JP2011207937A - Method for producing fluorescent material - Google Patents
Method for producing fluorescent material Download PDFInfo
- Publication number
- JP2011207937A JP2011207937A JP2010074622A JP2010074622A JP2011207937A JP 2011207937 A JP2011207937 A JP 2011207937A JP 2010074622 A JP2010074622 A JP 2010074622A JP 2010074622 A JP2010074622 A JP 2010074622A JP 2011207937 A JP2011207937 A JP 2011207937A
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- fluorescent material
- rate
- sintering
- decreasing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000463 material Substances 0.000 title claims abstract description 39
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 16
- 238000005245 sintering Methods 0.000 claims abstract description 28
- 230000007423 decrease Effects 0.000 claims abstract description 27
- 229910052688 Gadolinium Inorganic materials 0.000 claims abstract description 8
- 230000003247 decreasing effect Effects 0.000 claims abstract description 8
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 6
- 229910052733 gallium Inorganic materials 0.000 claims abstract description 6
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 6
- 239000002223 garnet Substances 0.000 claims abstract description 5
- 238000006243 chemical reaction Methods 0.000 claims description 10
- 239000011800 void material Substances 0.000 description 17
- 238000001816 cooling Methods 0.000 description 12
- 239000013078 crystal Substances 0.000 description 11
- 239000002245 particle Substances 0.000 description 10
- 230000005855 radiation Effects 0.000 description 9
- 238000002834 transmittance Methods 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 7
- 238000002591 computed tomography Methods 0.000 description 7
- 229910052710 silicon Inorganic materials 0.000 description 7
- 229910005191 Ga 2 O 3 Inorganic materials 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 229910052724 xenon Inorganic materials 0.000 description 6
- 238000000280 densification Methods 0.000 description 5
- 238000001514 detection method Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 4
- 230000000630 rising effect Effects 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 4
- 229910052777 Praseodymium Inorganic materials 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- 230000010354 integration Effects 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- 229910052684 Cerium Inorganic materials 0.000 description 2
- 229910052692 Dysprosium Inorganic materials 0.000 description 2
- 229910052691 Erbium Inorganic materials 0.000 description 2
- 238000000149 argon plasma sintering Methods 0.000 description 2
- 230000008033 biological extinction Effects 0.000 description 2
- 238000009694 cold isostatic pressing Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 150000003736 xenon Chemical class 0.000 description 2
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Luminescent Compositions (AREA)
- Measurement Of Radiation (AREA)
- Apparatus For Radiation Diagnosis (AREA)
Abstract
Description
本発明は、X線等の放射線を吸収し発光する蛍光材料の製造方法に関するものである。 The present invention relates to a method for producing a fluorescent material that absorbs and emits radiation such as X-rays.
X線診断装置の一つにX線CT(Computed Tomography)がある。このCTは扇状のファンビームX線を照射するX線管と、多数のX線検出素子を併設したX線検出器とで構成される。該装置は、人体にX線を照射し、透過したX線を検出器であるシンチレータの発光によって検知し、光電子増倍管の出力を画像処理する装置である。 One of X-ray diagnostic apparatuses is X-ray CT (Computed Tomography). This CT is composed of an X-ray tube that radiates a fan-shaped fan beam X-ray and an X-ray detector provided with a large number of X-ray detection elements. This apparatus is an apparatus that irradiates a human body with X-rays, detects transmitted X-rays by light emitted from a scintillator as a detector, and performs image processing on the output of the photomultiplier tube.
従来からこのX線検出器としてはキセノン(Xe)ガス検出器が用いられてきている。このキセノンガス検出器はガスチャンバにキセノンガスを封入し、多数配列した電極間に電圧を印加すると共にX線を照射すると、X線がキセノンガスを電離し、X線の強度に応じた電流信号を取り出すことができ、それにより画像が構成される。しかし、このキセノンガス検出器では高圧のキセノンガスをガスチャンバに封入するため厚い窓が必要であり、そのためX線の利用効率が悪く感度が低いという問題があった。また、高解像度のCTを得るためには電極板の厚みを極力薄くする必要があり、そのように電極板を薄くすると外部からの振動によって電極板が振動しノイズが発生するという問題があった。 Conventionally, a xenon (Xe) gas detector has been used as the X-ray detector. This xenon gas detector encloses a xenon gas in a gas chamber, applies a voltage between a large number of arranged electrodes, and irradiates X-rays. The X-rays ionize the xenon gas and a current signal corresponding to the intensity of the X-rays. Can be retrieved, thereby constructing an image. However, this xenon gas detector requires a thick window to enclose high-pressure xenon gas in the gas chamber, so that there is a problem that the utilization efficiency of X-rays is poor and the sensitivity is low. In addition, in order to obtain a high-resolution CT, it is necessary to reduce the thickness of the electrode plate as much as possible. If the electrode plate is thinned as such, there is a problem that the electrode plate vibrates due to external vibration and noise is generated. .
一方、シンチレータとしてはCdWO4単結晶、Gd2O2S:Pr,Ce,F、(Y,Gd)2O3:Eu,Pr、Gd3Ga5O12:Cr,Ce等の多結晶蛍光体が用いられている。この様な蛍光体に要求される点としては、材料の均一性が高く、X線特性のバラツキが小さいこと、放射線劣化が小さいこと、環境変化に対して特性の変化が少ないこと、吸湿性・潮解性がなく、化学的に安定であることが求められている。 On the other hand, as the scintillator, CdWO 4 single crystal, Gd 2 O 2 S: Pr, Ce, F, (Y, Gd) 2 O 3 : Eu, Pr, Gd 3 Ga 5 O 12 : Cr, Ce, etc. The body is used. Such phosphors are required to have high uniformity of materials, small variation in X-ray characteristics, small radiation degradation, little change in characteristics with respect to environmental changes, There is a demand for chemical stability without deliquescence.
こうしたX線検出器においては、X線の吸収に応じてシンチレータが発する光の強度(発光強度)が高いほど高感度となる。発光強度を大きくするためにはX線を充分に吸収する必要がある。また、この吸収が小さいと、シンチレータを透過するX線量が増加し、シリコンフォトダイオードのノイズ源となり、感度の低下の一因となる。シンチレータを透過するX線量を減らすためにはシンチレータを厚くする必要があるが、そうすると、検出素子の小型化ができないとともにコストが増加する。従って、薄い蛍光材料で充分なX線吸収をするためには、X線吸収係数が大きいことが必要である。また、蛍光材料中におけるこの光の透過率が低いと、発生した光のうちフォトダイオードまで届かなくなるものが増えるため、実質的に発光強度は低下する。従って、発光強度を高くするためには、シンチレータ材料となる蛍光材料には、(a)X線の吸収係数が大きいこと、(b)発光する光の透過率が高いことが要求される。 In such an X-ray detector, the higher the intensity (light emission intensity) of light emitted by the scintillator in accordance with X-ray absorption, the higher the sensitivity. In order to increase the emission intensity, it is necessary to sufficiently absorb X-rays. In addition, if this absorption is small, the X-ray dose that passes through the scintillator increases, which becomes a noise source of the silicon photodiode, which causes a decrease in sensitivity. In order to reduce the X-ray dose transmitted through the scintillator, it is necessary to increase the thickness of the scintillator. However, if this is done, the detection element cannot be reduced in size and the cost increases. Therefore, in order to sufficiently absorb X-rays with a thin fluorescent material, it is necessary that the X-ray absorption coefficient is large. Further, if the transmittance of this light in the fluorescent material is low, the amount of generated light that does not reach the photodiode increases, so that the emission intensity substantially decreases. Therefore, in order to increase the emission intensity, the fluorescent material used as the scintillator material is required to have (a) a large X-ray absorption coefficient and (b) a high transmittance of emitted light.
また、X線CTには、解像度の向上、すなわち検出素子の小型化と、体動の影響を少なくするため走査時間の短縮が必要とされている。この場合、一つの検出素子における積分時間は短くなり、積分時間中に吸収するX線総量は低下することになるため、特に発光効率が高い(発光強度が大きい)ことが必要である。さらに、検出素子の時間分解能を上げるためには、X線照射停止後の発光(残光)が瞬時に小さくなることが必要となる。このためには、発光の減衰時定数及び残光強度が小さいことが必要である。ここで、発光の減衰時定数とは、X線照射を停止し、発光強度がX線照射中の発光強度の1/eになるまでの時間であり、残光強度とは、X線照射を停止し一定時間経過後の発光強度の、X線照射中の発光強度に対する比率を表す。減衰が完全に指数関数的であれば、減衰時定数が小さければ必然的に残光強度も低くなるが、実際には残光の減衰は指数関数的ではない。そのため、残光を小さくして高性能のX線CT装置を得るためには、減衰時定数および残光強度が共に小さい蛍光材料を用いることが必要となる。従来使用されている各種蛍光材料における、発光強度と減衰時定数及び30ms後の残光強度について表1に示す。 Further, X-ray CT is required to improve the resolution, that is, to reduce the size of the detection element and to shorten the scanning time in order to reduce the influence of body movement. In this case, the integration time in one detection element is shortened, and the total amount of X-rays absorbed during the integration time is reduced, so that particularly high light emission efficiency (high light emission intensity) is required. Furthermore, in order to increase the time resolution of the detection element, it is necessary to instantaneously reduce the light emission (afterglow) after the X-ray irradiation is stopped. For this purpose, it is necessary that the decay time constant of light emission and the afterglow intensity are small. Here, the decay time constant of light emission is the time until X-ray irradiation is stopped and the light emission intensity becomes 1 / e of the light emission intensity during X-ray irradiation, and the afterglow intensity is the X-ray irradiation. The ratio of the emission intensity after stopping for a certain time and the emission intensity during X-ray irradiation is expressed. If the attenuation is completely exponential, the afterglow intensity will inevitably be low if the attenuation time constant is small, but actually the decay of the afterglow is not exponential. Therefore, in order to obtain a high-performance X-ray CT apparatus with reduced afterglow, it is necessary to use a fluorescent material having both a small decay time constant and afterglow intensity. Table 1 shows the emission intensity, decay time constant and afterglow intensity after 30 ms in various conventionally used fluorescent materials.
発光強度、減衰時定数、残光強度はPIN型フォトダイオード(浜松ホトニクス社製:S2281)を用いて測定した。表1の発光強度はCdWO4単結晶の発光強度を基準としたときの相対値である。 The emission intensity, decay time constant, and afterglow intensity were measured using a PIN photodiode (Hamamatsu Photonics: S2281). The emission intensity in Table 1 is a relative value when the emission intensity of the CdWO 4 single crystal is used as a reference.
特許文献1においては、焼結開始から昇温速度を一定速度に保つことによる、シンチレータFZ単結晶育成用の種結晶が開示されている。また、特許文献2においては、降温途中で再度一定時間キープすることによる、多結晶シンチレータ材料の製造方法が開示されている。 Patent Document 1 discloses a seed crystal for growing a scintillator FZ single crystal by keeping a temperature rising rate at a constant rate from the start of sintering. Moreover, in patent document 2, the manufacturing method of the polycrystal scintillator material by keeping for a fixed time again in the middle of temperature fall is disclosed.
高性能X線CTにおいては、鮮明な画像を得るため体動の影響を少なくすることと、人体への被曝線量を極力抑えるため、走査時間はさらに短縮されつつある。この2点を実現するためには短い積分時間中にできるだけ発光効率を上げる(発光効率、発光強度が大きい)ことと、それに伴い時間分解能の向上が必要であり、時間分解能を上げるためにはX線照射停止後の発光が小さい(残光が小さい)ことが求められる。 In high-performance X-ray CT, the scanning time is being further shortened in order to reduce the influence of body movement in order to obtain a clear image and to minimize the exposure dose to the human body. In order to realize these two points, it is necessary to increase the light emission efficiency as much as possible during a short integration time (light emission efficiency and light emission intensity is large) and to improve the time resolution accordingly. To increase the time resolution, X It is required that the light emission after the irradiation stops is small (afterglow is small).
現在、発光強度については、従来使用されている材料よりさらに20%程度高発光の材料が求められている。そこで、本発明はこの問題に鑑みてなされたものであり、目的は発光強度を向上させたシンチレータ用の蛍光材料を提供することである。 Currently, with respect to the emission intensity, a material that emits light that is about 20% higher than a conventionally used material is required. Therefore, the present invention has been made in view of this problem, and an object thereof is to provide a scintillator fluorescent material with improved emission intensity.
本発明の蛍光材料の製造方法は、Ceを発光元素とし、Gd、Ga、Al、Oを含有するガーネット構造の蛍光材料の製造方法であって、
成形体の温度を上げる昇温工程と、前記成形体を1300〜1700℃の範囲内の温度で焼結する焼結工程と、焼結後に焼結体の温度を下げる降温工程とを有し、
前記降温工程は、75〜300℃/hの降温速度で降温を開始するように制御することを特徴とする。前記焼結工程は1300〜1700℃の範囲内の所定の温度で維持して行われることが望ましい。
The method for producing a fluorescent material of the present invention is a method for producing a fluorescent material having a garnet structure containing Ce as a light emitting element and containing Gd, Ga, Al, O,
A temperature raising step for raising the temperature of the molded body, a sintering step for sintering the molded body at a temperature in the range of 1300 to 1700 ° C., and a temperature lowering step for lowering the temperature of the sintered body after sintering,
The temperature lowering step is controlled to start the temperature decrease at a temperature decrease rate of 75 to 300 ° C./h. The sintering process is preferably performed while maintaining a predetermined temperature in the range of 1300 to 1700 ° C.
このガーネット構造の蛍光材料はシンチレータ用であることが望ましい。成形体は、例えば、成形体を加圧処理したもの、或いは焼結が十分には進行していない段階のもの(焼結完了していないもの)を含む。 The garnet-structured fluorescent material is preferably for a scintillator. The compact includes, for example, one obtained by pressurizing the compact, or one in which sintering has not sufficiently progressed (one that has not been sintered).
前記降温工程は、75〜300℃/hである第1の降温速度で温度を下げ、降温の途中に、前記第1の降温速度よりも速い第2の降温速度に変えて温度を下げ、前記第1の降温速度による降温は前記焼結工程に続けて行い、前記第2の降温速度による降温は前記第1の降温速度による降温に続けて行うことが望ましい。第2の降温速度は、例えば400〜500℃/hが望ましい。第1の降温速度を第2の降温速度に切替える変換点(降温パターンの屈曲点)は、温度でいうと、1500℃〜室温の範囲内であればよく、より好ましい範囲はGa2O3の蒸気圧がほぼ0Paになる1400〜1000℃であることが望ましい。また、変換点において数時間キープしてもよい。焼結工程の温度は、1300℃から1700℃の範囲内であることが望ましい。 In the temperature lowering step, the temperature is decreased at a first temperature decrease rate of 75 to 300 ° C./h, and the temperature is decreased in the middle of the temperature decrease by changing to a second temperature decrease rate faster than the first temperature decrease rate, It is desirable that the temperature decrease by the first temperature decrease rate is performed following the sintering step, and the temperature decrease by the second temperature decrease rate is performed following the temperature decrease by the first temperature decrease rate. The second temperature drop rate is preferably 400 to 500 ° C./h, for example. The conversion point (bending point of the temperature decrease pattern) for switching the first temperature decrease rate to the second temperature decrease rate may be in the range of 1500 ° C. to room temperature, and a more preferable range is Ga 2 O 3 . It is desirable that the vapor pressure is 1400 to 1000 ° C. at which the vapor pressure is almost 0 Pa. Further, it may be kept for several hours at the conversion point. The temperature of the sintering process is desirably in the range of 1300 ° C to 1700 ° C.
前記昇温工程において、昇温速度を150〜450℃/hに制御することが望ましい。 In the temperature raising step, it is desirable to control the temperature raising rate to 150 to 450 ° C./h.
本発明により、シンチレータ用蛍光材料の発光強度を向上することができる。 According to the present invention, the emission intensity of the scintillator fluorescent material can be improved.
本発明者は、上記した課題を解決するため、焼結プロセス中の少なくとも降温パターンを制御することで発光強度が向上することを見出し、本発明を完成させた。 In order to solve the above-mentioned problems, the present inventor has found that the emission intensity is improved by controlling at least the temperature drop pattern during the sintering process, and has completed the present invention.
シンチレータの発光強度には材料の密度が大きく影響し、多結晶の場合、いかにボイド(空隙)を少なくするかが重要である。多結晶シンチレータの焼結プロセス中で緻密化を促進させる段階は主に焼結キープ中であるが、昇温段階および降温段階も緻密化に大きく影響する。本発明の要旨は、Ceを発光元素とし、少なくともGd、Al、GaおよびOを含んだガーネット構造の蛍光材料を製造する際に、少なくとも降温パターンを制御することを特徴とする蛍光材料の製造方法である。 The density of the material greatly affects the emission intensity of the scintillator, and in the case of polycrystals, how to reduce voids (voids) is important. The stage of promoting the densification in the sintering process of the polycrystalline scintillator is mainly during the sintering keep, but the temperature rising stage and the temperature lowering stage also have a great influence on the densification. The gist of the present invention is a method for producing a fluorescent material, characterized in that, when producing a fluorescent material having a garnet structure containing Ce as a light emitting element and containing at least Gd, Al, Ga, and O, at least a cooling pattern is controlled. It is.
セラミックスの緻密化には、原料粉の粒径、成形体密度および焼結条件が影響を及ぼしている。この中でも焼結プロセスでの緻密化は、通常、焼結温度を一定に維持している状態(以下、焼結キープと記す)に支配されることが多い。焼結温度まで温度を上昇させる昇温の速度、また焼結キープが終了してから温度を低下させていく降温の速度は時間効率を優先させる場合が多く、緻密化のための特別な制御を施したパターンは無い。 The densification of the ceramics is influenced by the particle size of the raw material powder, the compact density, and the sintering conditions. Among these, densification in the sintering process is usually governed by a state in which the sintering temperature is maintained constant (hereinafter referred to as sintering keep). The rate of temperature rise that raises the temperature to the sintering temperature, and the rate of temperature fall that lowers the temperature after the completion of sintering keep often gives priority to time efficiency, and special control for densification is required. There is no pattern applied.
一方、蛍光体の特性の中で、発光強度はミクロな観点ではバンドギャップ、不純物準位および欠陥準位などがあるが、マクロな点では材料そのものの密度に起因する場合が多い。即ちボイド(空隙)の少ない緻密な材料であることが高発光強度蛍光体には求められる。 On the other hand, among the characteristics of the phosphor, the emission intensity has a band gap, an impurity level, a defect level, and the like from a microscopic viewpoint, but is often caused by the density of the material itself at a macroscopic point. That is, a high emission intensity phosphor is required to be a dense material with few voids.
セラミックス蛍光体のプロセスは一般的なセラミックス合成方法に準ずるが、当該蛍光体の大きな特徴は昇降温のパターンを制御し残存するボイド空間を低減していることである。 The process of the ceramic phosphor is in accordance with a general ceramic synthesis method, but the major feature of the phosphor is that the remaining void space is reduced by controlling the temperature rising / falling pattern.
本発明の製造方法に係る蛍光材料は、Ceを発光元素とし、少なくともGd、Al、Ga、O、Fe、Si及びREを含み、REがPr,Dy及びErのうち少なくとも1種類であり、MがMg、Ti、Niのうち少なくとも1種類であり、下記一般式で表されることを特徴とする蛍光材料である。
(Gd1−x−y−zLuxREyCez)3+a(Al1−u−sGauScs)5−aO12
ここで、
0≦a≦0.15、
0≦x≦0.5、
0<y≦0.003、
0.0003≦z≦0.0167、
0.2≦u≦0.6
0≦s≦0.1
であり、単位質量が100mass%であり、
Fe、Si、Mの含有率(massppm)は、
0.05≦Fe含有率≦1、
0.5≦Si含有率≦10、
0≦M含有率≦50
であることが望ましい。
The fluorescent material according to the manufacturing method of the present invention uses Ce as a light-emitting element, includes at least Gd, Al, Ga, O, Fe, Si, and RE, and RE is at least one of Pr, Dy, and Er, and M Is a fluorescent material characterized in that it is at least one of Mg, Ti and Ni and is represented by the following general formula.
(Gd 1-x-y- z Lu x RE y Ce z) 3 + a (Al 1-u-s Ga u Sc s) 5-a O 12
here,
0 ≦ a ≦ 0.15,
0 ≦ x ≦ 0.5,
0 <y ≦ 0.003,
0.0003 ≦ z ≦ 0.0167,
0.2 ≦ u ≦ 0.6
0 ≦ s ≦ 0.1
And the unit mass is 100 mass%,
The content of Fe, Si, and M (massppm) is
0.05 ≦ Fe content ≦ 1,
0.5 ≦ Si content ≦ 10,
0 ≦ M content ≦ 50
It is desirable that
前記aのより好ましい範囲として0.005≦a≦0.05である。
前記xのより好ましい範囲として0.03≦x≦0.2である。
前記yのより好ましい範囲として0.0001≦y≦0.0015である。
本発明の蛍光材料において、前記zのより好ましい範囲として0.001≦z≦0.005である。
前記uのより好ましい範囲として0.35≦u≦0.55である。
前記sのより好ましい範囲として0.01≦s≦0.1である。
前記Feのより好ましい含有率(massppm)が0.05≦Fe含有率≦0.4の範囲にあることを特徴とする。
前記Siのより好ましい含有率(massppm)が0.5≦Si含有率≦5の範囲にあることを特徴とする。
前記Mのより好ましい含有率(massppm)が3≦M含有率≦15の範囲にあることを特徴とする。
The more preferable range of a is 0.005 ≦ a ≦ 0.05.
A more preferable range of x is 0.03 ≦ x ≦ 0.2.
The more preferable range of y is 0.0001 ≦ y ≦ 0.0015.
In the fluorescent material of the present invention, the more preferable range of z is 0.001 ≦ z ≦ 0.005.
A more preferable range of u is 0.35 ≦ u ≦ 0.55.
A more preferable range of s is 0.01 ≦ s ≦ 0.1.
A more preferable content (massppm) of Fe is in a range of 0.05 ≦ Fe content ≦ 0.4.
A more preferable content rate (massppm) of Si is in a range of 0.5 ≦ Si content ≦ 5.
A more preferable content rate (massppm) of M is in a range of 3 ≦ M content rate ≦ 15.
本発明の製造方法に係る蛍光材料は、Ceを発光元素とし、Gd、Ga、Al,O、Fe、Si及びREがPr,Dy及びErのうち少なくとも1種類以上を含有するガーネット構造のシンチレータ用の蛍光材料であって、各元素を以下の範囲で含有し、各元素の総和を100mass%とすることを特徴とする。ここで、MはMg、Ti、Niのうちの少なくとも1種類以上の元素である。
24.3≦Gd含有率(mass%)≦57.6、
0≦Lu含有率(mass%)≦31.1、
0.02≦Ce含有率(mass%)≦0.7、
0<RE含有率(mass%)≦0.12、
4.0≦Al含有率(mass%)≦12.8、
7.5≦Ga含有率(mass%)≦22.6、
0≦Sc含有率(mass%)≦2.64、
19.6≦O含有率(mass%)≦22.8、
0.05≦Fe含有率(massppm)≦1、
0.5≦Si含有率(massppm)≦10、
0≦M含有率(massppm)≦50である。
The fluorescent material according to the manufacturing method of the present invention is for a scintillator having a garnet structure in which Ce is a light emitting element and Gd, Ga, Al, O, Fe, Si, and RE contain at least one of Pr, Dy, and Er. The fluorescent material is characterized in that each element is contained in the following range, and the total of each element is 100 mass%. Here, M is at least one element of Mg, Ti, and Ni.
24.3 ≦ Gd content (mass%) ≦ 57.6,
0 ≦ Lu content (mass%) ≦ 31.1,
0.02 ≦ Ce content (mass%) ≦ 0.7,
0 <RE content (mass%) ≦ 0.12,
4.0 ≦ Al content (mass%) ≦ 12.8,
7.5 ≦ Ga content (mass%) ≦ 22.6,
0 ≦ Sc content (mass%) ≦ 2.64,
19.6 ≦ O content (mass%) ≦ 22.8,
0.05 ≦ Fe content (mass ppm) ≦ 1,
0.5 ≦ Si content (mass ppm) ≦ 10,
0 ≦ M content (mass ppm) ≦ 50.
より好ましい組成範囲は、
45.9≦Gd含有率(mass%)≦52.8、
1.7≦Lu含有率(mass%)≦12.0、
0.06≦Ce含有率(mass%)≦0.24、
0.006≦RE含有率(mass%)≦0.07、
7.0≦Al含有率(mass%)≦10.0、
13.7≦Ga含有率(mass%)≦20.6、
0.05≦Sc含有率(mass%)≦0.5、
20.7≦O含有率(mass%)≦21.9、
0.05≦Fe含有率(massppm)≦0.4、
0.5≦Si含有率(massppm)≦5、
3≦M含有率(massppm)≦15である。
前記蛍光材料は、多結晶であることを特徴とする。
A more preferred composition range is
45.9 ≦ Gd content (mass%) ≦ 52.8,
1.7 ≦ Lu content (mass%) ≦ 12.0,
0.06 ≦ Ce content (mass%) ≦ 0.24,
0.006 ≦ RE content (mass%) ≦ 0.07,
7.0 ≦ Al content (mass%) ≦ 10.0,
13.7 ≦ Ga content (mass%) ≦ 20.6,
0.05 ≦ Sc content (mass%) ≦ 0.5,
20.7 ≦ O content (mass%) ≦ 21.9,
0.05 ≦ Fe content (mass ppm) ≦ 0.4,
0.5 ≦ Si content (mass ppm) ≦ 5,
3 ≦ M content (mass ppm) ≦ 15.
The fluorescent material is polycrystalline.
(実施例1)
Gd2O3を117.63g、Lu2O3を4.45g、Ce(NO3)・9H2Oを0.777g、Sc2O3を0.925g、Al2O3を32.35g、Ga2O3を43.87g計量した。これらの素原料をφ5mmアルミナボールを充填した容器内に投入し、12h混合後乾燥した。乾燥粉に1wt%の純水を添加し500kg/cm2で1軸加圧成形した後、3000kg/cm2で冷間静水圧加圧(CIP)を行った。その成形体をO2雰囲気中、1350℃まで300℃/h、1350℃から1675℃まで150℃/hで昇温し、1675℃で12hキープし、キープ終了後1000℃まで150℃/hで降温し、1000℃以下は炉冷で室温まで冷却した。炉冷に移行した直後の降温速度は500℃/hであった。得られた焼結体を面積=10mm×10mm、厚さt=2mmに機械加工後、鏡面研磨を施し、多結晶シンチレータを作製した。
Example 1
The Gd 2 O 3 117.63g, 4.45g of Lu 2 O 3, Ce (NO 3) · 9H 2 O and 0.777g, 0.925g of Sc 2 O 3, the Al 2 O 3 32.35g, 43.87 g of Ga 2 O 3 was weighed. These raw materials were put into a container filled with φ5 mm alumina balls, mixed for 12 hours and dried. After uniaxial pressure molding by adding 1 wt% of pure water at 500 kg / cm 2 in the dry powder was subjected to cold isostatic pressing at 3000kg / cm 2 (CIP). The molded body was heated in an O 2 atmosphere to 300 ° C./h from 1350 ° C. to 150 ° C./h from 1350 ° C. to 1675 ° C., kept at 1675 ° C. for 12 h, and kept at 1000 ° C./150° C./h after completion of the keep. The temperature was lowered, and the temperature below 1000 ° C. was cooled to room temperature by furnace cooling. The cooling rate immediately after the transition to furnace cooling was 500 ° C./h. The obtained sintered body was machined to have an area = 10 mm × 10 mm and a thickness t = 2 mm, and then mirror-polished to produce a polycrystalline scintillator.
得られたシンチレータを図2、3の放射線検出器を用いて評価した。放射線検出器は、1.2mmピッチで24個配列した上記スライスしたシンチレータ2と、配列した上記スライスしたシンチレータ2の上面と側面にTiO2とエポキシ樹脂の混合材を塗布し硬化させてなる光反射膜3と、シンチレータ2の配列に対応し大きさが1mm×30mmでピッチが1.2mmで配列されるとともにシンチレータ2と受光面が正確に一致するよう位置決めした受光部を有しシンチレータ2とエポキシ樹脂で固定した24チャンネルシリコンフォトダイオード5と、24チャンネルシリコンフォトダイオード5が電気的に接続される配線基板4で構成される。かかる放射線検出器によれば、X線1の照射によりシンチレータ2が励起され発光し、その光をフォトダイオード5で検出することにより、シンチレータの特性を確認することができる。 The obtained scintillator was evaluated using the radiation detectors of FIGS. The radiation detector is composed of 24 sliced scintillators 2 arranged at a pitch of 1.2 mm, and light reflection obtained by applying a mixture of TiO 2 and epoxy resin to the top and side surfaces of the arranged scintillators 2 and curing them. Corresponding to the arrangement of the film 3 and the scintillator 2, the size is 1 mm × 30 mm, the pitch is 1.2 mm, and the light-receiving part is positioned so that the scintillator 2 and the light-receiving surface exactly coincide with each other. A 24-channel silicon photodiode 5 fixed with resin and a wiring substrate 4 to which the 24-channel silicon photodiode 5 is electrically connected are configured. According to such a radiation detector, the scintillator 2 is excited and emits light by irradiation of the X-ray 1, and the light is detected by the photodiode 5, whereby the characteristics of the scintillator can be confirmed.
(実施例2)
上記組成の成形体を、O2雰囲気中、1350℃まで300℃/h、1350℃から1675℃まで150℃/hで昇温し、1675℃で12hキープし、キープ終了後は300℃/hで室温まで冷却した。その後の工程は実施例1と同様の方法で、多結晶の蛍光材料を試料として作製した。
(Example 2)
The molded body having the above composition was heated in an O 2 atmosphere to 300 ° C./h from 1350 ° C. to 150 ° C./h from 1350 ° C. to 1675 ° C., kept at 1675 ° C. for 12 h, and 300 ° C./h after completion of the keep. At room temperature. Subsequent steps were performed in the same manner as in Example 1, and a polycrystalline fluorescent material was prepared as a sample.
(実施例3)
上記組成の成形体を、O2雰囲気中、1350℃まで300℃/h、1350℃から1675℃まで150℃/hで昇温し、1675℃で12hキープし、キープ終了後1000℃まで150℃/hで降温し、1000℃で24hキープし、キープ終了後は炉冷で室温まで冷却した。その後の工程は実施例1と同様の方法で、多結晶の蛍光材料を試料として作製した。
(Example 3)
The molded body having the above composition was heated to 300 ° C./h from 1350 ° C. to 1675 ° C. at 150 ° C./h in an O 2 atmosphere, kept at 1675 ° C. for 12 hours, and kept at 150 ° C. until 1000 ° C. after the keep. The temperature was lowered at / h, kept at 1000 ° C. for 24 hours, and cooled to room temperature by furnace cooling after the keep. Subsequent steps were performed in the same manner as in Example 1, and a polycrystalline fluorescent material was prepared as a sample.
実施例1の多結晶シンチレータの組織写真を図4に示す。組織写真はレーザー顕微鏡で焼結体試料の断面を観察・撮影することで得た。粒界におけるボイドの生成はほとんど抑制されている。図4の下方の余白には“50μm”を示す寸法線を表示した。図5は、図4の写真の組織の特徴を模写しており、白い部分が結晶粒、黒い部分がボイドである。ボイドは結晶粒より光の反射が少ないので模式図では濃く表示したが、色が黒い訳ではない。結晶粒11同士の間はほぼ粒界13となっており、微小な粒界ボイド12は少なくかなり抑制されている。図5中の右下の線分の長さは、図4中の右下の線分の長さに対応しており、同じものである。 A structural photograph of the polycrystalline scintillator of Example 1 is shown in FIG. The structure photograph was obtained by observing and photographing the cross section of the sintered body sample with a laser microscope. The formation of voids at the grain boundaries is almost suppressed. In the lower margin of FIG. 4, a dimension line indicating “50 μm” is displayed. FIG. 5 reproduces the characteristics of the structure of the photograph in FIG. 4, where white portions are crystal grains and black portions are voids. Since the void reflects less light than the crystal grains, it is displayed dark in the schematic diagram, but the color is not black. There are almost grain boundaries 13 between the crystal grains 11, and there are few minute grain boundary voids 12 and they are considerably suppressed. The length of the lower right line segment in FIG. 5 corresponds to the length of the lower right line segment in FIG. 4 and is the same.
(比較例1)
上記組成の成形体を、O2雰囲気中、1350℃まで300℃/h、1350℃から1675℃まで150℃/hで昇温し、1675℃で12hキープし、キープ終了後は炉冷で室温まで冷却した。その後の工程は実施例1と同様の方法で、多結晶の蛍光材料を試料として作製した。炉冷とは、焼成炉への加熱用エネルギーの供給を止めて、自然に冷却させることを指す。
(Comparative Example 1)
The molded body having the above composition was heated at 300 ° C./h from 1350 ° C. to 1675 ° C. at 150 ° C./h in an O 2 atmosphere, kept at 1675 ° C. for 12 h, and kept at room temperature by furnace cooling after the keep. Until cooled. Subsequent steps were performed in the same manner as in Example 1, and a polycrystalline fluorescent material was prepared as a sample. Furnace cooling refers to stopping the supply of heating energy to the firing furnace and allowing it to cool naturally.
比較例1の多結晶シンチレータの組織写真を図6に示す。粒界に寸法の大きいボイドが多数生成していることがわかる。粒内における特に濃い白い部分は、粒内ボイド或いは粒を透過して見える内部の粒界ボイドと考えられる。図6の下方の余白には“50μm”を示す寸法線を表示した。図7は、図6の写真の組織の特徴を模写しており、結晶粒21同士の間には、粒界13の他に、大きな粒界ボイド22が多数形成されている。符号24は結晶粒の内部に生成した粒内ボイドと考えられる(模式図では小さい円状部分(点線で表示)に相当する)。図7中の右下の線分の長さは、図6中の右下の線分の長さに対応しており、同じものである。 A structural photograph of the polycrystalline scintillator of Comparative Example 1 is shown in FIG. It can be seen that many voids having large dimensions are generated at the grain boundaries. A particularly dark white portion in the grain is considered to be an intragranular void or an internal grain boundary void that appears through the grain. A dimension line indicating “50 μm” is displayed in the lower margin of FIG. FIG. 7 reproduces the characteristics of the structure of the photograph in FIG. 6, and a large number of large grain boundary voids 22 are formed between the crystal grains 21 in addition to the grain boundaries 13. Reference numeral 24 is considered to be an intragranular void generated inside a crystal grain (corresponding to a small circular portion (indicated by a dotted line) in the schematic diagram). The length of the lower right line segment in FIG. 7 corresponds to the length of the lower right line segment in FIG. 6 and is the same.
実施例1、実施例2、実施例3、比較例1について、各々の試料で測定した。図1に各焼結パターンの図を示す。図1に記載した番号とパターンの対応は、実施例1:α、実施例2:β、実施例3:γ、比較例1:δ(従来行っている焼結パターン)である。焼結体密度、拡散透過率、発光強度を図8に示す。焼結体密度は、試料の焼結体の重量及び寸法から求めた。拡散透過率は、積分球を取りつけた分光光度計(日本分光製:V−570)を用い、測定光として550nmの光を試料に照射することにより、測定した。発光強度は、各々の試料をシンチレータとした放射線検出器(図2、3と同様)を作製し、X線源としてタングステンターゲットのX線管を用い、管電圧120kV、管電流5mAの条件でX線を前記放射線検出器のシンチレータに照射し、シリコンフォトダイオードの出力を得ることにより、評価した。降温変換点から室温まで冷却されるまでの時間が、実施例1、実施例2、実施例3の順に長くなるため、生産性を考慮すると変換点からの冷却時間は短い方が望ましい。 About Example 1, Example 2, Example 3, and Comparative Example 1, it measured by each sample. FIG. 1 shows a diagram of each sintering pattern. The correspondence between the numbers and patterns shown in FIG. 1 is Example 1: α, Example 2: β, Example 3: γ, and Comparative Example 1: δ (conventional sintered pattern). FIG. 8 shows the sintered body density, diffuse transmittance, and emission intensity. The sintered body density was determined from the weight and dimensions of the sintered body of the sample. The diffuse transmittance was measured by irradiating the sample with 550 nm light as measurement light using a spectrophotometer (JASCO Corporation: V-570) equipped with an integrating sphere. The emission intensity was determined by preparing a radiation detector (similar to FIGS. 2 and 3) using each sample as a scintillator, using an X-ray tube of a tungsten target as an X-ray source, under conditions of a tube voltage of 120 kV and a tube current of 5 mA. Evaluation was performed by irradiating the scintillator of the radiation detector with a line to obtain the output of a silicon photodiode. Since the time until cooling from the temperature lowering conversion point to room temperature becomes longer in the order of Example 1, Example 2, and Example 3, it is desirable that the cooling time from the conversion point is shorter in consideration of productivity.
降温速度と焼結体密度および発光強度の関係を図9に、拡散透過率の関係を図10に示す。また、Gd2O3、Al2O3およびGa2O3の温度と蒸気圧の関係を図11に示す。焼結保持時はGa2O3の蒸発によるボイド生成とボイド拡散・消滅が平衡状態にあるが、降温過程ではその速度により両者に差が生じる。降温速度が速い場合は冷却も急速に進むため、Ga2O3蒸発によるボイド生成は抑制されるが、ボイド拡散・消滅が完全に行われる前に室温まで冷却され、ボイドが焼結体内に残存し密度が低下する。残存したボイドによる光散乱のため発光強度が低下する。一方、降温速度が遅い場合は冷却も緩やかに進むため、Ga2O3蒸発によるボイド生成は一定温度まで継続されるが、ボイド拡散・消滅が完全に行われる程度に緩やかに室温まで冷却されるため、焼結体内に残存するボイド数は降温速度が速い場合に比べ少なくなる。その結果、ボイドによる光散乱も降温速度が速い場合に比べ少なくなるため、発光強度は増加すると考えられる。 FIG. 9 shows the relationship between the cooling rate, the sintered body density, and the emission intensity, and FIG. 10 shows the relationship between the diffuse transmittance. Further, FIG. 11 shows the relationship between the temperature and vapor pressure of Gd 2 O 3 , Al 2 O 3 and Ga 2 O 3 . At the time of sintering holding, void generation due to evaporation of Ga 2 O 3 and void diffusion / disappearance are in an equilibrium state. When the temperature drop rate is fast, cooling progresses rapidly, so that void formation due to Ga 2 O 3 evaporation is suppressed, but before the void diffusion and extinction is completely performed, it is cooled to room temperature and the void remains in the sintered body. The density decreases. The light emission intensity decreases due to light scattering by the remaining voids. On the other hand, when the temperature drop rate is slow, the cooling proceeds slowly, so that void generation by Ga 2 O 3 evaporation is continued to a certain temperature, but it is gradually cooled to room temperature to the extent that void diffusion / extinction is completely performed. For this reason, the number of voids remaining in the sintered body is reduced as compared with the case where the temperature decreasing rate is high. As a result, light scattering due to voids is also reduced compared to the case where the temperature drop rate is fast, so that the emission intensity is considered to increase.
昇温速度と焼結体密度および発光強度の関係を図12に、拡散透過率の関係を図13に示す。焼結体の密度は原料粉の粒径に大きく依存し、また焼結反応の順序はより小さい粒径の粒子から反応するため、原料粉の粒径が均一に近いほど、より緻密な焼結体が得られる。原料粉の粒径が疎らでは、小さい粒径の粒子の凝集体から反応が始まり、次いで粒径の大きな粒子へと反応が進んでいく。このように反応開始時間に差が生じると、凝集体間に空隙が生じそれがボイドとなり密度を低下させる。よって昇温速度を速くすることで反応開始時間の差を少なくし、空隙の生成が抑制され高密度な焼結体が得られると考えられる。 FIG. 12 shows the relationship between the heating rate, the density of the sintered body, and the emission intensity, and FIG. 13 shows the relationship between the diffuse transmittance. The density of the sintered body largely depends on the particle size of the raw material powder, and since the order of the sintering reaction starts from particles of smaller particle size, the closer the particle size of the raw material powder is, the more dense the sintering. The body is obtained. When the particle size of the raw material powder is sparse, the reaction starts from an aggregate of particles having a small particle size, and then the reaction proceeds to particles having a large particle size. Thus, when a difference arises in reaction start time, a space | gap will arise between aggregates and it will become a void and will reduce a density. Therefore, it is considered that by increasing the temperature rising rate, the difference in reaction start time is reduced, void formation is suppressed, and a high-density sintered body can be obtained.
本発明は、X線等の放射線を吸収し、発光する蛍光材料の製造に好適に用いられる。 The present invention is suitably used for the production of a fluorescent material that absorbs radiation such as X-rays and emits light.
1 X線
2 シンチレータ
3 光反射膜
4 配線基板
5 フォトダイオード
11 結晶粒
12 粒界ボイド
13 粒界
21 結晶粒
22 粒界ボイド
23 粒界
24 ボイド
DESCRIPTION OF SYMBOLS 1 X-ray 2 Scintillator 3 Light reflection film 4 Wiring board 5 Photodiode 11 Crystal grain 12 Grain boundary void 13 Grain boundary 21 Crystal grain 22 Grain boundary void 23 Grain boundary 24 Void
Claims (4)
成形体の温度を上げる昇温工程と、前記成形体を1300〜1700℃の範囲内の温度で焼結する焼結工程と、焼結後に焼結体の温度を下げる降温工程とを有し、
前記降温工程は、75〜300℃/hの降温速度で降温を開始するように制御することを特徴とする蛍光材料の製造方法。 A method for producing a fluorescent material for a scintillator having a garnet structure containing Ce as a light emitting element and containing Gd, Ga, Al, O,
A temperature raising step for raising the temperature of the molded body, a sintering step for sintering the molded body at a temperature in the range of 1300 to 1700 ° C., and a temperature lowering step for lowering the temperature of the sintered body after sintering,
The method for producing a fluorescent material is characterized in that the temperature lowering step is controlled to start temperature lowering at a temperature lowering rate of 75 to 300 ° C./h.
The method for producing a fluorescent material according to any one of claims 1 to 3, wherein in the temperature raising step, a temperature raising rate is controlled to 150 to 450 ° C / h.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010074622A JP5212841B2 (en) | 2010-03-29 | 2010-03-29 | Method for producing fluorescent material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010074622A JP5212841B2 (en) | 2010-03-29 | 2010-03-29 | Method for producing fluorescent material |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011207937A true JP2011207937A (en) | 2011-10-20 |
JP5212841B2 JP5212841B2 (en) | 2013-06-19 |
Family
ID=44939344
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010074622A Active JP5212841B2 (en) | 2010-03-29 | 2010-03-29 | Method for producing fluorescent material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5212841B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016021540A1 (en) * | 2014-08-08 | 2016-02-11 | 東レ株式会社 | Scintillator panel and radiation detector |
CN106575534A (en) * | 2014-08-08 | 2017-04-19 | 东丽株式会社 | Method for manufacturing display member |
CN115932932A (en) * | 2022-11-03 | 2023-04-07 | 宁波虔东科浩光电科技有限公司 | Signal processing method of scintillator detection array and imaging device |
CN116675528A (en) * | 2023-04-28 | 2023-09-01 | 中国科学院宁波材料技术与工程研究所 | Green fluorescent ceramic and preparation method and application thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006068130A1 (en) * | 2004-12-21 | 2006-06-29 | Hitachi Metals, Ltd. | Fluorescent material and method for preparation thereof, radiation detector using fluorescent material, and x-ray ct device |
WO2008067272A2 (en) * | 2006-11-27 | 2008-06-05 | Services Petroliers Schlumberger | Luap scintillator |
-
2010
- 2010-03-29 JP JP2010074622A patent/JP5212841B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006068130A1 (en) * | 2004-12-21 | 2006-06-29 | Hitachi Metals, Ltd. | Fluorescent material and method for preparation thereof, radiation detector using fluorescent material, and x-ray ct device |
WO2008067272A2 (en) * | 2006-11-27 | 2008-06-05 | Services Petroliers Schlumberger | Luap scintillator |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016021540A1 (en) * | 2014-08-08 | 2016-02-11 | 東レ株式会社 | Scintillator panel and radiation detector |
CN106575534A (en) * | 2014-08-08 | 2017-04-19 | 东丽株式会社 | Method for manufacturing display member |
CN106663488A (en) * | 2014-08-08 | 2017-05-10 | 东丽株式会社 | Scintillator panel and radiation detector |
JPWO2016021540A1 (en) * | 2014-08-08 | 2017-05-18 | 東レ株式会社 | Scintillator panel and radiation detector |
US10580547B2 (en) | 2014-08-08 | 2020-03-03 | Toray Industries, Inc. | Scintillator panel and radiation detector |
CN115932932A (en) * | 2022-11-03 | 2023-04-07 | 宁波虔东科浩光电科技有限公司 | Signal processing method of scintillator detection array and imaging device |
CN116675528A (en) * | 2023-04-28 | 2023-09-01 | 中国科学院宁波材料技术与工程研究所 | Green fluorescent ceramic and preparation method and application thereof |
Also Published As
Publication number | Publication date |
---|---|
JP5212841B2 (en) | 2013-06-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5212115B2 (en) | Fluorescent material, scintillator and radiation detector using the same | |
US8025817B2 (en) | Fluorescent ceramic and fabrication method thereof | |
ES2599727T3 (en) | Garnet-type crystal for scintillator and radiation detector that uses the same | |
JP5035660B2 (en) | Fluorescent material and radiation detector using the same | |
JP5633573B2 (en) | Polycrystalline scintillator for soft X-ray detection | |
JP2005126718A (en) | Terbium- or lutetium-containing scintillator composition having increased resistance to radiation damage | |
JP2010261005A (en) | Fluorescent material and scintillator and radiation detector using the same | |
JP6103042B2 (en) | Fluorescent material, scintillator, and radiation conversion panel | |
JP5212841B2 (en) | Method for producing fluorescent material | |
JP5022600B2 (en) | Ceramic scintillator and radiation detector and radiation inspection apparatus using the same | |
JP7204862B2 (en) | Scintillator array, method for manufacturing scintillator array, radiation detector, and radiographic inspection apparatus | |
JP2008143726A (en) | Polycrystalline transparent y2o3 ceramics and its production method | |
JP2012184397A (en) | Polycrystal scintillator, method for manufacturing the same, and radiation detector | |
JP2009227794A (en) | Fluorescent material, its producing method and scintillator | |
JP2001294853A (en) | Oxide fluorescent substance, radiation detector using the same, and x-ray ct apparatus | |
JP4692890B2 (en) | Fluorescent material and radiation detector using the same | |
JP2001181043A (en) | Transparent polycrystalline garnet scintillator, powder for scintillator and method for producing the same | |
JP5218891B2 (en) | Method for producing fluorescent material | |
Nikl et al. | Lu3Al5O12-based materials for high 2D-resolution scintillation detectors | |
JP2009046610A (en) | Scintillator | |
JP6338998B2 (en) | Fluorescent element | |
US20220363987A1 (en) | Scintillator and Radiation Detector | |
EP4083165B1 (en) | Scintillator and radiation detector | |
Trofimov | Microstructure, luminescence, and performance of garnet polycrystalline ceramic scintillators | |
JP3863688B2 (en) | Method for producing rare earth activated alkaline earth metal fluoride halide phosphor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20121115 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121122 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130115 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130201 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130214 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5212841 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160308 Year of fee payment: 3 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |