WO2009122920A1 - Painting member - Google Patents

Painting member Download PDF

Info

Publication number
WO2009122920A1
WO2009122920A1 PCT/JP2009/055386 JP2009055386W WO2009122920A1 WO 2009122920 A1 WO2009122920 A1 WO 2009122920A1 JP 2009055386 W JP2009055386 W JP 2009055386W WO 2009122920 A1 WO2009122920 A1 WO 2009122920A1
Authority
WO
WIPO (PCT)
Prior art keywords
coarse particles
smooth surface
film layer
resin film
resin
Prior art date
Application number
PCT/JP2009/055386
Other languages
French (fr)
Japanese (ja)
Inventor
吉田由孝
鈴木和政
野村賢司
富橋信行
Original Assignee
株式会社吉田エス・ケイ・テイ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社吉田エス・ケイ・テイ filed Critical 株式会社吉田エス・ケイ・テイ
Priority to JP2010505584A priority Critical patent/JP4928632B2/en
Publication of WO2009122920A1 publication Critical patent/WO2009122920A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/08Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain an anti-friction or anti-adhesive surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/02Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain a matt or rough surface

Definitions

  • the present invention relates to a coated member that is most suitable for peeling and non-adhesiveness of adhesive substances in equipment and devices that handle adhesive substances.
  • Patent Documents 1 and 2 have proposed a method of preventing adhesion of an adhesive substance by attaching irregularities having an average surface roughness of 1 to 30 / z m to the surface of a substrate. Further, in the cited reference 2, when the arithmetic average height of the contour curve of the surface layer exceeds 25 x m, it is described that it is not preferable because the large irregularities cause damage to the adhesive material such as an adhesive tape.
  • An object of the present invention is to provide a painted member capable of significantly improving the non-adhesiveness over the conventional non-adhesive surface. Means to solve the problem
  • the coated member of the present invention comprises a substrate, a resin film layer having a smooth surface having an average surface roughness (Ra) of 15.0 m or less formed on the surface of the substrate, and a flat resin film layer. It is characterized in that it has coarse particles fixed to the smooth surface and having an average particle diameter (R) of not less than 50.0 m.
  • Ra average surface roughness
  • the surface of the coated member becomes a combination of the flat surface and the protruding particles, and the protrusions of the particles are emphasized.
  • a space is created between the adhesive substance in contact with the painted member and the smooth surface.
  • the contact of the adhesive substance to the coating member is a projection, the contact area is reduced.
  • the adhesion of the adhesive coated member 8 can be reduced, and the adhesive substance can be easily peeled off from the coated member.
  • the resin film layer is coated on the base material, even if the coarse particles fall off, the base material will not be exposed and the corrosion resistance is excellent.
  • the surface of the resin coating layer can be made smooth.
  • the non-stickiness can be further emphasized.
  • non-adhesiveness can be emphasized by setting the average particle diameter (R) of the coarse particles to 500 ⁇ or more.
  • the average surface roughness (R a) indicates the arithmetic average roughness of J I S B 0 6 0 1: 2 0 0 1. Moreover, an average particle diameter shows an area average diameter.
  • the coarse particles are preferably fixed to a smooth surface in a single layer.
  • the projections of the particles can be further emphasized and the adhesion of the adhesive substance can be reduced.
  • the occupied area ratio of the coarse particles to the smooth surface is 5 to 9 9%.
  • both flat and raised surfaces need to be present. If the ratio of the area occupied by the coarse particles to the smooth surface is in the above range, the projections of the particles can be emphasized. If the occupied area ratio (%) is less than 5%, the effect of the projections of the particles is diminished, and if it is more than 99%, the overlapping of the coarse particles is large and the adhesion of the coarse particles to the resin film layer is deteriorated.
  • coarse particles are preferably formed from a material whose shape does not change due to melting and sublimation. Even if the resin film layer is exposed to temperature change, the shape of the coarse particles does not change, so the temperature change does not reduce the non-stick effect.
  • the coarse particles are preferably granulated powder containing 1 to 100% by mass of polytetrafluoroethylene. Functionally and economically preferred is to use coarse particles as the above-mentioned granulated powder.
  • the average particle size (R) of the granulated powder is 50 to 300 ⁇ 0. When the average particle size of the granulated powder is in the above range, the projections of the particles can be emphasized.
  • the said resin film layer with a perfluoro compound.
  • a perfluoro compound By forming the resin film layer with a perfluoro compound, a smooth surface having an average surface roughness (R a) of not more than 15.0 can be easily obtained.
  • the contact area of the adhesive substance in contact can be reduced. Also, since the adhesive substance contacts the tip of the projection of the projection particle, the adhesive substance makes shallow contact at the contact periphery. Taking an adhesive tape as an example of an adhesive substance, the adhesive does not get into every corner due to the shallow contact. Therefore, the adhesion is weakened and peeling can be easily performed. Therefore, the stronger the cohesion and the more sticky substance, the stronger the non-sticking effect.
  • Fig. 1 shows an explanatory view of the projection height (H).
  • FIG. 2 shows a surface micrograph (magnification of 50 ⁇ ) of Example 2.
  • FIG. 3 shows a surface micrograph (magnification of 50 ⁇ ) of Example 4.
  • the coated member of the present invention has a substrate, a resin film layer formed on the surface of the substrate, and coarse particles fixed to the resin film layer.
  • the resin film layer is coated on the surface of the target substrate.
  • metals such as iron, SUS, aluminum, copper and their alloys and alumina, ceramics such as alumina, zirconia, magnesia, silicon nitride, aluminum nitride, silicon carbide, boron nitride and the like are preferably used. I will not. It is desirable that the surface of these substrates be roughened.
  • the surface roughening can be performed by, for example, chemical treatment, blasting, or a combination of blasting and ceramic thermal spraying.
  • a primer By coating one, the adhesion between the substrate and the resin film layer is improved.
  • a primer a primer obtained by blending a resin with hexavalent chromic acid, an inorganic primer or an organic primer can be used.
  • the inorganic primer is a combination of a metal and a resin having a complexing ability such as nickel, titanium, molybdenum and the like.
  • epoxy resin polyamide resin, polyurethane resin, polyamide resin, polyimide resin, polysulfone resin, polyether sulfone, polyether sulfone, polyphenylene sulfide, polyether ether ketone can be used.
  • primers can be coated by spray coating or electrostatic powder coating.
  • a primer used here a non-chromium primer is preferable in view of environmental problems and the like.
  • the resin film layer is roughened as described above, and is coated on the primer-coated surface.
  • the material used for the resin film layer preferably has a critical surface tension of 25 NZm or less.
  • Materials used for the resin film layer include polytetrafluoroethylene (PTFE), a copolymer made of one or more of a fusible fluorine resin and a vinyl monomer, and a perfluoro group-containing resin.
  • PTFE polytetrafluoroethylene
  • a non-adhesive resin such as a perfluoro group-containing coupling agent, silicone rubber and silicone resin can be suitably used.
  • copolymers made from a meltable fluororesin and one or more of vinyl monomers include ethylene / tetrafluoroethylene copolymer (ETFE), tetrafluoroethylene Z hexafluoropropylene co-polymer Polymer (FEP), tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA) and copolymer thereof with a small amount of a monomer having a functional group (such as a hydroxyl group or a carboxylic acid group) And those obtained by copolymerizing a small amount of a monomer having a cyclic structure as a comonomer.
  • EFE ethylene / tetrafluoroethylene copolymer
  • FEP tetrafluoroethylene Z hexafluoropropylene co-polymer Polymer
  • PFA perfluoroalkyl vinyl ether copolymer
  • the perfluoro group-containing resin may, for example, be a perfluoro group-containing acrylic resin, a perfluoro group-containing polyol, a urethane resin using a polycarboxylic acid or the like, a perfluoro group-containing epoxy resin, or a perfluoro group-containing polyester resin.
  • Stel resin is mentioned.
  • the perfluoro group-containing coupling agent may, for example, be a silane compound containing a perfluoro group, a zirconium compound containing a perfluoro group, or an aluminate compound containing a perfluoro group.
  • a compound containing fluorine is preferable in terms of contamination, and particularly, a perfluoro compound is preferable. Further, as materials used for the resin film layer, P T F E, F E P and P F A are more preferable.
  • the resin coating layer has a smooth surface having an average surface roughness (R a) of not more than 15.0 / z m. Also preferably, the average surface roughness (R a) is 5 // m or less, more preferably 2 ⁇ or less. When the average surface roughness of the smooth surface is in the above range, the projections of the coarse particles are emphasized, which is effective in reducing the contact area with the adhesive substance. Moreover, the thickness of the resin film layer is :! -300 / m is preferable.
  • the resin coating layer may also contain a high hardness filler to improve the abrasion resistance.
  • a high hardness filler glass fiber, carbon fiber, silicon carbide fiber, alumina fiber, boron fiber, titanium oxide whisker force, silicon carbide whisker, silicon nitride whisker, glass flake, glass bead, silicon carbide powder, graphite powder Can be mentioned.
  • the resin film layer may contain graphite, conductive carbon, titanium oxide force deposited with a conductive agent, titanium oxide, or the like for the purpose of imparting conductivity.
  • the coarse particles are fixed to the smooth surface.
  • the coarse particles are preferably substances which do not change in shape due to melting, sublimation and the like. That is, a material which does not change the projections of the coarse particles depending on the processing temperature is preferred.
  • the shape of the coarse particles may be various shapes such as triangles, squares, and polygons, but spheres are preferable because they can minimize the surface area.
  • the mean particle size (R 2) of the coarse particles is at least 50 // m.
  • the average particle diameter (R) of the coarse particles is preferably 50 to 300 m, more preferably 100 to 100 / m.
  • the coarse particles include non-adhesive particles such as non-adhesive treated glass beads, non-adhesive treated ceramic beads, silicone powder, and non-molten fluorocarbon resin powder.
  • non-adhesive particles such as non-adhesive treated glass beads, non-adhesive treated ceramic beads, silicone powder, and non-molten fluorocarbon resin powder.
  • polytetrafluoroethylene which is a kind of non-molten fluorocarbon resin powder.
  • Granular powder can be preferably used.
  • Granulated powder of polytetrafluoroethylene is used in automatic molding, extrusion molding, etc., JP-B-43-86-11, JP-B-44-22619, JP-B-47-3187. It is a powder for molding as described in JP-A-3-259926 and the like.
  • the granulated powder of polytetrafluoroethylene contains 1 to 100% by weight, preferably 20 to 100% by weight, and more preferably 50 to 100% by weight of polytetrafluoroethylene.
  • the granulated powder may also contain a filler to prevent creep or to improve abrasion resistance and thermal conductivity.
  • the occupied area ratio of such coarse particles to the smooth surface is more preferably 10 to 70%, further preferably 15 to 50%. If the occupied area ratio is less than 5%, the effect of coarse particles is diminished. If the occupied area ratio is greater than 99%, the overlap of coarse particles increases and the adhesion of the coarse particles to the smooth surface becomes worse.
  • the method of fixing the coarse particles to the smooth surface is not particularly limited. For example, coarse particles are attached to a flat surface by static electricity or spraying, and then the material used for the resin film layer is coated with a thickness of 1Z100 to 15 of the coarse particles, and heat baking is performed to smooth the coarse particles. It can be fixed on the surface. The thickness of the material used for fixing is thin and adhesion of the coarse particles to the smooth surface is weak, and if it is thick, the emphasis of the coarse particle projections is weakened and the non-sticking effect is reduced.
  • the coarse particles are preferably fixed in a single layer on the smooth surface.
  • coarse particles may be electrostatically or spray-coated on a smooth surface.
  • the surface was roughened by blast degreasing a 300 O 0 mm x 10 0 mm x 1 mm base material of SUS 302 at 380 ° C for 30 minutes, and using # 240, a pressure of 0.5 MP a.
  • a roughened surface was coated with 12 ⁇ of polyflon enamel (EK 1 909 S 21 L) manufactured by DAIKIN INDUSTRIES CO., LTD. Containing about 25 wt% of the primer PTFE as a primer and dried.
  • Daikin Industries' polyflon containing about 40 wt% of PTF soot Apply enamel (EK3709 S 21 L) to a film thickness of 20 ⁇ m and dry without drying.
  • the classified product (particle size 106 to 250 // m) of the product was uniformly dispersed by an electrostatic powder coating machine.
  • Example 1 From the sprayed top, polyflon enamel (EK 3709 S 21 L) manufactured by Daikin Industries, Ltd. was applied to a thickness of 20 ⁇ m, dried, and fired at 380 ° CX for 20 minutes. This is referred to as Example 1.
  • EK 3709 S 21 L polyflon enamel manufactured by Daikin Industries, Ltd. was applied to a thickness of 20 ⁇ m, dried, and fired at 380 ° CX for 20 minutes. This is referred to as Example 1.
  • the resulting coated plate was enlarged at a magnification of 50 times with a digital microscope VH-Z 75 type manufactured by Keyence Corporation, and the particle size of 10 particles was measured to calculate the area average particle size. In the case of Example 1, it was 220 m.
  • Example 2 was carried out in the same manner as Example 1 except that the spread amount of polytetrafluoroethylene granulated powder manufactured by Daikin Industries, Ltd. was reduced to decrease the occupied area ratio. (Example 3)
  • Example 3 was obtained in the same manner as in Example 1 except that a classified product (particle size of 250 to 355 ⁇ ) of the sintered product was used. The resulting coated plate was enlarged at a magnification of 50 times with a digital microscope VH- ⁇ 75 type manufactured by Keyence Corporation, and the particle diameter of 10 particles was measured to calculate the area average particle diameter. In the case of Example 3, it was 290 m.
  • Example 4 was carried out in the same manner as Example 3 except that the spread amount of the polytetrafluoroethylene powder produced by Daikin Industries, Ltd. was reduced to decrease the occupied area ratio. (Example 5)
  • Example 5 Coating a roughened surface with polyflon enamel (EK 1 909 S 2 1 L) manufactured by Daikin Industries, Ltd. for 15 m and using polytetrafluorinated ethylene granulated powder manufactured by Daikin Industries (M- 39 1 S)
  • Example 5 was carried out in the same manner as Example 1 except that the classified product (particle diameter 35 5 ⁇ to 500 ⁇ ) of the 340 ° CX for 5 hours was used.
  • the resulting coated plate was enlarged at a magnification of 50 times with a digital microscope VH-Z 75 type manufactured by Keyence Corporation, and the particle size of 10 particles was measured to calculate the area average particle size. In the case of Example 5, it was 350 / im.
  • Example 6 was carried out in the same manner as Example 5, except that the spread amount of polytetrafluoroethylene granulated powder manufactured by Daikin Industries, Ltd. was reduced to decrease the occupied area ratio. (Example 7)
  • the surface was roughened by carrying out dry degreasing at 300 ° C. for 30 minutes at 60 ° C. and pressure of 0.5 MP a for 10 minutes.
  • DuPont's primer 420-703 was coated on the roughened surface by 1 5 ⁇ and dried. After drying, PFA powder coating MP-102 manufactured by Mitsui Dupont Fluorochemicals Co., Ltd. containing 10% by weight of PFA was coated, and baked at 400 ° C. for 20 minutes to form a smooth surface with a film thickness of 50 // m 2.
  • Example 7 dispersed product (particle diameter 106 to 250 / _im) of sintered product of 340 ° CX for 5 hours of polytetrafluoroethylene granulated powder (M-39 1 S) manufactured by Daikin Industries, Ltd. Then, 20 parts of EM- 50 OCL manufactured by Mitsui Dupont Fluorochemical Co., Ltd. containing 35% by weight of PFA was applied from above, dried, and baked at 380 ° C. for 20 minutes. This is taken as Example 7.
  • M-391 S polytetrafluoroethylene
  • Example 9 was obtained in the same manner as Example 7 except that ⁇ ! to 500 ⁇ was used.
  • Example 7 The surface roughened in the same manner as in Example 7 was coated with 15 ⁇ m of DuPont primer 420-703 and dried. After drying, Neoflon powder coating NCX-1 manufactured by Daikin Industries, Ltd. containing l O O w t% was baked at 34 ° C. for 3 ° to form a smooth surface with a thickness of 30 ⁇ m. Similar to Example 7, classified product of polytetrafluoroethylene powder powder (M-391S) manufactured by Daikin Industries, Ltd. at a temperature of 40 ° CX for 5 hours (particle diameter 10 6 to 2 The product is sprayed with 50 / xm) and coated with FEP containing 5 5 wt% of FEP Neoflon FEP ND-1 made by Daikin Industries, Ltd. and coated with 2 0 ⁇ and dried after drying at 320 ° C I baked it for a minute. This is assumed to be Example 10.
  • M-391S polytetrafluoroethylene powder powder
  • Daikin Neofen powder powder NCX-1 containing 100% by weight of FEP was overcoated, and baked for 20 minutes at 34 to obtain a smooth surface with a thickness of 80 / m, and Example Daikin Industries, Ltd. polytetrafluoroethylene granulated powder similar to 5
  • Example 3 9 1 S in the same manner as in Example 10 except that the classified product (particle size 35 5 ⁇ m to 5 0 0 ⁇ ⁇ ⁇ ) of sintered product at 3 4 0 ° CX for 5 hours was used Conducted to obtain Example 1 1.
  • Blanking degreasing was performed for 30 minutes at 320 ° C. for 30 minutes at 300 ° C., and blasting was carried out using a pressure of 0.5 MPa, and further Nippon Gotec Co., Ltd. 80 to 100 m of Ni 1 A 1 alloy was deposited by a thermal spraying apparatus manufactured by Co., Ltd. This surface was coated with 12 m of a polyflon enamel (EK 1 909 S 2 1 L) manufactured by Daikin Industries, Ltd. containing about 25 wt% of a primer PTF E and dried. After drying, polyflonamide (EK 3 709 S 2 1 L) manufactured by Daikin Industries Co., Ltd. containing about 40 wt% of PTFE is applied to a film thickness of 25 m, without drying.
  • Polytetrafluoroethylene granulated powder M-391S
  • Polyflon enamel EK 3709 S 21 L manufactured by Daikin Industries, Ltd. was applied to a thickness equivalent to 20 ⁇ thickness, dried, and fired at 380 ° CX for 20 minutes. This is referred to as Example 12.
  • Example 13 Same as Example 12 except that classified product (particle diameter 355 to 500 x m) of sintered product of 340 ° CX for 5 hours of polytetrafluoroethylene granulated powder (M-39 1 S) manufactured by Daikin Industries, Ltd. was used. To obtain Example 13.
  • the surface is roughened in the same manner as in Example 1 and coated with DuPont's primer 420-703 at 15 ⁇ ⁇ , and in the non-dried state, 340 ° CX 5 of polytetrafluoroethylene granulated powder (807- ⁇ ) by Mitsui Dupont Fluorochemicals.
  • the classified product (particle size 500 to 850 / m) of the time-sintered product is dispersed uniformly with an electrostatic powder coating machine, and from there, 100 wt% of P is manufactured by Mitsui Dupont Fluorochemicals
  • PFA powder paint M P_ 102 was coated to a film thickness of 20 ⁇ and baked at 380 ° C. for 30 minutes. This is taken as Example 14.
  • Example 15 Apply 5 ⁇ m of a silicone coating agent PR X-306 manufactured by Toray Industries, Inc. to the roughened surface in the same manner as in Example 1 and dry without drying. A classified product (particle size 500 to 850 ⁇ ) of a sintered product of ethylene granulated powder (807- ⁇ ) for 3 hours at 34 ° C. for 5 hours was dropped onto the surface, and powder not adhering was removed. On top of this, silicone coating agent PR X-306 manufactured by Toray Dow Co., Ltd. was repeatedly applied, and drying was repeated to obtain a film thickness of 40 ⁇ ⁇ ⁇ , and baking was performed at 180 ° C. for 30 minutes. This is referred to as Example 15.
  • Comparative Example 1 was obtained in the same manner as Example 1 except that polytetrafluoroethylene granulated powder (M-39 1 S) manufactured by Daikin Industries, Ltd. was not used.
  • Comparative Example 2 was obtained in the same manner as Example 7 except that polytetrafluoroethylene granulated powder (M-391 S) manufactured by Daikin Industries, Ltd. was not used.
  • Comparative Example 3 was obtained in the same manner as Example 10 except that polytetrafluoroethylene powder (M-39 1 S) manufactured by Daikin Industries, Ltd. was not used.
  • DuPont's primer 420-703 was applied for 15 ⁇ m and dried. After drying, it was baked at 340 ° C. for 30 minutes using a powder powder coating N C X-1 manufactured by Dickin Co., Ltd. containing 10% by weight of FEP, to obtain a smooth surface with a film thickness of 25 ⁇ .
  • Comparative Example 4 Use of Daikin Industries 'PF powder powder AC-5820 (average particle diameter 220 ⁇ m) as coarse particles instead of Daikin Industries' Polytetrafluorethylene Granule Powder (1-39 1 S) Comparative Example 4 was obtained in the same manner as in Example 7 except that firing was carried out at 380 ° C. for 20 minutes. In Comparative Example 4, the coarse particles were meltable with P 2 F A, so when observed on the surface, the particle shape was broken.
  • Comparative Example 5 was obtained in the same manner as in Example 5 except that the amount of the polytetrafluoroethylene granulated powder (M-391 S) manufactured by Daikin Industries, Ltd. was increased and the layers were dispersed in a similar manner to Example 5. The average surface roughness (Ra; S) of the smooth surfaces of the above Examples 1 to 13 and Comparative Examples 1 to 5 was measured.
  • the average surface roughness (R a; S) of the smooth surface was measured using a flat surface having no projected surface, with a surface roughness profile measuring machine HANDY- SURF E- 35 A manufactured by Tokyo Precision Instruments Co., Ltd.
  • each film thickness was measured by using a dual scope MROR manufactured by Fisshjörnsch GmbH.
  • Fig. 1 shows an explanatory view of the projection height (H), which will be described using this.
  • a resin film layer 2 is formed on a substrate 1.
  • the coarse particles 3 are dispersed in the resin film layer 2, and the top coating resin 4 fixes the coarse particles 3.
  • the height of the coarse particles 3 from the surface of the top resin 4 is referred to as a protrusion height H.
  • the ratio of R a was determined from the average surface roughness (R a; S) of the smooth surface and the height of protrusion (H).
  • Ra ratio HZ (Ra; S).
  • each of the examples and comparative examples was observed at a magnification of 100 with a digital microscope VH-Z 75 type manufactured by Keyence Corporation.
  • the average particle size and number per unit area were determined from the observation image, and the occupied area ratio (%) was calculated using this.
  • the adhesion of the coarse particles was measured by the following method.
  • the number of (non-adhesive) coarse particles attached to the gum tape was measured after peeling 10 times at 25 mm width with a gum tape (adhesive force 7.75 N / cm) manufactured by Rinlay Tape Co., Ltd. It was judged. '
  • the non-adhesiveness of the coating member was evaluated as follows.
  • the gum tape (adhesive force: 7.75 N / cm) manufactured by Rinlay Tape Co., Ltd. is used to affix to the coated surface of each example and comparative example, and the speed 1 OmmZ is measured using an AG-X tensile tester manufactured by Shimadzu Corporation A peel stress (N, cm) of 90 ° was measured for 10 minutes. Each result is shown in Table 1.
  • Examples 1 to 6 were able to reduce the non-adhesiveness to 1/3 or less.
  • Example 1 and Example 2 have different occupied area ratios.
  • the non-tacky property was better in Example 2 where the occupied area ratio (%) was lower than Example 1.
  • Example 4 was more non-tacky than Example 3, and Example 6 was more non-tacky than Example 5.
  • Example 2 Example 4, and Example 6 are compared, the non-adhesiveness of Example 6 with a large particle diameter of coarse particles and a large Ra ratio was excellent.
  • Example 6 was able to reduce non-adhesiveness to 1 Z 10 as compared with Comparative Example 1.
  • Example 5 in which the amount of coarse particles dispersed was larger than that in Example 5 described above, coarse particles were stacked in 2 to 3 layers, as compared to Example 5 that was stacked in a single layer. Therefore, all the coarse particles were not fixed to the resin coating layer, and the adhesion of the coarse particles to the resin coating layer was poor. Example 5 was able to reduce non-adhesiveness to 1/2 compared to Comparative Example 5.
  • Examples 7 to 9 using PFA in the resin film layer and using coarse particles having an average particle diameter of 106 m or more and Comparative Example 2 not using coarse particles are compared with Examples 7 to 7. 9 was able to reduce the non-stickiness to almost 1/5.
  • Example 9 in which the particle diameter of the coarse particles is large and the R a ratio is large the non-adhesiveness can be reduced to about 10 as compared with Comparative Example 2.
  • the projections are emphasized, that is, the larger the ratio of Ra, which is the ratio of the average surface roughness (R a) of the smooth surface to the height of protrusions of coarse particles (H), Non-tacky was excellent.
  • Example 7 and Comparative Example 4 in which PFA, which is a fusible resin, was used for coarse particles were compared, the non-adhesiveness could be reduced to about 1%.
  • Comparative Example 4 it was observed that the particle shape was broken. It was found that when the particle shape is broken, the non-adhesiveness is inferior.
  • the example 10-1 1 using the FEP in the resin coating layer and using the coarse particles having an average particle diameter of 106 / m or more with the comparative example 3 not using the coarse particles the example 1 0 1 to 11 could reduce the non-stickiness to almost 1 Z 4 or less.
  • Example 11 in which the particle diameter of the coarse particles is large and the Ra ratio is large the non-adhesiveness can be reduced to about 1 Z 10 as compared with Comparative Example 3.
  • Example 1 2 and Example 1 3 were roughened more than Examples 1 to 6 by spraying N i -A 1 alloy on the surface of the base material. Therefore, the average surface roughness (R a) of the smooth surface is 10 times larger than that of Examples 1 to 6. In the cases of Example 1 2 and Example 1 3 as well, the non-adhesiveness was significantly superior to Comparative Example 1. Therefore, it was found that the combination of a smooth surface having an average surface roughness (R a) of 150 m or less and a coarse particle having an average particle diameter of 50 p ⁇ or more is effective for non-stickiness.
  • Example 14 and Example 15 coarse particles having an average particle diameter of 500 ⁇ m or more were used. Both Examples 1 to 4 and Example 1 5 had a large Ra ratio, and the result was excellent in non-adhesiveness.
  • Example 15 a silicone rubber was used for the resin film layer. Silicone rubber usually does not adhere well to polytetrafluoroethylene. Furthermore, in Example 15, the occupied area ratio of coarse particles was as large as 89% and the amount of coarse particles was large. Therefore, in Example 15, adhesion failure between the coarse particle polytetrafluoroethylene granulation powder and the resin coating layer is expected. However, Example 15 resulted in having good adhesion between the resin film layer and the coarse particles.
  • FIG. 2 shows a 50 ⁇ magnified photomicrograph of Example 4 in Example 2 and FIG.
  • the objects that appear granular in FIGS. 2 and 3 are coarse particles. It can be seen from FIGS. 2 and 3 that coarse particles are uniformly dispersed on the smooth surface.
  • the coated member of the present invention can be suitably applied to an adhesive tape production facility, an adhesive production facility, a rubbery material handling facility, and a food adhesive material handling facility. Specifically, it can be applied to various applications such as containers using adhesives and adhesives, stirrers, rolls, heating parts, cutting blades and parts for cutting, transport piping, extrusion nozzles, etc.

Abstract

Disclosed is a painting member that can significantly improve non-adhesiveness over the non-adhesiveness of conventional non-adhesive surfaces. The painting member comprises a base material, a resin film layer having a smooth surface having an average surface roughness (Ra) of 15.0 μm or less, and rough particles having an average particle diameter (R) of 50.0 μm or more and fixed onto the smooth surface. The painting member can reduce the contact area with an adhesive material and thus can significantly improve non-adhesiveness.

Description

明 細 書 塗装部材 技術分野  Description book Painted parts Technical field
本発明は、 粘着物質を取り扱う設備や装置において、 粘着物質の剥離や非粘着 に最適な塗装部材に関する。  The present invention relates to a coated member that is most suitable for peeling and non-adhesiveness of adhesive substances in equipment and devices that handle adhesive substances.
背景技術 Background art
粘着物質を取り扱う設備においては、 粘着物質の設備 の付着をいかに防止す るかが重要な問題である。 この対策として設備の基材表面にシリコーンオイルを 塗布したり、 シリコーンレジンやフッ素樹脂をコーティングする方法が提案され ていた。 また例えば特許文献 1及び 2には平均表面粗さが 1〜3 0 /z mの凹凸を 基材の表面に付けることによって粘着物質が付着しないようにする方法が提案さ れていた。 また引用文献 2には表層の輪郭曲線の算術平均高さが 2 5 x mを超え るとその大きな凹凸により粘着テープ等の粘着物を破損するので好ましくないこ とが記載されている。  In equipment that handles adhesive substances, how to prevent the adhesion of equipment for adhesive substances is an important issue. As measures against this, methods have been proposed in which silicone oil is applied to the base material surface of equipment, or silicone resin or fluorine resin is coated. Further, for example, Patent Documents 1 and 2 have proposed a method of preventing adhesion of an adhesive substance by attaching irregularities having an average surface roughness of 1 to 30 / z m to the surface of a substrate. Further, in the cited reference 2, when the arithmetic average height of the contour curve of the surface layer exceeds 25 x m, it is described that it is not preferable because the large irregularities cause damage to the adhesive material such as an adhesive tape.
発明の開示 Disclosure of the invention
発明が解決しょうとする課題 Problem that invention tries to solve
粘着物質が付着しないようにするために上記のように様々な検討が行われてき たが、 更に非粘着性とすることが求められている。 本発明は従来の非粘着面より 非粘着性を大幅に改善することができる塗装部材を提供することを課題とする。 課題を解決するための手段  Although various studies have been made as described above in order to prevent adhesion of the adhesive substance, it is required to further make it non-adhesive. An object of the present invention is to provide a painted member capable of significantly improving the non-adhesiveness over the conventional non-adhesive surface. Means to solve the problem
本発明者等が鋭意検討した結果、 比較的平坦な面と突起粒子とを組み合わせ、 かつ突起粒子を強調することによって、 非粘着性を大幅に改善できる塗装部材が 提供できることを見いだした。  As a result of intensive studies by the present inventors, it has been found that by combining relatively flat surfaces with protruding particles and emphasizing the protruding particles, it is possible to provide a coated member capable of significantly improving non-adhesiveness.
すなわち本発明の塗装部材は、 基材と、 基材の表面に形成された平均表面粗さ ( R a ) が 1 5 . 0 m以下の平滑表面を有する樹脂皮膜層と、 樹脂皮膜層の平 滑表面に固定された平均粒子径 (R) が 5 0 . O m以上の粗粒子と、 を有する ことを特徴とする。 上記のような樹脂皮膜層と粗粒子とを有することにより、 塗装部材表面は平坦 面と突起粒子との組み合わせとなり、 粒子の突起が強調される。 そのため、 塗装 部材 接触した粘着物質と平滑表面との間に空間が出来る。 さらに粘着物質の塗 装部材への接触が突起部分となるため接触面積が小さくなる。 そのため、 粘着物 質の塗装部材八の付着力を低下させることが出来、 また粘着物質を塗装部材から 剥離しやすく出来る。 また基材の上に樹脂皮膜層が塗装されているので、 例え粗 粒子が脱落しても基材が露出することはなく、 耐食性に優れる。 That is, the coated member of the present invention comprises a substrate, a resin film layer having a smooth surface having an average surface roughness (Ra) of 15.0 m or less formed on the surface of the substrate, and a flat resin film layer. It is characterized in that it has coarse particles fixed to the smooth surface and having an average particle diameter (R) of not less than 50.0 m. By having the resin film layer and the coarse particles as described above, the surface of the coated member becomes a combination of the flat surface and the protruding particles, and the protrusions of the particles are emphasized. As a result, a space is created between the adhesive substance in contact with the painted member and the smooth surface. Furthermore, since the contact of the adhesive substance to the coating member is a projection, the contact area is reduced. Therefore, the adhesion of the adhesive coated member 8 can be reduced, and the adhesive substance can be easily peeled off from the coated member. In addition, since the resin film layer is coated on the base material, even if the coarse particles fall off, the base material will not be exposed and the corrosion resistance is excellent.
樹脂皮膜層の平均表面粗さ (R a ) を 1 5 . O z m以下とすることにより、 樹 脂皮膜層の表面を平滑表面とすることが出来る。 そこに粗粒子を固定することに より非粘着性を更に強調できる。 また粗粒子の平均粒子径 (R) が 5 0 . 0 μ πι 以上とすることにより非粘着性を強調できる。  By setting the average surface roughness (R a) of the resin coating layer to not more than 15.50 m, the surface of the resin coating layer can be made smooth. By fixing the coarse particles there, the non-stickiness can be further emphasized. Moreover, non-adhesiveness can be emphasized by setting the average particle diameter (R) of the coarse particles to 500 μπι or more.
なお平均表面粗さ (R a ) は J I S B 0 6 0 1 : 2 0 0 1の算術平均粗さを示 す。 また平均粒子径は面積平均径を示す。  The average surface roughness (R a) indicates the arithmetic average roughness of J I S B 0 6 0 1: 2 0 0 1. Moreover, an average particle diameter shows an area average diameter.
また上記粗粒子は、 平滑表面に単層となるように固定されていることが好まし い。 単層となるように固定されることによって、 より粒子の突起が強調でき、 粘 着物質の付着力を低下させることが出来る。  The coarse particles are preferably fixed to a smooth surface in a single layer. By being fixed so as to be a single layer, the projections of the particles can be further emphasized and the adhesion of the adhesive substance can be reduced.
さらに粗粒子の平滑表面に対する占有面積率が 5〜 9 9 %であることが好まし レ、。粒子の突起が強調されるためには平坦な面と突起面の両方がある必要がある。 粗粒子の平滑表面に対する占有面積率が上記範囲にあれば、 粒子の突起を強調す ることが出来る。占有面積率(%)が 5 %より小さいと粒子の突起の効果が薄れ、 また 9 9 %より大きいと粗粒子の重なりが多くなり、 粗粒子の樹脂皮膜層への接 着性が悪くなる。  Furthermore, it is preferable that the occupied area ratio of the coarse particles to the smooth surface is 5 to 9 9%. In order for the protrusions of the particles to be emphasized, both flat and raised surfaces need to be present. If the ratio of the area occupied by the coarse particles to the smooth surface is in the above range, the projections of the particles can be emphasized. If the occupied area ratio (%) is less than 5%, the effect of the projections of the particles is diminished, and if it is more than 99%, the overlapping of the coarse particles is large and the adhesion of the coarse particles to the resin film layer is deteriorated.
また粗粒子は溶融、 昇華により形状が変化しない物質から形成されることが好 ましレ、。 樹脂皮膜層が温度変化にさらされても粗粒子の形状が変わらないので、 温度変化によって非粘着性の効果が低減することがない。  In addition, coarse particles are preferably formed from a material whose shape does not change due to melting and sublimation. Even if the resin film layer is exposed to temperature change, the shape of the coarse particles does not change, so the temperature change does not reduce the non-stick effect.
上記粗粒子はポリテトラフルォロエチレンを 1〜 1 0 0質量%含む造粒粉末で あることが好ましい。 粗粒子を上記造粒粉末とすることが機能的、 経済的に好ま しい。 また造粒粉末の平均粒子径 (R ) は 5 0〜3 0 0 0 μ πιである。 造粒粉末の平 均粒子径が上記範囲にあると、 より粒子の突起を強調できる。 The coarse particles are preferably granulated powder containing 1 to 100% by mass of polytetrafluoroethylene. Functionally and economically preferred is to use coarse particles as the above-mentioned granulated powder. The average particle size (R) of the granulated powder is 50 to 300 μπ 0. When the average particle size of the granulated powder is in the above range, the projections of the particles can be emphasized.
さらに上記樹脂皮膜層をパーフルォロ化合物で形成することが好ましい。 上記 樹脂皮膜層をパーフルォロ化合物で形成することにより、容易に平均表面粗さ(R a ) が 1 5 . 0以下の平滑表面とすることが出来る。  Furthermore, it is preferable to form the said resin film layer with a perfluoro compound. By forming the resin film layer with a perfluoro compound, a smooth surface having an average surface roughness (R a) of not more than 15.0 can be easily obtained.
発明の効果 Effect of the invention
本発明の塗装部材によれば、 比較的平坦な面と突起粒子とを組み合わせかつ突 起粒子を強調するので、 粘着物質の接触する接触面積を小さくできる。 また粘着 物質は突起粒子の突起の先端部に接触するため接触する周辺では浅く接触する。 粘着物質として粘着テープを例に取ると、 浅い接触のため粘着材が隅々まで入り 込まない。 そのため粘着力が弱まり剥離が簡単に行える。 このため、 凝集力の強 レ、粘着物質ほど非粘着効果をより強く発揮出来る。  According to the coating member of the present invention, since the relatively flat surface and the protruding particles are combined to emphasize the protruding particles, the contact area of the adhesive substance in contact can be reduced. Also, since the adhesive substance contacts the tip of the projection of the projection particle, the adhesive substance makes shallow contact at the contact periphery. Taking an adhesive tape as an example of an adhesive substance, the adhesive does not get into every corner due to the shallow contact. Therefore, the adhesion is weakened and peeling can be easily performed. Therefore, the stronger the cohesion and the more sticky substance, the stronger the non-sticking effect.
図面の簡単な説明 Brief description of the drawings
図 1は、 突起高さ (H) の説明図を示す。  Fig. 1 shows an explanatory view of the projection height (H).
図 2は、 実施例 2の表面顕微鏡写真 (倍率 5 0倍) を示す。  FIG. 2 shows a surface micrograph (magnification of 50 ×) of Example 2.
図 3は、 実施例 4の表面顕微鏡写真 (倍率 5 0倍) を示す。  FIG. 3 shows a surface micrograph (magnification of 50 ×) of Example 4.
符号の説明 Explanation of sign
1、 基材、 2、 樹脂皮膜層、. 3、 粗粒子、 4、 上掛け樹脂。  1, base material, 2, resin film layer, .3, coarse particle, 4, top resin.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
本発明の塗装部材は、 基材と、 基材の表面に形成された樹脂皮膜層と、 樹脂皮 膜層に固定された粗粒子と、 を有する。  The coated member of the present invention has a substrate, a resin film layer formed on the surface of the substrate, and coarse particles fixed to the resin film layer.
樹脂皮膜層は、 対象となる基材の表面に塗装される。  The resin film layer is coated on the surface of the target substrate.
基材として鉄、 S U S、 アルミニウム、 銅などの金属及びこれらの合金及びァ ルミナ、 ジルコユア、 マグネシア、 窒化珪素、 窒化アルミニウム、 炭化珪素、 窒 化ボロンなどのセラミック類が好適に用いられるがこれに限定されない。 これら の基材の表面は粗面化加工されることが望ましい。 粗面化加工は、 例えば化学処 理、 ブラスト処理、 或いはブラスト処理とセラミック溶射とを組み合わせた処理 を施すことで行うことが出来る。  As the base material, metals such as iron, SUS, aluminum, copper and their alloys and alumina, ceramics such as alumina, zirconia, magnesia, silicon nitride, aluminum nitride, silicon carbide, boron nitride and the like are preferably used. I will not. It is desirable that the surface of these substrates be roughened. The surface roughening can be performed by, for example, chemical treatment, blasting, or a combination of blasting and ceramic thermal spraying.
また粗面化加工を施した表面にブラィマーを塗装することが出来る。 プライマ 一を塗装することによって基材と樹脂皮膜層との接着性が向上する。 プライマー として、 6価クロム酸に樹脂を配合したプライマー、 無機プライマー或いは有機 プライマーが用いることが出来る。 In addition, it is possible to paint a primer on the roughened surface. Primer By coating one, the adhesion between the substrate and the resin film layer is improved. As a primer, a primer obtained by blending a resin with hexavalent chromic acid, an inorganic primer or an organic primer can be used.
無機プライマーとは、 ニッケル、 チタン、 モリブデン等の錯体形成能力を持つ 金属と樹脂とを組み合わせたものである。  The inorganic primer is a combination of a metal and a resin having a complexing ability such as nickel, titanium, molybdenum and the like.
有機プライマーとして、 エポキシ樹脂、 ポリアミ ド樹脂、 ポリウレタン樹脂、 ポリアミ ドイミ ド樹脂、 ポリイミ ド樹脂、 ポリサルホン樹脂、 ポリエーテルサル ホン、 ポリフエ二レンサルファイ ド、 ポリエーテルエーテルケトンを用いること が出来る。  As the organic primer, epoxy resin, polyamide resin, polyurethane resin, polyamide resin, polyimide resin, polysulfone resin, polyether sulfone, polyether sulfone, polyphenylene sulfide, polyether ether ketone can be used.
これらのプライマーは、 スプレー塗装或いは静電粉体塗装などで塗装すること が出来る。 ここで使用されるプライマーとしては環境問題等から非クロムプライ マーが好ましい。  These primers can be coated by spray coating or electrostatic powder coating. As a primer used here, a non-chromium primer is preferable in view of environmental problems and the like.
樹脂皮膜層は、 上記のように粗面化加工をされ、 プライマーを塗装された表面 に塗装される。 樹脂皮膜層に使用される材料は臨界表面張力が 2 5 NZm以下の ものが好ましい。 樹脂皮膜層に使用される材料として、 ポリテトラフルォロェチ レン (P T F E ) 、 溶融性フッ素樹脂とビニル単量体の 1種または 2種以上とか ら作られる共重合体、 パーフルォロ基含有榭脂、 パーフルォロ基含有カップリン グ剤、 シリコーンゴム及びシリコーン榭脂等の非粘着性樹脂が好適に用いられる ことが出来る。  The resin film layer is roughened as described above, and is coated on the primer-coated surface. The material used for the resin film layer preferably has a critical surface tension of 25 NZm or less. Materials used for the resin film layer include polytetrafluoroethylene (PTFE), a copolymer made of one or more of a fusible fluorine resin and a vinyl monomer, and a perfluoro group-containing resin. A non-adhesive resin such as a perfluoro group-containing coupling agent, silicone rubber and silicone resin can be suitably used.
溶融性フッ素樹脂とビニル単量体の 1種または 2種以上とから作られる共重合 体としては、 エチレン/テトラフルォロエチレン共重合体 (E T F E ) 、 テトラ フルォロエチレン Zへキサフルォロプロピレン共重合体 (F E P ) 、 テトラフル ォロエチレン/パーフルォロアルキルビニルエーテル共重合体 (P F A) 及びこ れらに官能基 (水酸基、 カルボン酸基など) を持った単量体の少量を共重合させ たもの、 コモノマーとして環状の構造を有する単量体の少量を共重合させたもの が挙げられる。  Examples of copolymers made from a meltable fluororesin and one or more of vinyl monomers include ethylene / tetrafluoroethylene copolymer (ETFE), tetrafluoroethylene Z hexafluoropropylene co-polymer Polymer (FEP), tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA) and copolymer thereof with a small amount of a monomer having a functional group (such as a hydroxyl group or a carboxylic acid group) And those obtained by copolymerizing a small amount of a monomer having a cyclic structure as a comonomer.
パーフルォロ基含有樹脂としては、 パーフルォロ基を含有するアクリル樹脂、 パーフルォロ基を含有するポリオール、 ポリカルボン酸などを用いたウレタン樹 脂、 パーフルォロ基を含有するエポキシ樹脂、 パーフルォロ基を含有するポリエ ステル樹脂が挙げられる。 The perfluoro group-containing resin may, for example, be a perfluoro group-containing acrylic resin, a perfluoro group-containing polyol, a urethane resin using a polycarboxylic acid or the like, a perfluoro group-containing epoxy resin, or a perfluoro group-containing polyester resin. Stel resin is mentioned.
パーフルォロ基含有カツプリング剤としては、 パーフルォロ基を含有するシラ ン化合物、 パーフルォロ基を含有するジルコニウム化合物、 パーフルォロ基を含 有するアルミネート化合物が挙げられる。  The perfluoro group-containing coupling agent may, for example, be a silane compound containing a perfluoro group, a zirconium compound containing a perfluoro group, or an aluminate compound containing a perfluoro group.
特に樹脂皮膜層に用いられる材料として、 汚染性の点でフッ素を含有する化合 物が好ましく、 特にパーフルォロ化合物が好ましい。 また樹脂皮膜層に用いられ る材料として、 P T F E、 F E P及び P F Aがより好ましい。  Particularly, as a material used for the resin film layer, a compound containing fluorine is preferable in terms of contamination, and particularly, a perfluoro compound is preferable. Further, as materials used for the resin film layer, P T F E, F E P and P F A are more preferable.
樹脂皮膜層は平均表面粗さ (R a ) が 1 5 . 0 /z m以下である平滑表面を有す る。 また好ましくは平均表面粗さ (R a ) が 5 // m以下であり、 より好ましくは 2 μ πι以下である。 平滑表面の平均表面粗さが上記範囲であると、 粗粒子の突起 が強調され粘着物質との接触面積を小さくするのに有効である。 また樹脂皮膜層 の厚みは:!〜 3 0 0 / mが好ましい。  The resin coating layer has a smooth surface having an average surface roughness (R a) of not more than 15.0 / z m. Also preferably, the average surface roughness (R a) is 5 // m or less, more preferably 2 μπι or less. When the average surface roughness of the smooth surface is in the above range, the projections of the coarse particles are emphasized, which is effective in reducing the contact area with the adhesive substance. Moreover, the thickness of the resin film layer is :! -300 / m is preferable.
また樹脂皮膜層は耐摩耗性を向上するために高硬度充填剤を含有してもよい。 高硬度充填剤としては、 ガラス繊維、 カーボン繊維、 炭化珪素繊維、 アルミナ 繊維、 ボロン繊維、 チタン酸ゥイス力、 炭化珪素ウイスカ、 窒化珪素ウイスカ、 ガラスフレーク、ガラスビーズ、炭化珪素粉末、グラフアイ ト粉末が挙げられる。 また樹脂皮膜層は、導電性を付与する目的で、グラフアイ ト、導電性カーボン、 導電剤を蒸着したチタン酸ゥイス力、 酸化チタンなどを含有しても良い。  The resin coating layer may also contain a high hardness filler to improve the abrasion resistance. As the high hardness filler, glass fiber, carbon fiber, silicon carbide fiber, alumina fiber, boron fiber, titanium oxide whisker force, silicon carbide whisker, silicon nitride whisker, glass flake, glass bead, silicon carbide powder, graphite powder Can be mentioned. Further, the resin film layer may contain graphite, conductive carbon, titanium oxide force deposited with a conductive agent, titanium oxide, or the like for the purpose of imparting conductivity.
粗粒子は平滑表面に固定される。 粗粒子は溶融、 昇華などで形状が変化しない 物質が好ましい。 つまり加工温度によって粗粒子の突起が変化しない物質が好ま しい。 粗粒子の形状は三角形、 四角形、 及び多角形など様々な形状物が適用でき るが球形が最も表面積を小さく出来るので好ましい。  The coarse particles are fixed to the smooth surface. The coarse particles are preferably substances which do not change in shape due to melting, sublimation and the like. That is, a material which does not change the projections of the coarse particles depending on the processing temperature is preferred. The shape of the coarse particles may be various shapes such as triangles, squares, and polygons, but spheres are preferable because they can minimize the surface area.
粗粒子の平均粒子径 (R ) は 5 0 // m以上である。 粗粒子の平均粒子径 (R ) は、 5 0〜3 0 0 0 mが好ましく、 1 0 0〜1 0 0 0 / mがより好ましい。 このような平均粒子径を有する粗粒子を用いることにより大きな凹凸を有する 突起面を平滑表面に部分的に形成することが出来る。  The mean particle size (R 2) of the coarse particles is at least 50 // m. The average particle diameter (R) of the coarse particles is preferably 50 to 300 m, more preferably 100 to 100 / m. By using coarse particles having such an average particle diameter, it is possible to partially form a projection surface having large irregularities on a smooth surface.
粗粒子として例えば、非粘着処理ガラスビーズ、非粘着処理セラミックビーズ、 シリコーンパウダー、 非溶融フッ素樹脂パウダー等の非粘着粒子が挙げられる。 中でも非溶融フッ素樹脂パウダ一の 1種であるポリテトラフルォロエチレンの造 粒粉末を好ましく用いることが出来る。 Examples of the coarse particles include non-adhesive particles such as non-adhesive treated glass beads, non-adhesive treated ceramic beads, silicone powder, and non-molten fluorocarbon resin powder. Above all, the construction of polytetrafluoroethylene, which is a kind of non-molten fluorocarbon resin powder. Granular powder can be preferably used.
ポリテトラフルォロエチレンの造粒粉末は、 自動成形、 押出成形等で用いられ る、 特公昭 43 -86 1 1号公報、 特公昭 44-226 1 9号公報、 特公昭 47 -3187号公報、 特開平 3— 259926号公報などに記載の成形用粉末であ る。 ポリテトラフルォロエチレンの造粒粉末は、 ポリテトラフルォロエチレンを 1〜: I 00重量%、 好ましくは 20〜: 100重量%、 より好ましくは 50〜: 10 0重量%含む。 またこの造粒粉末はクリープ防止、 或いは耐摩耗性、 熱伝導性向 上のため充填剤を含有しても良い。  Granulated powder of polytetrafluoroethylene is used in automatic molding, extrusion molding, etc., JP-B-43-86-11, JP-B-44-22619, JP-B-47-3187. It is a powder for molding as described in JP-A-3-259926 and the like. The granulated powder of polytetrafluoroethylene contains 1 to 100% by weight, preferably 20 to 100% by weight, and more preferably 50 to 100% by weight of polytetrafluoroethylene. The granulated powder may also contain a filler to prevent creep or to improve abrasion resistance and thermal conductivity.
このような粗粒子の平滑表面に対する占有面積率が 5〜 99%にコントロール することが好ましい。 占有面積率は 10〜 70%がより好ましく、 1 5〜50% が更に好ましい。 占有面積率が 5%より小さいと粗粒子の効果が薄れ、 99%よ り大きいと粗粒子の重なりが多くなり粗粒子の平滑表面への密着性が悪くなる。 粗粒子を平滑表面に固定する方法は特に限定されない。 例えば平 表面に粗粒 子を静電気或いは噴霧により付着させ、 次に粗粒子の 1Z100〜1 5の厚み で樹脂皮膜層に使用した材料を上掛け塗装し、 さらに加熱焼成することにより粗 粒子を平滑表面に固定することが出来る。 固定するために用いる材料の厚みが薄 レ、と粗粒子の平滑表面への固着が弱く、 厚いと粗粒子の突起の強調が弱まり非粘 着効果が低下する。  It is preferable to control the occupied area ratio of such coarse particles to the smooth surface to 5 to 99%. The occupied area ratio is more preferably 10 to 70%, further preferably 15 to 50%. If the occupied area ratio is less than 5%, the effect of coarse particles is diminished. If the occupied area ratio is greater than 99%, the overlap of coarse particles increases and the adhesion of the coarse particles to the smooth surface becomes worse. The method of fixing the coarse particles to the smooth surface is not particularly limited. For example, coarse particles are attached to a flat surface by static electricity or spraying, and then the material used for the resin film layer is coated with a thickness of 1Z100 to 15 of the coarse particles, and heat baking is performed to smooth the coarse particles. It can be fixed on the surface. The thickness of the material used for fixing is thin and adhesion of the coarse particles to the smooth surface is weak, and if it is thick, the emphasis of the coarse particle projections is weakened and the non-sticking effect is reduced.
また粗粒子は平滑表面に単層で固定されるのが好ましい。 単層で固定するには 粗粒子を平滑表面に静電気塗装或いは噴霧塗装してやればよい。  The coarse particles are preferably fixed in a single layer on the smooth surface. In order to fix in a single layer, coarse particles may be electrostatically or spray-coated on a smooth surface.
実施例 Example
以下、 実施例を挙げて本発明を更に詳しく説明する。  Hereinafter, the present invention will be described in more detail by way of examples.
(実施例 1 )  (Example 1)
SUS 302の 1 0 OmmX 1 0 OmmX 1 mm基材を 380°Cで 30分、 空 焼き脱脂を行い、 # 240、 圧力 0. 5MP aでブラスト処理を行い表面を粗面 加工した。  The surface was roughened by blast degreasing a 300 O 0 mm x 10 0 mm x 1 mm base material of SUS 302 at 380 ° C for 30 minutes, and using # 240, a pressure of 0.5 MP a.
粗面加工した表面にプライマーである PTFEを約 25 w t%含有するダイキ ン工業社製ポリフロンエナメル (EK 1 909 S 21 L) を 1 2 μηι塗装し乾燥 させた。 乾燥後、 P T F Εを約 40 w t %含有するダイキン工業社製ポリフロン エナメル (EK3709 S 21 L) を 20 μ m膜厚相当まで塗装し、 乾燥しない 状態で、 ダイキン工業社製ポリテトラフルォロエチレン造粒パウダー (M—39 1 S) の 340°CX 5時間焼結品の分級品 (粒径 106〜250 //m) を静電粉 体塗装機で均一に散布した。 散布した上からダイキン工業社製ポリフロンェナメ ル (EK 3709 S 21 L) を 20 μ m膜厚相当まで塗布し、 乾燥後、 380°C X 20分焼成した。 これを実施例 1とする。 A roughened surface was coated with 12 μι of polyflon enamel (EK 1 909 S 21 L) manufactured by DAIKIN INDUSTRIES CO., LTD. Containing about 25 wt% of the primer PTFE as a primer and dried. After drying, Daikin Industries' polyflon containing about 40 wt% of PTF soot Apply enamel (EK3709 S 21 L) to a film thickness of 20 μm and dry without drying. 340 ° CX 5 hours of baking of polytetrafluoroethylene granulated powder (M-39 1 S) manufactured by Daikin Industries, Ltd. The classified product (particle size 106 to 250 // m) of the product was uniformly dispersed by an electrostatic powder coating machine. From the sprayed top, polyflon enamel (EK 3709 S 21 L) manufactured by Daikin Industries, Ltd. was applied to a thickness of 20 μm, dried, and fired at 380 ° CX for 20 minutes. This is referred to as Example 1.
出来た塗装板を株式会社キーエンス社製デジタルマイクロスコープ VH—Z 7 5型で 50倍の倍率で拡大し、 10個の粒子径を計測して面積平均粒子径を計算 した。 実施例 1の場合 220 mであった。  The resulting coated plate was enlarged at a magnification of 50 times with a digital microscope VH-Z 75 type manufactured by Keyence Corporation, and the particle size of 10 particles was measured to calculate the area average particle size. In the case of Example 1, it was 220 m.
(実施例 2)  (Example 2)
ダイキン工業社製ポリテトラフルォロエチレン造粒パウダーの散布量を減らし、 占有面積率が低下するようにした以外は実施例 1と同様に行い実施例 2を得た。 (実施例 3 )  Example 2 was carried out in the same manner as Example 1 except that the spread amount of polytetrafluoroethylene granulated powder manufactured by Daikin Industries, Ltd. was reduced to decrease the occupied area ratio. (Example 3)
粗面加工した表面にダイキン工業社製ポリフロンエナメル (EK1909 S 2 1 L) を 10 μηι塗装すること及びダイキン工業社製ポリテトラフルォロェチレ ン造粒パウダー (Μ— 39 1 S) の 340°CX 5時間焼結品の分級品 (粒径 25 0〜355 μπι) を用いたこと以外は実施例 1と同様に行い、 実施例 3を得た。 出来た塗装板を株式会社キーエンス社製デジタルマイクロスコープ VH— Ζ 7 5型で 50倍の倍率で拡大し、 10個の粒子径を計測して面積平均粒子径を計算 した。 実施例 3の場合 290 mであった。  Coating a roughened surface with polyflon enamel (EK1909 S 2 1 L) manufactured by Daikin Industries Co., Ltd. at 10 μι, and using 340 μF of polytetrafluorinated ethylene granulated powder (Μ 39 1 S) manufactured by Daikin Industries, Ltd. Example 5 Example 3 was obtained in the same manner as in Example 1 except that a classified product (particle size of 250 to 355 μπι) of the sintered product was used. The resulting coated plate was enlarged at a magnification of 50 times with a digital microscope VH-Ζ 75 type manufactured by Keyence Corporation, and the particle diameter of 10 particles was measured to calculate the area average particle diameter. In the case of Example 3, it was 290 m.
(実施例 4)  (Example 4)
ダイキン工業社製ポリテトラフルォロェチレン造粒パゥダ一の散布量を減らし、 占有面積率が低下するようにした以外は実施例 3と同様に行い実施例 4を得た。 (実施例 5)  Example 4 was carried out in the same manner as Example 3 except that the spread amount of the polytetrafluoroethylene powder produced by Daikin Industries, Ltd. was reduced to decrease the occupied area ratio. (Example 5)
粗面加工した表面にダイキン工業社製ポリフロンエナメル (EK 1 909 S 2 1 L) を 1 5 m塗装すること及びダイキン工業社製ポリテトラフルォロェチレ ン造粒パウダー (M— 39 1 S) の 340°CX 5時間焼結品の分級品 (粒径 35 5 μπι〜500 μηι) を用いたこと以外は実施例 1と同様に行い、 実施例 5を得 た。 出来た塗装板を株式会社キーェンス社製デジタルマイクロスコープ VH— Z 7 5型で 50倍の倍率で拡大し、 10個の粒子径を計測して面積平均粒子径を計算 した。 実施例 5の場合 350 /imであった。 Coating a roughened surface with polyflon enamel (EK 1 909 S 2 1 L) manufactured by Daikin Industries, Ltd. for 15 m and using polytetrafluorinated ethylene granulated powder manufactured by Daikin Industries (M- 39 1 S) Example 5 was carried out in the same manner as Example 1 except that the classified product (particle diameter 35 5 μπι to 500 μι) of the 340 ° CX for 5 hours was used. The resulting coated plate was enlarged at a magnification of 50 times with a digital microscope VH-Z 75 type manufactured by Keyence Corporation, and the particle size of 10 particles was measured to calculate the area average particle size. In the case of Example 5, it was 350 / im.
(実施例 6 )  (Example 6)
ダイキン工業社製ポリテトラフルォロエチレン造粒パウダーの散布量を減らし、 占有面積率が低下するようにした以外は実施例 5と同様に行い実施例 6を得た。 (実施例 7 )  Example 6 was carried out in the same manner as Example 5, except that the spread amount of polytetrafluoroethylene granulated powder manufactured by Daikin Industries, Ltd. was reduced to decrease the occupied area ratio. (Example 7)
SUS 302の 10 OmmX 10 OmmX 1 mm基材を 380°Cで 30分、 空 焼き脱脂を行い、 # 60、 圧力 0. 5MP aでブラス ト処理を行い表面を粗面加 ェした。  The surface was roughened by carrying out dry degreasing at 300 ° C. for 30 minutes at 60 ° C. and pressure of 0.5 MP a for 10 minutes.
粗面加工した表面にデュポン社製プライマ一 420— 703を 1 5 μπι塗装し 乾燥した。 乾燥後 PFAを 10 Ow t%含有する三井デュポンフロロケミカル社 製 P FA粉体塗料 MP— 102を塗装し、 400°Cで 20分焼成し膜厚 50 // m の平滑表面とした。  DuPont's primer 420-703 was coated on the roughened surface by 1 5 μπι and dried. After drying, PFA powder coating MP-102 manufactured by Mitsui Dupont Fluorochemicals Co., Ltd. containing 10% by weight of PFA was coated, and baked at 400 ° C. for 20 minutes to form a smooth surface with a film thickness of 50 // m 2.
実施例 1と同様にダイキン工業社製ポリテトラフルォロエチレン造粒パウダー (M- 39 1 S) の 340°CX 5時間焼結品の分級品(粒径 106〜250 /_im) を散布し、 散布した上から PF Aを 35 w t %含有する三井デュポンフロロケミ カル社製 EM— 50 OCLを 20 ΠΙ塗装し、乾燥後 380°Cで 20分焼成した。 これを実施例 7とする。  In the same manner as in Example 1, dispersed product (particle diameter 106 to 250 / _im) of sintered product of 340 ° CX for 5 hours of polytetrafluoroethylene granulated powder (M-39 1 S) manufactured by Daikin Industries, Ltd. Then, 20 parts of EM- 50 OCL manufactured by Mitsui Dupont Fluorochemical Co., Ltd. containing 35% by weight of PFA was applied from above, dried, and baked at 380 ° C. for 20 minutes. This is taken as Example 7.
(実施例 8 )  (Example 8)
?八を10 Ow t%含有する三井デュポンフロロケミカル社製 PF A粉体塗 料 MP— 102を重ね塗り塗装し、 400°Cで 20分焼成し膜厚 100 μ mの平 滑表面としたこと、 及び実施例 3と同様のダイキン工業社製ポリテトラフルォロ エチレン造粒パウダー (M— 391 S) の 340°CX 5時間焼結品の分級品 (粒 径 250〜355 πι) を用いたこと以外は実施例 7と同様に行い、 実施例 8を 得た。  ? A powder coating material MP- 102 made by Mitsui DuPont Fluorochemicals, containing 10 wt.% Of O. 8, is coated again and baked for 20 minutes at 400 ° C. to form a smooth surface with a thickness of 100 μm, And the same classified product (particle diameter 250 to 355 π ι) of 340 ° CX for 5 hours sintered product of polytetrafluoroethylene (M-391 S) manufactured by Daikin Industries, Ltd. similar to that of Example 3 The procedure of Example 7 was repeated except for the above, to obtain Example 8.
(実施例 9 )  (Example 9)
? を1 00 w t%含有する三井デュポンフロロケミカル社製 PF Α粉体塗 料 M P— 1 02を重ね塗り塗装し、 400でで 20分焼成して膜厚 300 μ mの 平滑表面としたこと、 及び実施例 5と同様のダイキン工業社製ポリテトラフルォ 口エチレン造粒パウダー(M— 3 9 1 S)の 34 0°CX 5時間焼結品の分級品(粒 径 3 5 5 μ π!〜 5 0 0 μ ιη) を用いたこと以外は実施例 7と同様に行い、 実施例 9を得た。 ? DuPont Fluorochemicals Co., Ltd. PFΑ Powder Coating Material MP-102 containing 100 wt% of water is overcoated and baked at 400 for 20 minutes to a film thickness of 300 μm. A smooth surface, and a graded product (particle diameter 35 5) of sintered product of polytetrafluoroethylene (M-391S) manufactured by Daikin Industries, Ltd. and having the same composition as in Example 5 at 34 0 ° CX for 5 hours. Example 9 was obtained in the same manner as Example 7 except that μπ! to 500 μι was used.
(実施例 1 0)  (Example 1 0)
実施例 7と同様に粗面加工した表面に、 デュポン社製プライマー 4 2 0 - 7 0 3を 1 5 μ m塗装し乾燥した。 乾燥後 F E Pを l O O w t %含有するダイキン社 製ネオフロン粉体塗料 NCX— 1を使用し、 34 0°Cで 3◦分焼成して膜厚 3 0 μ mの平滑表面とした。 実施例 7と同様のダイキン工業社製ポリテトラフルォロ ェチレン造粒パウダ一 (M— 3 9 1 S) の 3 4 0°CX 5時間焼結品の分級品 (粒 径 1 0 6〜2 5 0 /x m) を散布し、 散布した上から F E Pを 5 5 w t %含有する ダイキン工業社製ネオフロン F E P ND— 1 1 0を 2 0 μ πι塗装し、 乾燥後 3 8 0°Cで 2 0分焼成した。 これを実施例 1 0とする。  The surface roughened in the same manner as in Example 7 was coated with 15 μm of DuPont primer 420-703 and dried. After drying, Neoflon powder coating NCX-1 manufactured by Daikin Industries, Ltd. containing l O O w t% was baked at 34 ° C. for 3 ° to form a smooth surface with a thickness of 30 μm. Similar to Example 7, classified product of polytetrafluoroethylene powder powder (M-391S) manufactured by Daikin Industries, Ltd. at a temperature of 40 ° CX for 5 hours (particle diameter 10 6 to 2 The product is sprayed with 50 / xm) and coated with FEP containing 5 5 wt% of FEP Neoflon FEP ND-1 made by Daikin Industries, Ltd. and coated with 2 0 μπι and dried after drying at 320 ° C I baked it for a minute. This is assumed to be Example 10.
(実施例 1 1 )  (Example 1 1)
F E Pを l O O w t %含有するダイキン社製ネオフ口ン粉体塗料 N C X— 1を 重ね塗り塗装し、 3 4 で 2 0分焼成し膜厚 8 0 / mの平滑表面としたこと及 び実施例 5と同様のダイキン工業社製ポリテトラフルォロエチレン造粒パウダー Daikin Neofen powder powder NCX-1 containing 100% by weight of FEP was overcoated, and baked for 20 minutes at 34 to obtain a smooth surface with a thickness of 80 / m, and Example Daikin Industries, Ltd. polytetrafluoroethylene granulated powder similar to 5
(M— 3 9 1 S) の 3 4 0°CX 5時間焼結品の分級品 (粒径 3 5 5 μ m〜 5 0 0 μ πι) を用いたこと以外は実施例 1 0と同様に行い、 実施例 1 1を得た。 (M-3 9 1 S) in the same manner as in Example 10 except that the classified product (particle size 35 5 μm to 5 0 0 μ π ι) of sintered product at 3 4 0 ° CX for 5 hours was used Conducted to obtain Example 1 1.
(実施例 1 2 )  (Example 1 2)
S U S 3 0 2の 1 0 OmmX 1 0 OmmX 1 mm基材を 3 8 0°Cで 3 0分、 空 焼き脱脂を行い、 # 3 6、 圧力 0. 5MP aでブラスト処理を行い、 さらに日本 ュテック株式会社製溶射装置にて N i一 A 1合金を 8 0〜 1 0 0 m付着させた。 この表面にプライマーである P T F Eを約 2 5 w t %含有するダイキン工業社 製ポリフロンエナメル (EK 1 9 0 9 S 2 1 L) を 1 2 m塗装し乾燥させた。 乾燥後、 P T F Eを約 4 0 w t %含有するダイキン工業社製ポリフロンェナメ ル(EK 3 7 0 9 S 2 1 L)を 2 5 m膜厚相当まで塗装し、乾燥しない状態で、 ダイキン工業社製ポリテトラフルォロエチレン造粒パウダー (M— 3 9 1 S) の Blanking degreasing was performed for 30 minutes at 320 ° C. for 30 minutes at 300 ° C., and blasting was carried out using a pressure of 0.5 MPa, and further Nippon Gotec Co., Ltd. 80 to 100 m of Ni 1 A 1 alloy was deposited by a thermal spraying apparatus manufactured by Co., Ltd. This surface was coated with 12 m of a polyflon enamel (EK 1 909 S 2 1 L) manufactured by Daikin Industries, Ltd. containing about 25 wt% of a primer PTF E and dried. After drying, polyflonamide (EK 3 709 S 2 1 L) manufactured by Daikin Industries Co., Ltd. containing about 40 wt% of PTFE is applied to a film thickness of 25 m, without drying. Made of polytetrafluoroethylene granulated powder (M-391S)
3 4 0 °C X 5時間焼結品の分級品 (粒径 2 5 0〜 3 5 5 μ πι) を静電粉体塗装機 で均一に散布した。 散布した上からダイキン工業社製ポリフロンエナメル (EK 3709 S 21 L) を 20 μηι膜厚相当まで塗布し、 乾燥後、 380°CX 20分 焼成した。 これを実施例 1 2とする。 Electrostatic powder coating machine with classified product (particle size 2 50-35 5 μ π ι) of sintered product of 3 40 ° CX for 5 hours Spread evenly. From the sprayed top, Polyflon enamel (EK 3709 S 21 L) manufactured by Daikin Industries, Ltd. was applied to a thickness equivalent to 20 μμ thickness, dried, and fired at 380 ° CX for 20 minutes. This is referred to as Example 12.
(実施例 1 3 )  (Example 1 3)
ダイキン工業社製ポリテトラフルォロエチレン造粒パウダー (M— 39 1 S) の 340 °C X 5時間焼結品の分級品 (粒径 355〜500 xm) を使用した以外 は実施例 12と同様に行い、 実施例 1 3を得た。  Same as Example 12 except that classified product (particle diameter 355 to 500 x m) of sintered product of 340 ° CX for 5 hours of polytetrafluoroethylene granulated powder (M-39 1 S) manufactured by Daikin Industries, Ltd. was used. To obtain Example 13.
(実施例 14)  (Example 14)
実施例 1と同様に粗面化した表面にデュポン社製プライマー 420— 703を 15 μιη塗装し、 乾燥しない状態で三井デュポンフロロケミカル社製ポリテトラ フルォロエチレン造粒パウダー (807—Ν) の 340°CX 5時間焼結品の分級 品 (粒径 500〜850 / m) を静電粉体塗装機で均一に散布し、 その上から P を100 w t%含有する三井デュポンフロロケミカル社製 PFA粉体塗料 M P_ 102を膜厚 20 μπιで塗装し、 380°Cで 30分焼成した。 これを実施例 14とする。  The surface is roughened in the same manner as in Example 1 and coated with DuPont's primer 420-703 at 15 μ 、, and in the non-dried state, 340 ° CX 5 of polytetrafluoroethylene granulated powder (807-Ν) by Mitsui Dupont Fluorochemicals. The classified product (particle size 500 to 850 / m) of the time-sintered product is dispersed uniformly with an electrostatic powder coating machine, and from there, 100 wt% of P is manufactured by Mitsui Dupont Fluorochemicals PFA powder paint M P_ 102 was coated to a film thickness of 20 μπι and baked at 380 ° C. for 30 minutes. This is taken as Example 14.
(実施例 15 )  (Example 15)
実施例 1と同様に粗面化した表面に東レ ·ダウコ一二ング社製シリコーンコー ティング剤 PR X— 306を 5 μηι塗装し、 乾燥しない状態で三井デュポンフロ 口ケミカル社製ポリテトラフルォロエチレン造粒パウダー (807—Ν) の 34 0°C X 5時間焼結品の分級品 (粒径 500〜850 μπι) を表面に降り力 ナ、 付 着しないパウダーを払い落とした。 この上に東レ ·ダウコ一二ング社製シリコー ンコーティング剤 PR X— 306を重ね塗り、 乾燥を繰り返して、 膜厚 40 μπι とし、 1 80°Cで 30分焼成した。 これを実施例 1 5とする。  Apply 5 μm of a silicone coating agent PR X-306 manufactured by Toray Industries, Inc. to the roughened surface in the same manner as in Example 1 and dry without drying. A classified product (particle size 500 to 850 μπι) of a sintered product of ethylene granulated powder (807-Ν) for 3 hours at 34 ° C. for 5 hours was dropped onto the surface, and powder not adhering was removed. On top of this, silicone coating agent PR X-306 manufactured by Toray Dow Co., Ltd. was repeatedly applied, and drying was repeated to obtain a film thickness of 40 μπ 焼 成, and baking was performed at 180 ° C. for 30 minutes. This is referred to as Example 15.
(比較例 1 )  (Comparative example 1)
ダイキン工業社製ポリテトラフルォロエチレン造粒パウダー (M— 39 1 S) を使用しない以外は実施例 1と同様にして比較例 1を得た。  Comparative Example 1 was obtained in the same manner as Example 1 except that polytetrafluoroethylene granulated powder (M-39 1 S) manufactured by Daikin Industries, Ltd. was not used.
すなわち実施例 1と同様に粗面加工した表面にプライマーである P TFEを約 That is, P TFE, a primer, was applied to the roughened surface as in Example 1.
25 w t %含有するダイキン工業社製ポリフロンエナメル (EK 1 909 S 21Daikin Industries' polyflon enamel containing 25 wt% (EK 1 909 S 21
L) を 1 2 m塗装し乾燥させた。 乾燥後、 PTFEを約 40 w t%含有するダ ィキン工業社製ポリフロンエナメル (EK3709 S 2 1 L) を 30 μ m膜厚相 当まで塗装し、 乾燥後、 380°CX 20分焼成した。 これを比較例 1とする。 (比較例 2 ) L) was coated and dried 12 m. After drying, it contains about 40 wt% of PTFE. Polyflon enamel (EK 3709 S 2 1 L) manufactured by Ikin Industries Co., Ltd. was applied to a thickness of 30 μm, dried, and fired at 380 ° CX for 20 minutes. This is Comparative Example 1. (Comparative example 2)
ダイキン工業社製ポリテトラフルォロエチレン造粒パウダー (M— 391 S) を使用しない以外は実施例 7と同様にして比較例 2を得た。  Comparative Example 2 was obtained in the same manner as Example 7 except that polytetrafluoroethylene granulated powder (M-391 S) manufactured by Daikin Industries, Ltd. was not used.
すなわち実施例 7と同様に粗面加工した表面にデュポン社製プライマー 420 一 703を 1 5 / m塗装し乾燥した。 乾燥後 PFAを 10 Ow t%含有する三井 デュポンフロロケミカル社製 P F A粉体塗料 MP— 102を塗装し、 400°Cで 20分焼成し膜厚 45 / mの平滑表面とした。 これを比較例 2とする。  That is, on the surface roughened in the same manner as in Example 7, 15 to 1 / m of DuPont's primer 420 1 703 was applied and dried. After drying, PFA powder coating MP-102 manufactured by Mitsui Dupont Fluorochemical Co., Ltd. containing 10% by weight of PFA was coated, and baked at 400 ° C. for 20 minutes to form a smooth surface with a film thickness of 45 / m. This is Comparative Example 2.
(比較例 3)  (Comparative example 3)
ダイキン工業社製ポリテトラフルォロエチレン造粒パウダー (M— 39 1 S) を使用しない以外は実施例 10と同様にして比較例 3を得た。  Comparative Example 3 was obtained in the same manner as Example 10 except that polytetrafluoroethylene powder (M-39 1 S) manufactured by Daikin Industries, Ltd. was not used.
すなわち実施例 10と同様に粗面加工した表面にデュポン社製プライマー 42 0— 703を 1 5 μ m塗装し乾燥した。 乾燥後 FEPを l O Ow t %含有するダ ィキン社製ネオフ口ン粉体塗料 N C X— 1を使用し、 340 °Cで 30分焼成して 膜厚 25 μπιの平滑表面とした。 これを比較例 3とする。  That is, on the surface roughened as in Example 10, DuPont's primer 420-703 was applied for 15 μm and dried. After drying, it was baked at 340 ° C. for 30 minutes using a powder powder coating N C X-1 manufactured by Dickin Co., Ltd. containing 10% by weight of FEP, to obtain a smooth surface with a film thickness of 25 μπι. This is Comparative Example 3.
(比較例 4)  (Comparative example 4)
粗粒子としてダイキン工業社製ポリテトラフルォロェチレン造粒パゥダー (Μ - 39 1 S) に代わって、 ダイキン工業社製 PF Α粉体塗料 AC— 5820 (平 均粒子径 220 μ m) を使用し、 380 °Cで 20分焼成した以外は実施例 7と同 様に行い比較例 4を得た。 比較例 4では粗粒子が P F Aと溶融性であるため、 表 面観察すると粒子形状が崩れていた。  Use of Daikin Industries 'PF powder powder AC-5820 (average particle diameter 220 μm) as coarse particles instead of Daikin Industries' Polytetrafluorethylene Granule Powder (1-39 1 S) Comparative Example 4 was obtained in the same manner as in Example 7 except that firing was carried out at 380 ° C. for 20 minutes. In Comparative Example 4, the coarse particles were meltable with P 2 F A, so when observed on the surface, the particle shape was broken.
(比較例 5 )  (Comparative example 5)
ダイキン工業社製ポリテトラフルォロエチレン造粒パウダー (M— 391 S) の散布量を多く し、多層散布した以外は実施例 5と同様に行レ、、比較例 5を得た。 上記実施例 1〜1 3及び比較例 1〜5の平滑表面の平均表面粗さ (Ra ; S) を測定した。  Comparative Example 5 was obtained in the same manner as in Example 5 except that the amount of the polytetrafluoroethylene granulated powder (M-391 S) manufactured by Daikin Industries, Ltd. was increased and the layers were dispersed in a similar manner to Example 5. The average surface roughness (Ra; S) of the smooth surfaces of the above Examples 1 to 13 and Comparative Examples 1 to 5 was measured.
平滑表面の平均表面粗さ (R a ; S) は突起面のない平面を用い、 東京精密機 器株式会社製表面粗さ形状測定機 HANDY— SURF E— 35 Aで計測した。 また各膜厚はフィッシヤーィンストルメンッ製 デュアルスコープ MRORで 測定した。 The average surface roughness (R a; S) of the smooth surface was measured using a flat surface having no projected surface, with a surface roughness profile measuring machine HANDY- SURF E- 35 A manufactured by Tokyo Precision Instruments Co., Ltd. In addition, each film thickness was measured by using a dual scope MROR manufactured by Fisshjörnsch GmbH.
また粗粒子の形成する突起の程度を表すために粗粒子の突起高さ (H) を計算 によって求めた。 突起高さ (H) は平均粒子径ー上掛け樹脂膜厚として求めた。 図 1に突起高さ (H) の説明図を示し、 これを用いて説明する。 図 1に示すよう に、 基材 1上に樹脂皮膜層 2が形成されている。 樹脂皮膜層 2に粗粒子 3が散布 され、 上掛け樹脂 4が粗粒子 3を固定している。 ここで上掛け樹脂 4の表面から の粗粒子 3の高さを突起高さ Hと称す。  In addition, the height (H) of coarse particle projections was calculated by the calculation to represent the degree of projections formed by coarse particles. The protrusion height (H) was determined as an average particle diameter-overlap resin film thickness. Fig. 1 shows an explanatory view of the projection height (H), which will be described using this. As shown in FIG. 1, a resin film layer 2 is formed on a substrate 1. The coarse particles 3 are dispersed in the resin film layer 2, and the top coating resin 4 fixes the coarse particles 3. Here, the height of the coarse particles 3 from the surface of the top resin 4 is referred to as a protrusion height H.
また平滑表面の平均表面粗さ (R a ; S) と突起高さ (H) から R a比を求め た。 R a比 =HZ (R a ; S) 。  In addition, the ratio of R a was determined from the average surface roughness (R a; S) of the smooth surface and the height of protrusion (H). Ra ratio = HZ (Ra; S).
また各実施例及び比較例の表面を株式会社キーエンス社製デジタルマイクロス コープ VH— Z 7 5型で倍率 1 0 0倍で観察した。 観察画像より単位面積あたり の平均粒子径と個数を求め、 それを用いて占有面積率 (%) を計算した。  Further, the surface of each of the examples and comparative examples was observed at a magnification of 100 with a digital microscope VH-Z 75 type manufactured by Keyence Corporation. The average particle size and number per unit area were determined from the observation image, and the occupied area ratio (%) was calculated using this.
また粗粒子の接着性を下記の方法で計測した。  The adhesion of the coarse particles was measured by the following method.
リンレイテープ株式会社製ガムテープ (粘着力 7. 7 5 N/c m) で 2 5 mm 幅で 1 0回剥離後、 ガムテープに付着した (非粘着) 粗粒子の個数を計測し、 以 下のように判定した。 '  The number of (non-adhesive) coarse particles attached to the gum tape was measured after peeling 10 times at 25 mm width with a gum tape (adhesive force 7.75 N / cm) manufactured by Rinlay Tape Co., Ltd. It was judged. '
◎ : 0個、 〇: :!〜 2個、 △ : 3〜4個、 X : 5個以上。 :: 0 pieces, :::! ~ 2 pieces, Δ: 3 to 4 pieces, X: 5 pieces or more.
また塗装部材の非粘着性を以下のように評価した。  Moreover, the non-adhesiveness of the coating member was evaluated as follows.
上記リンレイテープ株式会社製ガムテープ(粘着力 7. 7 5 N/c m)を用い、 各実施例及び比較例の塗装面に貼り付け、 島津製作所製 A G— X型引っ張り試験 機を用いて速度 1 OmmZ分、 9 0° の引き剥がし応力(N, c m)を測定した。 各結果を表 1に示す。
Figure imgf000014_0001
The gum tape (adhesive force: 7.75 N / cm) manufactured by Rinlay Tape Co., Ltd. is used to affix to the coated surface of each example and comparative example, and the speed 1 OmmZ is measured using an AG-X tensile tester manufactured by Shimadzu Corporation A peel stress (N, cm) of 90 ° was measured for 10 minutes. Each result is shown in Table 1.
Figure imgf000014_0001
表 1からわかるように、 平滑表面に P T F Eを使用し、 粒径が 1 0 6 / in以上の 粗粒子を使用した実施例 1〜 6と、 粗粒子を使用しない比較例 1とを比べると実 施例 1〜 6は非粘着性を 1 / 3以下に低減できた。 As can be seen from Table 1, comparing Examples 1 to 6 using coarse particles with a particle diameter of 106 / in or more using PTFE for the smooth surface, and Comparative Example 1 using no coarse particles, Examples 1 to 6 were able to reduce the non-adhesiveness to 1/3 or less.
また実施例 1と実施例 2とは占有面積率が異なる。 実施例 1に比べて占有面積 率 (%) が低い実施例 2のほうが非粘着性が優れていた。 同様に実施例 4は実施 例 3よりも非粘着性が優れ、 実施例 6は実施例 5よりも非粘着性が優れていた。 また実施例 2、 実施例 4、 実施例 6を比べると粗粒子の粒子径が大きく、 R a 比が大きい実施例 6の非粘着性が優れていた。 また実施例 6は比較例 1と比べて 非粘着性を 1 Z 1 0に低減できた。  In addition, Example 1 and Example 2 have different occupied area ratios. The non-tacky property was better in Example 2 where the occupied area ratio (%) was lower than Example 1. Similarly, Example 4 was more non-tacky than Example 3, and Example 6 was more non-tacky than Example 5. Moreover, when Example 2, Example 4, and Example 6 are compared, the non-adhesiveness of Example 6 with a large particle diameter of coarse particles and a large Ra ratio was excellent. In addition, Example 6 was able to reduce non-adhesiveness to 1 Z 10 as compared with Comparative Example 1.
実施例 1〜 6及び比較例 1の結果からわかるように、 突起を強調し、 つまり平 滑表面の平均表面粗さ (R a ) と粗粒子の突起高さ (H) との比である R a比が 大きいほど非粘着性が優れていた。 また表 1力 らわかるように占有面積率 (%) は 1 5〜 5 0 %でより優れた非粘着性を示した。  As can be seen from the results of Examples 1 to 6 and Comparative Example 1, the projections are emphasized, that is, the ratio of the average surface roughness (R a) of the smooth surface to the height (H) of coarse particles. The larger the ratio, the better the non-stickiness. As shown in Table 1, the occupied area ratio (%) showed better non-stickiness at 15 to 50%.
また上記実施例 5より粗粒子の散布量を多くした比較例 5は、 実施例 5が単層 に積層されていたのに比べ、 粗粒子が 2〜 3層に積層されていた。 そのため粗粒 子全部が榭脂皮膜層に固定されず、 粗粒子の樹脂皮膜層への接着性が悪かった。 実施例 5は比較例 5に比べて非粘着性を 1 / 2に低減出来た。  In addition, in Comparative Example 5 in which the amount of coarse particles dispersed was larger than that in Example 5 described above, coarse particles were stacked in 2 to 3 layers, as compared to Example 5 that was stacked in a single layer. Therefore, all the coarse particles were not fixed to the resin coating layer, and the adhesion of the coarse particles to the resin coating layer was poor. Example 5 was able to reduce non-adhesiveness to 1/2 compared to Comparative Example 5.
同様に樹脂皮膜層に P F Aを使用し、 平均粒径が 1 0 6 m以上の粗粒子を使 用した実施例 7〜 9と、 粗粒子を使用しない比較例 2とを比べると実施例 7〜 9 は非粘着性をほぼ 1ノ5以下に低減できた。 特に粗粒子の粒子径が大きく、 R a 比が大きい実施例 9は比較例 2と比べて非粘着性をほぼ 1 1 0に低減できた。 樹脂皮膜層に P F Aを使用した場合でも、 突起を強調し、 つまり平滑表面の平 均表面粗さ (R a ) と粗粒子の突起高さ (H) との比である R a比が大きいほど 非粘着性が優れていた。  Similarly, Examples 7 to 9 using PFA in the resin film layer and using coarse particles having an average particle diameter of 106 m or more and Comparative Example 2 not using coarse particles are compared with Examples 7 to 7. 9 was able to reduce the non-stickiness to almost 1/5. In particular, in Example 9 in which the particle diameter of the coarse particles is large and the R a ratio is large, the non-adhesiveness can be reduced to about 10 as compared with Comparative Example 2. Even when PFA is used for the resin film layer, the projections are emphasized, that is, the larger the ratio of Ra, which is the ratio of the average surface roughness (R a) of the smooth surface to the height of protrusions of coarse particles (H), Non-tacky was excellent.
また上記実施例 7と粗粒子に溶融性樹脂である P F Aを用いた比較例 4とを比 ベると非粘着性はほぼ 1ノ 4程度まで低減出来た。 比較例 4では粒子形状が崩れ ている様子が観察された。 粒子形状が崩れると非粘着性は劣ることがわかった。 また樹脂皮膜層に F E Pを使用し、 平均粒径が 1 0 6 / m以上の粗粒子を使用 した実施例 1 0〜1 1と、 粗粒子を使用しない比較例 3とを比べると実施例 1 0 〜1 1は非粘着性をほぼ 1 Z 4以下に低減できた。特に粗粒子の粒子径が大きく、 R a比が大きい実施例 1 1は比較例 3と比べて非粘着性をほぼ 1 Z 1 0に低減で きた。 Further, when the above Example 7 and Comparative Example 4 in which PFA, which is a fusible resin, was used for coarse particles, were compared, the non-adhesiveness could be reduced to about 1%. In Comparative Example 4, it was observed that the particle shape was broken. It was found that when the particle shape is broken, the non-adhesiveness is inferior. Also, when comparing the example 10-1 1 using the FEP in the resin coating layer and using the coarse particles having an average particle diameter of 106 / m or more with the comparative example 3 not using the coarse particles, the example 1 0 1 to 11 could reduce the non-stickiness to almost 1 Z 4 or less. In particular, in Example 11 in which the particle diameter of the coarse particles is large and the Ra ratio is large, the non-adhesiveness can be reduced to about 1 Z 10 as compared with Comparative Example 3.
樹脂皮膜層に F E Pを使用した場合でも、 突起を強調し、 つまり平滑表面の平 均表面粗さ (R a ) と粗粒子の突起高さ (H) との比である R a比が大きいほど 非粘着性が優れていた。  Even when FEP is used for the resin film layer, the projections are emphasized, that is, the larger the ratio of Ra, which is the ratio of the average surface roughness (R a) of the smooth surface to the height of projections of coarse particles (H), Non-tacky was excellent.
実施例 1 2及び実施例 1 3は基材の表面に N i - A 1合金を溶射することによ つて基材表面を実施例 1〜 6よりも更に粗面化した。 そのため平滑表面の平均表 面粗さ (R a ) が実施例 1〜6よりも 1 0倍以上大きくなつている。 実施例 1 2 及び実施例 1 3の場合も比較例 1と比べて非粘着性が大幅に優れていた。 従って 平均表面粗さ (R a ) が 1 5 . 0 m以下の平滑表面と平均粒子径が 5 0 πι以 上の粗粒子の組み合わせが非粘着性に効果があることがわかった。  Example 1 2 and Example 1 3 were roughened more than Examples 1 to 6 by spraying N i -A 1 alloy on the surface of the base material. Therefore, the average surface roughness (R a) of the smooth surface is 10 times larger than that of Examples 1 to 6. In the cases of Example 1 2 and Example 1 3 as well, the non-adhesiveness was significantly superior to Comparative Example 1. Therefore, it was found that the combination of a smooth surface having an average surface roughness (R a) of 150 m or less and a coarse particle having an average particle diameter of 50 p π or more is effective for non-stickiness.
実施例 1 4及び実施例 1 5は、 平均粒子径が 5 0 0 μ m以上の粗粒子を使用し た。 実施例 1 4及び実施例 1 5は、 ともに R a比が大きいものとなり、 非粘着性 に優れた結果となった。  In Example 14 and Example 15, coarse particles having an average particle diameter of 500 μm or more were used. Both Examples 1 to 4 and Example 1 5 had a large Ra ratio, and the result was excellent in non-adhesiveness.
また、 実施例 1 5は樹脂皮膜層にシリコーンゴムを用いたものである。 シリコ ーンゴムは、 通常はポリテトラフルォロエチレンと接着しにくい。 さらに実施例 1 5は粗粒子の占有面積率が 8 9 %と粗粒子の量の多いものであった。 そのため 実施例 1 5では粗粒子であるポリテトラフルォロエチレン造粒パゥダーと樹脂皮 膜層との接着不良が予想される。 しかし、 実施例 1 5は、 樹脂皮膜層と粗粒子と の良好な接着性を有する結果となった。  In Example 15, a silicone rubber was used for the resin film layer. Silicone rubber usually does not adhere well to polytetrafluoroethylene. Furthermore, in Example 15, the occupied area ratio of coarse particles was as large as 89% and the amount of coarse particles was large. Therefore, in Example 15, adhesion failure between the coarse particle polytetrafluoroethylene granulation powder and the resin coating layer is expected. However, Example 15 resulted in having good adhesion between the resin film layer and the coarse particles.
この結果については、以下のように考えられる。造粒パウダーは、上記特許(特 公昭 4 3— 8 6 1 1号公報、 特公昭 4 4— 2 2 6 1 9号公報、 特公昭 4 7— 3 1 8 7号公報、 特開平 3— 2 5 9 9 2 6号公報) に記載されているように 1〜 1 0 0 μ m程度の粒子が凝集してできたものであり、 造粒パウダー内部に多数の空隙 が存在する。 そのため上記空隙部分にシリコーンゴムが入り込んだため良好な接 着性を有したと考えられる。  The results are considered as follows. Granulated powders are disclosed in the above-mentioned patents (Japanese Patent Publication No. 4 3-861, Japanese Patent Publication No. 4 4 2 2 6 1 9, Japanese Patent Publication No. 4 7- 3 8 7, Japanese Patent Application Laid-Open No. 3-2. As described in the publication No. 5 9 9 2 6), the particles are formed by aggregation of particles of about 1 to 100 μm, and a large number of voids are present inside the granulated powder. Therefore, it is considered that because the silicone rubber entered into the void portion, it had a good adhesion.
このように樹脂皮膜層にシリコーンを使用した場合でも、 粗粒子は樹脂皮膜層 に良好に接着出来、 非粘着性に優れた結果となった。 シリコーンの有する優れた 非粘着性と上記接着性とをうまく両立出来だと考えられる。 As described above, even when silicone was used for the resin film layer, the coarse particles were able to adhere well to the resin film layer, resulting in excellent non-adhesiveness. The superiority of silicone It is considered that the non-adhesiveness and the above-mentioned adhesiveness can be well achieved.
上記各実験結果から R a比は 1 0以上あると非粘着性に効果があることがわか つた。  From the above experimental results, it was found that when the Ra ratio is 10 or more, the non-adhesiveness is effective.
図 2に実施例 2及び図 3に実施例 4の 5 0倍の拡大顕微鏡写真を示す。 図 2及 び図 3において粒状に見える物体が粗粒子である。 図 2及び図 3から粗粒子が平 滑表面に対して均一に分散されていることがわかる。  FIG. 2 shows a 50 × magnified photomicrograph of Example 4 in Example 2 and FIG. The objects that appear granular in FIGS. 2 and 3 are coarse particles. It can be seen from FIGS. 2 and 3 that coarse particles are uniformly dispersed on the smooth surface.
産業上の利用可能性 Industrial applicability
本発明の塗装部材は、 粘着テープの製造設備、 接着剤の製造設備、 ゴム状物 質の取り扱い設備、 食品粘着物質取り扱い設備に好適に適用できる。 具体的に は、 粘着及び接着剤を使用する容器、 攪拌機、 ロール、 加熱部品、 カッテイン グの刃物及び部品、 輸送用配管、 押し出しノズル等様々な用途に適用出来る。  The coated member of the present invention can be suitably applied to an adhesive tape production facility, an adhesive production facility, a rubbery material handling facility, and a food adhesive material handling facility. Specifically, it can be applied to various applications such as containers using adhesives and adhesives, stirrers, rolls, heating parts, cutting blades and parts for cutting, transport piping, extrusion nozzles, etc.

Claims

請 求 の 範 囲 The scope of the claims
1. 基材と、  1. With a substrate
該基材の表面に形成された平均表面粗さ (Ra) が 1 5. O /zm以下の平滑表 面を有する樹脂皮膜層と、  A resin film layer having a smooth surface having an average surface roughness (Ra) of 1 5. O / zm or less formed on the surface of the substrate;
該樹脂皮膜層の該平滑表面に固定された平均粒子径 (R) が 5 0. Ο ΠΙ以上 の粗粒子と、  Coarse particles having an average particle diameter (R) of 50 0. ΠΙ or more fixed to the smooth surface of the resin film layer,
を有することを特徴とする塗装部材。  A painted member characterized by having.
2. 前記粗粒子は前記平滑表面に単層となるように固定されている請求項 1に 記載の塗装部材。  2. The coated member according to claim 1, wherein the coarse particles are fixed to the smooth surface in a single layer.
3. 前記粗粒子の前記平滑表面に対する占有面積率が 5〜 99 %である請求項 1または 2に記載の塗装部材。  3. The coated member according to claim 1 or 2, wherein an occupied area ratio of the coarse particles to the smooth surface is 5 to 99%.
4. 前記粗粒子は溶融、 昇華により形状が変化しない物質から形成される請求 項 1〜 3の何れかに記載の塗装部材。  4. The coated member according to any one of claims 1 to 3, wherein the coarse particles are formed of a material whose shape does not change by melting or sublimation.
5. 前記粗粒子はポリテトラフルォロエチレンを 1〜100重量。 /0含む造粒粉 末である請求項 1〜4の何れかに記載の塗装部材。 5. The coarse particles are 1 to 100% by weight of polytetrafluoroethylene. / 0 containing coating member according to any one of claims 1 to 4 is a granulated powder powder.
6. 前記造粒粉末の平均粒子径 (R) が 50〜 3000 μ mである請求項 5に 記載の塗装部材。  6. The coated member according to claim 5, wherein an average particle size (R) of the granulated powder is 50 to 3000 μm.
7. 前記樹脂皮膜層がパーフルォ口化合物で形成されている請求項 1〜 6の何 れかに記載の塗装部材。  7. The coated member according to any one of claims 1 to 6, wherein the resin film layer is formed of a perfluorinated compound.
PCT/JP2009/055386 2008-04-01 2009-03-12 Painting member WO2009122920A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010505584A JP4928632B2 (en) 2008-04-01 2009-03-12 Painted parts

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-095009 2008-04-01
JP2008095009 2008-04-01

Publications (1)

Publication Number Publication Date
WO2009122920A1 true WO2009122920A1 (en) 2009-10-08

Family

ID=41135303

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/055386 WO2009122920A1 (en) 2008-04-01 2009-03-12 Painting member

Country Status (2)

Country Link
JP (1) JP4928632B2 (en)
WO (1) WO2009122920A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011027415A1 (en) * 2009-09-01 2011-03-10 株式会社吉田エス・ケイ・テイ Method for producing non-adhesive member and non-adhesive member produced by the method
WO2011033621A1 (en) * 2009-09-16 2011-03-24 株式会社吉田エス・ケイ・テイ Nonadhesive substrate and production method therefor
JP2015051907A (en) * 2013-08-05 2015-03-19 日本フッソ工業株式会社 Corrosion resistant member for precision machine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3075117B2 (en) * 1994-12-28 2000-08-07 日本鋼管株式会社 Painted metal plate for sliding plate and method for producing the same
JP2002038102A (en) * 2000-05-08 2002-02-06 Basf Ag Composition for making barely wettable surface
JP2002066657A (en) * 2000-08-28 2002-03-05 Takasago Tekko Kk Steel plate excellent in non-adhesiveness and its manufacturing method
JP2005096442A (en) * 2003-08-28 2005-04-14 Okamura Corp Metal plate improved in sliding property
JP2007083172A (en) * 2005-09-22 2007-04-05 Okamura Corp Metal plate excellent in smoothness
JP2008000703A (en) * 2006-06-23 2008-01-10 Daito Paint Kk Method for manufacturing plate excellent in slidableness

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007001201A (en) * 2005-06-24 2007-01-11 Mitsubishi Heavy Ind Ltd Non-adhesive structure, coating sheet, member for printing device, forming method of non-adhesive structure and regenerating method
JP2007021953A (en) * 2005-07-19 2007-02-01 Mitsubishi Heavy Ind Ltd Non-adhesive structure, coating sheet, member for printing device and forming method of non-adhesive structure

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3075117B2 (en) * 1994-12-28 2000-08-07 日本鋼管株式会社 Painted metal plate for sliding plate and method for producing the same
JP2002038102A (en) * 2000-05-08 2002-02-06 Basf Ag Composition for making barely wettable surface
JP2002066657A (en) * 2000-08-28 2002-03-05 Takasago Tekko Kk Steel plate excellent in non-adhesiveness and its manufacturing method
JP2005096442A (en) * 2003-08-28 2005-04-14 Okamura Corp Metal plate improved in sliding property
JP2007083172A (en) * 2005-09-22 2007-04-05 Okamura Corp Metal plate excellent in smoothness
JP2008000703A (en) * 2006-06-23 2008-01-10 Daito Paint Kk Method for manufacturing plate excellent in slidableness

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011027415A1 (en) * 2009-09-01 2011-03-10 株式会社吉田エス・ケイ・テイ Method for producing non-adhesive member and non-adhesive member produced by the method
WO2011033621A1 (en) * 2009-09-16 2011-03-24 株式会社吉田エス・ケイ・テイ Nonadhesive substrate and production method therefor
JP2015051907A (en) * 2013-08-05 2015-03-19 日本フッソ工業株式会社 Corrosion resistant member for precision machine

Also Published As

Publication number Publication date
JPWO2009122920A1 (en) 2011-07-28
JP4928632B2 (en) 2012-05-09

Similar Documents

Publication Publication Date Title
KR101337746B1 (en) Fluororesin coating film
US7597939B2 (en) Process for applying fluoropolymer powder coating as a primer layer and an overcoat
JP5967230B2 (en) Coated article and method for forming corrosion-resistant coating film
JP4207569B2 (en) Primer for ETFE paint
JP5812180B2 (en) Laminated body
JP6186921B2 (en) Coated article
JP2010043287A (en) Abrasion-resistant coating composition, and substrate coated therewith
WO2012019088A1 (en) Non-stick coating having improved abrasion resistance and hardness on a substrate
JP5601013B2 (en) Fluororesin coating material and method for producing the same
JP6149739B2 (en) Primer composition and laminate using the same
JP2006192356A (en) Primer layer and paint composition
JP5560028B2 (en) Fluororesin laminate with high friction and wear resistance
JP6175928B2 (en) Coated article
WO2009122920A1 (en) Painting member
US11926754B2 (en) Fluoropolymer coating composition
JP4398043B2 (en) Article having fluororesin coating film and method for producing the same
JPH04227777A (en) Coating composition for sliding part
JP4621503B2 (en) Rolining method
JP7290207B2 (en) Product with fluororesin coating formed and method for manufacturing the same
JP2013235103A (en) Composition for roller outermost surface, and member for roller outermost surface, and roller using the same
JP2013075498A (en) Fluorine-containing laminate, and method for manufacturing the same
JP2015142962A (en) Non-adhesive composite resin film coated roll
TW202003120A (en) Electronic article and method for forming film on electronic article
JP2009133374A (en) Sliding member and manufacturing method of the same
JP4928636B2 (en) Non-adhesive member manufacturing method and non-adhesive member manufactured by the manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09728061

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010505584

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09728061

Country of ref document: EP

Kind code of ref document: A1