JP2011207656A - Ferrite particle, and carrier for electrophotographic development containing the same, developer for electrophotography, and method for manufacturing ferrite particle - Google Patents

Ferrite particle, and carrier for electrophotographic development containing the same, developer for electrophotography, and method for manufacturing ferrite particle Download PDF

Info

Publication number
JP2011207656A
JP2011207656A JP2010076582A JP2010076582A JP2011207656A JP 2011207656 A JP2011207656 A JP 2011207656A JP 2010076582 A JP2010076582 A JP 2010076582A JP 2010076582 A JP2010076582 A JP 2010076582A JP 2011207656 A JP2011207656 A JP 2011207656A
Authority
JP
Japan
Prior art keywords
ferrite particles
oxygen
particles
carrier
ferrite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010076582A
Other languages
Japanese (ja)
Other versions
JP5761921B2 (en
Inventor
Sho Ogawa
翔 小川
Toshiya Kitamura
利哉 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Electronics Materials Co Ltd
Dowa IP Creation Co Ltd
Original Assignee
Dowa Electronics Materials Co Ltd
Dowa IP Creation Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Electronics Materials Co Ltd, Dowa IP Creation Co Ltd filed Critical Dowa Electronics Materials Co Ltd
Priority to JP2010076582A priority Critical patent/JP5761921B2/en
Publication of JP2011207656A publication Critical patent/JP2011207656A/en
Application granted granted Critical
Publication of JP5761921B2 publication Critical patent/JP5761921B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Developing Agents For Electrophotography (AREA)
  • Compounds Of Iron (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide ferrite particles having desired saturation magnetization and high electric resistance.SOLUTION: The ferrite particles have a composition represented by MgFeO(0≤x≤0.95), wherein the excessive oxygen amount δ in a spinel lattice in the ferrite phase is in the range of 0.01≤δ≤0.18. A method for manufacturing the ferrite particles includes a step of mixing a raw material of Fe and a raw material of Mg in a liquid medium to obtain a slurry, a step of subjecting the slurry to spray drying to obtain particles, and a step of firing the particles to obtain a fired product. Preferably, the firing is carried out under a condition to meet expression (1):-5,000≤T×logP≤0, wherein T is temperature, and Pis oxygen pressure/total pressure.

Description

本発明は、フェライト粒子及びそれを用いた電子写真現像用キャリア、電子写真用現像剤並びにフェライト粒子の製造方法に関するものである。   The present invention relates to ferrite particles, an electrophotographic developer carrier using the same, an electrophotographic developer, and a method for producing ferrite particles.

電子写真方式を用いたファクシミリやプリンタ、複写機などの画像形成装置では、現像剤である粉体のトナーを感光体上の静電潜像に付着させ、当該付着したトナー像を所定の用紙等へ転写した後、加熱・加圧して用紙等へ溶融定着させている。ここで、現像剤としては、トナーのみを含む一成分系現像剤を用いる一成分系現像法と、トナーとキャリアとを含む二成分系現像剤を用いる二成分系現像法とに大別される。そして、近年は、ほとんどの場合、トナーの荷電制御が容易で安定した高画質を得ることができ、高速現像が可能であることから二成分系現像法が用いられている。   In image forming apparatuses such as facsimiles, printers, and copiers using an electrophotographic system, powder toner as a developer is attached to an electrostatic latent image on a photosensitive member, and the attached toner image is applied to a predetermined sheet or the like. After being transferred to the sheet, it is heated and pressurized to melt and fix it on a sheet or the like. Here, the developer is roughly classified into a one-component development method using a one-component developer containing only toner and a two-component development method using a two-component developer containing toner and carrier. . In recent years, the two-component development method has been used in most cases because toner charge control is easy, stable image quality can be obtained, and high-speed development is possible.

二成分系現像法では、キャリアは現像スリーブ上でトナーを抱合した磁気ブラシを形成し、当該磁気ブラシを介して、感光体へトナーを移動させる働きをする。ここで、現像スリーブ上でキャリアが磁気ブラシを形成するにあたって、キャリアの磁力が重要となる。キャリアの磁力が低すぎると、キャリア‐現像スリーブ間、キャリア‐キャリア間の結合力が弱くなる。当該結合力が弱いと、磁気ブラシを形成するキャリアが、回転する現像スリーブの遠心力に耐え切れず、キャリアまでがトナーと一緒に感光体に飛散するために、感光体にキャリアが付着する現象(キャリア付着)が起き、画像異常となる。   In the two-component development method, the carrier forms a magnetic brush conjugated with toner on the developing sleeve, and functions to move the toner to the photoreceptor via the magnetic brush. Here, when the carrier forms a magnetic brush on the developing sleeve, the magnetic force of the carrier is important. When the magnetic force of the carrier is too low, the coupling force between the carrier and the developing sleeve and between the carrier and the carrier is weakened. When the coupling force is weak, the carrier forming the magnetic brush cannot withstand the centrifugal force of the rotating developing sleeve, and the carrier is scattered on the photosensitive member together with the toner, so that the carrier adheres to the photosensitive member. (Carrier adhesion) occurs, resulting in image abnormality.

他方、キャリアの磁力が高すぎると、キャリア同士の結合力が強くなり磁気ブラシが硬くなりすぎる。すると、当該磁気ブラシから感光体へトナーが移動する際に、一部に集中して移動するため、バラつきが多くなり、画質が悪くなるという現象が起きる。また、現像トルクが高いため、現像剤の劣化が早く、耐久性が悪くなる。   On the other hand, if the magnetic force of the carrier is too high, the coupling force between the carriers becomes strong and the magnetic brush becomes too hard. Then, when the toner moves from the magnetic brush to the photoconductor, the toner moves in a concentrated manner, resulting in a phenomenon that the variation increases and the image quality deteriorates. Further, since the development torque is high, the developer is rapidly deteriorated and the durability is deteriorated.

そこで、例えば特許文献1では、マグネシウム(以下「Mg」と記すことがある)フェライト粒子の表面を樹脂被覆したキャリアにおいて、Mgの含有量を所定範囲とし、窒素雰囲気、または窒素+酸素共存下で焼成することで所定の磁気特性を備えた電子写真用キャリアが提案されている。   Therefore, for example, in Patent Document 1, in a carrier in which the surface of magnesium (hereinafter sometimes referred to as “Mg”) ferrite particles is resin-coated, the Mg content is set within a predetermined range, and in a nitrogen atmosphere or in the presence of nitrogen + oxygen. An electrophotographic carrier having predetermined magnetic characteristics by firing is proposed.

特開2001-154416号公報JP 2001-154416 A

近年、画像形成装置における画像形成速度の高速化及び高画質化の市場要求に対応するため、キャリアとして使用するフェライト粒子の高電気抵抗化、高帯電化が求められている。   In recent years, in order to meet the market demand for higher image formation speed and higher image quality in image forming apparatuses, it is required to increase the electrical resistance and charge of ferrite particles used as carriers.

ところが、前記提案された電子写真用キャリアでは、飽和磁化は所定範囲に維持されると考えられるが、電気抵抗に関する検討がなされていないため、電気抵抗が低く、電荷のリークが生じ、画質劣化を引き起こすおそれがある。   However, in the proposed electrophotographic carrier, the saturation magnetization is considered to be maintained within a predetermined range. However, since the electrical resistance has not been studied, the electrical resistance is low, charge leakage occurs, and the image quality deteriorates. May cause.

本発明はこのような従来の問題に鑑みてなされたものであり、その目的は、所望の飽和磁化を有するとともに、高電気抵抗を有するフェライト粒子及びその製造方法を提供することにある。   The present invention has been made in view of such a conventional problem, and an object thereof is to provide a ferrite particle having a desired saturation magnetization and a high electric resistance, and a method for producing the same.

また、本発明の目的は、高速化及び高画質化を満足する電子写真現像用キャリア及び電子写真用現像剤を提供することにある。   Another object of the present invention is to provide an electrophotographic developer carrier and an electrophotographic developer that satisfy high speed and high image quality.

本発明者らは、所望の飽和磁化と高い電気抵抗と有するフェライト粒子を得るべく、鋭意検討を重ねた結果、組成としてはMgFe3−xで表されるフェライト粒子が適していること、そしてフェライト粒子が酸素を過剰に取り込むと、鉄の価数が変化し、飽和磁化を含む磁力及び電気抵抗が変化することを見出し、本発明をなすに至った。すなわち、本発明に係るフェライト粒子は、組成式:MgFe3−x4+δ(但し、0≦x≦0.95)で表わされ、フェライト相におけるスピネル格子中の酸素過剰量δが、0.01≦δ≦0.18であることを特徴とする。 As a result of intensive investigations to obtain ferrite particles having desired saturation magnetization and high electric resistance, the present inventors have suitable ferrite particles represented by Mg x Fe 3-x O 4 as the composition. In addition, when the ferrite particles take in oxygen excessively, the valence of iron is changed, and the magnetic force and electric resistance including saturation magnetization are changed, and the present invention has been made. That is, the ferrite particles according to the present invention are represented by the composition formula: Mg x Fe 3-x O 4 + δ (where 0 ≦ x ≦ 0.95), and the oxygen excess amount δ in the spinel lattice in the ferrite phase is It is characterized in that 0.01 ≦ δ ≦ 0.18.

また、本発明者等は、フェライト粒子における酸素の取り込み量は、焼成過程における酸素化学ポテンシャルμO2(以下「μO2」と記載する場合がある)で制御できること、また冷却過程におけるμO2を調整することで、フェライト粒子の内部まで均一に酸素過剰にできることを見出した。ここで、μO2はμO2=RTlnPO2の式で表すことができ、温度と酸素濃度によって変化させることができる。そこで、本発明に係るフェライト粒子の製造方法は、MgFe3−x(但し、0≦x≦0.95)で表わされる組成のフェライト粒子が生成するように成分調整されたFe原料及びMg原料を媒体液中で混合してスラリーを得る工程と、前記スラリーを噴霧乾燥させて造粒物を得る工程と、前記造粒物を焼成して焼成物を得る工程とを有し、前記焼成を下記式(1)を満たす条件で行い、MgFe3−x4+δ(但し、0.01≦δ≦0.18)で表わされるフェライト粒子を生成させることを特徴とする。
−5000≦T×logPO2≦0 ・・・・・・(1)
(式中、T:温度(℃),PO2=酸素圧力/全体圧力)
In addition, the present inventors can control the oxygen uptake amount in the ferrite particles by the oxygen chemical potential μ O2 (hereinafter sometimes referred to as “μ O2 ”) in the firing process, and adjust μ O2 in the cooling process. By doing so, it has been found that oxygen can be uniformly excessively provided inside the ferrite particles. Here, μ O2 can be expressed by an equation of μ O2 = RTlnP O2 and can be changed according to temperature and oxygen concentration. Therefore, the method for producing ferrite particles according to the present invention includes an Fe raw material whose components are adjusted so that ferrite particles having a composition represented by Mg x Fe 3-x O 4 (where 0 ≦ x ≦ 0.95) are generated. And a step of mixing a Mg raw material in a medium solution to obtain a slurry, a step of spray drying the slurry to obtain a granulated product, and a step of firing the granulated product to obtain a fired product, The firing is performed under conditions satisfying the following formula (1) to generate ferrite particles represented by Mg x Fe 3-x O 4 + δ (where 0.01 ≦ δ ≦ 0.18).
−5000 ≦ T × log P O2 ≦ 0 (1)
(Where T: temperature (° C.), P O2 = oxygen pressure / overall pressure)

ここで、フェライト粒子の平均粒子径としては、10μm〜100μmの範囲が好ましい。   Here, the average particle diameter of the ferrite particles is preferably in the range of 10 μm to 100 μm.

また、本発明によれば、前記記載のフェライト粒子の表面を樹脂で被覆したことを特徴とする電子写真現像用キャリアが提供される。   In addition, according to the present invention, there is provided an electrophotographic developing carrier characterized in that the surface of the ferrite particles described above is coated with a resin.

さらに、本発明によれば、前記記載のキャリアとトナーとを含む電子写真用現像剤が提供される。   Furthermore, according to the present invention, there is provided an electrophotographic developer comprising the carrier described above and a toner.

本発明のフェライト粒子は、フェライト相におけるスピネル格子中に酸素を所定量過剰に有するので、所望の飽和磁化を有すると同時に高電気抵抗を有する。   Since the ferrite particles of the present invention have a predetermined amount of excess oxygen in the spinel lattice in the ferrite phase, they have a desired saturation magnetization and at the same time a high electrical resistance.

また、本発明の電子写真現像用キャリア及び電子写真用現像剤は、前記フェライト粒子を用いているので、画像形成の高速化及び高画質化に対応できる。   In addition, since the electrophotographic developer carrier and the electrophotographic developer of the present invention use the ferrite particles, it is possible to cope with high-speed image formation and high image quality.

そしてまた、本発明の製造方法では、式(1)を満たす条件で焼成を行うので、フェライト粒子に取り込まれる過剰酸素量を制御できるようになる。   Moreover, in the production method of the present invention, the firing is performed under the condition satisfying the formula (1), so that the amount of excess oxygen taken into the ferrite particles can be controlled.

実施例1〜6のフェライト粒子についてX線回折パターン。The X-ray-diffraction pattern about the ferrite particle of Examples 1-6. 酸素化学ポテンシャルμO2と格子定数との関係を示す図。The figure which shows the relationship between oxygen chemical potential (mu) O2 and a lattice constant.

まず、本発明に係るフェライト粒子について説明する。本発明に係るフェライト粒子の大きな特徴は、組成式:MgFe3−x4+δ(但し、0≦x≦0.95)で表され、フェライト中のスピネル構造における酸素過剰量δが、0.01≦δ≦0.18の範囲であることにある。これにより、例えば、所定の飽和磁化σを維持しながら、電気抵抗も高く維持できるようになる。xとしては0.2〜0.7の範囲が好ましく、より好ましくは0.4〜0.6の範囲である。これは、xが上記好適範囲であると、フェライト粒子が酸素を過剰に取り込む型となるからである。また、酸素過剰量δが0.01未満であると、本発明の効果を得ることができず、酸素過剰量δが0.18を超えると、酸素を取り込みすぎて単相のフェライトを得ることができず、本発明の効果を得ることができなくなる。酸素過剰量δのより好ましい範囲は、0.05〜0.12である。 First, the ferrite particles according to the present invention will be described. The major feature of the ferrite particles according to the present invention is represented by the composition formula: Mg x Fe 3-x O 4 + δ (where 0 ≦ x ≦ 0.95), and the oxygen excess δ in the spinel structure in the ferrite is 0. It is in the range of .01 ≦ δ ≦ 0.18. Thereby, for example, the electric resistance can be maintained high while maintaining the predetermined saturation magnetization σ s . As x, the range of 0.2-0.7 is preferable, More preferably, it is the range of 0.4-0.6. This is because when x is in the above preferred range, the ferrite particles are of a type that takes in oxygen excessively. Also, if the excess oxygen amount δ is less than 0.01, the effects of the present invention cannot be obtained, and if the excess oxygen amount δ exceeds 0.18, too much oxygen is taken in to obtain single-phase ferrite. The effect of the present invention cannot be obtained. A more preferable range of the oxygen excess amount δ is 0.05 to 0.12.

本発明に係るフェライト粒子の平均粒子径としては10μm〜100μmの範囲が好ましい。平均粒子径が10μm以上あることで、粒子のそれぞれに必要な磁力が確実に付与され、例えば、フェライト粒子を電子写真現像用キャリアとして用いた場合に、感光体へのキャリア付着が抑制されるようになる。一方、平均粒子径が100μm以下であることで、画像特性を良好に保つことができるようになる。フェライト粒子の平均粒子径を上記範囲とするには、フェライト粒子の製造工程中または製造工程後に篩等を用いて分級処理を行えばよい。   The average particle diameter of the ferrite particles according to the present invention is preferably in the range of 10 μm to 100 μm. When the average particle diameter is 10 μm or more, the necessary magnetic force is reliably imparted to each of the particles. For example, when ferrite particles are used as a carrier for electrophotographic development, carrier adhesion to the photoreceptor is suppressed. become. On the other hand, when the average particle diameter is 100 μm or less, the image characteristics can be kept good. In order to set the average particle diameter of the ferrite particles within the above range, classification may be performed using a sieve or the like during the manufacturing process of the ferrite particles or after the manufacturing process.

本発明に係るフェライト粒子の好ましい飽和磁化σは、20〜90emu/gの範囲である。飽和磁化σが20emu/g未満であると、例えば、フェライト粒子を電子写真現像用キャリアとして用いた場合に、感光体へのキャリア付着が頻繁に起きるおそれがある。一方、飽和磁化σが90emu/gを超えると、磁気ブラシの穂が硬くなり、電子写真現像における画質低下を招くおそれがある。フェライト粒子の、より好ましい飽和磁化σは30〜80emu/gの範囲であり、さらに好ましくは40〜70emu/gの範囲である。 The preferred saturation magnetization σ s of the ferrite particles according to the present invention is in the range of 20 to 90 emu / g. When the saturation magnetization σ s is less than 20 emu / g, for example, when ferrite particles are used as a carrier for electrophotographic development, there is a possibility that carrier adhesion to the photoreceptor frequently occurs. On the other hand, when the saturation magnetization σ s exceeds 90 emu / g, the ears of the magnetic brush become hard, and there is a possibility that the image quality is lowered in electrophotographic development. The more preferable saturation magnetization σ s of the ferrite particles is in the range of 30 to 80 emu / g, and more preferably in the range of 40 to 70 emu / g.

本発明に係るフェライト粒子の好ましい電気抵抗は、印加電圧10Vにおいて1×10〜1×1012Ωcmの範囲である。電気抵抗が1×10Ωcm未満であると、電荷のリークが起きるおそれがある一方、電気抵抗が1×1012Ωcmを超えると、エッジ効果が大きくなり画像濃度の低下を招くおそれがある。フェライト粒子の、より好ましい電気抵抗は1×10〜1×1011Ωcmの範囲であり、さらに好ましくは1×10〜1×1010Ωcmの範囲である。 The preferred electrical resistance of the ferrite particles according to the present invention is in the range of 1 × 10 7 to 1 × 10 12 Ωcm at an applied voltage of 10V. If the electrical resistance is less than 1 × 10 7 Ωcm, charge leakage may occur. On the other hand, if the electrical resistance exceeds 1 × 10 12 Ωcm, the edge effect may increase and the image density may decrease. More preferable electrical resistance of the ferrite particles is in the range of 1 × 10 8 to 1 × 10 11 Ωcm, and more preferably in the range of 1 × 10 9 to 1 × 10 10 Ωcm.

本発明のフェライト粒子は各種用途に用いることができ、例えば、電子写真現像用キャリアや電磁波吸収材、電磁波シールド材用材料粉末、ゴム、プラスチック用充填材・補強材、ペンキ、絵具・接着剤用艶消材、充填材、補強材等として用いることができる。これらの中でも特に電子写真現像用キャリアとして好適に用いられる。   The ferrite particles of the present invention can be used in various applications, for example, electrophotographic developer carriers, electromagnetic wave absorbing materials, electromagnetic shielding material powders, rubber, fillers / reinforcing materials for plastics, paints, paints / adhesives It can be used as a matting material, filler, reinforcing material and the like. Among these, it is particularly preferably used as a carrier for electrophotographic development.

本発明のフェライト粒子の製造方法に特に限定はないが、以下に説明する製造方法が好適である。   Although the manufacturing method of the ferrite particle of the present invention is not particularly limited, the manufacturing method described below is preferable.

まず、Fe原料とMg原料とを秤量して分散媒中に投入し混合してスラリーを作製する。Fe原料としては、Fe粉、Fe酸化物、Fe水酸化物等が使用でき、Mg原料としては、MgFe仮焼粉、Mg酸化物、Mg水酸化物等が好適に使用できる。スラリーの固形分濃度は50〜90wt%の範囲が望ましい。原料であるFe原料、Mg原料を分散媒に投入する前に、必要により、粉砕混合処理しておいてもよい。 First, an Fe raw material and an Mg raw material are weighed, put into a dispersion medium, and mixed to prepare a slurry. Fe 2 O 3 powder, Fe oxide, Fe hydroxide, etc. can be used as the Fe raw material, and MgFe 2 O 4 calcined powder, Mg oxide, Mg hydroxide, etc. are suitably used as the Mg raw material it can. The solid content concentration of the slurry is desirably in the range of 50 to 90 wt%. If necessary, the raw materials Fe and Mg may be pulverized and mixed before being introduced into the dispersion medium.

本発明で使用する分散媒としては水が好適である。分散媒には、前記Fe原料、Mg原料の他、必要によりバインダー、分散剤等を配合してもよい。バインダーとしては、例えば、ポリビニルアルコールが好適に使用できる。バインダーの配合量としてはスラリー中の濃度が0.5〜2wt%程度とするのが好ましい。また、分散剤としては、例えば、ポリカルボン酸アンモニウム等が好適に使用できる。分散剤の配合量としてはスラリー中の濃度が0.5〜2wt%程度とするのが好ましい。その他、潤滑剤や焼結促進剤等を配合してもよい。   Water is preferred as the dispersion medium used in the present invention. In addition to the Fe raw material and Mg raw material, a binder, a dispersing agent, and the like may be blended in the dispersion medium as necessary. For example, polyvinyl alcohol can be suitably used as the binder. The blending amount of the binder is preferably about 0.5 to 2 wt% in the slurry. Moreover, as a dispersing agent, polycarboxylate ammonium etc. can be used conveniently, for example. As the blending amount of the dispersant, the concentration in the slurry is preferably about 0.5 to 2 wt%. In addition, you may mix | blend a lubricant, a sintering accelerator, etc.

次に、以上のようにして作製されたスラリーを必要により湿式粉砕する。例えば、ボールミルや振動ミルを用いて所定時間湿式粉砕する。粉砕後の原材料の平均粒径は50μm以下が好ましく、より好ましくは10μm以下である。振動ミルやボールミルには、所定粒径のメディアを内在させるのがよい。メディアの材質としては、鉄系のクロム鋼や酸化物系のジルコニア、チタニア、アルミナなどが挙げられる。粉砕工程の形態としては連続式及び回分式のいずれであってもよい。粉砕物の粒径は、粉砕時間や回転速度、使用するメディアの材質・粒径などによって調整される。   Next, the slurry prepared as described above is wet-pulverized as necessary. For example, wet grinding is performed for a predetermined time using a ball mill or a vibration mill. The average particle diameter of the raw material after pulverization is preferably 50 μm or less, more preferably 10 μm or less. The vibration mill or ball mill preferably contains a medium having a predetermined particle diameter. Examples of the material of the media include iron-based chromium steel and oxide-based zirconia, titania, and alumina. As a form of a grinding | pulverization process, any of a continuous type and a batch type may be sufficient. The particle size of the pulverized product is adjusted depending on the pulverization time and rotation speed, the material and particle size of the media used, and the like.

そして、粉砕されたスラリーを噴霧乾燥させて造粒する。具体的には、スプレードライヤーなどの噴霧乾燥機にスラリーを導入し、雰囲気中へ噴霧することによって球状に造粒する。噴霧乾燥時の雰囲気温度は100〜300℃の範囲が好ましい。これにより、粒径10〜200μmの球状の造粒物が得られる。なお、得られた造粒物は、振動ふるい等を用いて、粗大粒子や微粉を除去し粒度分布をシャープなものとするのが望ましい。   Then, the pulverized slurry is spray-dried and granulated. Specifically, the slurry is introduced into a spray dryer such as a spray dryer, and granulated into a spherical shape by spraying into the atmosphere. The atmospheric temperature during spray drying is preferably in the range of 100 to 300 ° C. Thereby, a spherical granulated product having a particle size of 10 to 200 μm is obtained. In addition, it is desirable that the obtained granulated product has a sharp particle size distribution by removing coarse particles and fine powder using a vibration sieve or the like.

次に、得られた造粒物を加熱した炉に投入して焼成し、磁性相を有する焼成物を得る。焼成温度は、目的となる磁性相が生成する温度範囲に設定すればよいが、本発明に係るフェライト粒子を製造する場合には、1000〜1400℃の温度範囲で焼成することが好ましい。より好ましくは、1100℃〜1350℃の温度範囲である。   Next, the obtained granulated product is put into a heated furnace and fired to obtain a fired product having a magnetic phase. The firing temperature may be set to a temperature range in which the target magnetic phase is generated. However, when producing the ferrite particles according to the present invention, firing is preferably performed in a temperature range of 1000 to 1400 ° C. More preferably, it is the temperature range of 1100 degreeC-1350 degreeC.

ここで重要なことは、前記式(1)を満たす条件で焼成を行うことである。これにより、フェライト粒子中のスピネル構造における酸素過剰量δを0.01≦δ≦0.18の範囲とすることができ、その結果、適切な飽和磁化と高い電気抵抗を有するフェライト粒子が得られる。具体的には、例えば、炉内の酸素濃度を0.03%〜20.6%の範囲とし、μO2が1200℃において−100KJ/mоl以上、−19KJ/mоl以下、800℃において−74KJ/mоl以上、−14KJ/mоl以下、400℃において−45KJ/mоl以上、−8KJ/mоl以下の冷却過程を経るようにする。このような範囲となるように炉内の温度T及び酸素圧力PO2を制御することによって、粒子内部まで酸素過剰なフェライト粒子が得られる。また、焼成工程における冷却段階において、所望の飽和磁化、電気抵抗になるように制御したμO2のところで、炉内の焼成物を液体窒素や水などの冷却溶媒の中に浸漬させて焼成物を得るようにしてもよい。これにより温度降下中の反応が抑えられ、目的とするμO2での飽和磁化、電気抵抗が得られるようになる。後述の実施例では、冷却段階において急冷するこの方法で所定の酸素過剰量のフェライト粒子を作製した。なお、炉内の酸素圧力の制御は、大気または大気と窒素の混合ガスを炉内にフローさせることにより行えばよい。 What is important here is that the firing is performed under the condition satisfying the above-mentioned formula (1). As a result, the oxygen excess δ in the spinel structure in the ferrite particles can be set in the range of 0.01 ≦ δ ≦ 0.18, and as a result, ferrite particles having appropriate saturation magnetization and high electrical resistance can be obtained. . Specifically, for example, the oxygen concentration in the furnace in a range of 0.03% ~20.6%, μ O2 is -100KJ / mоl or more at 1200 ℃, -19KJ / mоl less, -74KJ at 800 ° C. / A cooling process of not less than −14 KJ / mol and not more than −45 KJ / mol and not more than −45 KJ / mol and not more than −8 KJ / mol at 400 ° C. is performed. By controlling the temperature T and oxygen pressure P O2 in the furnace so as to have such a range, oxygen-excess ferrite particles are obtained to the inside particles. Further, in the cooling stage in the firing process, the fired product in the furnace is immersed in a cooling solvent such as liquid nitrogen or water at the μ O2 controlled to have a desired saturation magnetization and electrical resistance. You may make it obtain. As a result, the reaction during the temperature drop is suppressed, and the intended saturation magnetization and electrical resistance at μ O2 can be obtained. In Examples described later, ferrite particles having a predetermined oxygen excess were produced by this method of rapid cooling in the cooling stage. The oxygen pressure in the furnace may be controlled by causing the atmosphere or a mixed gas of air and nitrogen to flow into the furnace.

次に、得られた焼成物を解砕する。具体的には、例えば、ハンマーミル等によって焼成物を解砕する。解砕工程の形態としては連続式及び回分式のいずれであってもよい。そして、必要により、粒径を所定範囲に揃えるため分級を行ってもよい。分級方法としては、風力分級や篩分級など従来公知の方法を用いることができる。また、風力分級機で1次分級した後、振動篩や超音波篩で粒径を所定範囲に揃えるようにしてもよい。さらに、分級工程後に、磁場選鉱機によって非磁性粒子を除去するようにしてもよい。   Next, the obtained fired product is crushed. Specifically, for example, the fired product is crushed by a hammer mill or the like. As a form of a crushing process, any of a continuous type and a batch type may be sufficient. And if necessary, classification may be performed in order to make the particle size in a predetermined range. As a classification method, a conventionally known method such as air classification or sieve classification can be used. In addition, after primary classification with an air classifier, the particle size may be aligned within a predetermined range with a vibration sieve or an ultrasonic sieve. Furthermore, you may make it remove a nonmagnetic particle with a magnetic field separator after a classification process.

以上のようにして作製した本発明のフェライト粒子を、電子写真現像用キャリアとして用いる場合、フェライト粒子をそのまま電子写真現像用キャリアとして用いることもできるが、帯電性等の観点からは、フェライト粒子の表面を樹脂で被覆して用いるのが好ましい。   When the ferrite particles of the present invention produced as described above are used as a carrier for electrophotographic development, the ferrite particles can be used as they are as a carrier for electrophotographic development. However, from the viewpoint of chargeability and the like, It is preferable to coat the surface with a resin.

フェライト粒子の表面を被覆する樹脂としては、従来公知のものが使用でき、例えば、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリ−4−メチルペンテン−1、ポリ塩化ビニリデン、ABS(アクリロニトリル−ブタジエン−スチレン)樹脂、ポリスチレン、(メタ)アクリル系樹脂、ポリビニルアルコール系樹脂、並びにポリ塩化ビニル系やポリウレタン系、ポリエステル系、ポリアミド系、ポリブタジエン系等の熱可塑性エストラマー、フッ素シリコーン系樹脂などが挙げられる。   As the resin for covering the surface of the ferrite particles, conventionally known resins can be used, for example, polyethylene, polypropylene, polyvinyl chloride, poly-4-methylpentene-1, polyvinylidene chloride, ABS (acrylonitrile-butadiene-styrene). Examples thereof include resins, polystyrene, (meth) acrylic resins, polyvinyl alcohol resins, polyvinyl chloride-based, polyurethane-based, polyester-based, polyamide-based, polybutadiene-based thermoplastic elastomers, fluorine silicone-based resins, and the like.

フェライト粒子の表面を樹脂で被覆するには、樹脂の溶液又は分散液をフェライト粒子に施せばよい。塗布溶液用の溶媒としては、トルエン、キシレン等の芳香族炭化水素系溶媒;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶媒;テトラヒドロフラン、ジオキサン等の環状エーテル類溶媒;エタノール、プロパノール、ブタノール等のアルコール系溶媒;エチルセロソルブ、ブチルセロソルブ等のセロソルブ系溶媒;酢酸エチル、酢酸ブチル等のエステル系溶媒;ジメチルホルムアミド、ジメチルアセトアミド等のアミド系溶媒などの1種又は2種以上を用いることができる。塗布溶液中の樹脂成分濃度は、一般に0.001〜30wt%、特に0.001〜2wt%の範囲内にあるのがよい。   In order to coat the surface of the ferrite particles with a resin, a resin solution or dispersion may be applied to the ferrite particles. Solvents for the coating solution include aromatic hydrocarbon solvents such as toluene and xylene; ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone; cyclic ether solvents such as tetrahydrofuran and dioxane; ethanol, propanol, and butanol Alcohol solvents such as ethyl cellosolve, cellosolve solvents such as butyl cellosolve; ester solvents such as ethyl acetate and butyl acetate; amide solvents such as dimethylformamide and dimethylacetamide, etc. . The concentration of the resin component in the coating solution is generally in the range of 0.001 to 30 wt%, particularly 0.001 to 2 wt%.

フェライト粒子への樹脂の被覆方法としては、例えばスプレードライ法や流動床法あるいは流動床を用いたスプレードライ法、浸漬法等を用いることができる。これらの中でも、少ない樹脂量で効率的に塗布できる点で流動床法が特に好ましい。樹脂被覆量は、例えば流動床法の場合には吹き付ける樹脂溶液量や吹き付け時間によって調整することができる。   As a method for coating the resin on the ferrite particles, for example, a spray drying method, a fluidized bed method, a spray drying method using a fluidized bed, an immersion method, or the like can be used. Among these, the fluidized bed method is particularly preferable in that it can be efficiently applied with a small amount of resin. For example, in the case of the fluidized bed method, the resin coating amount can be adjusted by the amount of resin solution sprayed and the spraying time.

本発明に係る電子写真用現像剤は、以上のようにして作製したキャリアとトナーとを混合してなる。キャリアとトナーとの混合比に特に限定はなく、使用する現像装置の現像条件などから適宜決定すればよい。一般に現像剤中のトナー濃度は1〜20wt%の範囲が好ましい。トナー濃度が1wt%未満の場合、画像濃度が薄くなりすぎ、他方トナー濃度が20wt%を超える場合、現像装置内でトナー飛散が発生し機内汚れや転写紙などの背景部分にトナーが付着する不具合が生じるおそれがあるからである。より好ましいトナー濃度は3〜15wt%の範囲である。   The electrophotographic developer according to the present invention is obtained by mixing the carrier prepared as described above and a toner. The mixing ratio of the carrier and the toner is not particularly limited, and may be determined as appropriate based on the developing conditions of the developing device to be used. In general, the toner concentration in the developer is preferably in the range of 1 to 20 wt%. When the toner density is less than 1 wt%, the image density becomes too low, and when the toner density exceeds 20 wt%, the toner scatters in the developing device, and the toner adheres to the background portion such as internal dirt or transfer paper. This is because there is a risk of occurrence. A more preferable toner concentration is in the range of 3 to 15 wt%.

キャリアとトナーとの混合は、従来公知の混合装置を用いることができる。例えばヘンシェルミキサー、V型混合機、タンブラーミキサー、ハイブリタイザー等を用いることができる。   A known mixing device can be used for mixing the carrier and the toner. For example, a Henschel mixer, a V-type mixer, a tumbler mixer, a hybridizer, or the like can be used.

(実施例1)
FeとMgFe仮焼粉を準備し、Fe:MgFe=3:8(モル比)となるように秤量した。原料の配合比は、組成式MgFe3−x4+δにおいて、x=0.8に相当するものである。分散剤としてポリカルボン酸アンモニウムを、媒体液中濃度が1%となるように添加した純水中に、秤量したFeとMgFe仮焼粉を分散させ混合物とした。この混合物を湿式ボールミル(メディア径2mm)で粉砕処理し、スラリーを得た。
(Example 1)
Fe 2 O 3 and MgFe 2 O 4 calcined powders were prepared and weighed so that Fe 2 O 3 : MgFe 2 O 4 = 3: 8 (molar ratio). The mixing ratio of the raw materials corresponds to x = 0.8 in the composition formula Mg x Fe 3−x O 4 + δ . The weighed Fe 2 O 3 and MgFe 2 O 4 calcined powders were dispersed in pure water to which ammonium polycarboxylate as a dispersant was added so that the concentration in the medium liquid was 1% to obtain a mixture. This mixture was pulverized by a wet ball mill (media diameter: 2 mm) to obtain a slurry.

得られたスラリーをスプレードライヤーにて約150℃の熱風中に噴霧し、粒径10〜100μmの乾燥造粒物を得た。そして、篩を用いて粒径が100μmを超える造粒物を除去した。得られた乾燥造粒物を、電気炉に投入して、大気フロー雰囲気下にて、1200℃で3時間焼成した後、直ちに急冷して焼成物を得た(温度T:1200℃、酸素分圧PO2(酸素圧力/全体圧力):2.1×10−1、T×logPO2=−813)。得られた焼成物を粉砕処理した後、篩を用いて粗粒及び微粒を除去し、平均粒子径45μmのMgフェライト粒子を得た。なお、フェライト粒子の平均粒子径は、レーザー回折式粒度分布測定装置(日機装株式会社製マイクロトラック、Model 9320−X100)を用いて測定したものである。 The obtained slurry was sprayed into hot air at about 150 ° C. with a spray dryer to obtain a dry granulated product having a particle size of 10 to 100 μm. And the granulated material with a particle size exceeding 100 micrometers was removed using the sieve. The obtained dried granulated product was put into an electric furnace and fired at 1200 ° C. for 3 hours in an air flow atmosphere, and then immediately cooled to obtain a fired product (temperature T: 1200 ° C., oxygen content). Pressure P O2 (oxygen pressure / overall pressure): 2.1 × 10 −1 , T × log P O2 = −813). After the obtained fired product was pulverized, coarse particles and fine particles were removed using a sieve to obtain Mg ferrite particles having an average particle diameter of 45 μm. The average particle size of the ferrite particles is measured using a laser diffraction particle size distribution measuring device (Microtrack, Model 9320-X100 manufactured by Nikkiso Co., Ltd.).

得られたフェライト粒子の酸素過剰量δ、飽和磁化σs、電気抵抗を下記方法で測定した。また、フェライト粒子を樹脂被覆してキャリアとし評価機に投入し、画像評価を行った。結果を表1にまとめて示す。   The obtained ferrite particles were measured for oxygen excess δ, saturation magnetization σs, and electrical resistance by the following methods. Further, ferrite particles were coated with a resin and used as a carrier, which was then put into an evaluation machine for image evaluation. The results are summarized in Table 1.

(酸素過剰量δの測定方法)
MgFe3−x4+δにおいて、Mgは2価(+2)、Oは2価(−2)であるから、MgFe3−x4+δ格子中に酸素過剰がない(δ=0)場合、Feの理論価数は下記式から算出される。
Feの理論価数={(8−2x)/(3−x)}
一方、格子中に酸素過剰が存在する場合、Feの平均価数は下記式から算出される。
Feの平均価数={(4+δ)×2−2x}/(3−x)
=(8−2x+2δ)/(3−x)
=(8−2x)/(3−x)+2δ/(3−x)
=Feの理論価数+2δ/(3−x)
したがって、MgFe3−x4+δ格子中の酸素過剰量δは下記式から求められる。
δ=(3−x)/2(Feの平均価数−Feの理論価数)
(Measurement method of excess oxygen δ)
In Mg x Fe 3-x O 4 + δ , Mg is divalent (+2) and O is divalent (−2), so there is no excess oxygen in the Mg x Fe 3-x O 4 + δ lattice (δ = 0). In this case, the theoretical valence of Fe is calculated from the following formula.
Theoretical valence of Fe = {(8-2x) / (3-x)}
On the other hand, when oxygen excess is present in the lattice, the average valence of Fe is calculated from the following formula.
Average valence of Fe = {(4 + δ) × 2-2x} / (3-x)
= (8-2x + 2δ) / (3-x)
= (8-2x) / (3-x) + 2δ / (3-x)
= Theoretical valence of Fe + 2δ / (3-x)
Therefore, the excess oxygen amount δ in the Mg x Fe 3-x O 4 + δ lattice can be obtained from the following equation.
δ = (3-x) / 2 (average valence of Fe−theoretical valence of Fe)

なお、Feの平均価数は次のようにして求める。まず、フェライト粒子を、炭酸ガスのバブリング中で還元性の酸である塩酸(HCl)水に溶解させ溶液とする。その後、当該溶液中のFe2+イオンの量を過マンガン酸カリウム溶液で電位差滴定することにより定量分析し、当該滴定量からFe2+の定量値(α)を求める。
次に、フェライト粒子を上記と同量秤量し、塩酸と硝酸の混酸水に溶解させ溶液とする。次いで、当該溶液を蒸発乾固させた後、乾固物に硫酸水を添加して再溶解させて溶液とし、過剰な塩酸と硝酸を揮発させる。当該溶液へ固体Alを添加して、溶液中のFe3+をFe2+に還元する。続いて、この還元された溶液のFe2+イオンの量を、過マンガン酸カリウム溶液で電位差滴定することにより定量分析し、当該滴定量から総Feの定量値(β)を求める。
次いで、総Feの定量量(β)からFe2+の定量値(α)を引いて、フェライト粒子のFe3+量とする。そして、以下式からFeの平均価数を算出する。
Fe平均価数={3×(β−α)+2×α}/β
The average valence of Fe is obtained as follows. First, ferrite particles are dissolved in hydrochloric acid (HCl) water, which is a reducing acid, in a bubble of carbon dioxide gas to obtain a solution. Thereafter, the amount of Fe 2+ ions in the solution is quantitatively analyzed by potentiometric titration with a potassium permanganate solution, and the quantitative value (α) of Fe 2+ is obtained from the titration amount.
Next, the ferrite particles are weighed in the same amount as above, and dissolved in a mixed acid water of hydrochloric acid and nitric acid to obtain a solution. Next, after evaporating the solution to dryness, sulfuric acid water is added to the dried product and redissolved to obtain a solution, and excess hydrochloric acid and nitric acid are volatilized. Solid Al is added to the solution to reduce Fe 3+ in the solution to Fe 2+ . Subsequently, the amount of Fe 2+ ions in the reduced solution is quantitatively analyzed by potentiometric titration with a potassium permanganate solution, and the quantitative value (β) of total Fe is obtained from the titration amount.
Subsequently, the quantitative value (α) of Fe 2+ is subtracted from the quantitative amount (β) of total Fe to obtain the Fe 3+ amount of the ferrite particles. And the average valence of Fe is calculated from the following formula.
Fe average valence = {3 × (β−α) + 2 × α} / β

(飽和磁化測定)
フェライトの磁気特性は、VSM(東英工業株式会社製、VSM−P7)を用いて磁化率の測定を行い、印加磁場10kOeにおける飽和磁化σ(emu/g)を測定した。
(Saturation magnetization measurement)
The magnetic properties of the ferrite were measured for magnetic susceptibility using VSM (manufactured by Toei Kogyo Co., Ltd., VSM-P7), and the saturation magnetization σ s (emu / g) in an applied magnetic field of 10 kOe was measured.

(電気抵抗測定)
表面を電解研磨した厚さ2mmの電極としての真鍮板2枚を、距離2mm離して対向するように配置した。電極間にフェライト粒子200mgを装入した後、それぞれの電極の背後に、断面積240mmの磁石(表面磁束密度が1500ガウスのフェライト磁石)を配置して、電極間にフェライト粒子のブリッジを形成させた。そして、10Vから1000Vまでの直流電圧を電極間に印加し、フェライト粒子に流れる電流値を測定し、フェライト粒子の電気抵抗を算出した。
(Electrical resistance measurement)
Two brass plates as electrodes having a thickness of 2 mm whose surfaces were electropolished were arranged to face each other with a distance of 2 mm. After inserting 200 mg of ferrite particles between the electrodes, a magnet having a cross-sectional area of 240 mm 2 (ferrite magnet having a surface magnetic flux density of 1500 gauss) is placed behind each electrode to form a bridge of ferrite particles between the electrodes. I let you. A DC voltage of 10 V to 1000 V was applied between the electrodes, the value of the current flowing through the ferrite particles was measured, and the electrical resistance of the ferrite particles was calculated.

(画像評価)
シリコーン系樹脂(信越化学製、KR251)をトルエンに溶解させて被覆樹脂溶液を作製した。そして、フェライト粒子と被覆樹脂溶液とを重量比で9:1の割合にて撹拌機に投入し、フェライト粒子を樹脂溶液に浸漬しながら150〜250℃で3時間加熱撹拌した。この樹脂被覆されたフェライト粒子を、熱風循環式加熱装置にて250℃で5時間加熱し樹脂被覆層を硬化させてキャリアを得た。
得られたキャリア92重量%と、フルカラー複写機のトナー(シアン)8重量%をV型混合機で混合して電子写真現像剤とした。この電子写真現像剤を、現像バイアス電圧として交流バイアス電圧を印加する、デジタル反転現像方式の20枚/分の画像形成装置をベースにした評価機に投入して、初期、50K枚、100K枚、150K枚時にグレー画像を出力させた。そして、キャリア付着に起因するホワイトスポットの有無に着目して下記基準により画像評価を行った。
「◎」は非常に良好
「○」は良好
「△」は使用可能なレベル
「×」は使用不可
(Image evaluation)
A silicone resin (manufactured by Shin-Etsu Chemical, KR251) was dissolved in toluene to prepare a coating resin solution. Then, the ferrite particles and the coating resin solution were put into a stirrer at a ratio of 9: 1 by weight, and stirred with heating at 150 to 250 ° C. for 3 hours while immersing the ferrite particles in the resin solution. The resin-coated ferrite particles were heated at 250 ° C. for 5 hours with a hot air circulation type heating device to cure the resin coating layer to obtain a carrier.
92% by weight of the obtained carrier and 8% by weight of toner (cyan) of a full color copying machine were mixed with a V-type mixer to obtain an electrophotographic developer. This electrophotographic developer is put into an evaluation machine based on an image forming apparatus of 20 sheets / minute of digital reversal development method, in which an AC bias voltage is applied as a developing bias voltage, and initially, 50K sheets, 100K sheets, A gray image was output at 150K sheets. Then, image evaluation was performed according to the following criteria, paying attention to the presence or absence of white spots due to carrier adhesion.
“◎” is very good “○” is good “△” is usable level “×” is not usable

(実施例2)
焼成工程において、造粒物を1200℃で3時間焼成した後、冷却段階において温度Tが1000℃、酸素分圧PO2(酸素圧力/全体圧力)が2.1×10−1、T×logPO2=−678のところで急冷した以外は、実施例1と同様にして焼成物を得た。得られた焼成物を粉砕処理した後、篩を用いて粗粒及び微粒を除去し、平均粒子径45μmのMgフェライト粒子を得た。
得られたMgフェライト粒子の酸素過剰量δ、飽和磁化σs、電気抵抗を実施例1と同様にして測定すると共に、Mgフェライト粒子を樹脂被覆してキャリアとし評価機に投入し、画像評価を行った。結果を表1にまとめて示す。
(Example 2)
In the firing step, the granulated product is fired at 1200 ° C. for 3 hours, and in the cooling stage, the temperature T is 1000 ° C., the oxygen partial pressure P O2 (oxygen pressure / overall pressure) is 2.1 × 10 −1 , T × log P A fired product was obtained in the same manner as in Example 1 except that quenching was performed at O2 = −678. After the obtained fired product was pulverized, coarse particles and fine particles were removed using a sieve to obtain Mg ferrite particles having an average particle diameter of 45 μm.
The obtained Mg ferrite particles were measured for oxygen excess δ, saturation magnetization σs, and electrical resistance in the same manner as in Example 1, and the Mg ferrite particles were coated with a resin and used as a carrier for evaluation into images. It was. The results are summarized in Table 1.

(実施例3)
焼成工程において、造粒物を1200℃で3時間焼成した後、冷却段階において温度Tが800℃、酸素分圧PO2(酸素圧力/全体圧力)が2.1×10−1、T×logPO2=−542のところで急冷した以外は、実施例1と同様にして焼成物を得た。得られた焼成物を粉砕処理した後、篩を用いて粗粒及び微粒を除去し、平均粒子径45μmのMgフェライト粒子を得た。
得られたMgフェライト粒子の酸素過剰量δ、飽和磁化σs、電気抵抗を実施例1と同様にして測定すると共に、Mgフェライト粒子を樹脂被覆してキャリアとし評価機に投入し、画像評価を行った。結果を表1にまとめて示す。
(Example 3)
In the firing step, the granulated product is fired at 1200 ° C. for 3 hours, and in the cooling stage, the temperature T is 800 ° C., the oxygen partial pressure P O2 (oxygen pressure / total pressure) is 2.1 × 10 −1 , T × log P A fired product was obtained in the same manner as in Example 1 except that quenching was performed at O2 = -542. After the obtained fired product was pulverized, coarse particles and fine particles were removed using a sieve to obtain Mg ferrite particles having an average particle diameter of 45 μm.
The obtained Mg ferrite particles were measured for oxygen excess δ, saturation magnetization σs, and electrical resistance in the same manner as in Example 1, and the Mg ferrite particles were coated with a resin and used as a carrier for evaluation into images. It was. The results are summarized in Table 1.

(実施例4)
焼成工程において、造粒物を1200℃で3時間焼成した後、冷却段階において温度Tが600℃、酸素分圧PO2(酸素圧力/全体圧力)が2.1×10−1、T×logPO2=−407のところで急冷した以外は、実施例1と同様にして焼成物を得た。得られた焼成物を粉砕処理した後、篩を用いて粗粒及び微粒を除去し、平均粒子径45μmのMgフェライト粒子を得た。
得られたMgフェライト粒子の酸素過剰量δ、飽和磁化σs、電気抵抗を実施例1と同様にして測定すると共に、Mgフェライト粒子を樹脂被覆してキャリアとし評価機に投入し、画像評価を行った。結果を表1にまとめて示す。
Example 4
In the firing step, the granulated product is fired at 1200 ° C. for 3 hours, and in the cooling stage, the temperature T is 600 ° C., the oxygen partial pressure P O2 (oxygen pressure / total pressure) is 2.1 × 10 −1 , T × log P A fired product was obtained in the same manner as in Example 1 except that quenching was performed at O2 = −407. After the obtained fired product was pulverized, coarse particles and fine particles were removed using a sieve to obtain Mg ferrite particles having an average particle diameter of 45 μm.
The obtained Mg ferrite particles were measured for oxygen excess δ, saturation magnetization σs, and electrical resistance in the same manner as in Example 1, and the Mg ferrite particles were coated with a resin and used as a carrier for evaluation into images. It was. The results are summarized in Table 1.

(実施例5)
焼成工程において、造粒物を1200℃で3時間焼成した後、冷却段階において温度Tが400℃、酸素分圧PO2(酸素圧力/全体圧力)が2.1×10−1、T×logPO2=−271のところで急冷した以外は、実施例1と同様にして焼成物を得た。得られた焼成物を粉砕処理した後、篩を用いて粗粒及び微粒を除去し、平均粒子径45μmのMgフェライト粒子を得た。
得られたMgフェライト粒子の酸素過剰量δ、飽和磁化σs、電気抵抗を実施例1と同様にして測定すると共に、Mgフェライト粒子を樹脂被覆してキャリアとし評価機に投入し、画像評価を行った。結果を表1にまとめて示す。
(Example 5)
In the firing step, the granulated product is fired at 1200 ° C. for 3 hours, and in the cooling stage, the temperature T is 400 ° C., the oxygen partial pressure P O2 (oxygen pressure / overall pressure) is 2.1 × 10 −1 , T × log P A fired product was obtained in the same manner as in Example 1 except that quenching was performed at O2 = -271. After the obtained fired product was pulverized, coarse particles and fine particles were removed using a sieve to obtain Mg ferrite particles having an average particle diameter of 45 μm.
The obtained Mg ferrite particles were measured for oxygen excess δ, saturation magnetization σs, and electrical resistance in the same manner as in Example 1, and the Mg ferrite particles were coated with a resin and used as a carrier for evaluation into images. It was. The results are summarized in Table 1.

(実施例6)
焼成工程において、造粒物を1200℃で3時間焼成した後、冷却段階において温度Tが25℃、酸素分圧PO2(酸素圧力/全体圧力)が2.1×10−1、T×logPO2=−17のところで焼成物を得たこと以外は実施例1と同様にして焼成物を得た。得られた焼成物を粉砕処理した後、篩を用いて粗粒及び微粒を除去し、平均粒子径45μmのMgフェライト粒子を得た。
得られたMgフェライト粒子の酸素過剰量δ、飽和磁化σs、電気抵抗を実施例1と同様にして測定すると共に、Mgフェライト粒子を樹脂被覆してキャリアとし評価機に投入し、画像評価を行った。結果を表1にまとめて示す。
(Example 6)
In the firing step, the granulated product is fired at 1200 ° C. for 3 hours, and in the cooling stage, the temperature T is 25 ° C., the oxygen partial pressure P O2 (oxygen pressure / total pressure) is 2.1 × 10 −1 , T × log P A fired product was obtained in the same manner as in Example 1 except that a fired product was obtained at O2 = -17. After the obtained fired product was pulverized, coarse particles and fine particles were removed using a sieve to obtain Mg ferrite particles having an average particle diameter of 45 μm.
The obtained Mg ferrite particles were measured for oxygen excess δ, saturation magnetization σs, and electrical resistance in the same manner as in Example 1, and the Mg ferrite particles were coated with a resin and used as a carrier for evaluation into images. It was. The results are summarized in Table 1.

(実施例7)
x=0.6となるように、FeとMgFe仮焼粉とを1:1(モル比)で配合した以外は、実施例1と同様にして造粒物を得た。そして、焼成工程において、酸素濃度1%の雰囲気下で造粒物を1200℃で3時間焼成した後、直ちに急冷して焼成物を得た(温度T:1200℃、酸素分圧PO2(酸素圧力/全体圧力):1.0×10−2、T×logPO2=−2400)。得られた焼成物を粉砕処理した後、篩を用いて粗粒及び微粒を除去し、平均粒子径45μmのMgフェライト粒子を得た。
得られたMgフェライト粒子の酸素過剰量δ、飽和磁化σs、電気抵抗を実施例1と同様にして測定すると共に、Mgフェライト粒子を樹脂被覆してキャリアとし評価機に投入し、画像評価を行った。結果を表1にまとめて示す。
(Example 7)
A granulated product was obtained in the same manner as in Example 1 except that Fe 2 O 3 and MgFe 2 O 4 calcined powder were mixed at 1: 1 (molar ratio) so that x = 0.6. . In the firing step, the granulated product was fired at 1200 ° C. for 3 hours in an atmosphere having an oxygen concentration of 1%, and then immediately cooled to obtain a fired product (temperature T: 1200 ° C., oxygen partial pressure P O2 (oxygen). Pressure / overall pressure): 1.0 × 10 −2 , T × log P O2 = −2400). After the obtained fired product was pulverized, coarse particles and fine particles were removed using a sieve to obtain Mg ferrite particles having an average particle diameter of 45 μm.
The obtained Mg ferrite particles were measured for oxygen excess δ, saturation magnetization σs, and electrical resistance in the same manner as in Example 1, and the Mg ferrite particles were coated with a resin and used as a carrier for evaluation into images. It was. The results are summarized in Table 1.

(実施例8)
焼成工程において、造粒物を1200℃で3時間焼成した後、冷却段階において温度Tが1000℃、酸素分圧PO2(酸素圧力/全体圧力)が1.0×10−2、T×logPO2=−2000のところで急冷した以外は、実施例7と同様にして焼成物を得た。得られた焼成物を粉砕処理した後、篩を用いて粗粒及び微粒を除去し、平均粒子径45μmのMgフェライト粒子を得た。
得られたMgフェライト粒子の酸素過剰量δ、飽和磁化σs、電気抵抗を実施例1と同様にして測定すると共に、Mgフェライト粒子を樹脂被覆してキャリアとし評価機に投入し、画像評価を行った。結果を表1にまとめて示す。
(Example 8)
In the firing step, the granulated product is fired at 1200 ° C. for 3 hours, and in the cooling stage, the temperature T is 1000 ° C., the oxygen partial pressure P O2 (oxygen pressure / total pressure) is 1.0 × 10 −2 , T × log P A fired product was obtained in the same manner as in Example 7 except that quenching was performed at O2 = -2000. After the obtained fired product was pulverized, coarse particles and fine particles were removed using a sieve to obtain Mg ferrite particles having an average particle diameter of 45 μm.
The obtained Mg ferrite particles were measured for oxygen excess δ, saturation magnetization σs, and electrical resistance in the same manner as in Example 1, and the Mg ferrite particles were coated with a resin and used as a carrier for evaluation into images. It was. The results are summarized in Table 1.

(実施例9)
焼成工程において、造粒物を1200℃で3時間焼成した後、冷却段階において温度Tが800℃、酸素分圧PO2(酸素圧力/全体圧力)が1.0×10−2、T×logPO2=−1600のところで急冷した以外は、実施例7と同様にして焼成物を得た。得られた焼成物を粉砕処理した後、篩を用いて粗粒及び微粒を除去し、平均粒子径45μmのMgフェライト粒子を得た。
得られたMgフェライト粒子の酸素過剰量δ、飽和磁化σs、電気抵抗を実施例1と同様にして測定すると共に、Mgフェライト粒子を樹脂被覆してキャリアとし評価機に投入し、画像評価を行った。結果を表1にまとめて示す。
Example 9
In the firing step, the granulated product is fired at 1200 ° C. for 3 hours, and in the cooling stage, the temperature T is 800 ° C., the oxygen partial pressure P O2 (oxygen pressure / total pressure) is 1.0 × 10 −2 , T × log P A fired product was obtained in the same manner as in Example 7 except that quenching was performed at O2 = -1600. After the obtained fired product was pulverized, coarse particles and fine particles were removed using a sieve to obtain Mg ferrite particles having an average particle diameter of 45 μm.
The obtained Mg ferrite particles were measured for oxygen excess δ, saturation magnetization σs, and electrical resistance in the same manner as in Example 1, and the Mg ferrite particles were coated with a resin and used as a carrier for evaluation into images. It was. The results are summarized in Table 1.

(実施例10)
焼成工程において、造粒物を1200℃で3時間焼成した後、冷却段階において温度Tが600℃、酸素分圧PO2(酸素圧力/全体圧力)が1.0×10−2、T×logPO2=−1200のところで急冷した以外は、実施例7と同様にして焼成物を得た。得られた焼成物を粉砕処理した後、篩を用いて粗粒及び微粒を除去し、平均粒子径45μmのMgフェライト粒子を得た。
得られたMgフェライト粒子の酸素過剰量δ、飽和磁化σs、電気抵抗を実施例1と同様にして測定すると共に、Mgフェライト粒子を樹脂被覆してキャリアとし評価機に投入し、画像評価を行った。結果を表1にまとめて示す。
(Example 10)
In the firing step, the granulated product is fired at 1200 ° C. for 3 hours, and in the cooling stage, the temperature T is 600 ° C., the oxygen partial pressure P O2 (oxygen pressure / total pressure) is 1.0 × 10 −2 , T × log P A fired product was obtained in the same manner as in Example 7 except that quenching was performed at O2 = -1200. After the obtained fired product was pulverized, coarse particles and fine particles were removed using a sieve to obtain Mg ferrite particles having an average particle diameter of 45 μm.
The obtained Mg ferrite particles were measured for oxygen excess δ, saturation magnetization σs, and electrical resistance in the same manner as in Example 1, and the Mg ferrite particles were coated with a resin and used as a carrier for evaluation into images. It was. The results are summarized in Table 1.

(実施例11)
焼成工程において、造粒物を1200℃で3時間焼成した後、冷却段階において温度Tが400℃、酸素分圧PO2(酸素圧力/全体圧力)が1.0×10−2、T×logPO2=−800のところで急冷した以外は、実施例7と同様にして焼成物を得た。得られた焼成物を粉砕処理した後、篩を用いて粗粒及び微粒を除去し、平均粒子径45μmのMgフェライト粒子を得た。
得られたMgフェライト粒子の酸素過剰量δ、飽和磁化σs、電気抵抗を実施例1と同様にして測定すると共に、Mgフェライト粒子を樹脂被覆してキャリアとし評価機に投入し、画像評価を行った。結果を表1にまとめて示す。
(Example 11)
In the firing step, the granulated product is fired at 1200 ° C. for 3 hours, and in the cooling stage, the temperature T is 400 ° C., the oxygen partial pressure P O2 (oxygen pressure / total pressure) is 1.0 × 10 −2 , T × logP. A fired product was obtained in the same manner as in Example 7 except that quenching was performed at O2 = -800. After the obtained fired product was pulverized, coarse particles and fine particles were removed using a sieve to obtain Mg ferrite particles having an average particle diameter of 45 μm.
The obtained Mg ferrite particles were measured for oxygen excess δ, saturation magnetization σs, and electrical resistance in the same manner as in Example 1, and the Mg ferrite particles were coated with a resin and used as a carrier for evaluation into images. It was. The results are summarized in Table 1.

(実施例12)
焼成工程において、造粒物を1200℃で3時間焼成した後、冷却段階において温度Tが25℃、酸素分圧PO2(酸素圧力/全体圧力)が1.0×10−2、T×logPO2=−50のところで焼成物を得たこと以外は実施例7と同様にして焼成物を得た。得られた焼成物を粉砕処理した後、篩を用いて粗粒及び微粒を除去し、平均粒子径45μmのMgフェライト粒子を得た。
得られたMgフェライト粒子の酸素過剰量δ、飽和磁化σs、電気抵抗を実施例1と同様にして測定すると共に、Mgフェライト粒子を樹脂被覆してキャリアとし評価機に投入し、画像評価を行った。結果を表1にまとめて示す。
(Example 12)
In the firing step, the granulated product is fired at 1200 ° C. for 3 hours, and in the cooling stage, the temperature T is 25 ° C., the oxygen partial pressure P O2 (oxygen pressure / total pressure) is 1.0 × 10 −2 , T × log P A fired product was obtained in the same manner as in Example 7 except that a fired product was obtained at O2 = -50. After the obtained fired product was pulverized, coarse particles and fine particles were removed using a sieve to obtain Mg ferrite particles having an average particle diameter of 45 μm.
The obtained Mg ferrite particles were measured for oxygen excess δ, saturation magnetization σs, and electrical resistance in the same manner as in Example 1, and the Mg ferrite particles were coated with a resin and used as a carrier for evaluation into images. It was. The results are summarized in Table 1.

(実施例13)
x=0.4となるように、FeとMgFe仮焼粉とを9:4(モル比)で配合した以外は、実施例1と同様にして造粒物を得た。そして、焼成工程において、酸素濃度0.1%の雰囲気下で造粒物を1200℃で3時間焼成した後、直ちに急冷して焼成物を得た(温度T:1200℃、酸素分圧PO2(酸素圧力/全体圧力):1.0×10−3、T×logPO2=−3600)。得られた焼成物を粉砕処理した後、篩を用いて粗粒及び微粒を除去し、平均粒子径45μmのMgフェライト粒子を得た。
得られたMgフェライト粒子の酸素過剰量δ、飽和磁化σs、電気抵抗を実施例1と同様にして測定すると共に、Mgフェライト粒子を樹脂被覆してキャリアとし評価機に投入し、画像評価を行った。結果を表1にまとめて示す。
(Example 13)
A granulated product was obtained in the same manner as in Example 1 except that Fe 2 O 3 and MgFe 2 O 4 calcined powder were blended at 9: 4 (molar ratio) so that x = 0.4. . In the firing step, the granulated product was fired at 1200 ° C. for 3 hours in an atmosphere having an oxygen concentration of 0.1%, and then immediately cooled to obtain a fired product (temperature T: 1200 ° C., oxygen partial pressure P O2 (Oxygen pressure / overall pressure): 1.0 × 10 −3 , T × logP O2 = −3600). After the obtained fired product was pulverized, coarse particles and fine particles were removed using a sieve to obtain Mg ferrite particles having an average particle diameter of 45 μm.
The obtained Mg ferrite particles were measured for oxygen excess δ, saturation magnetization σs, and electrical resistance in the same manner as in Example 1, and the Mg ferrite particles were coated with a resin and used as a carrier for evaluation into images. It was. The results are summarized in Table 1.

(実施例14)
焼成工程において、造粒物を1200℃で3時間焼成した後、冷却段階において温度Tが1000℃、酸素分圧PO2(酸素圧力/全体圧力)が1.0×10−3、T×logPO2=−3000のところで急冷した以外は、実施例13と同様にして焼成物を得た。得られた焼成物を粉砕処理した後、篩を用いて粗粒及び微粒を除去し、平均粒子径45μmのMgフェライト粒子を得た。
得られたMgフェライト粒子の酸素過剰量δ、飽和磁化σs、電気抵抗を実施例1と同様にして測定すると共に、Mgフェライト粒子を樹脂被覆してキャリアとし評価機に投入し、画像評価を行った。結果を表1にまとめて示す。
(Example 14)
In the firing step, the granulated product is fired at 1200 ° C. for 3 hours, and in the cooling stage, the temperature T is 1000 ° C., the oxygen partial pressure P O2 (oxygen pressure / total pressure) is 1.0 × 10 −3 , T × log P A fired product was obtained in the same manner as in Example 13 except that quenching was performed at O2 = -3000. After the obtained fired product was pulverized, coarse particles and fine particles were removed using a sieve to obtain Mg ferrite particles having an average particle diameter of 45 μm.
The obtained Mg ferrite particles were measured for oxygen excess δ, saturation magnetization σs, and electrical resistance in the same manner as in Example 1, and the Mg ferrite particles were coated with a resin and used as a carrier for evaluation into images. It was. The results are summarized in Table 1.

(実施例15)
焼成工程において、造粒物を1200℃で3時間焼成した後、冷却段階において温度Tが800℃、酸素分圧PO2(酸素圧力/全体圧力)が1.0×10−3、T×logPO2=−2400のところで急冷した以外は、実施例13と同様にして焼成物を得た。得られた焼成物を粉砕処理した後、篩を用いて粗粒及び微粒を除去し、平均粒子径45μmのMgフェライト粒子を得た。
得られたMgフェライト粒子の酸素過剰量δ、飽和磁化σs、電気抵抗を実施例1と同様にして測定すると共に、Mgフェライト粒子を樹脂被覆してキャリアとし評価機に投入し、画像評価を行った。結果を表1にまとめて示す。
(Example 15)
In the firing step, the granulated product is fired at 1200 ° C. for 3 hours, and in the cooling stage, the temperature T is 800 ° C., the oxygen partial pressure P O2 (oxygen pressure / total pressure) is 1.0 × 10 −3 , T × log P A fired product was obtained in the same manner as in Example 13 except that quenching was performed at O2 = -2400. After the obtained fired product was pulverized, coarse particles and fine particles were removed using a sieve to obtain Mg ferrite particles having an average particle diameter of 45 μm.
The obtained Mg ferrite particles were measured for oxygen excess δ, saturation magnetization σs, and electrical resistance in the same manner as in Example 1, and the Mg ferrite particles were coated with a resin and used as a carrier for evaluation into images. It was. The results are summarized in Table 1.

(実施例16)
焼成工程において、造粒物を1200℃で3時間焼成した後、冷却段階において温度Tが600℃、酸素分圧PO2(酸素圧力/全体圧力)が1.0×10−3、T×logPO2=−1800のところで急冷した以外は、実施例13と同様にして焼成物を得た。得られた焼成物を粉砕処理した後、篩を用いて粗粒及び微粒を除去し、平均粒子径45μmのMgフェライト粒子を得た。
得られたMgフェライト粒子の酸素過剰量δ、飽和磁化σs、電気抵抗を実施例1と同様にして測定すると共に、Mgフェライト粒子を樹脂被覆してキャリアとし評価機に投入し、画像評価を行った。結果を表1にまとめて示す。
(Example 16)
In the firing step, the granulated product is fired at 1200 ° C. for 3 hours, and in the cooling stage, the temperature T is 600 ° C., the oxygen partial pressure P O2 (oxygen pressure / total pressure) is 1.0 × 10 −3 , T × log P A fired product was obtained in the same manner as in Example 13 except that quenching was performed at O2 = -1800. After the obtained fired product was pulverized, coarse particles and fine particles were removed using a sieve to obtain Mg ferrite particles having an average particle diameter of 45 μm.
The obtained Mg ferrite particles were measured for oxygen excess δ, saturation magnetization σs, and electrical resistance in the same manner as in Example 1, and the Mg ferrite particles were coated with a resin and used as a carrier for evaluation into images. It was. The results are summarized in Table 1.

(実施例17)
焼成工程において、造粒物を1200℃で3時間焼成した後、冷却段階において温度Tが400℃、酸素分圧PO2(酸素圧力/全体圧力)が1.0×10−3、T×logPO2=−1200のところで急冷した以外は、実施例13と同様にして焼成物を得た。得られた焼成物を粉砕処理した後、篩を用いて粗粒及び微粒を除去し、平均粒子径45μmのMgフェライト粒子を得た。
得られたMgフェライト粒子の酸素過剰量δ、飽和磁化σs、電気抵抗を実施例1と同様にして測定すると共に、Mgフェライト粒子を樹脂被覆してキャリアとし評価機に投入し、画像評価を行った。結果を表1にまとめて示す。
(Example 17)
In the firing step, the granulated product is fired at 1200 ° C. for 3 hours, and in the cooling stage, the temperature T is 400 ° C., the oxygen partial pressure P O2 (oxygen pressure / total pressure) is 1.0 × 10 −3 , T × log P A fired product was obtained in the same manner as in Example 13 except that quenching was performed at O2 = -1200. After the obtained fired product was pulverized, coarse particles and fine particles were removed using a sieve to obtain Mg ferrite particles having an average particle diameter of 45 μm.
The obtained Mg ferrite particles were measured for oxygen excess δ, saturation magnetization σs, and electrical resistance in the same manner as in Example 1, and the Mg ferrite particles were coated with a resin and used as a carrier for evaluation into images. It was. The results are summarized in Table 1.

(実施例18)
焼成工程において、造粒物を1200℃で3時間焼成した後、冷却段階において温度Tが25℃、酸素分圧PO2(酸素圧力/全体圧力)が1.0×10−3、T×logPO2=−75のところで焼成物を得たこと以外は実施例13と同様にして焼成物を得た。得られた焼成物を粉砕処理した後、篩を用いて粗粒及び微粒を除去し、平均粒子径45μmのMgフェライト粒子を得た。
得られたMgフェライト粒子の酸素過剰量δ、飽和磁化σs、電気抵抗を実施例1と同様にして測定すると共に、Mgフェライト粒子を樹脂被覆してキャリアとし評価機に投入し、画像評価を行った。結果を表1にまとめて示す。
(Example 18)
In the firing step, the granulated product is fired at 1200 ° C. for 3 hours, and in the cooling stage, the temperature T is 25 ° C., the oxygen partial pressure P O2 (oxygen pressure / total pressure) is 1.0 × 10 −3 , T × log P A fired product was obtained in the same manner as in Example 13 except that a fired product was obtained at O2 = -75. After the obtained fired product was pulverized, coarse particles and fine particles were removed using a sieve to obtain Mg ferrite particles having an average particle diameter of 45 μm.
The obtained Mg ferrite particles were measured for oxygen excess δ, saturation magnetization σs, and electrical resistance in the same manner as in Example 1, and the Mg ferrite particles were coated with a resin and used as a carrier for evaluation into images. It was. The results are summarized in Table 1.

(実施例19)
x=0.2となるように、FeとMgFe仮焼粉とを6:1(モル比)で配合し、さらに還元剤としてのカーボンブラックをFe2O3とMgFe2O4仮焼粉の総量に対して0.75wt%配合したこと以外は、実施例1と同様にして造粒物を得た。そして、焼成工程において、酸素濃度0.03%の雰囲気下で造粒物を1200℃で3時間焼成した後、直ちに急冷して焼成物を得た(温度T:1200℃、酸素分圧PO2(酸素圧力/全体圧力):2.0×10−4、T×logPO2=−4439)。得られた焼成物を粉砕処理した後、篩を用いて粗粒及び微粒を除去し、平均粒子径45μmのMgフェライト粒子を得た。
得られたMgフェライト粒子の酸素過剰量δ、飽和磁化σs、電気抵抗を実施例1と同様にして測定すると共に、Mgフェライト粒子を樹脂被覆してキャリアとし評価機に投入し、画像評価を行った。結果を表1にまとめて示す。
(Example 19)
The Fe 2 O 3 and the MgFe 2 O 4 calcined powder are blended at a ratio of 6: 1 (molar ratio) so that x = 0.2, and carbon black as a reducing agent is added to the Fe 2 O 3 and MgFe 2 O 4 calcined powder. A granulated product was obtained in the same manner as in Example 1 except that 0.75 wt% was blended with respect to the total amount. In the firing step, the granulated product was fired at 1200 ° C. for 3 hours in an atmosphere having an oxygen concentration of 0.03%, and then immediately cooled to obtain a fired product (temperature T: 1200 ° C., oxygen partial pressure P O2 (Oxygen pressure / overall pressure): 2.0 × 10 −4 , T × logP O2 = −4439). After the obtained fired product was pulverized, coarse particles and fine particles were removed using a sieve to obtain Mg ferrite particles having an average particle diameter of 45 μm.
The obtained Mg ferrite particles were measured for oxygen excess δ, saturation magnetization σs, and electrical resistance in the same manner as in Example 1, and the Mg ferrite particles were coated with a resin and used as a carrier for evaluation into images. It was. The results are summarized in Table 1.

(実施例20)
焼成工程において、造粒物を1200℃で3時間焼成した後、冷却段階において温度Tが1000℃、酸素分圧PO2(酸素圧力/全体圧力)が2.0×10−4、T×logPO2=−3699のところで急冷した以外は、実施例19と同様にして焼成物を得た。得られた焼成物を粉砕処理した後、篩を用いて粗粒及び微粒を除去し、平均粒子径45μmのMgフェライト粒子を得た。
得られたMgフェライト粒子の酸素過剰量δ、飽和磁化σs、電気抵抗を実施例1と同様にして測定すると共に、Mgフェライト粒子を樹脂被覆してキャリアとし評価機に投入し、画像評価を行った。結果を表1にまとめて示す。
(Example 20)
In the firing step, the granulated product is fired at 1200 ° C. for 3 hours, and in the cooling stage, the temperature T is 1000 ° C., the oxygen partial pressure P O2 (oxygen pressure / total pressure) is 2.0 × 10 −4 , T × log P A fired product was obtained in the same manner as in Example 19 except that quenching was performed at O2 = -3699. After the obtained fired product was pulverized, coarse particles and fine particles were removed using a sieve to obtain Mg ferrite particles having an average particle diameter of 45 μm.
The obtained Mg ferrite particles were measured for oxygen excess δ, saturation magnetization σs, and electrical resistance in the same manner as in Example 1, and the Mg ferrite particles were coated with a resin and used as a carrier for evaluation into images. It was. The results are summarized in Table 1.

(実施例21)
焼成工程において、造粒物を1200℃で3時間焼成した後、冷却段階において温度Tが800℃、酸素分圧PO2(酸素圧力/全体圧力)が2.0×10−4、T×logPO2=−2959のところで急冷した以外は、実施例19と同様にして焼成物を得た。得られた焼成物を粉砕処理した後、篩を用いて粗粒及び微粒を除去し、平均粒子径45μmのMgフェライト粒子を得た。
得られたMgフェライト粒子の酸素過剰量δ、飽和磁化σs、電気抵抗を実施例1と同様にして測定すると共に、Mgフェライト粒子を樹脂被覆してキャリアとし評価機に投入し、画像評価を行った。結果を表1にまとめて示す。
(Example 21)
In the firing step, the granulated product is fired at 1200 ° C. for 3 hours, and in the cooling stage, the temperature T is 800 ° C., the oxygen partial pressure P O2 (oxygen pressure / total pressure) is 2.0 × 10 −4 , T × log P A fired product was obtained in the same manner as in Example 19 except that quenching was performed at O2 = -2959. After the obtained fired product was pulverized, coarse particles and fine particles were removed using a sieve to obtain Mg ferrite particles having an average particle diameter of 45 μm.
The obtained Mg ferrite particles were measured for oxygen excess δ, saturation magnetization σs, and electrical resistance in the same manner as in Example 1, and the Mg ferrite particles were coated with a resin and used as a carrier for evaluation into images. It was. The results are summarized in Table 1.

(実施例22)
焼成工程において、造粒物を1200℃で3時間焼成した後、冷却段階において温度Tが600℃、酸素分圧PO2(酸素圧力/全体圧力)が2.0×10−4、T×logPO2=−2219のところで急冷した以外は、実施例19と同様にして焼成物を得た。得られた焼成物を粉砕処理した後、篩を用いて粗粒及び微粒を除去し、平均粒子径45μmのMgフェライト粒子を得た。
得られたMgフェライト粒子の酸素過剰量δ、飽和磁化σs、電気抵抗を実施例1と同様にして測定すると共に、Mgフェライト粒子を樹脂被覆してキャリアとし評価機に投入し、画像評価を行った。結果を表1にまとめて示す。
(Example 22)
In the firing step, the granulated product is fired at 1200 ° C. for 3 hours, and in the cooling stage, the temperature T is 600 ° C., the oxygen partial pressure P O2 (oxygen pressure / total pressure) is 2.0 × 10 −4 , T × log P A fired product was obtained in the same manner as in Example 19 except that quenching was performed at O2 = 22-219. After the obtained fired product was pulverized, coarse particles and fine particles were removed using a sieve to obtain Mg ferrite particles having an average particle diameter of 45 μm.
The obtained Mg ferrite particles were measured for oxygen excess δ, saturation magnetization σs, and electrical resistance in the same manner as in Example 1, and the Mg ferrite particles were coated with a resin and used as a carrier for evaluation into images. It was. The results are summarized in Table 1.

(実施例23)
焼成工程において、造粒物を1200℃で3時間焼成した後、冷却段階において温度Tが400℃、酸素分圧PO2(酸素圧力/全体圧力)が2.0×10−4、T×logPO2=−1480のところで急冷した以外は、実施例19と同様にして焼成物を得た。得られた焼成物を粉砕処理した後、篩を用いて粗粒及び微粒を除去し、平均粒子径45μmのMgフェライト粒子を得た。
得られたMgフェライト粒子の酸素過剰量δ、飽和磁化σs、電気抵抗を実施例1と同様にして測定すると共に、Mgフェライト粒子を樹脂被覆してキャリアとし評価機に投入し、画像評価を行った。結果を表1にまとめて示す。
(Example 23)
In the firing step, the granulated product is fired at 1200 ° C. for 3 hours, and in the cooling stage, the temperature T is 400 ° C., the oxygen partial pressure P O2 (oxygen pressure / total pressure) is 2.0 × 10 −4 , T × log P A fired product was obtained in the same manner as in Example 19 except that quenching was performed at O2 = -1480. After the obtained fired product was pulverized, coarse particles and fine particles were removed using a sieve to obtain Mg ferrite particles having an average particle diameter of 45 μm.
The obtained Mg ferrite particles were measured for oxygen excess δ, saturation magnetization σs, and electrical resistance in the same manner as in Example 1, and the Mg ferrite particles were coated with a resin and used as a carrier for evaluation into images. It was. The results are summarized in Table 1.

(実施例24)
焼成工程において、造粒物を1200℃で3時間焼成した後、冷却段階において温度Tが25℃、酸素分圧PO2(酸素圧力/全体圧力)が2.0×10−4、T×logPO2=−92のところで焼成物を得たこと以外は実施例19と同様にして焼成物を得た。得られた焼成物を粉砕処理した後、篩を用いて粗粒及び微粒を除去し、平均粒子径45μmのMgフェライト粒子を得た。
得られたMgフェライト粒子の酸素過剰量δ、飽和磁化σs、電気抵抗を実施例1と同様にして測定すると共に、Mgフェライト粒子を樹脂被覆してキャリアとし評価機に投入し、画像評価を行った。結果を表1にまとめて示す。
(Example 24)
In the firing step, the granulated product is fired at 1200 ° C. for 3 hours, and in the cooling stage, the temperature T is 25 ° C., the oxygen partial pressure P O2 (oxygen pressure / total pressure) is 2.0 × 10 −4 , T × log P A fired product was obtained in the same manner as in Example 19 except that a fired product was obtained at O2 = -92. After the obtained fired product was pulverized, coarse particles and fine particles were removed using a sieve to obtain Mg ferrite particles having an average particle diameter of 45 μm.
The obtained Mg ferrite particles were measured for oxygen excess δ, saturation magnetization σs, and electrical resistance in the same manner as in Example 1, and the Mg ferrite particles were coated with a resin and used as a carrier for evaluation into images. It was. The results are summarized in Table 1.

(実施例25)
Feのみを準備し秤量したこと、さらに還元剤としてのカーボンブラックをFeの総量に対して1wt%配合したこと以外は、実施例1と同様にして造粒物を得た。そして、焼成工程において、酸素濃度0.03%の雰囲気下で造粒物を1200℃で3時間焼成した後、直ちに急冷して焼成物を得た(温度T:1200℃、酸素分圧PO2(酸素圧力/全体圧力):2.0×10−4、T×logPO2=−4439)。得られた焼成物を粉砕処理した後、篩を用いて粗粒及び微粒を除去し、平均粒子径45μmのフェライト粒子を得た。
得られたフェライト粒子の酸素過剰量δ、飽和磁化σs、電気抵抗を実施例1と同様にして測定すると共に、フェライト粒子を樹脂被覆してキャリアとし評価機に投入し、画像評価を行った。結果を表1にまとめて示す。
(Example 25)
A granulated product was obtained in the same manner as in Example 1 except that only Fe 2 O 3 was prepared and weighed, and that carbon black as a reducing agent was blended in an amount of 1 wt% with respect to the total amount of Fe 2 O 3 . . In the firing step, the granulated product was fired at 1200 ° C. for 3 hours in an atmosphere having an oxygen concentration of 0.03%, and then immediately cooled to obtain a fired product (temperature T: 1200 ° C., oxygen partial pressure P O2 (Oxygen pressure / overall pressure): 2.0 × 10 −4 , T × logP O2 = −4439). After the obtained fired product was pulverized, coarse particles and fine particles were removed using a sieve to obtain ferrite particles having an average particle diameter of 45 μm.
The oxygen excess amount δ, saturation magnetization σs, and electric resistance of the obtained ferrite particles were measured in the same manner as in Example 1, and the ferrite particles were coated with a resin as a carrier and put into an evaluator for image evaluation. The results are summarized in Table 1.

(実施例26)
焼成工程において、造粒物を1200℃で3時間焼成した後、冷却段階において温度Tが1000℃、酸素分圧PO2(酸素圧力/全体圧力)が2.0×10−4、T×logPO2=−3699のところで急冷した以外は、実施例25と同様にして焼成物を得た。得られた焼成物を粉砕処理した後、篩を用いて粗粒及び微粒を除去し、平均粒子径45μmのフェライト粒子を得た。
得られたフェライト粒子の酸素過剰量δ、飽和磁化σs、電気抵抗を実施例1と同様にして測定すると共に、フェライト粒子を樹脂被覆してキャリアとし評価機に投入し、画像評価を行った。結果を表1にまとめて示す。
(Example 26)
In the firing step, the granulated product is fired at 1200 ° C. for 3 hours, and in the cooling stage, the temperature T is 1000 ° C., the oxygen partial pressure P O2 (oxygen pressure / total pressure) is 2.0 × 10 −4 , T × log P A fired product was obtained in the same manner as in Example 25 except that quenching was performed at O2 = -3699. After the obtained fired product was pulverized, coarse particles and fine particles were removed using a sieve to obtain ferrite particles having an average particle diameter of 45 μm.
The oxygen excess amount δ, saturation magnetization σs, and electric resistance of the obtained ferrite particles were measured in the same manner as in Example 1, and the ferrite particles were coated with a resin as a carrier and put into an evaluator for image evaluation. The results are summarized in Table 1.

(実施例27)
焼成工程において、造粒物を1200℃で3時間焼成した後、冷却段階において温度Tが800℃、酸素分圧PO2(酸素圧力/全体圧力)が2.0×10−4、T×logPO2=−2959のところで急冷した以外は、実施例25と同様にして焼成物を得た。得られた焼成物を粉砕処理した後、篩を用いて粗粒及び微粒を除去し、平均粒子径45μmのフェライト粒子を得た。
得られたフェライト粒子の酸素過剰量δ、飽和磁化σs、電気抵抗を実施例1と同様にして測定すると共に、フェライト粒子を樹脂被覆してキャリアとし評価機に投入し、画像評価を行った。結果を表1にまとめて示す。
(Example 27)
In the firing step, the granulated product is fired at 1200 ° C. for 3 hours, and in the cooling stage, the temperature T is 800 ° C., the oxygen partial pressure P O2 (oxygen pressure / total pressure) is 2.0 × 10 −4 , T × log P A fired product was obtained in the same manner as in Example 25 except that quenching was performed at O2 = -2959. After the obtained fired product was pulverized, coarse particles and fine particles were removed using a sieve to obtain ferrite particles having an average particle diameter of 45 μm.
The oxygen excess amount δ, saturation magnetization σs, and electric resistance of the obtained ferrite particles were measured in the same manner as in Example 1, and the ferrite particles were coated with a resin as a carrier and put into an evaluator for image evaluation. The results are summarized in Table 1.

(実施例28)
焼成工程において、造粒物を1200℃で3時間焼成した後、冷却段階において温度Tが600℃、酸素分圧PO2(酸素圧力/全体圧力)が2.0×10−4、T×logPO2=−2219のところで急冷した以外は、実施例25と同様にして焼成物を得た。得られた焼成物を粉砕処理した後、篩を用いて粗粒及び微粒を除去し、平均粒子径45μmのフェライト粒子を得た。
得られたフェライト粒子の酸素過剰量δ、飽和磁化σs、電気抵抗を実施例1と同様にして測定すると共に、フェライト粒子を樹脂被覆してキャリアとし評価機に投入し、画像評価を行った。結果を表1にまとめて示す。
(Example 28)
In the firing step, the granulated product is fired at 1200 ° C. for 3 hours, and in the cooling stage, the temperature T is 600 ° C., the oxygen partial pressure P O2 (oxygen pressure / total pressure) is 2.0 × 10 −4 , T × log P A fired product was obtained in the same manner as in Example 25 except that quenching was performed at O2 = -2219. After the obtained fired product was pulverized, coarse particles and fine particles were removed using a sieve to obtain ferrite particles having an average particle diameter of 45 μm.
The oxygen excess amount δ, saturation magnetization σs, and electric resistance of the obtained ferrite particles were measured in the same manner as in Example 1, and the ferrite particles were coated with a resin as a carrier and put into an evaluator for image evaluation. The results are summarized in Table 1.

(実施例29)
焼成工程において、造粒物を1200℃で3時間焼成した後、冷却段階において温度Tが400℃、酸素分圧PO2(酸素圧力/全体圧力)が2.0×10−4、T×logPO2=−1480のところで急冷した以外は、実施例25と同様にして焼成物を得た。得られた焼成物を粉砕処理した後、篩を用いて粗粒及び微粒を除去し、平均粒子径45μmのフェライト粒子を得た。
得られたフェライト粒子の酸素過剰量δ、飽和磁化σs、電気抵抗を実施例1と同様にして測定すると共に、フェライト粒子を樹脂被覆してキャリアとし評価機に投入し、画像評価を行った。結果を表1にまとめて示す。
(Example 29)
In the firing step, the granulated product is fired at 1200 ° C. for 3 hours, and in the cooling stage, the temperature T is 400 ° C., the oxygen partial pressure P O2 (oxygen pressure / total pressure) is 2.0 × 10 −4 , T × log P A fired product was obtained in the same manner as in Example 25 except that quenching was performed at O2 = -1480. After the obtained fired product was pulverized, coarse particles and fine particles were removed using a sieve to obtain ferrite particles having an average particle diameter of 45 μm.
The oxygen excess amount δ, saturation magnetization σs, and electric resistance of the obtained ferrite particles were measured in the same manner as in Example 1, and the ferrite particles were coated with a resin as a carrier and put into an evaluator for image evaluation. The results are summarized in Table 1.

(実施例30)
焼成工程において、造粒物を1200℃で3時間焼成した後、冷却段階において温度Tが25℃、酸素分圧PO2(酸素圧力/全体圧力)が2.0×10−4、T×logPO2=−92のところで焼成物を得たこと以外は、実施例25と同様にして焼成物を得た。得られた焼成物を粉砕処理した後、篩を用いて粗粒及び微粒を除去し、平均粒子径45μmのフェライト粒子を得た。
得られたフェライト粒子の酸素過剰量δ、飽和磁化σs、電気抵抗を実施例1と同様にして測定すると共に、フェライト粒子を樹脂被覆してキャリアとし評価機に投入し、画像評価を行った。結果を表1にまとめて示す。
(Example 30)
In the firing step, the granulated product is fired at 1200 ° C. for 3 hours, and in the cooling stage, the temperature T is 25 ° C., the oxygen partial pressure P O2 (oxygen pressure / total pressure) is 2.0 × 10 −4 , T × log P A fired product was obtained in the same manner as in Example 25 except that a fired product was obtained at O2 = -92. After the obtained fired product was pulverized, coarse particles and fine particles were removed using a sieve to obtain ferrite particles having an average particle diameter of 45 μm.
The oxygen excess amount δ, saturation magnetization σs, and electric resistance of the obtained ferrite particles were measured in the same manner as in Example 1, and the ferrite particles were coated with a resin as a carrier and put into an evaluator for image evaluation. The results are summarized in Table 1.

(実施例31)
x=0.95となるように、FeとMgFe仮焼粉とを3:38(モル比)で配合した以外は、実施例1と同様にして造粒物を得た。そして、焼成工程において、大気フロー雰囲気下にて造粒物を1200℃で3時間焼成した後、冷却段階において温度Tが25℃、酸素分圧PO2(酸素圧力/全体圧力)が2.1×10−1、T×logPO2=−17のところで焼成物を得た。得られた焼成物を粉砕処理した後、篩を用いて粗粒及び微粒を除去し、平均粒子径45μmのMgフェライト粒子を得た。
得られたMgフェライト粒子の酸素過剰量δ、飽和磁化σs、電気抵抗を実施例1と同様にして測定すると共に、Mgフェライト粒子を樹脂被覆してキャリアとし評価機に投入し、画像評価を行った。結果を表1にまとめて示す。
(Example 31)
A granulated product was obtained in the same manner as in Example 1 except that Fe 2 O 3 and MgFe 2 O 4 calcined powder were blended at 3:38 (molar ratio) so that x = 0.95. . In the firing step, the granulated product is fired at 1200 ° C. for 3 hours in an air flow atmosphere. Then, in the cooling stage, the temperature T is 25 ° C. and the oxygen partial pressure P O2 (oxygen pressure / total pressure) is 2.1. A fired product was obtained at × 10 −1 and T × log P O2 = −17. After the obtained fired product was pulverized, coarse particles and fine particles were removed using a sieve to obtain Mg ferrite particles having an average particle diameter of 45 μm.
The obtained Mg ferrite particles were measured for oxygen excess δ, saturation magnetization σs, and electrical resistance in the same manner as in Example 1, and the Mg ferrite particles were coated with a resin and used as a carrier for evaluation into images. It was. The results are summarized in Table 1.

(実施例32)
x=0.05となるように、FeとMgFe仮焼粉とを57:2(モル比)で配合し、さらに還元剤としてのカーボンブラックをFeとMgFe仮焼粉の総量に対して0.95wt%配合したこと以外は、実施例1と同様にして造粒物を得た。そして、焼成工程において、大気フロー雰囲気下にて造粒物を1200℃で3時間焼成した後、冷却段階において温度Tが25℃、酸素分圧PO2(酸素圧力/全体圧力)が2.0×10−4、T×logPO2=−92のところで焼成物を得た。得られた焼成物を粉砕処理した後、篩を用いて粗粒及び微粒を除去し、平均粒子径45μmのMgフェライト粒子を得た。
得られたMgフェライト粒子の酸素過剰δ、飽和磁化σs、電気抵抗を実施例1と同様にして測定すると共に、Mgフェライト粒子を樹脂被覆してキャリアとし評価機に投入し、画像評価を行った。結果を表1にまとめて示す。
(Example 32)
Fe 2 O 3 and MgFe 2 O 4 calcined powder are blended at 57: 2 (molar ratio) so that x = 0.05, and carbon black as a reducing agent is further added to Fe 2 O 3 and MgFe 2. A granulated product was obtained in the same manner as in Example 1 except that 0.95 wt% was added to the total amount of the O 4 calcined powder. In the firing step, the granulated product is fired at 1200 ° C. for 3 hours in an air flow atmosphere, and then in the cooling stage, the temperature T is 25 ° C. and the oxygen partial pressure P O2 (oxygen pressure / total pressure) is 2.0. A fired product was obtained at × 10 −4 , T × logP O2 = −92. After the obtained fired product was pulverized, coarse particles and fine particles were removed using a sieve to obtain Mg ferrite particles having an average particle diameter of 45 μm.
The obtained Mg ferrite particles were measured for oxygen excess δ, saturation magnetization σs, and electrical resistance in the same manner as in Example 1, and the Mg ferrite particles were coated with a resin and used as a carrier for evaluation into an evaluation machine. . The results are summarized in Table 1.

(比較例1)
x=0.7となるように、MgOとFeとを7:3(モル比)で配合した以外は、実施例1と同様にして造粒物を得た。そして、焼成工程において、窒素雰囲気下で造粒物を1200℃で3時間焼成した後、直ちに急冷して焼成物を得た(温度T:1200℃、酸素分圧PO2(酸素圧力/全体圧力):2.0×10−4、T×logPO2=−92)。得られた焼成物を粉砕処理した後、篩を用いて粗粒及び微粒を除去し、平均粒子径45μmのMgフェライト粒子を得た。
得られたMgフェライト粒子の酸素過剰量δ、飽和磁化σs、電気抵抗を実施例1と同様にして測定すると共に、Mgフェライト粒子を樹脂被覆してキャリアとし評価機に投入し、画像評価を行った。結果を表1にまとめて示す。
(Comparative Example 1)
A granulated product was obtained in the same manner as in Example 1 except that MgO and Fe 2 O 3 were mixed at a molar ratio of 7: 3 so that x = 0.7. In the firing step, the granulated product was fired at 1200 ° C. for 3 hours in a nitrogen atmosphere, and then immediately cooled to obtain a fired product (temperature T: 1200 ° C., oxygen partial pressure P O2 (oxygen pressure / total pressure). ): 2.0 × 10 −4 , T × logP O2 = −92). After the obtained fired product was pulverized, coarse particles and fine particles were removed using a sieve to obtain Mg ferrite particles having an average particle diameter of 45 μm.
The obtained Mg ferrite particles were measured for oxygen excess δ, saturation magnetization σs, and electrical resistance in the same manner as in Example 1, and the Mg ferrite particles were coated with a resin and used as a carrier for evaluation into images. It was. The results are summarized in Table 1.

(比較例2)
x=0.45となるように、MgOとFeとを8:23(モル比)で配合した以外は、実施例1と同様にして造粒物を得た。そして、焼成工程において、窒素雰囲気下で造粒物を1200℃で3時間焼成した後、直ちに急冷して焼成物を得た(温度T:1200℃、酸素分圧PO2(酸素圧力/全体圧力):2.0×10−4、T×logPO2=−92)。得られた焼成物を粉砕処理した後、篩を用いて粗粒及び微粒を除去し、平均粒子径45μmのMgフェライト粒子を得た。
得られたMgフェライト粒子の酸素過剰量δ、飽和磁化σs、電気抵抗を実施例1と同様にして測定すると共に、Mgフェライト粒子を樹脂被覆してキャリアとし評価機に投入し、画像評価を行った。結果を表1にまとめて示す。
(Comparative Example 2)
A granulated product was obtained in the same manner as in Example 1 except that MgO and Fe 2 O 3 were mixed at 8:23 (molar ratio) so that x = 0.45. In the firing step, the granulated product was fired at 1200 ° C. for 3 hours in a nitrogen atmosphere, and then immediately cooled to obtain a fired product (temperature T: 1200 ° C., oxygen partial pressure P O2 (oxygen pressure / total pressure). ): 2.0 × 10 −4 , T × logP O2 = −92). After the obtained fired product was pulverized, coarse particles and fine particles were removed using a sieve to obtain Mg ferrite particles having an average particle diameter of 45 μm.
The obtained Mg ferrite particles were measured for oxygen excess δ, saturation magnetization σs, and electrical resistance in the same manner as in Example 1, and the Mg ferrite particles were coated with a resin and used as a carrier for evaluation into images. It was. The results are summarized in Table 1.

実施例1〜32のフェライト粒子は、酸素過剰量δが0.013〜0.173であり、所望の飽和磁化及び高い電気抵抗を有していた。また、これらのフェライト粒子を用いたキャリアでは、150Kの耐刷試験後でも、実使用上支障来すようなホワイトスポットは発生しなかった。これに対して、比較例1及び比較例2のMgフェライト粒子は、還元雰囲気で焼成したため、酸素過剰量δがゼロとなり、所望の飽和磁化及び電気抵抗が得られなかった。このため、比較例1及び比較例2のMgフェライト粒子を用いたキャリアでは、実使用上支障を来すようなホワイトスポットが発生した。   The ferrite particles of Examples 1 to 32 had an oxygen excess δ of 0.013 to 0.173, and had a desired saturation magnetization and high electrical resistance. Further, in the carrier using these ferrite particles, a white spot that would hinder actual use was not generated even after a 150 K printing test. On the other hand, since the Mg ferrite particles of Comparative Example 1 and Comparative Example 2 were fired in a reducing atmosphere, the excess oxygen amount δ was zero, and desired saturation magnetization and electrical resistance were not obtained. For this reason, in the carrier using the Mg ferrite particles of Comparative Example 1 and Comparative Example 2, a white spot that would hinder actual use was generated.

前記実施例で作製した各フェライト粒子の結晶構造を確認するため、代表例として実施例1〜6のフェライト粒子についてX線回折(「XRD」X-ray diffraction)分析を行った。図1にXRD分析の結果を示す。この図から明らかなように、実施例1〜6のフェライト粒子は、Fe相を若干含むものの、ほぼ単相のMgFeで構成されていることがわかる。 In order to confirm the crystal structure of each of the ferrite particles produced in the examples, X-ray diffraction (“XRD” X-ray diffraction) analysis was performed on the ferrite particles of Examples 1 to 6 as a representative example. FIG. 1 shows the results of XRD analysis. As is clear from this figure, it can be seen that the ferrite particles of Examples 1 to 6 are substantially composed of single-phase MgFe 2 O 4 although they contain a little Fe 2 O 3 phase.

また、前記実施例で作製した各粒子が、フェライトと酸素との連続固溶体であることを確認するため、代表例として実施例1〜6の粒子について、酸素化学ポテンシャルμO2及びXRDパターンから求めた格子定数を求め、それらの関係を調べた。図2に、酸素化学ポテンシャルμO2と格子定数との関係を示す。この図から明らかなように、酸素化学ポテンシャルμO2が大きくなると共に、格子定数も増えている。したがって、実施例1〜6で作製した各粒子は、フェライトと酸素との連続固溶体であることがわかる。 Moreover, in order to confirm that each particle produced in the Example was a continuous solid solution of ferrite and oxygen, the particles of Examples 1 to 6 were obtained from the oxygen chemical potential μO2 and the XRD pattern as representative examples. Lattice constants were obtained and their relationship was investigated. FIG. 2 shows the relationship between the oxygen chemical potential μ O2 and the lattice constant. As is apparent from this figure, together with oxygen chemical potential mu O2 becomes large and increasing number lattice constant. Therefore, it turns out that each particle produced in Examples 1-6 is a continuous solid solution of ferrite and oxygen.

本発明のフェライト粒子は、フェライト相におけるスピネル格子中に酸素を所定量過剰に有するので、所望の飽和磁化を有すると同時に高電気抵抗を有する。これにより、例えば、本発明のフェライト粒子を電子写真現像用キャリアとして用いると、画像形成の高速化及び高画質化に対応できるようになる。   Since the ferrite particles of the present invention have a predetermined amount of excess oxygen in the spinel lattice in the ferrite phase, they have a desired saturation magnetization and at the same time a high electrical resistance. Accordingly, for example, when the ferrite particles of the present invention are used as a carrier for electrophotographic development, it becomes possible to cope with high speed image formation and high image quality.

Claims (5)

組成式:MgFe3−x4+δ(但し、0≦x≦0.95)で表わされるフェライト粒子であって、
フェライト相におけるスピネル格子中の酸素過剰量δが、0.01≦δ≦0.18であることを特徴とするフェライト粒子。
A ferrite particle represented by a composition formula: Mg x Fe 3-x O 4 + δ (where 0 ≦ x ≦ 0.95),
A ferrite particle, wherein an excess amount of oxygen δ in a spinel lattice in a ferrite phase is 0.01 ≦ δ ≦ 0.18.
平均粒子径が10μm〜100μmの範囲であることを特徴とする請求項1記載のフェライト粒子。   The ferrite particles according to claim 1, wherein the average particle diameter is in the range of 10 µm to 100 µm. 請求項1又は2記載のフェライト粒子の表面を樹脂で被覆したことを特徴とする電子写真現像用キャリア。   3. A carrier for electrophotographic development, wherein the surface of the ferrite particles according to claim 1 or 2 is coated with a resin. 請求項3記載のキャリアとトナーとを含む電子写真用現像剤。   An electrophotographic developer comprising the carrier according to claim 3 and a toner. MgFe3−x(但し、0≦x≦0.95)で表わされる組成のフェライト粒子が生成するように成分調整されたFe原料及びMg原料を媒体液中で混合してスラリーを得る工程と、前記スラリーを噴霧乾燥させて造粒物を得る工程と、前記造粒物を焼成して焼成物を得る工程とを有し、
前記焼成を下記式(1)を満たす条件で行い、
MgFe3−x4+δ(但し、0.01≦δ≦0.18)で表わされるフェライト粒子を生成させることを特徴とするフェライト粒子の製造方法。
−5000≦T×logPO2≦0 ・・・・・・(1)
(式中、T:温度(℃),PO2=酸素圧力/全体圧力)
The Fe raw material and the Mg raw material whose components were adjusted so as to produce ferrite particles having a composition represented by Mg x Fe 3-x O 4 (where 0 ≦ x ≦ 0.95) were mixed in a medium solution to form a slurry. A step of obtaining the granulated product by spray drying the slurry, and a step of obtaining a calcined product by firing the granulated product,
Performing the firing under conditions satisfying the following formula (1),
A method for producing ferrite particles, characterized by producing ferrite particles represented by Mg x Fe 3-x O 4 + δ (where 0.01 ≦ δ ≦ 0.18).
−5000 ≦ T × log P O2 ≦ 0 (1)
(Where T: temperature (° C.), P O2 = oxygen pressure / overall pressure)
JP2010076582A 2010-03-30 2010-03-30 Ferrite particles, electrophotographic developer carrier, electrophotographic developer using the same, and method for producing ferrite particles Active JP5761921B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010076582A JP5761921B2 (en) 2010-03-30 2010-03-30 Ferrite particles, electrophotographic developer carrier, electrophotographic developer using the same, and method for producing ferrite particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010076582A JP5761921B2 (en) 2010-03-30 2010-03-30 Ferrite particles, electrophotographic developer carrier, electrophotographic developer using the same, and method for producing ferrite particles

Publications (2)

Publication Number Publication Date
JP2011207656A true JP2011207656A (en) 2011-10-20
JP5761921B2 JP5761921B2 (en) 2015-08-12

Family

ID=44939147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010076582A Active JP5761921B2 (en) 2010-03-30 2010-03-30 Ferrite particles, electrophotographic developer carrier, electrophotographic developer using the same, and method for producing ferrite particles

Country Status (1)

Country Link
JP (1) JP5761921B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5822415B1 (en) * 2015-03-10 2015-11-24 Dowaエレクトロニクス株式会社 Carrier core material, electrophotographic developer carrier and electrophotographic developer using the same
EP2891925A4 (en) * 2012-08-30 2016-04-27 Dowa Electronics Materials Co Method for producing carrier core material for electrophotographic developer, carrier core material for electrophotographic developer, carrier for electrophotographic developer, and electrophotographic developer
JP2017021195A (en) * 2015-07-10 2017-01-26 Dowaエレクトロニクス株式会社 Carrier core material and carrier for electrophotographic development using the same, and developer for electrophotography

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008241742A (en) * 2007-03-23 2008-10-09 Dowa Electronics Materials Co Ltd Carrier core material for electrophotographic developer and manufacturing method thereof, carrier for electrophotographic developer, and electrophotographic developer
JP2009086339A (en) * 2007-09-28 2009-04-23 Dowa Electronics Materials Co Ltd Magnetic carrier core material for electrophotographic development, manufacturing method thereof, magnetic carrier, and electrophotographic developer
JP2009244792A (en) * 2008-03-31 2009-10-22 Dowa Electronics Materials Co Ltd Electrophotographic developer carrier core material and its method for manufacturing, magnetic carrier of electrophotographic developer, and electrophotographic developer
JP2010002519A (en) * 2008-06-18 2010-01-07 Dowa Electronics Materials Co Ltd Carrier core material for electrophotographic developer and method for manufacturing the same, carrier for electrophotographic developer and electrophotographic developer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008241742A (en) * 2007-03-23 2008-10-09 Dowa Electronics Materials Co Ltd Carrier core material for electrophotographic developer and manufacturing method thereof, carrier for electrophotographic developer, and electrophotographic developer
JP2009086339A (en) * 2007-09-28 2009-04-23 Dowa Electronics Materials Co Ltd Magnetic carrier core material for electrophotographic development, manufacturing method thereof, magnetic carrier, and electrophotographic developer
JP2009244792A (en) * 2008-03-31 2009-10-22 Dowa Electronics Materials Co Ltd Electrophotographic developer carrier core material and its method for manufacturing, magnetic carrier of electrophotographic developer, and electrophotographic developer
JP2010002519A (en) * 2008-06-18 2010-01-07 Dowa Electronics Materials Co Ltd Carrier core material for electrophotographic developer and method for manufacturing the same, carrier for electrophotographic developer and electrophotographic developer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6014045205; Simsa, Zdenek and Brabers, Victor A. M.: 'Low temperature electrical properties of magnetite and manganese ferrites' IEEE Transactions on Magnetics vol.24 No.2, 1988, pp.1910-1914 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2891925A4 (en) * 2012-08-30 2016-04-27 Dowa Electronics Materials Co Method for producing carrier core material for electrophotographic developer, carrier core material for electrophotographic developer, carrier for electrophotographic developer, and electrophotographic developer
US9651886B2 (en) 2012-08-30 2017-05-16 Dowa Electronics Materials Co., Ltd. Carrier core particles for electrophotographic developer, carrier for electrophotographic developer, and electrophotographic developer
JP5822415B1 (en) * 2015-03-10 2015-11-24 Dowaエレクトロニクス株式会社 Carrier core material, electrophotographic developer carrier and electrophotographic developer using the same
WO2016143646A1 (en) * 2015-03-10 2016-09-15 Dowaエレクトロニクス株式会社 Carrier core material and carrier for electrophotographic development comprising same, and electrophotographic developer
JP2017021195A (en) * 2015-07-10 2017-01-26 Dowaエレクトロニクス株式会社 Carrier core material and carrier for electrophotographic development using the same, and developer for electrophotography

Also Published As

Publication number Publication date
JP5761921B2 (en) 2015-08-12

Similar Documents

Publication Publication Date Title
WO2016158548A1 (en) Carrier core material, and carrier for electrophotographic development and developer for electrophotography both including same
JP5822415B1 (en) Carrier core material, electrophotographic developer carrier and electrophotographic developer using the same
WO2014156437A1 (en) Ferrite particles and electrophotographic developer carrier using same, electrophotographic developer, and method for producing ferrite particles
JP5843378B2 (en) Ferrite particles, electrophotographic developer carrier, electrophotographic developer using the same, and method for producing ferrite particles
JP5735877B2 (en) Method for producing ferrite particles
JP5620699B2 (en) Ferrite particles, electrophotographic developer carrier, electrophotographic developer using the same, and method for producing ferrite particles
JP2013035737A (en) Method for manufacturing ferrite particle
JP5761921B2 (en) Ferrite particles, electrophotographic developer carrier, electrophotographic developer using the same, and method for producing ferrite particles
JP5736078B1 (en) Ferrite particles, electrophotographic carrier and electrophotographic developer using the same
JP2017097252A (en) Carrier core material, carrier for electrophotographic development, and electrophotographic developer
JP5822377B2 (en) Ferrite particles, electrophotographic developer carrier and electrophotographic developer using the same
JP6494453B2 (en) Carrier core material, electrophotographic developer carrier and electrophotographic developer using the same
JP5478322B2 (en) Ferrite particles, electrophotographic developer carrier, electrophotographic developer using the same, and method for producing ferrite particles
JP6177473B1 (en) Carrier core material, electrophotographic developer carrier and electrophotographic developer using the same
JP2022116287A (en) Carrier core material, and carrier for electrophotographic development and electrophotographic developer using the same
JP6511320B2 (en) Carrier core material and method for manufacturing the same
JP6121675B2 (en) Sintered particles, electrophotographic developer carrier, electrophotographic developer using the same, and method for producing sintered particles
JP2014149464A (en) Carrier particle
JP5892689B2 (en) Ferrite particles, electrophotographic developer carrier and electrophotographic developer using the same
JP2015093817A (en) Mn FERRITE PARTICLE AND DEVELOPER CARRIER FOR ELECTROPHOTOGRAPHY USING THE SAME, DEVELOPER FOR ELECTROPHOTOGRAPHY
JP6061423B2 (en) Carrier core material, carrier for electrophotographic development using the same and developer for electrophotography
JP5839640B1 (en) Carrier core material, electrophotographic developer carrier and electrophotographic developer using the same
JP5920973B2 (en) Sintered particles, electrophotographic developer carrier, electrophotographic developer using the same, and method for producing sintered particles
JP5924814B2 (en) Method for producing ferrite particles
JP2015090443A (en) Image forming method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140723

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141029

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150521

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150609

R150 Certificate of patent or registration of utility model

Ref document number: 5761921

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250