JP2002225204A - Modified fluororesin coated material and method for producing the same - Google Patents

Modified fluororesin coated material and method for producing the same

Info

Publication number
JP2002225204A
JP2002225204A JP2001020901A JP2001020901A JP2002225204A JP 2002225204 A JP2002225204 A JP 2002225204A JP 2001020901 A JP2001020901 A JP 2001020901A JP 2001020901 A JP2001020901 A JP 2001020901A JP 2002225204 A JP2002225204 A JP 2002225204A
Authority
JP
Japan
Prior art keywords
fluororesin
substrate
film
coating material
modified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001020901A
Other languages
Japanese (ja)
Other versions
JP2002225204A5 (en
Inventor
Shigetoshi Ikeda
重利 池田
Akihiro Oshima
明博 大島
Chie Udagawa
千恵 宇田川
Yoneo Tabata
米穂 田畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
REITEKKU KK
Raytech Corp
Original Assignee
REITEKKU KK
Raytech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by REITEKKU KK, Raytech Corp filed Critical REITEKKU KK
Priority to JP2001020901A priority Critical patent/JP2002225204A/en
Publication of JP2002225204A publication Critical patent/JP2002225204A/en
Publication of JP2002225204A5 publication Critical patent/JP2002225204A5/ja
Pending legal-status Critical Current

Links

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Laminated Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a practical method for producing a fluororesin coated material having high adhesion properties between the fluororesin and a base material and showing no deformation. SOLUTION: The method for producing the modified fluororesin coated material comprises coating the surface of the base material, having thermal stability at a temperature of the melting point of the fluororesin or higher, with the fluororesin and irradiating the surface of the fluororesin film with an ionizing radiation to cause a crosslinking reaction of the fluororesin and a chemical reaction between the fluororesin and the surface of the base material to be carried out at the same time, thereby achieving a strong adhesion between the both.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は改質フッ素樹脂被覆
材およびその製造方法に関する。さらに詳しくは、架橋
によって改質されたフッ素樹脂の膜で基材の表面が被覆
されている複合材料に関する。
The present invention relates to a modified fluororesin coating material and a method for producing the same. More specifically, the present invention relates to a composite material in which the surface of a substrate is covered with a fluororesin film modified by crosslinking.

【0002】[0002]

【従来の技術】フッ素樹脂は耐熱性、耐薬品性、非接着
性、撥水性、防汚性、潤滑性、耐摩擦性などの特性を有
する優れたプラスチックであり、これらの特徴を利用し
てパッキン、ガスケット、チューブ、絶縁テープ、軸受
け、エアドームの屋根膜など産業用、および民生用とし
ての利用が拡大されつつある樹脂材料である。また、耐
原子状酸素性に優れることから人工衛星の熱制御材料と
して有望な材料でもある。しかし、フッ素樹脂は放射線
に対する感受性が高く、特にポリテトラフルオロエチレ
ン(以下PTFEという)に至っては照射線量が1kGy
を超えると力学特性が低下するために、宇宙空間や原子
力施設など放射線環境下での利用はできない。
2. Description of the Related Art Fluororesins are excellent plastics having properties such as heat resistance, chemical resistance, non-adhesion, water repellency, stain resistance, lubricity, and friction resistance. It is a resin material that is increasingly used in industrial and consumer applications such as packing, gaskets, tubes, insulating tapes, bearings, and roof films for air domes. In addition, it is a promising material as a heat control material for artificial satellites because of its excellent atomic oxygen resistance. However, fluororesins are highly sensitive to radiation, and especially for polytetrafluoroethylene (hereinafter referred to as PTFE), the irradiation dose is 1 kGy.
If it exceeds, its mechanical properties deteriorate, so it cannot be used in a radiation environment such as space or nuclear facilities.

【0003】フッ素樹脂の被覆材料としての用途におい
ては、アイロンやフライパンなどの金属表面にPTFE
のコーティングなどを施して被覆する技術は既にある。
しかし、化学的に極めて安定なPTFEと基材との接着
は共有結合のような化学的な結合によって行われておら
ず、物理的結合によるものであるため、接着力は十分で
はなく、応力を加えると樹脂は基材から容易に剥離して
しまう。そのため、トタン屋根や瓦屋根などの建築材料
にフッ素樹脂を被覆して撥水性、防汚性、潤滑性などの
特徴を生かしたユニークな材料は、未だ開発されていな
い。また放射線に対して弱い、摩耗し易い、透明性が不
十分といったPTFE自身の短所は、被覆材料であって
も何ら変わらない。
In the use as a coating material of a fluororesin, PTFE is applied to a metal surface such as an iron or a frying pan.
There is already a technique for applying and coating a coating.
However, the bonding between the chemically extremely stable PTFE and the base material is not performed by a chemical bond such as a covalent bond, but is based on a physical bond. When added, the resin is easily separated from the substrate. Therefore, no unique material has been developed yet, in which a building material such as a tin roof or a tiled roof is coated with a fluororesin to take advantage of features such as water repellency, antifouling property, and lubricity. The disadvantages of PTFE itself, such as being weak to radiation, easily abraded, and insufficiently transparent, remain the same even with the coating material.

【0004】PTFEの耐放射線性を改善するべく本願
発明者らは、既に特許出願した発明(特開平6−116
423号)において、PTFEの結晶融点以上の温度で
酸素不存在下で電離性放射線を照射することを特徴とす
る改質PTFEの製造方法を提供した。しかし、粉体や
成形体からなるこの改質PTFEにおいても化学的性質
は極めて安定であり、ほぼすべての溶媒に不溶性であ
る。これらを金属などの基材にコーティングなどの手法
によって被覆処理しても、PTFEと基材との間の接着
は化学的な結合ではなく物理的結合であるため、剥離し
やすい欠点は何ら改善されていない。また、PTFE以
外のテトラフルオロエチレン系共重合体も化学的に極め
て安定な材料であり、コーティングによる被覆処理を行
った場合において基材との接着は化学的な結合によって
行われていないため、基材から樹脂が容易に剥離してし
まい、被覆材料としての接着特性は不十分であった。
In order to improve the radiation resistance of PTFE, the present inventors have already applied for a patent application (JP-A-6-116).
No. 423), a method for producing modified PTFE, characterized by irradiating ionizing radiation at a temperature equal to or higher than the crystal melting point of PTFE in the absence of oxygen. However, even in this modified PTFE made of a powder or a molded body, the chemical properties are extremely stable and insoluble in almost all solvents. Even if these are coated on a base material such as a metal by a method such as coating, the adhesion between the PTFE and the base material is not a chemical bond but a physical bond. Not. In addition, tetrafluoroethylene-based copolymers other than PTFE are also chemically very stable materials, and when coated with a coating, adhesion to a substrate is not performed by chemical bonding. The resin was easily separated from the material, and the adhesive properties as a coating material were insufficient.

【0005】[0005]

【発明が解決しようとする課題】このように、フッ素樹
脂は他の種類の基材との接着性に乏しく、シート状やチ
ューブ状のフッ素樹脂成形フィルム、特に膜厚が300
μm以下である薄いフィルムの放射線架橋処理は、し
わ、ゆがみなどの著しい変形を伴う。従って、フッ素樹
脂と基材の接着性が高く、変形を生じないフッ素樹脂被
覆材を製造するための実用的な方法が求められている。
As described above, the fluororesin has poor adhesion to other kinds of base materials, and the sheet or tube-like fluororesin molded film, particularly, the film thickness of 300 or less.
Radiation cross-linking of thin films of less than μm is accompanied by significant deformation such as wrinkles and distortions. Therefore, there is a need for a practical method for producing a fluororesin coating material that has high adhesion between the fluororesin and the substrate and does not cause deformation.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するた
め、本発明によれば、フッ素樹脂の融点以上の温度にお
いて熱的安定性を有する基材の表面を前記フッ素樹脂で
被覆し、次いでフッ素樹脂の膜の表面に電離性放射線を
照射することによって、フッ素樹脂の架橋反応およびフ
ッ素樹脂と基材表面との化学反応を同時に生じさせ、そ
れによって両者の強固な接着を達成することを特徴とす
る、改質フッ素樹脂被覆材の製造方法が提供される。
According to the present invention, to solve the above-mentioned problems, a surface of a substrate having thermal stability at a temperature not lower than the melting point of the fluororesin is coated with the fluororesin, By irradiating the surface of the resin film with ionizing radiation, a cross-linking reaction of the fluororesin and a chemical reaction between the fluororesin and the substrate surface are simultaneously caused, thereby achieving strong adhesion between the two. A method for producing a modified fluororesin coating material.

【0007】従って、このようにして得られた改質フッ
素樹脂被覆材においては、フッ素樹脂の融点以上の温度
において熱的安定性を有する基材の表面が架橋した前記
フッ素樹脂の膜によって被覆されていて、基材とフッ素
樹脂の膜が化学的な結合により強固に接着している。ま
たこの改質フッ素樹脂被覆材においては、フッ素樹脂の
膜厚を300μm以下とし、かつ厚さの均一性が膜厚の
平均値に対して±10%以内とすることができる。
Therefore, in the modified fluororesin-coated material thus obtained, the surface of a substrate having thermal stability at a temperature equal to or higher than the melting point of the fluororesin is coated with the crosslinked fluororesin film. In addition, the substrate and the fluororesin film are firmly adhered to each other by chemical bonding. Further, in this modified fluororesin coating material, the thickness of the fluororesin can be 300 μm or less, and the thickness uniformity can be within ± 10% of the average value of the film thickness.

【0008】被覆工程は、フッ素樹脂のペーストまたは
フッ素樹脂を混入している溶液を基材の表面に塗布する
か、あるいはフッ素樹脂フィルムを基材の表面に張り付
けることによって実施することができる。この被覆工程
に続く電離性放射線の照射は、無酸素雰囲気下で100
〜400℃の範囲の温度で行われ、かつ照射線量が1kG
y〜10MGyの範囲であるのが好ましい。
The coating step can be carried out by applying a fluororesin paste or a solution containing the fluororesin to the surface of the substrate, or by attaching a fluororesin film to the surface of the substrate. Irradiation with ionizing radiation following this coating step is performed in an oxygen-free atmosphere at 100
Performed at a temperature in the range of ~ 400 ° C and an irradiation dose of 1 kG
It is preferably in the range of y to 10 MGy.

【0009】基材は、ポリイミド樹脂、金属材料、セラ
ミックス、およびガラスから選択されたものが好まし
く、かつ耐熱性に優れた材料であるのが好ましい。また
基材としてはいかなる形態のものであっても良いが、特
に板状、箔状、管状、あるいは繊維状の形態のものが好
ましい。
The substrate is preferably selected from a polyimide resin, a metal material, ceramics, and glass, and is preferably a material having excellent heat resistance. The substrate may be in any form, but is preferably in the form of a plate, foil, tube, or fiber.

【0010】本発明は、従来のフッ素樹脂被覆材料がも
つ欠点であった基材とフッ素樹脂間の接着性の低さを改
善するという要求に応えたものである。すなわち、宇宙
空間や原子力施設等の放射線環境下で使用する際の耐放
射線性を備えるだけでなく、機械特性などにおける全て
の問題点を解決したものであり、平滑な表面と均一な膜
厚および耐放射線性を有するフッ素樹脂膜で基材を被覆
しているとともに、基材とフッ素樹脂膜が化学的な結合
によって強固に接着している複合材料を提供する。
The present invention meets the demand for improving the low adhesiveness between a substrate and a fluororesin, which is a disadvantage of the conventional fluororesin coating material. In other words, it not only has radiation resistance when used in a radiation environment such as space or a nuclear facility, but also solves all problems in mechanical properties, etc., and has a smooth surface and uniform film thickness and Provided is a composite material in which a base material is covered with a radiation-resistant fluororesin film, and the base material and the fluororesin film are firmly adhered to each other by a chemical bond.

【0011】[0011]

【発明の実施の形態】本発明の製造方法においてはま
ず、金属、セラミックス、ガラス、あるいは高分子材料
などからなっていて板状、箔状、管状、あるいは繊維状
などの形態の基材の表面にフッ素樹脂のペーストまたは
フッ素樹脂を混入している液体を塗布するか、あるいは
フッ素樹脂フィルムを基材の表面に張り付けることによ
って、所望の膜厚のフッ素樹脂で被覆された材料を調製
する。ここでいう「基材の表面に塗布する」とは、基材
の外面のみならず、管状部材などが有する内面に塗布す
ることを含み、一般に前者の場合をコーティングと称
し、後者の場合をライニングと称する場合がある。塗布
あるいは張り付けを行うための手法は、当業者が常套的
に行い得るいかなる方法であってもよい。例えばフッ素
樹脂を混入している溶液を塗布する場合、フッ素樹脂の
粉体が均一に分散した液体(いわゆるディスパージョ
ン)を基材に塗布する。粉体を効率よく分散するための
液体すなわち分散媒としては、水と乳化剤、水とアルコ
ール、水とアセトン、または水とアルコールとアセトン
の混合溶媒などを用いることができ、これらは分散媒に
ついて熟知している当業者によって容易に選択し調製す
ることができる。このときのフッ素樹脂の粉体の粒径は
50μm以下であることが好ましく、なおかつ最終的に
得られる被覆材において所望される膜厚以下の大きさで
あることが望ましい。粒径が50μmを超えると所望す
る膜厚の均一性を達成するのが困難であるため好ましく
ない。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS In the manufacturing method of the present invention, first, the surface of a base material made of metal, ceramics, glass, or a polymer material and having a plate-like, foil-like, tubular, or fibrous shape is used. A material coated with a desired thickness of the fluororesin is prepared by applying a fluororesin paste or a liquid mixed with the fluororesin, or by adhering a fluororesin film to the surface of the substrate. The term "apply to the surface of the substrate" as used herein includes not only the outer surface of the substrate but also the inner surface of a tubular member or the like, and the former case is generally referred to as coating, and the latter case is referred to as lining. In some cases. The method for applying or sticking may be any method routinely performed by those skilled in the art. For example, when applying a solution in which a fluororesin is mixed, a liquid (a so-called dispersion) in which a powder of a fluororesin is uniformly dispersed is applied to a substrate. As a liquid for dispersing the powder efficiently, ie, a dispersion medium, water and an emulsifier, water and alcohol, water and acetone, or a mixed solvent of water, alcohol, and acetone can be used. Can be readily selected and prepared by those skilled in the art. At this time, the particle size of the fluororesin powder is preferably 50 μm or less, and more preferably, the size is equal to or less than the desired film thickness of the finally obtained coating material. If the particle size exceeds 50 μm, it is difficult to achieve the desired uniformity of the film thickness, which is not preferable.

【0012】ディスパージョンを基材に塗布した後、風
乾あるいは熱風乾燥することにより分散媒を除去する。
次いで、直ちに100〜400℃、好ましくはフッ素樹
脂の結晶融点以上の260〜380℃の温度範囲で焼成
する。
After applying the dispersion to the substrate, the dispersion medium is removed by air drying or hot air drying.
Then, it is immediately fired at a temperature in the range of 100 to 400 ° C, preferably 260 to 380 ° C, which is higher than the crystal melting point of the fluororesin.

【0013】次いで、この材料を無酸素雰囲気下に置
き、250〜400℃、好ましくは250〜350℃の
温度範囲に保ちながら、フッ素樹脂膜の表面に電離性放
射線を1kGy〜10MGyの線量範囲で照射する。このとき
上記の焼成と放射線照射を同時に実施してもよい。雰囲
気の温度が250℃未満であるとフッ素樹脂の放射線架
橋反応は起こらず、雰囲気温度が400℃を超えるとフ
ッ素樹脂の熱分解が促進されて材料特性が低下するため
好ましくない。また、照射線量が1kGy未満であると放
射線による反応が不十分で特性の向上が期待できず、1
0MGyを超えて放射線照射を行っても架橋によるフッ素
樹脂自体の特性は大きく向上しないことが過去の研究に
より判明しているため、それ以上の照射は好ましくな
い。
Next, this material is placed in an oxygen-free atmosphere, and ionizing radiation is applied to the surface of the fluororesin film in a dose range of 1 kGy to 10 MGy while maintaining the temperature range of 250 to 400 ° C., preferably 250 to 350 ° C. Irradiate. At this time, the above-described firing and radiation irradiation may be performed simultaneously. If the temperature of the atmosphere is lower than 250 ° C., the radiation crosslinking reaction of the fluororesin does not occur, and if the temperature of the atmosphere exceeds 400 ° C., the thermal decomposition of the fluororesin is promoted and the material properties are deteriorated. In addition, if the irradiation dose is less than 1 kGy, the reaction by radiation is insufficient, and no improvement in characteristics can be expected.
Past studies have shown that irradiation with radiation exceeding 0 MGy does not significantly improve the properties of the fluororesin itself due to crosslinking, and further irradiation is not preferred.

【0014】放射線の照射によってフッ素樹脂が架橋す
るとともに、基材とフッ素樹脂が化学反応することによ
り両者が強固に接着する。またこの方法によれば、フッ
素樹脂膜の表面を平滑にし、かつ厚さの均一性が膜厚の
平均値に対して±10%以内となるようにすることがで
きる。厚さの均一性が±10%以内よりも大きくなる
と、材料としての寸法精度や外観上の問題が生じるだけ
でなく、特に耐摩耗性が要求される用途で利用される場
合、摩擦面が部分的な点接触となり局所的に摩耗を起こ
し易くなり好ましくない。フッ素樹脂膜をこのように均
一に調製できる理由は、樹脂をその結晶融点以上の温度
範囲に保ちながら電離性放射線を照射するので、樹脂が
動き易い状況下にあり、なおかつ架橋する際に樹脂がわ
ずかに収縮することによって表面張力が発生するためで
あると考えられる。
[0014] Irradiation of the radiation causes crosslinking of the fluororesin, and the base material and the fluororesin chemically adhere to each other due to a chemical reaction. Further, according to this method, the surface of the fluororesin film can be made smooth, and the uniformity of the thickness can be made within ± 10% of the average value of the film thickness. If the thickness uniformity is greater than ± 10%, not only the dimensional accuracy and appearance of the material will be problematic, but also if the friction surface is used particularly in applications requiring wear resistance. Point contact is likely to occur locally, which is not preferable. The reason that the fluororesin film can be prepared uniformly in this way is that the resin is irradiated with ionizing radiation while maintaining the resin in a temperature range not lower than its crystal melting point, so that the resin is in a state where it is easy to move, and when the resin is crosslinked, It is considered that the surface tension is generated by the slight contraction.

【0015】放射線の照射によって得られる改質フッ素
樹脂被覆材の膜厚は300μm以下であるのが好まし
い。膜厚が300μmを超えると架橋処理時に発生する
ガスにより変形が生じ易く、また架橋した樹脂内部で発
泡も起こり易くなるため好ましくない。この膜厚は、被
覆工程においてディスパージョンの粉体濃度を制御する
か、もしくは塗布回数を選択することによって任意に調
整できる。フッ素樹脂フィルムを基材の表面に張り付け
る場合は、フィルムの厚さを調整することによって最終
的なフッ素樹脂膜の厚さを調整できる。
[0015] The thickness of the modified fluororesin coating material obtained by irradiation with radiation is preferably 300 µm or less. If the film thickness exceeds 300 μm, the gas generated during the cross-linking treatment tends to cause deformation, and foaming easily occurs inside the cross-linked resin, which is not preferable. This film thickness can be arbitrarily adjusted by controlling the powder concentration of the dispersion in the coating step or by selecting the number of times of application. When the fluororesin film is attached to the surface of the base material, the final thickness of the fluororesin film can be adjusted by adjusting the thickness of the film.

【0016】フッ素樹脂と基材の化学的な結合状態は、
材料表面の元素を定性的および定量的に分析することが
できて、かつ得られるシグナルの化学シフトから各原子
の結合状態を解明できるX線光電子分光装置(ESC
A)によって確認することができる。
The chemical bonding state between the fluororesin and the substrate is as follows:
An X-ray photoelectron spectroscopy (ESC) capable of qualitatively and quantitatively analyzing elements on a material surface and elucidating the bonding state of each atom from a chemical shift of a signal obtained.
A) can be confirmed.

【0017】本発明におけるフッ素樹脂としては、テト
ラフルオロエチレン系重合体、その共重合体であるポリ
テトラフルオロエチレン(PTFE)、テトラフルオロ
エチレン・ヘキサフルオロプロピレン共重合体(FE
P)、テトラフルオロエチレン・パーフルオロアルキル
ビニルエーテル共重合体(PFA)、エチレン・テトラ
フルオロエチレン系共重合体(ETFEおよびPVd
F)などがあり、2種類以上の樹脂からなるそれらの混
合樹脂材料、およびこれらにフッ素樹脂以外の異種成分
を添加した樹脂組成からなるものも含む。そのような異
種成分としては例えばガラス、カーボン、金属、金属酸
化物、セラミックス、耐熱性有機材料、鉱物等のそれぞ
れ繊維状あるいは粉体状のものが挙げられる。
As the fluororesin in the present invention, a tetrafluoroethylene polymer, a polytetrafluoroethylene (PTFE) which is a copolymer thereof, and a tetrafluoroethylene / hexafluoropropylene copolymer (FE) are used.
P), tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA), ethylene / tetrafluoroethylene copolymer (ETFE and PVd
F) and the like, and also includes those made of a mixed resin material composed of two or more kinds of resins, and those composed of a resin composition obtained by adding a different component other than a fluororesin to these. Examples of such different components include fibrous or powdery materials such as glass, carbon, metals, metal oxides, ceramics, heat-resistant organic materials, and minerals.

【0018】本発明における電離性放射線とは、電子
線、X線、中性子線、高エネルギーイオン、あるいはこ
れらの混合放射線をいう。電離性放射線を照射する際の
雰囲気の温度制御は、通常の気体循環式の恒温槽、赤外
線ヒーターあるいはパネルヒーターなど間接あるいは直
接的な熱源を利用して雰囲気を加熱することによって行
うか、あるいは電子加速器から得られる電子線のエネル
ギーを制御することによって発生する熱をそのまま熱源
として利用することができる。さらに、本発明の無酸素
雰囲気下における照射とは、真空下の他、大気をヘリウ
ムや窒素などの不活性ガスで置き換えた雰囲気をいう。
無酸素雰囲気を用いることによって、照射中にフッ素樹
脂と基材との化学反応ならびにフッ素樹脂の架橋反応が
促進され、逆に酸化分解が起こることを防ぐことができ
る。
The ionizing radiation in the present invention means an electron beam, an X-ray, a neutron beam, a high energy ion, or a mixed radiation thereof. The temperature of the atmosphere during irradiation with ionizing radiation is controlled by heating the atmosphere using an indirect or direct heat source such as a normal gas circulation type thermostat, infrared heater or panel heater, or electronic control. The heat generated by controlling the energy of the electron beam obtained from the accelerator can be directly used as a heat source. Further, the irradiation in an oxygen-free atmosphere of the present invention refers to an atmosphere in which the atmosphere is replaced with an inert gas such as helium or nitrogen, in addition to a vacuum.
By using an oxygen-free atmosphere, the chemical reaction between the fluororesin and the base material and the crosslinking reaction of the fluororesin during irradiation are promoted, and conversely, oxidative decomposition can be prevented.

【0019】本発明で基材として用いる材料の形状は任
意にその形を選ぶことができるが、板状、箔状、管状、
あるいは繊維状などが好ましい。その材質としては銅、
アルミニウム、およびそれらの合金などの金属材料のほ
か、セラミックス、ガラス、あるいは高分子材料(例え
ばポリイミド樹脂)などが挙げられ、100℃以上の耐
熱性を有していて、フッ素樹脂と放射線化学反応を起こ
す全ての材料が適用される。
The shape of the material used as the base material in the present invention can be arbitrarily selected.
Alternatively, fibrous or the like is preferable. The material is copper,
In addition to metal materials such as aluminum and their alloys, ceramics, glass, and polymer materials (for example, polyimide resin) are listed. All materials that wake up apply.

【0020】[0020]

【実施例】以下に実施例を挙げて本発明を具体的に説明
するが、本発明の範囲はこれらの実施例によって限定さ
れるものではなく、当業者が容易になし得る変形や構成
要素の置換を含む特許請求の範囲の記載によって本発明
の範囲が規定される。
EXAMPLES The present invention will be specifically described below with reference to examples. However, the scope of the present invention is not limited by these examples, and modifications and structural elements which can be easily made by those skilled in the art. The scope of the invention is defined by the appended claims, including substitutions.

【0021】[0021]

【実施例1】水とアセトンからなる分散媒100部に対
して平均粒径0.25μmのPTFEファインパウダー
60部を分散させた液体を調製した。この液体を厚さが
75μmで5cm×5cmの大きさのポリイミド樹脂フィル
ム(KAPTON、デュポン社製、以下これを「カプトン」と
いう)に塗布しては乾燥する操作を繰り返し行い、次い
で、この複合膜材を340℃で焼成することによって厚
さ110μmの予備成形体を作製した。この予備成形体
を340℃、アルゴンガス雰囲気の照射容器に移し、電
子加速器で300kVに加速された電子を100kGy照射
した。架橋反応によってパウダー粒子は完全に消失し、
塗布したPTFE層は透明になった。得られた被覆材に
おいて、曲げや擦りによってもカプトンとPTFE層の
剥離は起こらず、強固な接着状態になった。
Example 1 A liquid was prepared by dispersing 60 parts of PTFE fine powder having an average particle size of 0.25 μm in 100 parts of a dispersion medium composed of water and acetone. This liquid is applied to a polyimide resin film (KAPTON, manufactured by DuPont, hereinafter referred to as “Kapton”) having a thickness of 75 μm and a size of 5 cm × 5 cm, and drying is repeated. By firing the material at 340 ° C., a preformed body having a thickness of 110 μm was produced. The preform was transferred to an irradiation container at 340 ° C. in an argon gas atmosphere, and irradiated with electrons accelerated to 300 kV by an electron accelerator at 100 kGy. Due to the crosslinking reaction, the powder particles completely disappear,
The applied PTFE layer became transparent. In the obtained coating material, the Kapton and the PTFE layer did not peel even by bending or rubbing, and a strong adhesion state was obtained.

【0022】この被覆材の表面状態をESCAにより分
析した。ポリイミドにおける285.6eVの炭素原子と
芳香環との結合を示すシグナルおよび289.2eVの炭
素原子と酸素原子の結合を示すシグナルが大幅に減少
し、PTFEと炭素原子の結合を示すシグナルが検出さ
れ、カプトンにPTFEが化学的に結合していることが
確認された。ESCAによるカプトンの測定シグナルを
図1に示す。炭素原子の結合するサイトがベンゼン環お
よび酸素原子であることを示している。また、カプトン
/PTFE被覆材の測定シグナルを図2に示す。炭素原
子の結合するサイトが主としてフッ素原子であることを
示している。またカプトン、およびカプトン/PTFE
被覆材における元素比を下の表1に示す。PTFEの複
合化によりその膜の表面にフッ素原子が結合している様
子を示している。
The surface condition of the coating material was analyzed by ESCA. In the polyimide, the signal indicating the bond between the carbon atom of 285.6 eV and the aromatic ring and the signal indicating the bond between the carbon atom and the oxygen atom of 289.2 eV were greatly reduced, and the signal indicating the bond between PTFE and the carbon atom was detected. It was confirmed that PTFE was chemically bonded to Kapton. The measurement signal of Kapton by ESCA is shown in FIG. This indicates that the site to which the carbon atom is bonded is a benzene ring and an oxygen atom. FIG. 2 shows measurement signals of the Kapton / PTFE coating material. This indicates that the site to which the carbon atom is bonded is mainly a fluorine atom. Kapton and Kapton / PTFE
The element ratio in the coating material is shown in Table 1 below. This shows a state where fluorine atoms are bonded to the surface of the film due to the composite of PTFE.

【0023】[0023]

【表1】 [Table 1]

【0024】次いで、この被覆材についてその厚さを試
料の任意の5点でマイクロメーターにより測定したとこ
ろ、105μm±2μmであり、平滑な表面を有する均
一な厚さの被覆材が得られた。またこの被覆材を切り抜
いてASTM-1822L型のダンベル試験片にして、インストロ
ンによって引張試験を行ったところ、未処理のカプトン
(厚さ75μm)と同等の良好な値を示した。引張特性
として破断伸びと引張強度の値を下の表2に示す。
Next, when the thickness of the coating material was measured with a micrometer at any five points of the sample, the thickness was 105 μm ± 2 μm, and a coating material having a smooth surface and a uniform thickness was obtained. The coating material was cut out into a ASTM-1822L type dumbbell test piece and subjected to a tensile test by Instron. As a result, a good value equivalent to that of untreated Kapton (thickness: 75 μm) was shown. Table 2 below shows the values of elongation at break and tensile strength as tensile properties.

【0025】[0025]

【表2】 [Table 2]

【0026】[0026]

【実施例2】水とアセトンからなる分散媒100部に対
して平均粒径0.3μmのPTFEファインパウダー5
0部を分散させた液体を調製した。この液体を厚さが5
0μmで5cm×5cmの大きさのチタン箔に塗布して乾燥
し、次いで、この複合膜材を340℃で焼成することに
よって厚さ66μmの予備成形体を作製した。この予備
成形体を340℃、アルゴンガス雰囲気の照射容器に移
し、電子加速器で800kVに加速された電子を500kG
y照射した。実施例1と同様に、架橋反応によってパウ
ダー粒子は完全に消失し、塗布したPTFE層は透明に
なった。得られた被覆材において、曲げや擦りによって
もチタン箔とPTFE層の剥離は起こらず、強固な接着
状態になった。
Example 2 PTFE fine powder 5 having an average particle size of 0.3 μm with respect to 100 parts of a dispersion medium composed of water and acetone.
A liquid in which 0 parts were dispersed was prepared. This liquid has a thickness of 5
A 0 μm, 5 cm × 5 cm size titanium foil was applied and dried, and then the composite film was fired at 340 ° C. to produce a 66 μm thick preform. The preform was transferred to an irradiation container at 340 ° C. in an argon gas atmosphere, and electrons accelerated to 800 kV by an electron accelerator were supplied to 500 kG.
Irradiated y. As in Example 1, the cross-linking reaction completely eliminated the powder particles, and the applied PTFE layer became transparent. In the obtained coating material, peeling of the titanium foil and the PTFE layer did not occur even by bending or rubbing, resulting in a strong adhesion state.

【0027】この被覆材の断面を電子顕微鏡により観察
したところ、チタン箔とPTFEの接着性が良好である
ことが確認された。また、PTFEの表面をサンドペー
パーできれいに研磨し、その表面状態についてESCA
により分析したところ、460.8eVのチタン原子のシ
グナルとともに466.4eVに改質PTFEとチタン原
子の結合によるシグナルが検出され、化学的に結合して
いることが確認された。
Observation of the cross section of this coating material with an electron microscope confirmed that the adhesion between the titanium foil and PTFE was good. In addition, the surface of the PTFE was polished cleanly with sandpaper, and the surface condition was evaluated by ESCA.
As a result, a signal due to the bonding of the modified PTFE and the titanium atom was detected at 466.4 eV together with the signal of the titanium atom at 460.8 eV, and it was confirmed that the bonding was achieved chemically.

【0028】[0028]

【実施例3】水とアセトンからなる分散媒100部に対
して平均粒径0.45μmのPTFEファインパウダー
40部を分散させた液体を調製した。この液体を厚さが
75μmで5cm×5cmの大きさのアルミニウム板に塗布
して乾燥する操作を繰り返し行い、次いで、この複合板
材を340℃で焼成することによって厚さ1.2mmの予
備成形体を作製した。この予備成形体を340℃、アル
ゴンガス雰囲気の照射容器に移し、電子加速器で2MVに
加速された電子を150kGy照射した。実施例1と同様
に、架橋反応によってパウダー粒子は完全に消失し、塗
布したPTFE層は透明になった。得られた被覆材にお
いて、曲げや擦りによってもアルミニウム板とPTFE
層の剥離は起こらず、強固な接着状態になった。
Example 3 A liquid was prepared by dispersing 40 parts of PTFE fine powder having an average particle size of 0.45 μm in 100 parts of a dispersion medium composed of water and acetone. This liquid is repeatedly applied to an aluminum plate having a thickness of 75 μm and a size of 5 cm × 5 cm and dried, and then the composite plate material is fired at 340 ° C. to obtain a 1.2 mm-thick preform. Was prepared. The preform was transferred to an irradiation container at 340 ° C. in an argon gas atmosphere, and irradiated with electrons accelerated to 2 MV by an electron accelerator at 150 kGy. As in Example 1, the cross-linking reaction completely eliminated the powder particles, and the applied PTFE layer became transparent. In the obtained coating material, the aluminum plate and PTFE can be bent or rubbed.
No delamination occurred, resulting in a strong bond.

【0029】この被覆材の断面を電子顕微鏡により観察
したところ、アルミニウム板とPTFEの接着性が良好
であることが確認された。また、この被覆材の表面状態
について実施例2と同様にしてESCAにより分析した
ところ、117.5eVのアルミニウム原子のシグナルと
ともに122.9eVに改質PTFEとアルミニウム原子
の結合によるシグナルが検出され、化学的に結合してい
ることが確認された。
When the cross section of this coating material was observed with an electron microscope, it was confirmed that the adhesion between the aluminum plate and PTFE was good. When the surface condition of this coating material was analyzed by ESCA in the same manner as in Example 2, a signal due to the bonding of the modified PTFE and the aluminum atom was detected at 122.9 eV together with a signal of 117.5 eV of the aluminum atom. It was confirmed that they were bound together.

【0030】またこの被覆材および比較対照としてのP
TFE100%のフィルム(厚さ1mm)について、スラ
スト式摩擦摩耗試験機により動摩擦係数と比摩耗量を測
定したところ、被覆材において良好な値を示した。試験
結果を下の表3に示す。PTFEフィルムは異常摩耗を
起こしフィルムが削られるのに対して、改質された被覆
材においては摩耗が著しく抑制されていることを示して
いる。
The coating material and P as a control were
The dynamic friction coefficient and the specific wear amount of a 100% TFE film (thickness: 1 mm) were measured by a thrust-type friction and wear tester. The test results are shown in Table 3 below. This indicates that the PTFE film causes abnormal abrasion and the film is shaved, whereas the abrasion is significantly suppressed in the modified coating material.

【0031】[0031]

【表3】 [Table 3]

【0032】[0032]

【実施例4】FEPディスパージョン溶液(銘柄120
−J:三井・デュポンフロロケミカル株式会社製)(平
均粒径0.2μm、分散媒100部に対してFEP54
部を分散)を厚さが500μmで5cm×5cmの大きさの
銅板に塗布して乾燥し、次いで、この銅板を270℃で
焼成することによって厚さ550μmの予備成形体を作
製した。この予備成形体を280℃、窒素ガス雰囲気の
照射容器に移し、電子加速器で2MVに加速された電子を
300kGy照射した。実施例1と同様に、架橋反応によ
ってパウダー粒子は完全に消失し、塗布したFEP層は
透明になった。得られた被覆材において、曲げや擦りに
よっても銅板とFEP層の剥離は起こらず、強固な接着
状態になった。
Example 4 FEP dispersion solution (brand 120
-J: Mitsui-Dupont Fluorochemical Co., Ltd.) (average particle size: 0.2 μm, FEP54 to 100 parts of dispersion medium)
(A part dispersed) was applied to a copper plate having a thickness of 500 μm and a size of 5 cm × 5 cm, dried and then fired at 270 ° C. to produce a preform having a thickness of 550 μm. The preformed body was transferred to an irradiation container in a nitrogen gas atmosphere at 280 ° C., and irradiated with electrons accelerated to 2 MV by an electron accelerator at 300 kGy. As in Example 1, the powdery particles completely disappeared due to the crosslinking reaction, and the applied FEP layer became transparent. In the obtained coating material, the copper plate and the FEP layer did not peel even by bending or rubbing, and a strong adhesion state was obtained.

【0033】この被覆材の断面を電子顕微鏡により観察
したところ、銅板とPTFEの接着性が良好であること
が確認された。この被覆材の表面状態について実施例2
と同様にしてESCAにより分析したところ、122.
5eVの銅原子のシグナルとともに127.7eVに改質F
EPと銅原子の結合によるシグナルが検出され、化学的
に結合していることが確認された。
When the cross section of this coating material was observed with an electron microscope, it was confirmed that the adhesion between the copper plate and PTFE was good. Example 2 Regarding the surface condition of this coating material
When analyzed by ESCA in the same manner as described above, 122.
Modified F to 127.7 eV with a signal of copper atom of 5 eV
A signal due to the binding of EP and a copper atom was detected, and it was confirmed that they were chemically bound.

【0034】[0034]

【発明の効果】本発明の方法によれば、ポリイミドなど
の基材に被覆されたフッ素樹脂はこの基材に支持された
状態で放射線照射され、基材との間で化学反応ならびに
フッ素樹脂自体の架橋反応が進行する。従って、基材と
フッ素樹脂膜が化学的結合によって強固に接着していて
平滑な表面かつ均一な膜厚を有するフッ素樹脂被覆材を
容易に製造することができる。
According to the method of the present invention, a fluororesin coated on a base material such as polyimide is irradiated with radiation while being supported by the base material, and undergoes a chemical reaction with the base material and the fluororesin itself. Cross-linking reaction proceeds. Therefore, it is possible to easily produce a fluororesin coating material having a smooth surface and a uniform film thickness by firmly bonding the substrate and the fluororesin film by chemical bonding.

【図面の簡単な説明】[Brief description of the drawings]

【図1】ESCAによるカプトンの測定シグナルを示す
グラフである。
FIG. 1 is a graph showing a measured signal of Kapton by ESCA.

【図2】ESCAによるカプトン/PTFE被覆材の測
定シグナルを示すグラフである。
FIG. 2 is a graph showing measured signals of a Kapton / PTFE coating material by ESCA.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C08J 7/00 305 C08J 7/00 305 // C08L 79:08 C08L 79:08 (72)発明者 田畑 米穂 東京都練馬区春日町5−32−1 ヒルズ練 馬春日町601 Fターム(参考) 4D075 BB29X BB42Z DA06 DA15 DB01 DB13 DB14 DB53 EA21 EB18 4F073 AA05 AA32 BA31 BB01 BB03 CA41 CA42 CA65 EA02 EA65 HA05 4F100 AB01A AB03 AB10 AB12 AB33 AD00A AG00A AK17B AK18B AK49A AL01B AL05B AT00A BA02 BA07 DA11 DA20 DE01 EH46 EJ05B EJ42 EJ52 EJ53 GB07 GB51 JB01 JJ03 JJ03A JK02 JK09 JL06 JL11 JL14 YY00B──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C08J 7/00 305 C08J 7/00 305 // C08L 79:08 C08L 79:08 (72) Inventor Yone Tabata Ho 5-2-2-1, Kasugacho, Nerima-ku, Tokyo Hills Nerima Kasugacho 601 F-term (reference) 4D075 BB29X BB42Z DA06 DA15 DB01 DB13 DB14 DB53 EA21 EB18 4F073 AA05 AA32 BA31 BB01 BB03 CA41 CA42 CA65 EA02 EA65 HA05 4F100 AB01 AB12 AB33 AD00A AG00A AK17B AK18B AK49A AL01B AL05B AT00A BA02 BA07 DA11 DA20 DE01 EH46 EJ05B EJ42 EJ52 EJ53 GB07 GB51 JB01 JJ03 JJ03A JK02 JK09 JL06 JL11 JL14 YY00B

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 フッ素樹脂の融点以上の温度において熱
的安定性を有する基材の表面が架橋した前記フッ素樹脂
の膜によって被覆されていて、基材とフッ素樹脂の膜が
化学的な結合により強固に接着している、改質フッ素樹
脂被覆材。
The surface of a substrate having thermal stability at a temperature equal to or higher than the melting point of the fluororesin is covered with a crosslinked fluororesin film, and the substrate and the fluororesin film are chemically bonded to each other. A modified fluororesin coating material that is strongly bonded.
【請求項2】 フッ素樹脂の膜厚が300μm以下であ
り、かつ厚さの均一性が膜厚の平均値に対して±10%
以内である、請求項1に記載の改質フッ素樹脂被覆材。
2. The film thickness of the fluororesin is 300 μm or less, and the uniformity of the thickness is ± 10% with respect to the average value of the film thickness.
The modified fluororesin coating material according to claim 1, which is within the range.
【請求項3】 フッ素樹脂が、テトラフルオロエチレン
系重合体およびテトラフルオロエチレン系共重合体から
選択された一種類または二種類以上のものである、請求
項1に記載の改質フッ素樹脂被覆材。
3. The modified fluororesin coating material according to claim 1, wherein the fluororesin is one or more selected from tetrafluoroethylene-based polymers and tetrafluoroethylene-based copolymers. .
【請求項4】 基材が、ポリイミド樹脂、金属材料、セ
ラミックス、およびガラスから選択されたものであり、
かつ耐熱性に優れた材料である、請求項1に記載の改質
フッ素樹脂被覆材。
4. The base material is selected from a polyimide resin, a metal material, ceramics, and glass,
The modified fluororesin coating material according to claim 1, which is a material having excellent heat resistance.
【請求項5】 基材が、板状、箔状、管状、および繊維
状から選択されたいずれかの形態の材料である、請求項
1に記載の改質フッ素樹脂被覆材。
5. The modified fluororesin coating material according to claim 1, wherein the substrate is a material in any form selected from a plate, a foil, a tube, and a fiber.
【請求項6】 フッ素樹脂の融点以上の温度において熱
的安定性を有する基材の表面を前記フッ素樹脂で被覆
し、次いでフッ素樹脂の膜の表面に電離性放射線を照射
することによって、フッ素樹脂の架橋反応およびフッ素
樹脂と基材表面との化学反応を同時に生じさせ、それに
よって両者の強固な接着を達成することを特徴とする、
改質フッ素樹脂被覆材を製造する方法。
6. A method of coating a surface of a substrate having thermal stability at a temperature equal to or higher than the melting point of the fluororesin with the fluororesin, and then irradiating the surface of the fluororesin film with ionizing radiation. A cross-linking reaction and a chemical reaction between the fluororesin and the substrate surface simultaneously, thereby achieving a strong adhesion between the two.
A method for producing a modified fluororesin coating material.
【請求項7】 前記被覆工程が、フッ素樹脂のペースト
またはフッ素樹脂を混入している液体を基材の表面に塗
布するか、あるいはフッ素樹脂フィルムを基材の表面に
張り付けることによって行われ、電離性放射線を照射し
た後のフッ素樹脂被覆膜の厚さの均一性が膜厚の平均値
に対して±10%以内である、請求項6に記載の製造方
法。
7. The coating step is performed by applying a fluororesin paste or a liquid containing the fluororesin to the surface of the substrate, or by attaching a fluororesin film to the surface of the substrate, The method according to claim 6, wherein the uniformity of the thickness of the fluororesin coating film after irradiation with ionizing radiation is within ± 10% of the average value of the film thickness.
【請求項8】 電離性放射線の照射が無酸素雰囲気下で
250〜400℃の範囲の温度で行われ、かつ照射線量
が1kGy〜10MGyの範囲である、請求項6に記載の製造
方法。
8. The method according to claim 6, wherein the irradiation with the ionizing radiation is performed in an oxygen-free atmosphere at a temperature in the range of 250 to 400 ° C., and the irradiation dose is in the range of 1 kGy to 10 MGy.
JP2001020901A 2001-01-30 2001-01-30 Modified fluororesin coated material and method for producing the same Pending JP2002225204A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001020901A JP2002225204A (en) 2001-01-30 2001-01-30 Modified fluororesin coated material and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001020901A JP2002225204A (en) 2001-01-30 2001-01-30 Modified fluororesin coated material and method for producing the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011031954A Division JP2011105012A (en) 2011-02-17 2011-02-17 Reformed fluororesin covering material and method of producing the same

Publications (2)

Publication Number Publication Date
JP2002225204A true JP2002225204A (en) 2002-08-14
JP2002225204A5 JP2002225204A5 (en) 2008-03-06

Family

ID=18886537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001020901A Pending JP2002225204A (en) 2001-01-30 2001-01-30 Modified fluororesin coated material and method for producing the same

Country Status (1)

Country Link
JP (1) JP2002225204A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006105859A (en) * 2004-10-07 2006-04-20 Tem-Tech Kenkyusho:Kk Fluorine-containing resin thin film diaphragm pressure sensor and its manufacturing method
JP2010155443A (en) * 2009-01-05 2010-07-15 Sumitomo Electric Fine Polymer Inc Method for manufacturing cross-linked fluororesin composite material
JP2011167965A (en) * 2010-02-19 2011-09-01 Raytech Corp Gradient material product and method for manufacturing the same
JP2011208803A (en) * 2010-03-09 2011-10-20 Sumitomo Electric Fine Polymer Inc Sliding member
JP2011208802A (en) * 2010-03-09 2011-10-20 Sumitomo Electric Fine Polymer Inc Sliding member
JP2011224928A (en) * 2010-04-22 2011-11-10 Sumitomo Electric Fine Polymer Inc Fluororesin-covered material, and method of manufacturing the same
JP2012149248A (en) * 2010-12-27 2012-08-09 Dainippon Printing Co Ltd Laminate and method of manufacturing the same
JP2012244056A (en) * 2011-05-23 2012-12-10 Sumitomo Electric Fine Polymer Inc Method for manufacturing fluororesin substrate
JP2013027875A (en) * 2012-10-25 2013-02-07 Sumitomo Electric Fine Polymer Inc Method for production of crosslinked fluororesin composite material
KR20140031161A (en) * 2011-05-23 2014-03-12 스미토모덴코파인폴리머 가부시키가이샤 High-frequency circuit substrate
WO2015115655A1 (en) 2014-02-03 2015-08-06 Ntn株式会社 Sliding member, rolling axle bearing, and holder
US9776289B2 (en) 2007-06-20 2017-10-03 Sumitomo Electric Fine Polymer, Inc. Fluorocarbon resin composite, cookware, cooker, roller for office automation equipment, belt for office automation equipment, and method for producing them
JP2017190872A (en) * 2016-04-07 2017-10-19 株式会社堀場エステック Valve element and fluid control valve
JPWO2016181674A1 (en) * 2015-05-14 2018-03-01 住友電工ファインポリマー株式会社 Adhesive reinforcing sheet, sliding member, and manufacturing method of adhesive reinforcing sheet

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH058353A (en) * 1991-07-03 1993-01-19 Tokai Rubber Ind Ltd Resin tube
JPH11147291A (en) * 1997-11-18 1999-06-02 Hitachi Cable Ltd Modified fluoroplastic composite material
JPH11185533A (en) * 1997-12-24 1999-07-09 Hitachi Cable Ltd Fluororesin covered wire and cable
JP2000133899A (en) * 1998-10-22 2000-05-12 Hitachi Cable Ltd Printed circuit laminated board
JP2000178362A (en) * 1998-12-17 2000-06-27 Japan Atom Energy Res Inst Fluororesin composite material and its production
JP2002001886A (en) * 2000-06-09 2002-01-08 Three M Innovative Properties Co Fluoroplastic material sheet made possible to be adhered, adhesive fluoroplastic material sheet, and adhesion method and adhesion structure of fluoroplastic material sheet
JP2002525819A (en) * 1998-09-17 2002-08-13 タイコ・エレクトロニクス・ユーケイ・リミテッド Wire insulation

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH058353A (en) * 1991-07-03 1993-01-19 Tokai Rubber Ind Ltd Resin tube
JPH11147291A (en) * 1997-11-18 1999-06-02 Hitachi Cable Ltd Modified fluoroplastic composite material
JPH11185533A (en) * 1997-12-24 1999-07-09 Hitachi Cable Ltd Fluororesin covered wire and cable
JP2002525819A (en) * 1998-09-17 2002-08-13 タイコ・エレクトロニクス・ユーケイ・リミテッド Wire insulation
JP2000133899A (en) * 1998-10-22 2000-05-12 Hitachi Cable Ltd Printed circuit laminated board
JP2000178362A (en) * 1998-12-17 2000-06-27 Japan Atom Energy Res Inst Fluororesin composite material and its production
JP2002001886A (en) * 2000-06-09 2002-01-08 Three M Innovative Properties Co Fluoroplastic material sheet made possible to be adhered, adhesive fluoroplastic material sheet, and adhesion method and adhesion structure of fluoroplastic material sheet

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006105859A (en) * 2004-10-07 2006-04-20 Tem-Tech Kenkyusho:Kk Fluorine-containing resin thin film diaphragm pressure sensor and its manufacturing method
US9776289B2 (en) 2007-06-20 2017-10-03 Sumitomo Electric Fine Polymer, Inc. Fluorocarbon resin composite, cookware, cooker, roller for office automation equipment, belt for office automation equipment, and method for producing them
JP2010155443A (en) * 2009-01-05 2010-07-15 Sumitomo Electric Fine Polymer Inc Method for manufacturing cross-linked fluororesin composite material
JP2011167965A (en) * 2010-02-19 2011-09-01 Raytech Corp Gradient material product and method for manufacturing the same
JP2011208803A (en) * 2010-03-09 2011-10-20 Sumitomo Electric Fine Polymer Inc Sliding member
JP2011208802A (en) * 2010-03-09 2011-10-20 Sumitomo Electric Fine Polymer Inc Sliding member
JP2011224928A (en) * 2010-04-22 2011-11-10 Sumitomo Electric Fine Polymer Inc Fluororesin-covered material, and method of manufacturing the same
CN102267267A (en) * 2010-04-22 2011-12-07 住友电工超效能高分子股份有限公司 Fluororesin covering materials and method of preparing the same
KR101749350B1 (en) * 2010-04-22 2017-06-20 스미토모덴코파인폴리머 가부시키가이샤 Fluororesin covering materials and method 0f preparing the same
JP2012149248A (en) * 2010-12-27 2012-08-09 Dainippon Printing Co Ltd Laminate and method of manufacturing the same
US9497852B2 (en) 2011-05-23 2016-11-15 Sumitomo Electric Fine Folymer, Inc. High-frequency circuit substrate
JPWO2012161162A1 (en) * 2011-05-23 2014-07-31 住友電工ファインポリマー株式会社 High frequency circuit board
KR20140031161A (en) * 2011-05-23 2014-03-12 스미토모덴코파인폴리머 가부시키가이샤 High-frequency circuit substrate
JP2012244056A (en) * 2011-05-23 2012-12-10 Sumitomo Electric Fine Polymer Inc Method for manufacturing fluororesin substrate
KR101883677B1 (en) * 2011-05-23 2018-07-31 스미토모덴코파인폴리머 가부시키가이샤 High-frequency circuit substrate
JP2013027875A (en) * 2012-10-25 2013-02-07 Sumitomo Electric Fine Polymer Inc Method for production of crosslinked fluororesin composite material
WO2015115655A1 (en) 2014-02-03 2015-08-06 Ntn株式会社 Sliding member, rolling axle bearing, and holder
US10465750B2 (en) 2014-02-03 2019-11-05 Ntn Corporation Sliding member, rolling bearing, and cage
JPWO2016181674A1 (en) * 2015-05-14 2018-03-01 住友電工ファインポリマー株式会社 Adhesive reinforcing sheet, sliding member, and manufacturing method of adhesive reinforcing sheet
JP2017190872A (en) * 2016-04-07 2017-10-19 株式会社堀場エステック Valve element and fluid control valve

Similar Documents

Publication Publication Date Title
JP2002225204A (en) Modified fluororesin coated material and method for producing the same
JP4711603B2 (en) Compositions and methods for adhering fluoropolymers
JP5601013B2 (en) Fluororesin coating material and method for producing the same
JP3608406B2 (en)   Method for producing modified fluororesin molding
JP5401723B2 (en) Fluororesin composite material, cooking utensil, cooker, roller for OA equipment, belt for OA equipment, and manufacturing method thereof
WO2014083978A1 (en) Sliding member
JP2011105012A (en) Reformed fluororesin covering material and method of producing the same
Inagaki et al. Improved adhesion of poly (tetrafluoroethylene) by NH3-plasma treatment
EP0543293A2 (en) Coated article and method for producing same
JP2019104170A (en) Metal-resin laminate
JP2011074938A (en) Sliding component and method of manufacturing the same
Kaplan et al. Plasma processes and adhesive bonding of polytetrafluoroethylene
JP4665149B2 (en) Method for producing a modified fluororesin molding
JP3679043B2 (en) Cross-linked fluororesin composite material and method for producing the same
JP3948313B2 (en) Sliding member
JPH03164246A (en) Composite structural body
Zhang et al. Adhesion improvement of a poly (tetrafluoroethylene)-copper laminate by thermal graft copolymerization
JP2005113116A (en) Tetrafluoroethylene polymer alloy and method for producing the same
JPH11172065A (en) Molded fluororesin article having high cut-through resistance, insulated wire, and hose
WO2024106490A1 (en) Sliding member and method for producing sliding member
JP3750686B2 (en) Modified fluoroplastic molding
JP6690101B2 (en) Method for manufacturing fluororesin coated body
Dwight Surface analysis and adhesive bonding I. Fluoropolymers
WO2009122920A1 (en) Painting member
JP2002338713A (en) Fluororesin molded product partially modified by radiation

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080118

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100520

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100716

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110217

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110407