JP2011208802A - Sliding member - Google Patents

Sliding member Download PDF

Info

Publication number
JP2011208802A
JP2011208802A JP2011049263A JP2011049263A JP2011208802A JP 2011208802 A JP2011208802 A JP 2011208802A JP 2011049263 A JP2011049263 A JP 2011049263A JP 2011049263 A JP2011049263 A JP 2011049263A JP 2011208802 A JP2011208802 A JP 2011208802A
Authority
JP
Japan
Prior art keywords
fluororesin
sliding member
surface layer
radiator
thermal conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011049263A
Other languages
Japanese (ja)
Inventor
Kazuaki Ikeda
一秋 池田
Makoto Nakabayashi
誠 中林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Fine Polymer Inc
Original Assignee
Sumitomo Electric Fine Polymer Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Fine Polymer Inc filed Critical Sumitomo Electric Fine Polymer Inc
Priority to JP2011049263A priority Critical patent/JP2011208802A/en
Publication of JP2011208802A publication Critical patent/JP2011208802A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a sliding member having excellent mechanical strength such as a low coefficient of friction and impact resistance which are desirable for the sliding member, and also having more improved abrasion resistance.SOLUTION: This sliding member includes: a surface layer composed of a crosslinked fluororesin, preferably, polytetrafluoroethylene, a tetrafluoroethylene-hexafluoropropylene copolymer or a tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer; and a radiator made of material having higher thermal conductivity than that of the fluororesin, and being in close contact with the surface layer. The thickness of the surface layer is 0.1-100 μm.

Description

本発明は、その摺動部にフッ素樹脂を使用し、耐摩耗性に優れ無潤滑軸受等に好適に用いられる摺動部材に関する。   The present invention relates to a sliding member that uses a fluororesin for the sliding portion and has excellent wear resistance and is suitably used for a non-lubricated bearing or the like.

フッ素樹脂は化学的に極めて安定であるとともに低粘着性や低摩擦性(摩擦係数が低いとの性質)に優れており、その特性によりシールやパッキング等の産業用品、又調理器具等の民生用品の各種用途に広く使用されている。無潤滑軸受等の摺動部材には、低い摩擦係数が望まれ、又、耐熱性や化学的安定性が望まれる場合も多いので、フッ素樹脂からなる摺動部材も期待される。しかし、摺動部材には、優れた耐摩耗性が求められ、一方、フッ素樹脂は摩耗しやすいとの問題があるので、耐摩耗性を向上させない限り摺動部材としての使用は困難であった。   Fluororesin is chemically very stable and has excellent low adhesion and low friction (low friction coefficient). Due to its properties, industrial products such as seals and packing, and consumer products such as cooking utensils. Widely used in various applications. A sliding member such as a non-lubricated bearing is desired to have a low coefficient of friction, and heat resistance and chemical stability are often desired. Therefore, a sliding member made of a fluororesin is also expected. However, the sliding member is required to have excellent wear resistance, and on the other hand, since there is a problem that fluororesin is easily worn, it is difficult to use as a sliding member unless the wear resistance is improved. .

フッ素樹脂の耐摩耗性を向上させる方法として、フッ素樹脂に充填剤を加える方法が知られている。しかし、この方法では、充填剤により、フッ素樹脂固有の優れた性質、例えば低摩擦性が損なわれやすいとの問題がある。そこで、特許文献1では、フッ素樹脂に電離性放射線を照射することにより耐摩耗性を向上させる方法が提案されており、電離性放射線を照射したフッ素樹脂からなる摺動部材が開示されている。   As a method for improving the abrasion resistance of a fluororesin, a method of adding a filler to the fluororesin is known. However, this method has a problem that excellent properties inherent to the fluororesin, such as low friction, are easily impaired by the filler. Therefore, Patent Document 1 proposes a method for improving wear resistance by irradiating ionizing radiation to a fluororesin, and discloses a sliding member made of a fluororesin irradiated with ionizing radiation.

フッ素樹脂は、かつては放射線照射により機械特性が低下すると考えられていた。しかし、特定の条件の下で照射することによりかえって機械特性を向上できる。例えば、特許文献2では、ポリテトラフルオロエチレン(PTFE)について、酸素不存在下、結晶融点以上の温度、好ましくは340℃前後の温度で、電子線等の電離性放射線を1kGyから10MGy程度の線量で照射すれば、照射による破断伸びや破断強度の劣化が抑制されること、かえって低結晶性でゴム弾性が発現し、降伏点強度が向上することが開示されている。   In the past, fluororesins were thought to have reduced mechanical properties upon irradiation. However, the mechanical properties can be improved by irradiating under specific conditions. For example, in Patent Document 2, with respect to polytetrafluoroethylene (PTFE), in the absence of oxygen, a dose of about 1 kGy to 10 MGy of ionizing radiation such as an electron beam at a temperature above the crystal melting point, preferably around 340 ° C. , It is disclosed that the elongation at break and the deterioration of the breaking strength due to irradiation are suppressed, and that the rubber elasticity is developed with low crystallinity and the yield strength is improved.

特許第3566805号公報Japanese Patent No. 3666805 特許第3317452号公報Japanese Patent No. 3317452

特許文献1では、PTFE、FEP又はPFAを成形して得られる摺動部材であって、酸素不在のもと照射線量10kGy〜1500kGyの範囲内で、結晶融点以上に加熱した状態で電離性放射線を照射したものは、低い摩擦係数とともに優れた耐摩耗性を有すると述べられている。しかし、近年、摺動部材にはより優れた耐摩耗性が望まれている。そこで、特許文献1に記載の摺動部材ではこの要請を十分に満たすことができなくなってきており、より向上した耐摩耗性を有する摺動部材が望まれていた。   In patent document 1, it is a sliding member obtained by shape | molding PTFE, FEP, or PFA, Comprising: Ionizing radiation in the state heated within crystal | crystallization melting | fusing point within the range of irradiation dose 10kGy-1500kGy in the absence of oxygen The irradiated one is said to have excellent wear resistance with a low coefficient of friction. However, in recent years, more excellent wear resistance is desired for the sliding member. Therefore, the sliding member described in Patent Document 1 cannot sufficiently satisfy this requirement, and a sliding member having improved wear resistance has been desired.

本発明は、摺動部材として望まれる低い摩擦係数及び耐衝撃性等の優れた機械的強度を有するとともに、より向上した耐摩耗性を有する摺動部材を提供することを課題とする。   An object of the present invention is to provide a sliding member having excellent mechanical strength such as a low coefficient of friction and impact resistance desired as a sliding member, and having improved wear resistance.

本発明者は検討の結果、フッ素樹脂からなる摺動部材は、摺動時の発熱により部材表面の温度が上昇すると、より摩耗しやすくなること、部材表面の温度が上昇しにくい構造とすることにより摩耗を抑制できることを見出した。そして、摺動部の摺動面(被摺動物と接する面)とは反対側に放熱体を設けるとともに、前記摺動部の厚みを特定の範囲内とすることにより、摺動部材として望まれる耐衝撃性や低摩擦性とともに、部材表面の温度上昇を抑制して、従来のフッ素樹脂系摺動部材よりさらに向上した耐摩耗性が得られることを見出し、本発明を完成した。   As a result of the study, the present inventors have made a structure in which a sliding member made of a fluororesin has a structure in which, when the temperature of the member surface rises due to heat generated during sliding, it becomes more easily worn and the temperature of the member surface is less likely to rise. It was found that the wear can be suppressed. And while providing a heat sink on the opposite side to the sliding surface of the sliding part (the surface in contact with the object to be slid), and making the thickness of the sliding part within a specific range, it is desired as a sliding member The inventors have found that, together with impact resistance and low friction properties, the temperature rise on the surface of the member is suppressed, and wear resistance further improved as compared with conventional fluororesin-based sliding members can be obtained, and the present invention has been completed.

本発明は、架橋されたフッ素樹脂からなる表層及び前記表層と密着する放熱体を有し、前記放熱体はフッ素樹脂より高い熱伝導率を有する材質からなり、前記表層の厚みが0.1〜100μmであることを特徴とする摺動部材(請求項1)である。   The present invention has a surface layer composed of a cross-linked fluororesin and a radiator that is in close contact with the surface layer, the radiator is made of a material having a higher thermal conductivity than the fluororesin, and the thickness of the surface layer is 0.1 to It is a sliding member (Claim 1) characterized by being 100 micrometers.

このように本発明の摺動部材は、フッ素樹脂からなる表層及び該表層に密着する放熱体を有すること、並びにフッ素樹脂層の厚みが0.1μm以上、100μm以下であることを特徴とする。この特徴により、特許文献1のように摺動部材をフッ素樹脂成形品により構成する場合と比べて、摺動時に表面の摺動面に発生した熱を、表層から放熱体に効果的に伝導させて放熱させることができるので、部材表面の温度上昇を抑制し、その結果、耐摩耗性を向上することができる。   As described above, the sliding member of the present invention is characterized by having a surface layer made of a fluororesin and a radiator that is in close contact with the surface layer, and that the thickness of the fluororesin layer is 0.1 μm or more and 100 μm or less. Due to this feature, heat generated on the sliding surface of the surface during sliding can be effectively conducted from the surface layer to the radiator as compared with the case where the sliding member is made of a fluororesin molded product as in Patent Document 1. Therefore, the temperature rise of the member surface can be suppressed, and as a result, the wear resistance can be improved.

近年、摺動部材の耐摩耗性の確認のためには、圧力を加えながら円筒をサンプル上に置いて回転させ摩耗の程度を測定するスラスト摩耗試験(リングオンディスク式摩耗評価)が行われることも多い。特に、この試験方法において急激な摩耗が生じる圧力(P)と回転速度(V)の乗数(限界PV値)により耐摩耗性の評価が行われる場合が多くなっている。本発明の摺動部材は、この限界PV値が非常に高いものであり、優れた耐摩耗性を有するものである。   In recent years, in order to confirm the wear resistance of sliding members, a thrust wear test (ring-on-disk wear evaluation) has been carried out in which a cylinder is placed on a sample and rotated while measuring pressure to measure the degree of wear. There are also many. In particular, in this test method, wear resistance is often evaluated by a multiplier (limit PV value) of pressure (P) and rotational speed (V) at which rapid wear occurs. The sliding member of the present invention has a very high limit PV value, and has excellent wear resistance.

フッ素樹脂層の厚みが薄すぎる場合、特に0.1μm未満の場合は、摺動時にフッ素樹脂の層が破壊されやすいので好ましくない。一方、厚みが100μmを超える場合は、摺動時に部材表面に発生した熱が放熱体に伝導しにくくなり、部材表面の温度上昇を防ぐことが困難になり、耐摩耗性が不十分となりやすい。好ましくは、厚みは、3〜50μmの範囲である。   When the thickness of the fluororesin layer is too thin, particularly when it is less than 0.1 μm, it is not preferable because the fluororesin layer is easily broken during sliding. On the other hand, when the thickness exceeds 100 μm, heat generated on the surface of the member during sliding becomes difficult to conduct to the radiator, and it becomes difficult to prevent a temperature rise on the surface of the member, and wear resistance tends to be insufficient. Preferably, the thickness is in the range of 3-50 μm.

放熱体は、フッ素樹脂よりも熱伝導率のよい材料から構成されるものであり、又、フッ素樹脂からなる表層よりも体積の大きいものである。又、摺動時の発熱等による加熱に耐えるために、耐熱性に優れたものが用いられる。放熱体を構成する材料の熱伝導率が低い場合は、摺動時に部材表面に発生した熱が放熱しにくく、部材表面の温度上昇を防ぐことが困難になる。又、放熱体の体積が小さい場合は、放熱体の熱容量が小さくなるので、同様に発生した熱が放熱しにくく、部材表面の温度上昇を防ぐことが困難になる。   The radiator is made of a material having a higher thermal conductivity than that of the fluororesin, and has a volume larger than that of the surface layer made of the fluororesin. Moreover, in order to endure the heat by the heat_generation | fever etc. at the time of sliding, the thing excellent in heat resistance is used. When the thermal conductivity of the material constituting the radiator is low, the heat generated on the surface of the member during sliding is difficult to dissipate, and it is difficult to prevent the temperature of the member surface from rising. Further, when the volume of the heat radiating body is small, the heat capacity of the heat radiating body is small, so that similarly generated heat is difficult to radiate and it is difficult to prevent the temperature of the member surface from rising.

フッ素樹脂からなる表層は、放熱体と密着して設けられる。表層と放熱体との間の密着性が不十分な場合、例えば、表層と放熱体との間に空洞や接触不十分な個所があると、発生した熱の放熱が妨げられ、部材表面の温度上昇を防ぐことが困難になる。   The surface layer made of a fluororesin is provided in close contact with the radiator. If the adhesion between the surface layer and the radiator is insufficient, for example, if there is a cavity or insufficient contact between the surface layer and the radiator, the generated heat is prevented from being released, and the temperature of the member surface It becomes difficult to prevent the rise.

表層を構成するフッ素樹脂は、電離性放射線の照射により架橋されているものである。架橋がされない場合又は架橋が不十分である場合は、耐摩耗性が低く、又、フッ素樹脂の機械的強度が低下し、摺動部材として使用できない。照射は、通常、1kGyから1500kGy程度の線量で行われる。   The fluororesin constituting the surface layer is crosslinked by irradiation with ionizing radiation. When the crosslinking is not performed or when the crosslinking is insufficient, the wear resistance is low, and the mechanical strength of the fluororesin is lowered, so that it cannot be used as a sliding member. Irradiation is usually performed at a dose of about 1 kGy to 1500 kGy.

請求項2に記載の発明は、前記フッ素樹脂が、PTFE、PFA又はFEPであることを特徴とする請求項1に記載の摺動部材である。表層を形成するフッ素樹脂としては、機械的強度や耐薬品性に優れたPTFE、PFA又はFEPが好ましく、中でも機械的強度や耐薬品性、耐熱性が特に優れたPTFEが好ましい。又、本発明の趣旨を損ねない範囲で、他の成分を重合体に含んでもよい。例えば、PTFEの中には、パーフルオロ(アルキルビニルエーテル)、ヘキサフルオロプロピレン、(パーフルオロアルキル)エチレン、あるいはクロロトリフルオロエチレン等の共重合性モノマーに基づく重合単位を微量含有させてもよい。又、2種以上のフッ素樹脂の混合物であってもよい。   The invention according to claim 2 is the sliding member according to claim 1, wherein the fluororesin is PTFE, PFA or FEP. As the fluororesin forming the surface layer, PTFE, PFA or FEP excellent in mechanical strength and chemical resistance is preferable, and among them, PTFE particularly excellent in mechanical strength, chemical resistance and heat resistance is preferable. Further, other components may be included in the polymer as long as the gist of the present invention is not impaired. For example, PTFE may contain a trace amount of polymerized units based on a copolymerizable monomer such as perfluoro (alkyl vinyl ether), hexafluoropropylene, (perfluoroalkyl) ethylene, or chlorotrifluoroethylene. Moreover, the mixture of 2 or more types of fluororesins may be sufficient.

請求項3に記載の発明は、前記フッ素樹脂からなる表層が、熱伝導性のフィラーを含むことを特徴とする請求項1又は請求項2に記載の摺動部材である。摺動時に摺動部の表面で発生した熱の放熱をより円滑にするためには、フッ素樹脂からなる表層の熱伝導率が高いことが好ましい。そこで、表層を構成するフッ素樹脂に熱伝導性のフィラーを添加して表層の熱伝導率を向上させる方法が好ましく採用される。   The invention according to claim 3 is the sliding member according to claim 1 or 2, wherein the surface layer made of the fluororesin includes a heat conductive filler. In order to more smoothly dissipate heat generated on the surface of the sliding portion during sliding, it is preferable that the thermal conductivity of the surface layer made of a fluororesin is high. Therefore, a method of improving the thermal conductivity of the surface layer by adding a thermally conductive filler to the fluororesin constituting the surface layer is preferably employed.

請求項4に記載の発明は、前記表層と前記放熱体の間が、碁盤目試験により、10回以上の繰り返しでも99/100以上となる密着力を有することを特徴とする請求項1ないし請求項3のいずれか1項に記載の摺動部材である。ここで、碁盤目試験とは、JIS−K−5400(1998年度版)に記載された試験法であり、具体的には、表層に100個の碁盤目状の傷をつけ、その上にテープを貼り付けた後引き剥がす、との試験を繰り返し行い、引き剥がされずに残った碁盤目数をカウントする試験法であり、99/100以上とは、100個の碁盤目中の99以上が引き剥がされずに残っていることを意味する。   The invention according to claim 4 is characterized in that the surface layer and the heat radiating body have an adhesive force that becomes 99/100 or more even when repeated 10 times or more by a cross-cut test. 4. The sliding member according to any one of items 3. Here, the cross cut test is a test method described in JIS-K-5400 (1998 version), and specifically, 100 cross cuts are made on the surface layer, and a tape is formed thereon. It is a test method that repeats the test of peeling off after pasting, and counts the number of grids remaining without being peeled off. 99/100 or more refers to 99 or more in 100 grids. It means that it remains without being peeled off.

前記表層と前記放熱体の間の密着力が低いと、表層と放熱体の間の接触(密着性)が不十分になりやすく特に摺動時に空隙等が発生する等の問題が生じやすくなる。接触が不十分になり特に空隙等が発生すると、表層で発生した熱が放熱体に伝導しにくくなり、部材表面の温度上昇を防ぐことが困難になる。その結果、耐摩耗性が不十分となりやすいので、前記表層と前記放熱体の間は、碁盤目試験により、10回以上の繰り返しで99/100以上となる密着力を有することが好ましく、より好ましくは100回以上の繰り返しで99/100以上となる密着力を有する場合である。   If the adhesion between the surface layer and the radiator is low, the contact (adhesion) between the surface layer and the radiator tends to be insufficient, and problems such as the occurrence of voids during sliding are likely to occur. If the contact becomes insufficient and voids or the like are generated, the heat generated on the surface layer is difficult to conduct to the radiator and it is difficult to prevent the temperature of the member surface from rising. As a result, the wear resistance tends to be insufficient. Therefore, it is preferable that the surface layer and the radiator have an adhesive strength of 99/100 or more after 10 or more repetitions by a cross-cut test. Is a case where the adhesive force is 99/100 or more by repeating 100 times or more.

優れた密着力は、放熱体上にフッ素樹脂層を形成する方法の選定、フッ素樹脂層へのフィラーの添加、フッ素樹脂層と放熱体の材料の選定等により向上することができる。又、フッ素樹脂層に電離放射線を照射することによっても、フッ素樹脂層と放熱体間の密着力が向上する場合がある。   The excellent adhesion can be improved by selecting a method for forming the fluororesin layer on the radiator, adding a filler to the fluororesin layer, selecting a material for the fluororesin layer and the radiator, and the like. Also, the adhesion between the fluororesin layer and the heat radiating body may be improved by irradiating the fluororesin layer with ionizing radiation.

本発明の摺動部材では、放熱体が0.001Cal/℃・cm・秒以上の熱伝導率を有する材料から構成されるのが好ましい。   In the sliding member of the present invention, it is preferable that the radiator is made of a material having a thermal conductivity of 0.001 Cal / ° C. · cm · second or more.

前記のように放熱体は、フッ素樹脂よりも熱伝導率のよい材料から構成されるものであるが、フィラーを添加しないフッ素樹脂の熱伝導率は、0.0005Cal/℃・cm・秒程度(PTFEは、0.0005Cal/℃・cm・秒)であるので、放熱体を構成する材料としては0.001Cal/℃・cm・秒以上の熱伝導率を有する材料が好ましい。より好ましくは、0.01Cal/℃・cm・秒以上、さらに好ましくは、0.1Cal/℃・cm・秒以上の熱伝導率を有する材料である。   As described above, the heat radiator is made of a material having a thermal conductivity better than that of the fluororesin, but the thermal conductivity of the fluororesin to which no filler is added is about 0.0005 Cal / ° C. · cm · sec ( Since PTFE is 0.0005 Cal / ° C. · cm · sec), a material having a thermal conductivity of 0.001 Cal / ° C. · cm · sec or more is preferable as the material constituting the heat radiator. More preferably, the material has a thermal conductivity of 0.01 Cal / ° C. · cm · second or more, and still more preferably 0.1 Cal / ° C. · cm · second or more.

なお、前記のように放熱体は、フッ素樹脂からなる表層よりも体積の大きいものであり、体積が大きい程放熱のためには好ましい。具体的には、Cal/℃・cm・秒で表わしたときの放熱体の熱伝導率の値をX、(放熱体の体積)/(フッ素樹脂からなる表層の体積)の値をYとしたとき、X・Yが、0.005以上であることが好ましく、より好ましくは0.05以上であり、さらに好ましくは0.5以上である。   In addition, as above-mentioned, a heat radiator is a thing with a larger volume than the surface layer which consists of a fluororesin, and a larger volume is preferable for heat dissipation. Specifically, the value of the thermal conductivity of the radiator when expressed in Cal / ° C. · cm · second is X, and the value of (volume of the radiator) / (volume of the surface layer made of fluororesin) is Y. In this case, X · Y is preferably 0.005 or more, more preferably 0.05 or more, and still more preferably 0.5 or more.

本発明の摺動部材は、所定の形状を有する放熱体を準備した後、該放熱体表面をフッ素樹脂で被覆してフッ素樹脂層を形成し、その後フッ素樹脂層の表面に電離性放射線を照射してフッ素樹脂を架橋させる方法により製造することができる。本発明の摺動部材の形状としては、平板状、凸状、窪み状、円筒状又は円管状であって円筒の外表面に摺動部を有するもの、円管状であってその内部の表面に摺動部を有するもの等種々の形状を挙げることができ、従って、放熱体の形状としても前記の種々の形状を挙げることができる。   In the sliding member of the present invention, after preparing a radiator having a predetermined shape, the surface of the radiator is covered with a fluororesin to form a fluororesin layer, and then the surface of the fluororesin layer is irradiated with ionizing radiation. Thus, it can be produced by a method of crosslinking the fluororesin. As the shape of the sliding member of the present invention, a flat plate shape, a convex shape, a hollow shape, a cylindrical shape or a tubular shape having a sliding portion on the outer surface of the cylindrical shape, a circular tubular shape on the inner surface thereof Various shapes such as those having a sliding portion can be mentioned. Therefore, the above-mentioned various shapes can also be mentioned as the shape of the radiator.

本発明の摺動部材は、フッ素樹脂からなる従来の摺動部材と同様の低い摩擦係数を有するとともに、従来の摺動部材よりもさらに優れた耐摩耗性を有するので、産業用機械や民生用の製品等に使用される無潤滑軸受等、高い耐摩耗性が求められる用途に好適に用いられる。   The sliding member of the present invention has a low coefficient of friction similar to that of a conventional sliding member made of a fluororesin, and further has wear resistance superior to that of the conventional sliding member. It is suitably used for non-lubricated bearings used in products such as those requiring high wear resistance.

本発明の摺動部材は、低い摩擦係数を有し、耐衝撃性等に優れるとともに、耐摩耗性に優れ、高い限界PV値を有する。   The sliding member of the present invention has a low coefficient of friction, is excellent in impact resistance, etc., is excellent in wear resistance, and has a high limit PV value.

本発明のフッ素樹脂被覆材の一例の断面図である。It is sectional drawing of an example of the fluororesin coating | covering material of this invention. 本発明のフッ素樹脂被覆材の他の一例の側面図である。It is a side view of another example of the fluororesin coating | covering material of this invention. 実施例、比較例で行ったスラスト摩耗試験(リングオンディスク式摩耗評価)を概念的に示す斜視図である。It is a perspective view which shows notionally the thrust abrasion test (ring-on-disk type abrasion evaluation) performed by the Example and the comparative example. 実施例5で行ったスラスト摩耗試験における荷重と温度上昇との関係を表わすグラフである。6 is a graph showing a relationship between a load and a temperature rise in a thrust wear test performed in Example 5.

次に、本発明を実施するための形態を説明する。なお、本発明はこの形態や実施例に限定されるものではなく、本発明の趣旨を損なわない限り、他の形態へ変更することができる。   Next, the form for implementing this invention is demonstrated. In addition, this invention is not limited to this form and an Example, As long as the meaning of this invention is not impaired, it can change into another form.

図1は、本発明の摺動部材の一例であり、平板状の形状を有するものの断面図である。図中、2はフッ素樹脂層であり、1は放熱体である。図2は、本発明の摺動部材の他の一例であり、凸状の形状を有するものの側面図である。図中の2はフッ素樹脂層であり、1は放熱体であり、放熱体1の先端部がフッ素樹脂層2で覆われていることを示している。   FIG. 1 is a cross-sectional view of an example of a sliding member of the present invention, which has a flat plate shape. In the figure, 2 is a fluororesin layer, and 1 is a radiator. FIG. 2 is a side view of another example of the sliding member of the present invention, which has a convex shape. In the figure, 2 is a fluororesin layer, 1 is a radiator, and the tip of the radiator 1 is covered with the fluororesin layer 2.

放熱体は、熱伝導率が高く、かつ高い耐熱性を有する材料により構成されるが、このような材料としては、鉄(熱伝導率:0.18Cal/℃・cm・秒)、SUS、アルミニウム(熱伝導率:0.53Cal/℃・cm・秒)等が好ましい材料として挙げることができる。又熱伝導率:0.07Cal/℃・cm・秒のセラミック(煉瓦)等も使用できる。さらに、フッ素樹脂の焼成(380℃、数十分)に耐え得る耐熱性を有するポリイミド、ポリエーテルエーテルケトン、ポリエーテルサルホン等の耐熱性プラスチックに熱伝導率を向上させるためのフィラーを添加して熱伝導率を高めたものも使用できる。   The radiator is composed of a material having high thermal conductivity and high heat resistance. Examples of such a material include iron (thermal conductivity: 0.18 Cal / ° C. · cm · second), SUS, aluminum. (Thermal conductivity: 0.53 Cal / ° C. · cm · second) can be cited as a preferable material. Further, ceramic (brick) having a thermal conductivity of 0.07 Cal / ° C. · cm · sec can also be used. Furthermore, a filler for improving thermal conductivity is added to heat-resistant plastics such as polyimide, polyether ether ketone, and polyether sulfone having heat resistance that can withstand baking of a fluororesin (380 ° C., several tens of minutes). The one with higher thermal conductivity can also be used.

表層の熱伝導性を向上させるためにフッ素樹脂に添加されるフィラーとしては、アルミナ、シリカ、アルミナ、ボロンナイトライド、グラファイト、炭素繊維、カーボンナノチューブ、金属ケイ素、炭化ケイ素等を挙げることができる。カーボンナノチューブは、炭素結晶(グラファイト等)からなり、サブミクロンサイズ以下の短軸径(繊維径)を有するものであって、グラファイトの層を筒状にした形状を持つもの等であって、樹脂等に配合して熱伝導度を向上させるものとして知られたフィラーである。カーボンナノチューブは小さな添加量で熱伝導性を向上させることができ、フィラーの添加による低摩擦性の阻害等の問題が小さいので、好ましく用いられる。これらのフィラーは2種以上を併用して添加してもよい。   Examples of the filler added to the fluororesin to improve the thermal conductivity of the surface layer include alumina, silica, alumina, boron nitride, graphite, carbon fiber, carbon nanotube, metal silicon, silicon carbide and the like. Carbon nanotubes are made of carbon crystals (graphite, etc.), have a short axis diameter (fiber diameter) of submicron size or less, have a shape in which a graphite layer is formed into a cylindrical shape, and the like. It is a filler that is known to improve thermal conductivity by blending it with the like. Carbon nanotubes are preferably used because they can improve thermal conductivity with a small addition amount, and have less problems such as inhibition of low friction due to the addition of filler. Two or more of these fillers may be added in combination.

次に、本発明の摺動部材の製造の工程を述べる。   Next, the manufacturing process of the sliding member of the present invention will be described.

先ず、所定の形状を有する放熱体が形成され、その表面、すなわち摺動部となる部分にフッ素樹脂を被覆してフッ素樹脂層を形成する。フッ素樹脂の被覆を施す方法としては、フッ素樹脂のフィルムを被せる方法、粉体塗装する方法、例えばフッ素樹脂粉末を静電塗装する方法やフッ素樹脂粉末をスプレーする方法、又、フッ素樹脂ディスパージョン(フッ素樹脂の粉体を分散媒中に均一に分散した液体)を塗布して分散媒を乾燥して除去する方法等を挙げることができる。   First, a heat radiating body having a predetermined shape is formed, and a fluororesin layer is formed by coating a fluororesin on the surface, that is, a portion that becomes a sliding portion. As a method of coating the fluororesin, a method of covering a fluororesin film, a method of powder coating, for example, a method of electrostatic coating of fluororesin powder, a method of spraying fluororesin powder, a fluororesin dispersion ( And a method in which the dispersion medium is dried and removed by applying a liquid in which a fluororesin powder is uniformly dispersed in a dispersion medium.

中でも、フッ素樹脂ディスパージョンを塗布する方法は、均一な厚みのフッ素樹脂層を容易に形成できる点で好ましい方法である。溶剤に可溶なフッ素樹脂の場合は、フッ素樹脂溶液を塗布して溶剤を乾燥して除去する方法も採用できるが、PTFE等の溶剤に不溶な樹脂の場合は適用できない。   Among them, the method of applying a fluororesin dispersion is a preferable method in that a fluororesin layer having a uniform thickness can be easily formed. In the case of a fluororesin that is soluble in a solvent, a method in which a fluororesin solution is applied and the solvent is dried and removed may be employed, but this is not applicable to a resin that is insoluble in a solvent such as PTFE.

フッ素樹脂ディスパージョンを塗布する方法による場合は、分散媒としては、水と乳化剤、水とアルコール、水とアセトン、または水とアルコールとアセトンの混合溶媒などを用いることができる。フッ素樹脂ディスパージョンを塗布した後は、風乾あるいは熱風乾燥することにより分散媒を乾燥して除去する。分散媒の乾燥、除去によりフッ素樹脂粉末からなる膜が形成される。   In the case of applying the fluororesin dispersion, water and an emulsifier, water and alcohol, water and acetone, or a mixed solvent of water, alcohol, and acetone can be used as the dispersion medium. After applying the fluororesin dispersion, the dispersion medium is dried and removed by air drying or hot air drying. A film made of fluororesin powder is formed by drying and removing the dispersion medium.

粉体塗装、静電塗装、フッ素樹脂ディスパージョンの塗布等によりフッ素樹脂の塗布膜が形成された後、フッ素樹脂の融点以上に加熱する焼成が行われ、フッ素樹脂粉末間が融着し、フッ素樹脂層が形成される。焼成は、好ましくは350〜400℃の温度範囲行われる。乾燥工程を特に設けず、焼成の工程で分散媒の除去を行うことも可能である。   After a fluororesin coating film is formed by powder coating, electrostatic coating, fluororesin dispersion coating, etc., firing is performed to a temperature higher than the melting point of the fluororesin, the fluororesin powder is fused, and fluorine A resin layer is formed. Firing is preferably performed in a temperature range of 350 to 400 ° C. It is also possible to remove the dispersion medium in the baking step without providing a drying step.

続いて、このようにして形成されたフッ素樹脂層の表面に、電離性放射線を照射してフッ素樹脂の架橋が行われる。フッ素樹脂と放熱体の材料の組合せとして適当なものを選定すると、この架橋の際に、フッ素樹脂層と放熱体間の密着性も向上する。   Subsequently, the surface of the fluororesin layer thus formed is irradiated with ionizing radiation to crosslink the fluororesin. When an appropriate combination of the fluororesin and the heat dissipating material is selected, the adhesion between the fluororesin layer and the heat dissipating material is also improved during this crosslinking.

架橋を施す際には、無酸素雰囲気下、具体的には酸素濃度100ppm以下、好ましくは5ppm以下の雰囲気に置き、フッ素樹脂の結晶融点〜400℃程度の温度範囲、好ましくは結晶融点より0〜30℃高い温度範囲に保ちながら、フッ素樹脂膜の表面に電離性放射線を照射する。照射線量の範囲は、通常1kGy〜1500kGy、好ましくは100kGy〜1000kGyである。   When crosslinking is performed, it is placed in an oxygen-free atmosphere, specifically in an atmosphere having an oxygen concentration of 100 ppm or less, preferably 5 ppm or less, and a temperature range of the fluororesin crystal melting point to about 400 ° C., preferably 0 to 0 from the crystal melting point. Irradiating the surface of the fluororesin film with ionizing radiation while maintaining a temperature range higher by 30 ° C. The range of irradiation dose is generally 1 kGy to 1500 kGy, preferably 100 kGy to 1000 kGy.

このとき上記の焼成と電離放射線照射を同時に実施してもよい。雰囲気の温度が低すぎるとフッ素樹脂の架橋反応は起こりにくく、雰囲気温度が高すぎる場合、特に400℃を越えるとフッ素樹脂の熱分解が促進されて材料特性が低下するため好ましくない。また、照射線量が1kGy未満であると架橋反応が不十分で特性の向上が期待できず、1500kGyを越えるとフッ素樹脂の分解が生じやすくなり好ましくない。   At this time, the above baking and ionizing radiation irradiation may be performed simultaneously. If the temperature of the atmosphere is too low, the crosslinking reaction of the fluororesin is unlikely to occur, and if the atmosphere temperature is too high, especially when the temperature exceeds 400 ° C., thermal decomposition of the fluororesin is promoted and the material properties are deteriorated. Further, if the irradiation dose is less than 1 kGy, the crosslinking reaction is insufficient and improvement in characteristics cannot be expected, and if it exceeds 1500 kGy, decomposition of the fluororesin tends to occur, which is not preferable.

フッ素樹脂の架橋に用いられる電離性放射線としては、電子線、高エネルギーイオン線等の荷電粒子線、ガンマ線、X線等の高エネルギー電磁波、中性子線等が挙げられるが、電子線発生装置は比較的安価で又大出力の電子線が得られるとともに架橋度の制御が容易であるので、電子線が好ましく用いられる。   Examples of ionizing radiation used for crosslinking of fluororesins include electron beam, charged particle beam such as high energy ion beam, high energy electromagnetic wave such as gamma ray and X-ray, neutron beam, etc. An electron beam is preferably used because it is inexpensive and can provide a high-power electron beam and can easily control the degree of crosslinking.

実施例1
厚さ1.7mmのアルミ板(JIS規定の材料種:3003)上に、フッ素樹脂ディスパージョン(ダイキン社製:D10−FE)を塗布し乾燥後、380℃×10分で焼成して、厚さ15μmのフッ素樹脂膜がコートされたアルミ板を得る。その後、窒素雰囲気下(酸素濃度:5PPM)、330℃に加温し、日新電気社製照射装置(サガトロン:加速電圧 1.13MeV)で300kGyの照射を行い、試験用サンプルを作製した。
Example 1
A fluororesin dispersion (Daikin Co., Ltd .: D10-FE) is applied onto a 1.7 mm thick aluminum plate (JIS-regulated material type: 3003), dried, and then fired at 380 ° C. for 10 minutes. An aluminum plate coated with a 15 μm fluororesin film is obtained. Thereafter, the sample was heated to 330 ° C. in a nitrogen atmosphere (oxygen concentration: 5 PPM), and irradiated with 300 kGy with an irradiation apparatus (Sagatron: acceleration voltage 1.13 MeV) manufactured by Nissin Electric Co., Ltd., to prepare a test sample.

実施例2
厚さ1.7mmのアルミ板の代わりに厚さ2.0mmのSUS板(JIS規定の材料種:SUS430)を用いた以外は、実施例1と同じ条件で試験用サンプルを作製した。
Example 2
A test sample was produced under the same conditions as in Example 1 except that a 2.0 mm thick SUS plate (JIS-specified material type: SUS430) was used instead of the 1.7 mm thick aluminum plate.

実施例3
厚さ1.7mmのアルミ板の代わりに厚さ5.0mmのセラミック板(INAX社製市販タイル)を用いた以外は、実施例1と同じ条件で試験用サンプルを作製した。
Example 3
A test sample was produced under the same conditions as in Example 1 except that a ceramic plate (commercially available tile manufactured by INAX) having a thickness of 5.0 mm was used instead of the aluminum plate having a thickness of 1.7 mm.

比較例1
放熱板(アルミ板)を使用せずに、実施例1と同様のフッ素樹脂ディスパージョンを用い、焼成等の条件は同様にしてフッ素板となるサンプルを作製した
Comparative Example 1
Without using a heat radiating plate (aluminum plate), the same fluororesin dispersion as in Example 1 was used, and a sample that would be a fluorine plate was produced under the same conditions such as firing.

比較例2
実施例2と同じ条件でサンプルを製作した後、360℃×20分間アニールを行い、接着力を低下させた試験用サンプルを作製した。
Comparative Example 2
After producing a sample under the same conditions as in Example 2, annealing was performed at 360 ° C. for 20 minutes to produce a test sample with reduced adhesion.

[耐摩耗性測定]
スラスト摩耗試験(リングオンディスク式摩耗評価)により、フッ素樹脂コーティングの耐摩耗性を評価した。具体的には、図3に示すように、試験サンプル上に金属の円筒(相手軸)を載せ、所定の荷重(面圧:P)を加えた状態で、試験サンプルを所定の速度(回転速度:V)で回転させ、試験サンプルの摩耗状態を測定する。実施例1〜4、比較例1、2では、相手軸として、外径/内径=11.5/7.4のS45C円筒を用い、ドライ(グリースレス)の潤滑条件で摩耗を測定し、面圧(P)及び回転速度(V)を変化させて、限界PV値(急激な摩耗が発生するP・V値)を求めた。そして、限界PV値が、1500MPa・m/分以上の場合を○、1500MPa・m/分未満の場合を×として、表1に示した。
[Abrasion resistance measurement]
The abrasion resistance of the fluororesin coating was evaluated by a thrust wear test (ring-on-disk wear evaluation). Specifically, as shown in FIG. 3, with a metal cylinder (mating shaft) placed on the test sample and a predetermined load (surface pressure: P) applied, the test sample is moved to a predetermined speed (rotational speed). : V) and measure the wear state of the test sample. In Examples 1 to 4 and Comparative Examples 1 and 2, an S45C cylinder having an outer diameter / inner diameter = 11.5 / 7.4 was used as the mating shaft, and the wear was measured under dry (greaseless) lubrication conditions. By changing the pressure (P) and the rotational speed (V), the limit PV value (P · V value at which rapid wear occurs) was obtained. Table 1 shows the case where the limit PV value is 1500 MPa · m / min or more as “◯” and the case where it is less than 1500 MPa · m / min.

[密着性測定]
碁盤目試験により、フッ素樹脂コーティングの耐剥離性を測定した。具体的には、サンプルのフッ素樹脂コーティングに100個の碁盤目状の傷をつけ、その上にテープを貼り付けた後引き剥がす試験を繰り返し行い、引き剥がされずに残った碁盤目数をカウントした。10回の繰り返し試験で、100個中の2個以上の碁盤目が引き剥がされた場合を×、引き剥がされた碁盤目が100個中の1個以下の場合を○として、表1に示した。
[Adhesion measurement]
The peel resistance of the fluororesin coating was measured by a cross cut test. Specifically, 100 samples of a grid-like scratch were made on the fluororesin coating of the sample, and a test for peeling after applying a tape was repeated, and the number of grids remaining without being peeled was counted. . Table 10 shows the case where 2 or more of 100 grids are peeled off in 10 repetition tests, and x is the case where 1 or less of 100 grids are peeled off. It was.

Figure 2011208802
Figure 2011208802

表1の結果より、放熱体を設けずフッ素樹脂のみで摺動部材を形成した比較例1及びフッ素樹脂層と放熱体が密着していない比較例2では、耐摩耗性に劣り、限界PV値が低いこと、一方本発明例である実施例1〜3では、高い限界PV値が得られ耐摩耗性に優れることが示されている。   From the results shown in Table 1, in Comparative Example 1 in which the sliding member is formed only with a fluororesin without providing a radiator, and in Comparative Example 2 in which the fluororesin layer and the radiator are not in close contact, the wear resistance is inferior, and the limit PV value On the other hand, in Examples 1 to 3, which are examples of the present invention, it is shown that a high limit PV value is obtained and wear resistance is excellent.

実施例5
厚さ5mmのポリエーテルエーテルケトン板(以下「PEEK板」と表わす。)と厚さ1.7mmのアルミ板(3003、以下「AL板」と表わす。)上に、PTFEディスパージョン(ダイキン社製:EK−3700)を塗布した後、350℃×10分で焼成し、厚さ15μmのPTFE膜を形成した。そのサンプルを、窒素雰囲気下(酸素濃度 5PPM)で温度330℃に加熱、日新電機社製照射装置(サガトロン:加速電圧1.13MeV)で300kGyの電子線照射を行い、厚さ15μmの架橋PTFE膜を形成し、放熱板(PEEK板又はAL板)及びそれに密着する表層(架橋PTFE膜)を有する試験用サンプルを作製した。試験用サンプルは、PEEK板について3枚、AL板について3枚作製し、それぞれ、PEEK1、PEEK2、PEEK3、AL1、AL2、AL3とする。
Example 5
PTFE dispersion (manufactured by Daikin) on a polyether ether ketone plate (hereinafter referred to as “PEEK plate”) having a thickness of 5 mm and an aluminum plate (3003, hereinafter referred to as “AL plate”) having a thickness of 1.7 mm. : EK-3700), followed by baking at 350 ° C. for 10 minutes to form a PTFE film having a thickness of 15 μm. The sample was heated to a temperature of 330 ° C. in a nitrogen atmosphere (oxygen concentration 5 PPM), irradiated with an electron beam of 300 kGy with an irradiation apparatus (Sagatron: acceleration voltage 1.13 MeV) manufactured by Nissin Electric Co., Ltd., and a crosslinked PTFE having a thickness of 15 μm. A test sample having a film formed thereon and having a heat radiating plate (PEEK plate or AL plate) and a surface layer (crosslinked PTFE film) adhered thereto was produced. Three test samples are prepared for the PEEK plate and three for the AL plate, which are designated as PEEK1, PEEK2, PEEK3, AL1, AL2, and AL3, respectively.

さらに厚さ1mmの市販のPTFEシートを、窒素雰囲気下(酸素濃度 5PPM)で温度330℃に加熱、日新電機社製照射装置(サガトロン:加速電圧1.13MeV)で300kGyの電子線照射を行い、試験用サンプルを得た。この試験用サンプルを、以下「PTFEシート」と表わす。   Furthermore, a commercially available PTFE sheet having a thickness of 1 mm was heated to a temperature of 330 ° C. in a nitrogen atmosphere (oxygen concentration: 5 PPM), and irradiated with an electron beam of 300 kGy with an irradiation apparatus (Sagatron: acceleration voltage 1.13 MeV) manufactured by Nissin Electric. A test sample was obtained. This test sample is hereinafter referred to as “PTFE sheet”.

[スラスト摩耗試験による温度上昇の測定]
図3に示すように、試験用サンプル(PEEK1、PEEK2、PEEK3、AL1、AL2、AL3又はPTFEシート)上に、内径/外径=11.6/7.6の炭素鋼(S45C)製円筒(相手軸)を載せ、装置上部より、規定の荷重(5kgf)をかけながら、サンプルを1800rpmで10分間回転させ、円筒に取り付けられた熱電対(サンプルとの接触面から3mm上部に設置)により温度上昇を測定した。架橋フッ素膜に破壊等の問題が生じなかった場合は、サンプルを十分冷却した後、同一サンプルにて、荷重を(表2に示すように)上げて同じ試験を繰り返し、架橋PTFE膜又はPTFEシートが破壊されるか、荷重が評価装置限界(95kgf)となるまで実施した。その結果を表2に示す。(架橋PTFE膜が破壊された場合は、その時の温度を記録)
[Measurement of temperature rise by thrust wear test]
As shown in FIG. 3, on a test sample (PEEK1, PEEK2, PEEK3, AL1, AL2, AL3 or PTFE sheet), a cylinder made of carbon steel (S45C) with an inner diameter / outer diameter = 11.6 / 7.6 ( The sample is rotated at 1800 rpm for 10 minutes while applying the specified load (5 kgf) from the upper part of the device, and the temperature is set by a thermocouple (installed 3 mm above the contact surface with the sample). The rise was measured. If no problems such as destruction occur in the cross-linked fluorine film, after sufficiently cooling the sample, increase the load (as shown in Table 2) and repeat the same test to cross-link the PTFE film or PTFE sheet. Was carried out until the load reached the evaluation device limit (95 kgf). The results are shown in Table 2. (If the crosslinked PTFE membrane is broken, record the temperature at that time)

Figure 2011208802
Figure 2011208802

図4は、表2に示された結果、すなわち実施例5で行ったスラスト摩耗試験における荷重と温度上昇との関係を表わすグラフである。縦軸が温度上昇(終了時温度−開始温度)、横軸が荷重を示す。   FIG. 4 is a graph showing the results shown in Table 2, that is, the relationship between the load and the temperature rise in the thrust wear test performed in Example 5. The vertical axis shows the temperature rise (end temperature-start temperature), and the horizontal axis shows the load.

表2、図4より明らかなように、放熱板が熱伝導率の低いPEEK(熱伝導率:0.0006Cal/℃・cm・秒)からなるサンプル(PEEK1〜3)、及び架橋されたフッ素樹脂(熱伝導率:0.0005Cal/℃・cm・秒)のシート(PTFEシート)の場合は、荷重の増加により温度上昇も急激に増大する。そして、20〜60kgfの荷重で、10分間の温度上昇が140℃を超え、PTFE膜又はPTFEシートが破壊した。   As is clear from Table 2 and FIG. 4, the heat sink is a sample (PEEK1 to 3) made of PEEK (thermal conductivity: 0.0006 Cal / ° C. · cm · second) having a low thermal conductivity, and a crosslinked fluororesin. In the case of a sheet (PTFE sheet) with (thermal conductivity: 0.0005 Cal / ° C. · cm · second), the temperature rises rapidly with an increase in load. And with the load of 20-60 kgf, the temperature rise for 10 minutes exceeded 140 degreeC, and the PTFE membrane or the PTFE sheet destroyed.

一方、放熱板が熱伝導率の良いAL(熱伝導率が0.53Cal/℃・cm・秒)からなるサンプル(AL1〜3)の場合は、荷重の増加による温度上昇の増大も小さく、荷重が装置限界(95kgf)に達しても、温度上昇は100℃程度に抑えられ、PTFE膜の破壊も生じなかった。   On the other hand, in the case of samples (AL1 to 3) consisting of AL (heat conductivity of 0.53 Cal / ° C · cm · sec) with good heat conductivity, the heat sink has a small increase in temperature due to an increase in load. Even when the temperature reached the device limit (95 kgf), the temperature rise was suppressed to about 100 ° C., and the PTFE membrane was not broken.

1.放熱体
2.フッ素樹脂層
1. 1. Heat radiator Fluorine resin layer

Claims (4)

架橋されたフッ素樹脂からなる表層及び前記表層と密着する放熱体を有し、前記放熱体はフッ素樹脂より高い熱伝導率を有する材質からなり、前記表層の厚みが0.1〜100μmであることを特徴とする摺動部材。   It has a surface layer composed of a cross-linked fluororesin and a radiator that is in close contact with the surface layer, the radiator is made of a material having a higher thermal conductivity than the fluororesin, and the thickness of the surface layer is 0.1 to 100 μm. A sliding member characterized by the above. 前記フッ素樹脂が、ポリテトラフルオロエチレン、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体、又はテトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体であることを特徴とする請求項1に記載の摺動部材。   The sliding member according to claim 1, wherein the fluororesin is polytetrafluoroethylene, tetrafluoroethylene-hexafluoropropylene copolymer, or tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer. 前記フッ素樹脂からなる表層が、熱伝導性のフィラーを含むことを特徴とする請求項1又は請求項2に記載の摺動部材。   The sliding member according to claim 1, wherein the surface layer made of the fluororesin includes a thermally conductive filler. 前記表層と前記放熱体の間が、碁盤目試験により、10回以上の繰り返しでも99/100以上となる密着力を有することを特徴とする請求項1ないし請求項3のいずれか1項に記載の摺動部材。   4. The adhesive according to claim 1, wherein the surface layer and the heat radiating body have an adhesion force of 99/100 or more even after 10 or more repetitions by a cross-cut test. The sliding member.
JP2011049263A 2010-03-09 2011-03-07 Sliding member Pending JP2011208802A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011049263A JP2011208802A (en) 2010-03-09 2011-03-07 Sliding member

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010051747 2010-03-09
JP2010051747 2010-03-09
JP2011049263A JP2011208802A (en) 2010-03-09 2011-03-07 Sliding member

Publications (1)

Publication Number Publication Date
JP2011208802A true JP2011208802A (en) 2011-10-20

Family

ID=44940060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011049263A Pending JP2011208802A (en) 2010-03-09 2011-03-07 Sliding member

Country Status (1)

Country Link
JP (1) JP2011208802A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014109292A (en) * 2012-11-30 2014-06-12 Sumitomo Denko Shoketsu Gokin Kk Slide member
WO2016181674A1 (en) * 2015-05-14 2016-11-17 住友電工ファインポリマー株式会社 Adhesive reinforcing sheet, sliding member and method for producing adhesive reinforcing sheet
EP3348601A4 (en) * 2015-09-07 2019-05-29 Sumitomo Electric Fine Polymer, Inc. Polytetrafluoroethylene molded body, and manufacturing method therefor
WO2021117287A1 (en) 2019-12-12 2021-06-17 住友電気工業株式会社 Sliding member and method for producing same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05154961A (en) * 1991-12-02 1993-06-22 Sumitomo Electric Ind Ltd Fluoroplastic-coated article and production thereof
JP2002225204A (en) * 2001-01-30 2002-08-14 Reitekku:Kk Modified fluororesin coated material and method for producing the same
JP2003193084A (en) * 2001-12-27 2003-07-09 Daido Metal Co Ltd Sliding member
JP2005084160A (en) * 2003-09-05 2005-03-31 Fuji Xerox Co Ltd Sliding member and fixing device
JP2008240785A (en) * 2007-03-26 2008-10-09 Daido Metal Co Ltd Slide member

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05154961A (en) * 1991-12-02 1993-06-22 Sumitomo Electric Ind Ltd Fluoroplastic-coated article and production thereof
JP2002225204A (en) * 2001-01-30 2002-08-14 Reitekku:Kk Modified fluororesin coated material and method for producing the same
JP2003193084A (en) * 2001-12-27 2003-07-09 Daido Metal Co Ltd Sliding member
JP2005084160A (en) * 2003-09-05 2005-03-31 Fuji Xerox Co Ltd Sliding member and fixing device
JP2008240785A (en) * 2007-03-26 2008-10-09 Daido Metal Co Ltd Slide member

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014109292A (en) * 2012-11-30 2014-06-12 Sumitomo Denko Shoketsu Gokin Kk Slide member
CN104813048A (en) * 2012-11-30 2015-07-29 住友电工烧结合金株式会社 Sliding member
US20150307800A1 (en) * 2012-11-30 2015-10-29 Sumitomo Electric Sintered Alloy, Ltd. Sliding member
WO2016181674A1 (en) * 2015-05-14 2016-11-17 住友電工ファインポリマー株式会社 Adhesive reinforcing sheet, sliding member and method for producing adhesive reinforcing sheet
US20180050517A1 (en) * 2015-05-14 2018-02-22 Sumitomo Electric Fine Polymer, Inc. Adhesive reinforcing sheet, sliding member and method for producing adhesive reinforcing sheet
JPWO2016181674A1 (en) * 2015-05-14 2018-03-01 住友電工ファインポリマー株式会社 Adhesive reinforcing sheet, sliding member, and manufacturing method of adhesive reinforcing sheet
EP3348601A4 (en) * 2015-09-07 2019-05-29 Sumitomo Electric Fine Polymer, Inc. Polytetrafluoroethylene molded body, and manufacturing method therefor
WO2021117287A1 (en) 2019-12-12 2021-06-17 住友電気工業株式会社 Sliding member and method for producing same

Similar Documents

Publication Publication Date Title
WO2014083978A1 (en) Sliding member
JP5401723B2 (en) Fluororesin composite material, cooking utensil, cooker, roller for OA equipment, belt for OA equipment, and manufacturing method thereof
JP3566805B2 (en) Sliding member
CN107109011B (en) Melt-processible fluoropolymer composition having excellent thermal conductivity, molded article made therefrom, and method for making same
JP2011208803A (en) Sliding member
JP2011208802A (en) Sliding member
JP5472689B2 (en) Modified fluororesin composition and molded body
JP2014046673A (en) Slide member
JP2000129019A (en) Sliding member
JP6934745B2 (en) Sliding parts and manufacturing method of sliding parts
JP2015007162A (en) Anisotropic heat conductive composition
JP2007186676A (en) Modified fluororesin composition and its molded article
JP2004331814A (en) Modified fluororesin composition and modified fluororesin molded product
JP3672428B2 (en)   Modified fluoroplastic molding
JP3672429B2 (en)   Modified fluororesin powder
JP2022100950A (en) Thermally conductive sheet and method for producing the same
JP4645453B2 (en) Modified fluororesin composition and molded article comprising the same
JPH04227777A (en) Coating composition for sliding part
JP2020019884A (en) Method for producing thermally conductive sheet
JP2002114939A (en) Coating material for sliding use and method coating the same
JP4973021B2 (en) Modified fluororesin composition and molded body
WO2023038052A1 (en) Heat radiation sheet
JP2004018816A (en) Coating material for forming water-repellent coating film
JP3903547B2 (en) Oriented fluororesin molded body and method for producing the same
JP2003026883A (en) Abrasion-resistant fluororesin composition and member for sliding

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20131029

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140407

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140804