): (second phase) = 50: 50
Comparative Example 1
(First Phase) (Ti 0.33 Zr 0.33 Hf 0.33 Ta 0.01 ) Ni 1 Sn 1
(Second Phase) (Ti 0.76 Zr 0.12 Hf 0.12 ) Ni 1 Sn 1
Volume ratio (first phase): (second phase) = 5: 95

図1は、実施例1のn型Ti0.4Zr0.3Hf0.3Ta0.01NiSnの組織断面写真を示す図である。図1より、実施例1の複相熱電変換材料は、白色の相(第1の相)と、灰色の相(第2の相)の二相の組織を有することが確認された。また、二相は共にハーフホイスラーの結晶構造を有するものであった。 1 is a diagram showing a structural cross-sectional photograph of n-type Ti 0.4 Zr 0.3 Hf 0.3 Ta 0.01 Ni 1 Sn 1 of Example 1. FIG. From FIG. 1, it was confirmed that the multiphase thermoelectric conversion material of Example 1 had a two-phase structure of a white phase (first phase) and a gray phase (second phase). Both phases had a half-Heusler crystal structure.

図2は、比較例1のn型Ti0.8Zr0.1Hf0.1Ta0.01NiSnの組織断面写真を示す図である。図2より、比較例1の熱電変換材料は、白色の相(第1の相)と、灰色の相(第2の相)の二相の組織を有することが確認された。しかし、白色の相は、わずかであった。 FIG. 2 is a diagram showing a structural cross-sectional photograph of n-type Ti 0.8 Zr 0.1 Hf 0.1 Ta 0.01 Ni 1 Sn 1 of Comparative Example 1. From FIG. 2, it was confirmed that the thermoelectric conversion material of Comparative Example 1 has a two-phase structure of a white phase (first phase) and a gray phase (second phase). However, the white phase was slight.

図3はn型熱電変換材料のゼーベック係数の温度依存性を表した図、図4はn型熱電変換材料の電気抵抗率の温度依存性を表した図、図5はn型熱電変換材料の出力因子の温度依存性を表した図、図6はn型熱電変換材料の熱伝導率の温度依存性を表した図、図7はn型熱電変換材料の無次元性能指数の温度依存性を表した図である。
実施例1〜実施例4と比較例1とを比較すると、図5に示すように比較例1の出力因子は実施例1〜実施例4の出力因子とほぼ同じであって大きな差がないが、図6の熱伝導率と温度との関係を見ると、比較例1の熱伝導率は実施例1〜実施例4よりかなり大きいことが分かる。これは、白色の相(第1の相)と灰色の相(第2の相)の体積比率が、5:95であり、白色の相(第1の相)による熱伝導率の低減が不充分だと考えられる。よって、比較例1の無次元性能指数ZTは小さく、500℃で0.6であった。図7より、実施例1〜実施例4のn型熱電変換材料の無次元性能指数ZTの最大値は、500℃で0.9〜1.1に達していることが分かった。図7の実施例1,3,4と実施例2を比較してみると、500℃より高い温度領域では、第1の相の比率が高くなるほど無次元性能指数ZTが高くなる傾向がみられたが、第1の相の比率が高くなりすぎると低くなる傾向があることがわかった。
3 is a diagram showing the temperature dependence of the Seebeck coefficient of the n-type thermoelectric conversion material, FIG. 4 is a diagram showing the temperature dependence of the electrical resistivity of the n-type thermoelectric conversion material, and FIG. Fig. 6 shows the temperature dependence of the output factor, Fig. 6 shows the temperature dependence of the thermal conductivity of the n-type thermoelectric conversion material, and Fig. 7 shows the temperature dependence of the dimensionless figure of merit of the n-type thermoelectric conversion material. FIG.
When comparing Example 1 to Example 4 and Comparative Example 1, the output factor of Comparative Example 1 is almost the same as that of Examples 1 to 4 as shown in FIG. Referring to the relationship between the thermal conductivity and the temperature in FIG. 6, it can be seen that the thermal conductivity of Comparative Example 1 is considerably larger than those of Examples 1 to 4. This is because the volume ratio of the white phase (first phase) to the gray phase (second phase) is 5:95, and there is no reduction in thermal conductivity due to the white phase (first phase). It is considered sufficient. Therefore, the dimensionless figure of merit ZT of Comparative Example 1 was small and was 0.6 at 500 ° C. From FIG. 7, it was found that the maximum value of the dimensionless figure of merit ZT of the n-type thermoelectric conversion materials of Examples 1 to 4 reached 0.9 to 1.1 at 500 ° C. Comparing Example 1, 3, 4 and Example 2 in FIG. 7, in the temperature region higher than 500 ° C., the dimensionless figure of merit ZT tends to increase as the ratio of the first phase increases. However, it has been found that if the ratio of the first phase is too high, it tends to be low.

Claims (4)

複数種類の相からなり、第1の相と、前記第1の相とは異なる種類の第2の相との体積比率が、80:20〜20:80の範囲内である複相熱電変換材料。   A multiphase thermoelectric conversion material comprising a plurality of types of phases, wherein the volume ratio of the first phase and the second phase of a type different from the first phase is in the range of 80:20 to 20:80 . 請求項1に記載の複相熱電変換材料において、
前記複数種類の相は、Ti、Zr、Hf、V、Nb、Ta、Mn、Fe、Co、Ni、Cu、Si、Ge、Sn、Sb、及びBiからなる群から選択される少なくとも一種以上の元素からなる複相熱電変換材料。
In the multiphase thermoelectric conversion material according to claim 1,
The plurality of types of phases are at least one selected from the group consisting of Ti, Zr, Hf, V, Nb, Ta, Mn, Fe, Co, Ni, Cu, Si, Ge, Sn, Sb, and Bi. A multiphase thermoelectric conversion material consisting of elements.
請求項1または2に記載の複相熱電変換材料において、
前記第1の相及び/又は前記第2の相が、下記式(i)で表される構造を有する複相熱電変換材料。
式(i)
式(i)中、0.5≦t≦1.5、0.5≦m≦1.5、0.5≦x≦1.5、Tは、Ti、Zr、Hf、V、Nb及びTaからなる群から選択される少なくとも一種の元素であり、Mは、Mn、Fe、Co、Ni及びCuからなる群から選択される少なくとも一種の元素であり、Xは、Si、Ge、Sn、Sb及びBiからなる群から選択される少なくとも一種である。
In the multiphase thermoelectric conversion material according to claim 1 or 2,
The multiphase thermoelectric conversion material in which the first phase and / or the second phase has a structure represented by the following formula (i).
T t M m X x formula (i)
In formula (i), 0.5 ≦ t ≦ 1.5, 0.5 ≦ m ≦ 1.5, 0.5 ≦ x ≦ 1.5, T is Ti, Zr, Hf, V, Nb and Ta M is at least one element selected from the group consisting of Mn, Fe, Co, Ni and Cu, and X is Si, Ge, Sn, Sb. And at least one selected from the group consisting of Bi.
請求項1乃至3いずれか一項に記載の複相熱電変換材料において、
前記第1の相及び/又は前記第2の相が、ハーフホイスラーの結晶構造を有する複相熱電変換材料。
In the multiphase thermoelectric conversion material according to any one of claims 1 to 3,
A multiphase thermoelectric conversion material in which the first phase and / or the second phase has a half-Heusler crystal structure.
JP2010075825A 2010-03-29 2010-03-29 Double-phase thermoelectric conversion material Expired - Fee Related JP5922323B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010075825A JP5922323B2 (en) 2010-03-29 2010-03-29 Double-phase thermoelectric conversion material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010075825A JP5922323B2 (en) 2010-03-29 2010-03-29 Double-phase thermoelectric conversion material

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2014031275A Division JP2014140044A (en) 2014-02-21 2014-02-21 Double phase thermoelectric conversion material

Publications (2)

Publication Number Publication Date
JP2011210870A true JP2011210870A (en) 2011-10-20
JP5922323B2 JP5922323B2 (en) 2016-05-24

Family

ID=44941634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010075825A Expired - Fee Related JP5922323B2 (en) 2010-03-29 2010-03-29 Double-phase thermoelectric conversion material

Country Status (1)

Country Link
JP (1) JP5922323B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013094598A1 (en) * 2011-12-20 2013-06-27 独立行政法人科学技術振興機構 Process for manufacturing thermoelectric material, thermoelectric material and thermoelectric transducer
JP2014086541A (en) * 2012-10-23 2014-05-12 Toyota Motor Corp Nano-composite thermoelectric conversion material and production method therefor
JP2014140044A (en) * 2014-02-21 2014-07-31 Furukawa Co Ltd Double phase thermoelectric conversion material
CN106653991A (en) * 2017-01-18 2017-05-10 中国科学院福建物质结构研究所 Application of ternary rare-earth copper tellurium crystal material as thermoelectric material
CN107534078A (en) * 2015-05-15 2018-01-02 日立金属株式会社 Thermo-electric converting material
WO2018117045A1 (en) * 2016-12-19 2018-06-28 国立大学法人東北大学 Thermoelectric material and thermoelectric module
KR102227069B1 (en) * 2019-11-28 2021-03-16 연세대학교 산학협력단 Co-DOPED Ti2FeNiSb2 DOUBLE HALF-HEUSLER ALLOY AND PREPARATION METHOD THEREOF
KR20210067008A (en) * 2019-11-28 2021-06-08 연세대학교 산학협력단 Bi-DOPED Ti2FeNiSb2 DOUBLE HALF-HEUSLER ALLOY AND PREPARATION METHOD THEREOF

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002033526A (en) * 2000-07-13 2002-01-31 Asahi Kasei Corp Thermoelectric material and manufacturing method thereof
JP2005286229A (en) * 2004-03-30 2005-10-13 Toshiba Corp Thermoelectric material and thermoelectric transducer
JP2006344833A (en) * 2005-06-09 2006-12-21 Kyoto Univ Thermoelectric converting material
JP2009235462A (en) * 2008-03-26 2009-10-15 Sumitomo Electric Ind Ltd Molten salt bath, method for producing molten salt bath, and tungsten deposit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002033526A (en) * 2000-07-13 2002-01-31 Asahi Kasei Corp Thermoelectric material and manufacturing method thereof
JP2005286229A (en) * 2004-03-30 2005-10-13 Toshiba Corp Thermoelectric material and thermoelectric transducer
JP2006344833A (en) * 2005-06-09 2006-12-21 Kyoto Univ Thermoelectric converting material
JP2009235462A (en) * 2008-03-26 2009-10-15 Sumitomo Electric Ind Ltd Molten salt bath, method for producing molten salt bath, and tungsten deposit

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013094598A1 (en) * 2011-12-20 2013-06-27 独立行政法人科学技術振興機構 Process for manufacturing thermoelectric material, thermoelectric material and thermoelectric transducer
US8728340B2 (en) 2011-12-20 2014-05-20 Japan Science And Technology Agency Method for manufacturing thermoelectric material
JP5545586B2 (en) * 2011-12-20 2014-07-09 独立行政法人科学技術振興機構 Thermoelectric material manufacturing method, thermoelectric material, and thermoelectric conversion element
JP2014086541A (en) * 2012-10-23 2014-05-12 Toyota Motor Corp Nano-composite thermoelectric conversion material and production method therefor
JP2014140044A (en) * 2014-02-21 2014-07-31 Furukawa Co Ltd Double phase thermoelectric conversion material
CN107534078A (en) * 2015-05-15 2018-01-02 日立金属株式会社 Thermo-electric converting material
CN107534078B (en) * 2015-05-15 2019-12-17 日立金属株式会社 Thermoelectric conversion material
WO2018117045A1 (en) * 2016-12-19 2018-06-28 国立大学法人東北大学 Thermoelectric material and thermoelectric module
JPWO2018117045A1 (en) * 2016-12-19 2019-11-14 国立大学法人東北大学 Thermoelectric materials and thermoelectric modules
JP7056934B2 (en) 2016-12-19 2022-04-19 国立大学法人東北大学 Thermoelectric materials and thermoelectric modules
CN106653991A (en) * 2017-01-18 2017-05-10 中国科学院福建物质结构研究所 Application of ternary rare-earth copper tellurium crystal material as thermoelectric material
CN106653991B (en) * 2017-01-18 2019-07-30 中国科学院福建物质结构研究所 Ternary RE copper tellurium crystalline material is used as the purposes of thermoelectric material
KR102227069B1 (en) * 2019-11-28 2021-03-16 연세대학교 산학협력단 Co-DOPED Ti2FeNiSb2 DOUBLE HALF-HEUSLER ALLOY AND PREPARATION METHOD THEREOF
KR20210067008A (en) * 2019-11-28 2021-06-08 연세대학교 산학협력단 Bi-DOPED Ti2FeNiSb2 DOUBLE HALF-HEUSLER ALLOY AND PREPARATION METHOD THEREOF
KR102287073B1 (en) 2019-11-28 2021-08-09 연세대학교 산학협력단 Bi-DOPED Ti2FeNiSb2 DOUBLE HALF-HEUSLER ALLOY AND PREPARATION METHOD THEREOF

Also Published As

Publication number Publication date
JP5922323B2 (en) 2016-05-24

Similar Documents

Publication Publication Date Title
JP5922323B2 (en) Double-phase thermoelectric conversion material
US10508324B2 (en) Thermoelectric conversion material and thermoelectric conversion module
JP2005116746A (en) Thermoelectric conversion material and thermoelectric convertor
JP5636419B2 (en) Self-organized thermoelectric material
JP5157269B2 (en) Thermoelectric material and manufacturing method thereof
JP2006203186A (en) Method of producing thermoelectric semiconductor alloy, thermoelectric conversion module, and thermoelectric power generation device
JP2014508395A5 (en)
JP4374578B2 (en) Thermoelectric material and manufacturing method thereof
JP4865531B2 (en) Yb-AE-Fe-Co-Sb (AE: Ca, Sr, Ba, Ag) based thermoelectric conversion material
JP2017168609A (en) Thermoelectric conversion element, thermoelectric conversion module, and thermoelectric conversion system
JP2006269731A (en) Thermoelectric conversion material, its manufacturing method and thermoelectric conversion module using the same
JP2004119648A (en) p-TYPE THERMOELECTRIC CONVERSION MATERIAL AND THERMOELECTRIC CONVERSION ELEMENT USING IT
JP2004119647A (en) Thermoelectric conversion material and thermoelectric conversion element using it
JP6617840B2 (en) P-type thermoelectric conversion material, thermoelectric conversion module, and method for producing p-type thermoelectric conversion material
JP5090939B2 (en) p-type thermoelectric conversion material
JP2008016610A (en) Zinc-antimony system thermoelectric conversion material and method for manufacturing the same
JP4360594B2 (en) Thermoelectric material and thermoelectric element
JP2016092174A (en) Thermoelectric conversion material and thermoelectric conversion module
US11616183B2 (en) Alloy, sintered article, thermoelectric module and method for the production of a sintered article
JP6632218B2 (en) Clathrate compound, thermoelectric conversion material and method for producing the same
JP2007173799A (en) Thermoelectric conversion material and thermoelectric conversion element
JP2014140044A (en) Double phase thermoelectric conversion material
JP5563024B2 (en) Thermoelectric conversion material and thermoelectric conversion module using the same
JP2014049737A (en) METALLIC MATERIAL HAVING n-TYPE THERMOELECTRIC CONVERSION PERFORMANCE
JP3923041B2 (en) Thermoelectric conversion material and thermoelectric conversion element using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130108

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140826

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160414

R150 Certificate of patent or registration of utility model

Ref document number: 5922323

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees