JP2011204936A - Inflow behavior observation method of liquid sealing resin composition, and method of manufacturing semiconductor device - Google Patents

Inflow behavior observation method of liquid sealing resin composition, and method of manufacturing semiconductor device Download PDF

Info

Publication number
JP2011204936A
JP2011204936A JP2010071251A JP2010071251A JP2011204936A JP 2011204936 A JP2011204936 A JP 2011204936A JP 2010071251 A JP2010071251 A JP 2010071251A JP 2010071251 A JP2010071251 A JP 2010071251A JP 2011204936 A JP2011204936 A JP 2011204936A
Authority
JP
Japan
Prior art keywords
resin composition
sealing resin
liquid sealing
semiconductor device
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010071251A
Other languages
Japanese (ja)
Inventor
Hiroshi Ito
浩志 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2010071251A priority Critical patent/JP2011204936A/en
Publication of JP2011204936A publication Critical patent/JP2011204936A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/921Connecting a surface with connectors of different types
    • H01L2224/9212Sequential connecting processes
    • H01L2224/92122Sequential connecting processes the first connecting process involving a bump connector
    • H01L2224/92125Sequential connecting processes the first connecting process involving a bump connector the second connecting process involving a layer connector

Landscapes

  • Wire Bonding (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of observing the behavior of an inflow of a liquid sealing resin composition into a semiconductor device assembled by a COF method or SOF method.SOLUTION: The semiconductor device of the COF (chip on film) method or SOF (system on film) method includes two or more connection parts of a circuit on a heat-resistant film substrate 3, and a semiconductor element 1 mounted on the circuit or other electronic component, and is assembled by flowing and curing the liquid sealing resin composition 5 to the connection parts. The method of observing the behavior of the inflow of the liquid sealing resin composition into the connection parts is characterized in that a transparent heater 4 is arranged on a lower part of the heat-resistant film substrate of the semiconductor device, the connection parts is observed through a lower part of the semiconductor device from a lower part of the transparent heater, and at the same time the liquid sealing resin composition is supplied to the connection parts.

Description

本発明は、COF(チップ・オン・フィルム)方式あるいはSOF(システム・オン・フィルム)方式の半導体装置における、フィルム基板と半導体素子あるいはその他の電子部品との接続部への液状封止樹脂組成物の流入挙動観測方法、およびその観測方法を用いる半導体装置の製造方法に関する。 The present invention relates to a liquid sealing resin composition for connecting a film substrate to a semiconductor element or other electronic component in a COF (chip on film) or SOF (system on film) type semiconductor device. The present invention relates to a method for observing the inflow behavior of semiconductor and a method for manufacturing a semiconductor device using the observation method.

近年、家庭用テレビや携帯端末などを中心とする薄型表示体機器をはじめ、特に軽量かつコンパクト性を求められる情報処理機器などにおいて、COF(チップ・オン・フィルム)方式あるいはSOF(システム・オン・フィルム)方式で組み立てられた半導体装置が多用されるようになった。   In recent years, in a thin display device such as a home TV and a portable terminal, especially in an information processing device that is required to be lightweight and compact, a COF (chip on film) method or a SOF (system on Semiconductor devices assembled using the film method have come to be used frequently.

COF方式あるいはSOF方式とは、耐熱性フィルム上に形成された極めて微細な回路上に、半導体素子あるいはその他の電子部品を搭載する半導体装置の製造方式である。
この方式は、ロール形態で半導体装置を生産することも可能であることから、生産スペースの節約や生産性の向上が可能になり、さらに従来のような重くて硬い基板(例えば、ガラス/エポキシ基板)に代わって、軽くて軟らかいフィルム上に半導体装置を組み立てられることから、軽量化への寄与や多様な形状への対応性も高いという特徴がある。さらに、耐熱性フィルム上へ形成される回路は、近年では20μmピッチもの極微細なものも量産可能になってきたことから、上記方式で組み立てられた半導体装置の小型化や高集積化も可能になってきた。
The COF method or SOF method is a method for manufacturing a semiconductor device in which a semiconductor element or other electronic component is mounted on an extremely fine circuit formed on a heat resistant film.
Since this method can also produce semiconductor devices in roll form, it is possible to save production space and improve productivity. Furthermore, conventional heavy and hard substrates (for example, glass / epoxy substrates). ), The semiconductor device can be assembled on a light and soft film, which contributes to weight reduction and is highly compatible with various shapes. Furthermore, since the circuit formed on the heat-resistant film can be mass-produced in recent years with an extremely fine one having a pitch of 20 μm, the semiconductor device assembled by the above method can be miniaturized and highly integrated. It has become.

すなわちCOF方式あるいはSOF方式での半導体装置の組み立ては、軽量かつコンパクトな半導体装置を、高い生産性で効率良く製造することが出来る点で、従来の半導体装置の製造方式とは大きく異なっており、このような利点から応用分野も広がってきている。
さらに、COF方式あるいはSOF方式では、従来の方式に比べ更に回路を微細化できる可能性も高いことから、将来この方式で製造される半導体装置の高集積化が一層進むものと考えられている。
That is, the assembly of the semiconductor device by the COF method or the SOF method is greatly different from the conventional semiconductor device manufacturing method in that a lightweight and compact semiconductor device can be efficiently manufactured with high productivity. Due to these advantages, application fields are also expanding.
Further, the COF method or the SOF method has a high possibility that the circuit can be further miniaturized as compared with the conventional method. Therefore, it is considered that further integration of semiconductor devices manufactured by this method will further progress in the future.

このようなCOF方式あるいはSOF方式での半導体装置の組み立てにおいて、信頼性の向上のために半導体素子あるいはその他の電子部品との間に「アンダーフィル材」と呼ばれる液状封止樹脂組成物を充填していることが知られている(例えば、特許文献1)。すなわち、半導体素子あるいはその他の電子部品の接続部を熱的ストレスや湿気あるいは異物の進入などから保護している。 In assembling such a COF type or SOF type semiconductor device, a liquid sealing resin composition called an “underfill material” is filled between the semiconductor element and other electronic components in order to improve reliability. It is known (for example, Patent Document 1). That is, the connection portion of the semiconductor element or other electronic component is protected from thermal stress, moisture, or entry of foreign matter.

従来の一般的な半導体装置の組み立てにおいても、上記と同じ理由でアンダーフィル材が用いられている(例えば、特許文献2〜7)。しかし、これらのアンダーフィル材をそのままCOF方式あるいはSOF方式での半導体装置の組み立てに用いた場合は、極めて微細な回路へ充填する際に、アンダーフィル材に含まれる無機充填材が詰まることによって、充填材の分離や未充填ボイドなどの問題が発生するため適用が困難であった。   In the assembly of conventional general semiconductor devices, an underfill material is used for the same reason as described above (for example, Patent Documents 2 to 7). However, when these underfill materials are used as they are for assembling a semiconductor device in the COF method or SOF method, the inorganic filler contained in the underfill material is clogged when filling a very fine circuit, It was difficult to apply due to problems such as separation of fillers and unfilled voids.

極めて微細な回路へ充填する際の上記のような問題を解消するものとして、回路のギャップサイズに対して無機充填材のサイズを規定するものも提案されている(例えば、特許文献8)。このものは、回路のギャップサイズに対して無機充填材のサイズを所定の条件下において規定することで、無機充填材の詰まり防止と充填速度との両立を図かったものである。しかし、COF方式あるいはSOF方式での半導体装置の組み立てにおいて大きな利点である微細化の進展に伴い、いっそうサイズの小さい無機充填材を適用する必要がある。その為、無機充填材の含有量を一定量とした場合には、アンダーフィル材の粘度上昇を避けることができず充填速度が低下するので、結果的にCOF方式あるいはSOF方式での半導体装置の組み立てにおける もう一つの大きな利点である高い生産性の維持が損なわれてゆく事になるという問題があった。 In order to solve the above-described problems in filling an extremely fine circuit, there has been proposed one that defines the size of the inorganic filler relative to the gap size of the circuit (for example, Patent Document 8). This is intended to achieve both the prevention of clogging of the inorganic filler and the filling speed by defining the size of the inorganic filler with respect to the gap size of the circuit under a predetermined condition. However, with the progress of miniaturization, which is a great advantage in the assembly of a semiconductor device by the COF method or the SOF method, it is necessary to apply an inorganic filler having a smaller size. For this reason, when the content of the inorganic filler is constant, an increase in the viscosity of the underfill material cannot be avoided and the filling speed is lowered. As a result, the semiconductor device of the COF method or the SOF method is used. There was a problem that the maintenance of high productivity, which is another big advantage in assembly, was impaired.

一方、COF方式あるいはSOF方式での半導体装置の組み立てにも好適に適用可能なアンダーフィル材として、無機充填材含有量を10質量%以下と規定することで微細回路への充填を容易にするもの(例えば、特許文献9)や、ケチミン構造化合物を添加することで微細回路でのマイグレーション発生を抑え、信頼性を向上できるものも提案されている(例えば、特許文献10)。 On the other hand, as an underfill material that can be suitably applied to the assembly of semiconductor devices using the COF method or the SOF method, the filling of fine circuits is facilitated by defining the inorganic filler content to be 10% by mass or less. (For example, patent document 9) and the thing which can suppress generation | occurrence | production of migration in a fine circuit and improve reliability by adding a ketimine structure compound (for example, patent document 10) are proposed.

しかし、COF方式あるいはSOF方式での半導体装置の組み立てにおけるアンダーフィル材の充填工程において、ここまでに挙げられたどのアンダーフィル材であっても、そのアンダーフィル材に適した充填条件から逸脱した場合には、ボイドの発生や未充填の発生を避けることができず、信頼性に優れた半導体装置を得ることはできなかった。
このようなCOF方式あるいはSOF方式での半導体装置の組み立てにおけるアンダーフィル材の充填工程でのボイドの発生や未充填の発生を避けるため、適切な充填条件を定める事や、ボイドの発生や未充填が発生し難いアンダーフィル材を選定して用いる事は当然であり、従来はアンダーフィル材を充填・硬化した後の半導体装置の外観観察によってボイドの発生や未充填の発生の有無を確認するのが一般的であった。
However, in the underfill material filling process in the assembly of the semiconductor device by the COF method or the SOF method, any underfill material mentioned so far deviates from the filling conditions suitable for the underfill material. However, generation of voids and unfilling cannot be avoided, and a highly reliable semiconductor device cannot be obtained.
In order to avoid the generation of voids and unfilling in the filling process of the underfill material in the assembly of the semiconductor device by such COF method or SOF method, it is necessary to determine appropriate filling conditions, and to generate or not fill voids. It is natural to select and use an underfill material that is unlikely to generate any defects. Conventionally, the presence or absence of voids or unfilled materials is confirmed by observing the appearance of the semiconductor device after filling and curing the underfill material. Was common.

しかし、従来の方法では実際の半導体装置に対してアンダーフィル材がどのように流入してゆくのか、流入過程そのものを観測しているわけではないので、仮にボイドの発生や未充填部の発生が観測されたとしても、アンダーフィル材を流入する際に発生したものなのか、加熱硬化する時に発生したものなのか区別することはできなかった。
そればかりか、ボイドや未充填部が発生する位置を特定して半導体装置の形状改良やアンダーフィル材充填条件の改善にフィードバックすることや、決定された充填条件や選定されたアンダーフィル材を用いることが、半導体装置へ充填する際のボイド発生や未充填発生を十分に防止できているのかどうかを、実際に直視して確認することは不可能であった。
さらに従来の方法では、決定されたアンダーフィル材の充填条件が本当にマージンのある適切な条件なのかどうか、適切なアンダーフィルが選定できたのかどうかは、半導体装置を大量に製造して確認する必要があり、相応の工数やコストを要していた。
このような問題点を補完する評価方法として、半導体素子や基板をガラス板や石英板など本来の部材とは異なる透明な素材に置換えて評価する方法も知られており、半導体装置におけるアンダーフィル充填時の流動状態を推し量ることにも利用された。しかし、このような方法は実際の半導体装置を構成する部材を用いないので表面状態が変わってしまうことから、その結果と実際の流入状態とは差異が生じるので、前述された種々の問題を解決するには至らなかった。また実際の半導体装置を製造する際には、当然前記手法を用いることは出来なかった。
However, in the conventional method, the inflow process itself is not observed as to how the underfill material flows into the actual semiconductor device, so there is no provision of voids or unfilled parts. Even if it was observed, it could not be distinguished whether it was generated when the underfill material was introduced or when it was heat-cured.
In addition, the position where voids and unfilled parts are generated is specified and fed back to improving the shape of the semiconductor device and underfill material filling conditions, or using the determined filling conditions and the selected underfill material. However, it has been impossible to actually confirm directly whether or not the generation of voids and unfilling at the time of filling the semiconductor device can be prevented.
Furthermore, in the conventional method, it is necessary to confirm whether the determined filling condition of the underfill material is really an appropriate condition with a margin and whether an appropriate underfill has been selected by manufacturing a large number of semiconductor devices. There was a corresponding man-hour and cost.
As an evaluation method to complement such problems, there is also known a method of evaluating by replacing a semiconductor element or a substrate with a transparent material different from the original material such as a glass plate or a quartz plate. Underfill filling in a semiconductor device is also known. It was also used to estimate the fluidity of time. However, since such a method does not use a member constituting an actual semiconductor device and the surface state changes, the difference between the result and the actual inflow state arises, thereby solving the various problems described above. I couldn't. Moreover, when manufacturing an actual semiconductor device, the above method cannot be used.

特開2002−302534号公報JP 2002-302534 A 特開平10−158366号公報JP-A-10-158366 特開平10−231351号公報JP-A-10-231351 特開平11−255864号公報Japanese Patent Laid-Open No. 11-255864 特開2000−53844号公報JP 2000-53844 A 特開2001−127215号公報JP 2001-127215 A 特開2003−137529号公報JP 2003-137529 A 特開2004−346232号公報JP 2004-346232 A 国際公開第2007/061037号公報International Publication No. 2007/061037 特開2008−248099号公報JP 2008-248099 A

本発明が解決しようとする課題は、前述のような従来技術では実現が困難であったCOF(チップ・オン・フィルム)方式あるいはSOF(システム・オン・フィルム)方式で組み立てられた半導体装置に対する液状封止樹脂組成物の流入挙動そのものを観測する方法の提供を可能にすることである。またその観測方法を用いてボイド発生や未充填部発生の無いことを確認できた液状封止樹脂組成物を使用することや、半導体装置への液状封止樹脂組成物の充填条件を決定することで、COF方式あるいはSOF方式で組み立てられた半導体装置の信頼性を向上することである。   The problem to be solved by the present invention is a liquid to a semiconductor device assembled by a COF (chip on film) method or a SOF (system on film) method, which has been difficult to realize by the conventional technology as described above. It is possible to provide a method for observing the inflow behavior of the sealing resin composition itself. Also, using the observation method, use a liquid sealing resin composition that has been confirmed to be free of voids and unfilled parts, and determine the filling conditions of the liquid sealing resin composition into the semiconductor device Thus, the reliability of the semiconductor device assembled by the COF method or the SOF method is improved.

本発明は以下の通りである。
(1)耐熱性フィルム基板上の回路と該回路上に搭載される半導体素子又はその他の電子部品との接続部が2個以上存在し、前記接続部へ液状封止樹脂組成物を流入及び硬化させて組み立てられる、COF(チップ・オン・フィルム)方式又はSOF(システム・オン・フィルム)方式の半導体装置において、前記接続部への液状封止樹脂組成物の流入挙動を観測する方法であって、
半導体装置の耐熱性フィルム基板の下部に透明ヒーターを配置し、前記透明ヒーターの下部より半導体装置下部越しに前記接続部を観測すると同時に前記接続部に液状封止樹脂組成物を供給することを特徴とする、液状封止樹脂組成物の流入挙動観測方法。
(2)前記接続部において、耐熱性フィルムと半導体素子又はその他の電子部品との隙間が10μm以上50μm以下で、且つ隣接する接続部同士の間隔が5μm以上25μm以下の部位を有する半導体装置であることを特徴とする(1)に記載の液状封止樹脂組成物の流入挙動観測方法。
(3)前記液状封止樹脂組成物が、少なくとも(A)エポキシ樹脂と(B)硬化剤とを含むものであることを特徴とする(1)又は(2)に記載の液状封止樹脂組成物の流入挙動観測方法。
(4)(1)〜(3)いずれか1項に記載の液状封止樹脂組成物の流入挙動観測方法を用いて、半導体装置への液状封止樹脂組成物の流入挙動を観測する工程を有することを特徴とする、COF(チップ・オン・フィルム)方式あるいはSOF(システム・オン・フィルム)方式で組み立てられる半導体装置の製造方法。
(5)(1)〜(3)いずれか1項に記載の液状封止樹脂組成物の流入挙動観測方法を用いて、半導体装置への液状封止樹脂組成物の充填条件を求める工程を有することを特徴とする、COF(チップ・オン・フィルム)方式あるいはSOF(システム・オン・フィルム)方式で組み立てられる半導体装置の製造方法。
(6)(1)〜(3)いずれか1項に記載の液状封止樹脂組成物の流入挙動観測方法を用いて、液状封止樹脂組成物のボイド発生や未充填部発生を調べる液状封止樹脂組成物の試験方法。
The present invention is as follows.
(1) There are two or more connecting portions between a circuit on a heat-resistant film substrate and a semiconductor element or other electronic component mounted on the circuit, and the liquid sealing resin composition flows into and cures the connecting portion. In a COF (chip on film) type or SOF (system on film) type semiconductor device that is assembled, a method of observing the inflow behavior of the liquid sealing resin composition to the connection part, ,
A transparent heater is disposed under the heat resistant film substrate of the semiconductor device, and the liquid sealing resin composition is supplied to the connecting portion simultaneously with observing the connecting portion from the lower portion of the transparent heater over the lower portion of the semiconductor device. A method for observing the inflow behavior of the liquid sealing resin composition.
(2) The semiconductor device having a portion where the gap between the heat-resistant film and the semiconductor element or other electronic component is 10 μm or more and 50 μm or less and the interval between adjacent connection portions is 5 μm or more and 25 μm or less. (1) The inflow behavior observation method of the liquid sealing resin composition according to (1).
(3) The liquid sealing resin composition according to (1) or (2), wherein the liquid sealing resin composition contains at least (A) an epoxy resin and (B) a curing agent. Inflow behavior observation method.
(4) A step of observing the inflow behavior of the liquid sealing resin composition to the semiconductor device using the inflow behavior observation method of the liquid sealing resin composition according to any one of (1) to (3). A method of manufacturing a semiconductor device assembled by a COF (chip on film) method or an SOF (system on film) method.
(5) Using the method for observing the inflow behavior of the liquid sealing resin composition according to any one of (1) to (3), the method includes a step of obtaining a filling condition of the liquid sealing resin composition into the semiconductor device. A method of manufacturing a semiconductor device assembled by a COF (chip on film) method or an SOF (system on film) method.
(6) A liquid seal that examines the occurrence of voids and unfilled portions in the liquid sealing resin composition using the method for observing the inflow behavior of the liquid sealing resin composition according to any one of (1) to (3). Test method for a resin composition.

本発明によれば、COF方式あるいはSOF方式で組み立てられた半導体装置に対する液状封止樹脂組成物の流入挙動そのものを観測する方法を得られる。また、その観測方法を用いて半導体装置を製造することや、ボイド発生や未充填部発生の無いことを確認できた液状封止樹脂組成物を使用すること、半導体装置への液状封止樹脂組成物の充填条件を決定すること、で信頼性に優れたCOF方式あるいはSOF方式で組み立てられた半導体装置を得られる。   According to the present invention, it is possible to obtain a method for observing the inflow behavior of the liquid sealing resin composition to the semiconductor device assembled by the COF method or the SOF method. In addition, it is possible to manufacture a semiconductor device using the observation method, use a liquid sealing resin composition that has been confirmed to be free of voids and unfilled portions, and a liquid sealing resin composition for a semiconductor device. By determining the filling condition of the product, a semiconductor device assembled by the COF method or the SOF method with excellent reliability can be obtained.

本発明の液状封止樹脂組成物の流入挙動観測方法の一例を示す概略図である。It is the schematic which shows an example of the inflow behavior observation method of the liquid sealing resin composition of this invention. 本発明の液状封止樹脂組成物の流入挙動観測方法で未充填の発生を観測した一例を示す写真である。It is a photograph which shows an example which observed generation | occurrence | production of unfilling with the inflow behavior observation method of the liquid sealing resin composition of this invention.

以下、本発明のCOF方式あるいはSOF方式の半導体装置における、フィルム基板と半導体素子あるいはその他の電子部品との接続部への液状封止樹脂組成物の流入挙動観測方法、およびその観測方法を用いる半導体装置の製造方法について説明する。   Hereinafter, in the COF type or SOF type semiconductor device of the present invention, a method for observing the inflow behavior of the liquid sealing resin composition to the connection portion between the film substrate and the semiconductor element or other electronic component, and a semiconductor using the method A method for manufacturing the apparatus will be described.

まず、本発明の半導体装置はCOF(チップ・オン・フィルム)方式あるいはSOF(システム・オン・フィルム)方式で組み立てられる半導体装置であって、フィルム基板と半導体素子あるいはその他の電子部品との接続部への液状封止樹脂組成物の流入挙動を観測する方法である。本発明では、図1に示すように半導体装置のフィルム基板3の下部に透明ヒーター4を配置し、その透明ヒーターの下部より半導体装置下部越しにフィルム基板と半導体素子1あるいはその他の電子部品との接続部2を観測すると同時に液状封止樹脂組成物5を供給する。   First, a semiconductor device of the present invention is a semiconductor device assembled by a COF (chip on film) method or an SOF (system on film) method, and a connection portion between a film substrate and a semiconductor element or other electronic component. This is a method for observing the inflow behavior of the liquid encapsulating resin composition. In the present invention, as shown in FIG. 1, a transparent heater 4 is disposed below the film substrate 3 of the semiconductor device, and the film substrate and the semiconductor element 1 or other electronic components are placed below the transparent heater and below the semiconductor device. The liquid sealing resin composition 5 is supplied simultaneously with the observation of the connection part 2.

本発明で用いられるCOF方式あるいはSOF方式で組み立てられる半導体装置は、耐熱性フィルム上の回路と、その回路上に搭載される半導体素子、あるいはその他の電子部品との接続部が2個以上存在するものであるが、透明ヒーター下部より半導体装置下部越しにフィルム基板と半導体素子あるいはその他の電子部品との接続部を観測するので、半導体装置に用いられる耐熱フィルムは観測可能な程度に透明性が必要である。
そのような耐熱フィルムとして、例えば一般的なポリイミドフィルムなどを用いることができ、観測可能な程度の透明性さえあれば、その色や色の濃淡、厚み、貼り合わせ加工の有無、フィラーの有無などに制限はない。
The semiconductor device assembled by the COF method or SOF method used in the present invention has two or more connections between the circuit on the heat-resistant film and the semiconductor element or other electronic component mounted on the circuit. However, since the connection part between the film substrate and the semiconductor element or other electronic components is observed from the lower part of the transparent heater to the lower part of the semiconductor device, the heat-resistant film used in the semiconductor device needs to be transparent enough to be observed. It is.
As such a heat-resistant film, for example, a general polyimide film can be used, and as long as it is observable, its color and shade of color, thickness, presence / absence of bonding processing, presence / absence of filler, etc. There is no limit.

本発明のCOF方式あるいはSOF方式で組み立てられる半導体装置の接続部は、耐熱性フィルムと半導体素子あるいはその他の電子部品との隙間が10μm以上50μm以下で、且つ隣接する接続部同士の間隔が5μm以上25μm以下の部位を有する半導体装置を、より好適に用いることができる。
耐熱性フィルムと半導体素子あるいはその他の電子部品との隙間が下限値未満では、流入しているアンダーフィル材の厚みが極めて薄くなるので観測が困難になる恐れがある。
一方、耐熱性フィルムと半導体素子あるいはその他の電子部品との隙間が上限値を超えるとフィルム基板の上表面と半導体素子あるいはその他の電子部品の下表面との距離が離れるので、例えば微小部を拡大機能付きカメラで観測する際に焦点が合わせ難くなり、アンダーフィル材の下層部と上層部とを分ける必要が出てくる。
隣接する接続部同士の間隔が下限値未満では、接続部と接続部との隙間の流動挙動を拡大機能付きカメラで観測する際、焦点が合わせ難くなるので観測が困難になる恐れがある。
一方、隣接する接続部同士の間隔が上限値を超えると、アンダーフィル材の接続部と接続部との隙間の通過速度が極めて高速になるため、詳細な観測が困難になってくる。
In the connection part of the semiconductor device assembled by the COF method or SOF method of the present invention, the gap between the heat-resistant film and the semiconductor element or other electronic component is 10 μm or more and 50 μm or less, and the interval between adjacent connection parts is 5 μm or more. A semiconductor device having a portion of 25 μm or less can be used more suitably.
If the gap between the heat-resistant film and the semiconductor element or other electronic component is less than the lower limit, the thickness of the inflowing underfill material becomes extremely thin, which may make observation difficult.
On the other hand, if the gap between the heat-resistant film and the semiconductor element or other electronic component exceeds the upper limit, the distance between the upper surface of the film substrate and the lower surface of the semiconductor element or other electronic component is increased. When observing with a camera with a function, it becomes difficult to focus, and it is necessary to separate the lower layer and the upper layer of the underfill material.
If the interval between adjacent connection parts is less than the lower limit value, when observing the flow behavior of the gap between the connection parts with a camera with an enlargement function, it becomes difficult to focus, which may make observation difficult.
On the other hand, if the interval between adjacent connecting portions exceeds the upper limit value, the passage speed of the gap between the connecting portion of the underfill material becomes extremely high, and detailed observation becomes difficult.

本発明で用いられる透明ヒーターとは、例えばガラス板、石英板、ポリカーボネート板などの透明な板の表面に透明な酸化金属薄膜(例えば、スズをドープした酸化インジュウム)などを形成させ、その薄膜に通電することによって発熱するものや、ガラス板や石英板の周囲に電熱線や電熱シートを配置して、そこへ通電することで発生した熱をガラス板や石英板に伝えることで加熱するものなどである。その大きさや厚み、形状、材質などは半導体装置の形状や液状封止樹脂組成物の流入温度に適したものを用いることができる。 With the transparent heater used in the present invention, for example, a transparent metal oxide thin film (for example, indium oxide doped with tin) or the like is formed on the surface of a transparent plate such as a glass plate, a quartz plate, or a polycarbonate plate. Those that generate heat when energized, and those that heat by transferring heat generated by energizing the glass plate or quartz plate by placing a heating wire or sheet around the glass plate or quartz plate, etc. It is. As the size, thickness, shape, material, and the like, those suitable for the shape of the semiconductor device and the inflow temperature of the liquid sealing resin composition can be used.

さらに透明ヒーター下部あるいは半導体装置の上部に光源を設置して光を照射しながら観測することも可能であり、また光源に波長フィルターを設けるなどして特定波長の光を照射し、その特定波長の光を反射あるいは透過する成分だけの流動性を観測することも可能である。   In addition, it is possible to observe while irradiating light by installing a light source under the transparent heater or the upper part of the semiconductor device, and irradiating with light of a specific wavelength by installing a wavelength filter on the light source. It is also possible to observe the fluidity of only the component that reflects or transmits light.

本発明では必要に応じて、透明ヒーター下部に拡大機能付きカメラや、動画撮影機能付きカメラなどを設置して撮影された映像を観測することも可能である。さらに、高速度撮影カメラなどを用いて得られた映像の再生速度を変更することで、より詳細な観測を試みることが可能である。   In the present invention, if necessary, it is also possible to observe an image taken by installing a camera with an enlargement function, a camera with a moving image shooting function, or the like under the transparent heater. Furthermore, it is possible to try more detailed observation by changing the playback speed of the video obtained using a high-speed camera or the like.

アンダーフィル材である液状封止樹脂組成物の半導体装置への供給方法は、手動ディスペンスや加圧式簡易ディスペンサーの他、半導体装置組み立てにおいて通常使用されている設備を利用することができ、そのようなものとして例えばエアパルス式ディスペンサー、非接触ジェットディスペンサー、メカニカル式ディスペンサー、チューブ式ディスペンサー、スクリューディスペンサーなどを挙げることができる。さらに必要に応じて半導体への供給開始位置や供給量、複数回に分けて供給するなど、様々なディスペンスプロファイルを試すことも可能である。   The method of supplying the liquid sealing resin composition, which is an underfill material, to the semiconductor device can utilize equipment normally used in assembling the semiconductor device, in addition to manual dispensing and a pressurized simple dispenser. Examples thereof include an air pulse dispenser, a non-contact jet dispenser, a mechanical dispenser, a tube dispenser, and a screw dispenser. Furthermore, it is possible to try various dispensing profiles, such as the supply start position and supply amount to the semiconductor, and supply in multiple times as necessary.

本発明に使用する液状封止樹脂組成物は、COF方式あるいはSOF方式で組み立てられる半導体装置に利用可能なものであれば特に制限はないが、硬化後の封止樹脂脂組成物が耐熱性、耐湿性、機械的強度に優れ、且つ半導体素子と基板とを強固に接着することができ、信頼性に優れた半導体装置を得ることができることから、エポキシ樹脂(A)を含むことが好ましい。   The liquid encapsulating resin composition used in the present invention is not particularly limited as long as it can be used for a semiconductor device assembled by the COF method or the SOF method, but the cured encapsulating resin fat composition is heat resistant, It is preferable to include the epoxy resin (A) because it is excellent in moisture resistance and mechanical strength, can firmly bond the semiconductor element and the substrate, and can obtain a highly reliable semiconductor device.

前記エポキシ樹脂(A)としては、一分子中にエポキシ基を2個以上有するものであれば特に分子量や構造は限定されるものではないが、例えば、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂などのノボラック型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂などのビスフェノール型エポキシ樹脂、N,N−ジグリシジルアニリン、N,N−ジグリシジルトルイジン、ジアミノジフェニルメタン型グリシジルアミン、アミノフェノール型グリシジルアミンなどの芳香族グリシジルアミン型エポキシ樹脂、ハイドロキノン型エポキシ樹脂、ビフェニル型エポキシ樹脂、スチルベン型エポキシ樹脂、トリフェノールメタン型エポキシ樹脂、トリフェノールプロパン型エポキシ樹脂、アルキル変性トリフェノールメタン型エポキシ樹脂、トリアジン核含有エポキシ樹脂、ジシクロペンタジエン変性フェノール型エポキシ樹脂、ナフトール型エポキシ樹脂、ナフタレン型エポキシ樹脂、フェニレンおよび/またはビフェニレン骨格を有するフェノールアラルキル型エポキシ樹脂、フェニレンおよび/またはビフェニレン骨格を有するナフトールアラルキル型エポキシ樹脂などのアラルキル型エポキシ樹脂などのエポキシ樹脂、ビニルシクロヘキセンジオキシド、ジシクロペンタジエンオキシド、アリサイクリックジエポキシ−アジペイドなどの脂環式エポキシなどの脂肪族エポキシ樹脂が挙げられる。   The epoxy resin (A) is not particularly limited in molecular weight and structure as long as it has two or more epoxy groups in one molecule. For example, phenol novolac type epoxy resin, cresol novolac type epoxy resin Novolak type epoxy resin such as, bisphenol A type epoxy resin, bisphenol type epoxy resin such as bisphenol F type epoxy resin, N, N-diglycidylaniline, N, N-diglycidyltoluidine, diaminodiphenylmethane type glycidylamine, aminophenol type Aromatic glycidylamine type epoxy resin such as glycidylamine, hydroquinone type epoxy resin, biphenyl type epoxy resin, stilbene type epoxy resin, triphenolmethane type epoxy resin, triphenolpropane type epoxy Fat, alkyl-modified triphenolmethane type epoxy resin, triazine nucleus-containing epoxy resin, dicyclopentadiene-modified phenol type epoxy resin, naphthol type epoxy resin, naphthalene type epoxy resin, phenol aralkyl type epoxy resin having phenylene and / or biphenylene skeleton, Fats such as epoxide resins such as aralkyl type epoxy resins such as naphthol aralkyl type epoxy resins having a phenylene and / or biphenylene skeleton, and alicyclic epoxies such as vinylcyclohexene dioxide, dicyclopentadiene oxide, and alicyclic diepoxy-adipade Group epoxy resin.

さらに本発明の場合、芳香族環にグリシジル構造またはグリシジルアミン構造が結合した構造を含むものが耐熱性、機械特性、耐湿性という観点からより好ましく、脂肪族または脂環式エポキシ樹脂は信頼性、特に接着性という観点から使用する量を制限するほうがさらに好ましい。これらは単独でも2種以上混合して使用しても良い。本発明では液状封止樹脂組成物の態様のため、エポキシ樹脂(A)として最終的に常温(25℃)で液状であることが好ましいが、常温で固体のエポキシ樹脂であっても常温で液状のエポキシ樹脂に溶解させるなどして、結果的に常温で液状の状態であればよい。   Further, in the case of the present invention, those containing a structure in which a glycidyl structure or a glycidylamine structure is bonded to an aromatic ring are more preferable from the viewpoint of heat resistance, mechanical properties, and moisture resistance, and aliphatic or alicyclic epoxy resins are reliable, In particular, it is more preferable to limit the amount used from the viewpoint of adhesiveness. These may be used alone or in combination of two or more. In the present invention, it is preferable that the epoxy resin (A) is finally liquid at room temperature (25 ° C.) because of the liquid sealing resin composition, but even an epoxy resin that is solid at room temperature is liquid at room temperature. As a result, it may be in a liquid state at room temperature.

本発明に使用する液状封止樹脂組成物には、さらに硬化剤(B)を含むことが好ましい。これによりエポキシ樹脂(A)を硬化させることができる。エポキシ樹脂(A)を硬化させることができるものであればその種類に特に制限はないが、例えばアミン、フェノール類、酸無水物、ポリアミド樹脂、ポリスルフィド樹脂などが挙げられ、これらは1種類を単独で用いても2種類以上を併用してもよい。性状としては、熱硬化性液状封止樹脂組成物の流動性を確保するため液状の硬化剤が好ましく、例えばジアミノジエチルジフェニルメタンや液状ノボラック型フェノール樹脂などが挙げられる。これらは作業性の悪化が著しくならない限りにおいて、固形の硬化剤を溶解させて用いることもできる。 The liquid sealing resin composition used in the present invention preferably further contains a curing agent (B). Thereby, an epoxy resin (A) can be hardened. The type is not particularly limited as long as the epoxy resin (A) can be cured, and examples thereof include amines, phenols, acid anhydrides, polyamide resins, polysulfide resins, and the like. Two or more types may be used in combination. The property is preferably a liquid curing agent to ensure the fluidity of the thermosetting liquid sealing resin composition, and examples thereof include diaminodiethyldiphenylmethane and liquid novolac type phenol resin. These can also be used by dissolving a solid curing agent as long as the workability is not significantly deteriorated.

さらに、硬化性の観点からイミダゾール類を単独あるいは前記硬化剤と併用して用いるのが好ましい。イミダゾール類としては例えば、1,2−ジメチルイミダゾールや1−ベンジル−2−メチルイミダゾールや1−ベンジル−2−フェニルイミダゾール、2−エチル−4−メチルイミダゾール、1H−イミダゾール−1−プロパン酸−2−メチル−2−エチルヘキシルエステルなどが挙げられる。また、固形のイミダゾール類を溶解させて適用してもよい。固形のイミダゾール類としては、例えば2−メチルイミダゾールや2−ウンデシルイミダゾールなどのイミダゾール類、トリフェニルフォスフィンやテトラフェニルフォスフィンの誘導体やその塩などが挙げられるが、液状樹脂組成物に溶解して用いることが好ましい。 Furthermore, it is preferable to use imidazoles alone or in combination with the curing agent from the viewpoint of curability. Examples of imidazoles include 1,2-dimethylimidazole, 1-benzyl-2-methylimidazole, 1-benzyl-2-phenylimidazole, 2-ethyl-4-methylimidazole, 1H-imidazole-1-propanoic acid-2. -Methyl-2-ethylhexyl ester and the like. Further, solid imidazoles may be dissolved and applied. Examples of solid imidazoles include imidazoles such as 2-methylimidazole and 2-undecylimidazole, triphenylphosphine and tetraphenylphosphine derivatives and salts thereof, and the like, but are dissolved in a liquid resin composition. Are preferably used.

本発明に使用する液状封止樹脂組成物は、無機充填材を含むことも可能である。無機充填材の材質としては、例えばタルク、焼成クレー、未焼成クレー、マイカ、ガラスなどのケイ酸塩、酸化チタン、アルミナ粉末、溶融シリカ(溶融球状シリカ、溶融破砕シリカ)、合成シリカ、結晶シリカなどのシリカ粉末などの酸化物、炭酸カルシウム、炭酸マグネシウム、ハイドロタルサイトなどの炭酸塩、水酸化アルミニウム、水酸化マグネシウム、水酸化カルシウムなどの水酸化物、硫酸バリウム、硫酸カルシウム、亜硫酸カルシウムなどの硫酸塩または亜硫酸塩、ホウ酸亜鉛、メタホウ酸バリウム、ホウ酸アルミニウム、ホウ酸カルシウム、ホウ酸ナトリウムなどのホウ酸塩、窒化アルミニウム、窒化ホウ素、窒化ケイ素などの窒化物などを用いることができる。 The liquid sealing resin composition used in the present invention can also contain an inorganic filler. Examples of inorganic filler materials include talc, calcined clay, unfired clay, mica, glass and other silicates, titanium oxide, alumina powder, fused silica (fused spherical silica, fused crushed silica), synthetic silica, and crystalline silica. Oxides such as silica powder, carbonates such as calcium carbonate, magnesium carbonate, hydrotalcite, hydroxides such as aluminum hydroxide, magnesium hydroxide, calcium hydroxide, barium sulfate, calcium sulfate, calcium sulfite Sulfates or sulfites, borates such as zinc borate, barium metaborate, aluminum borate, calcium borate, and sodium borate, and nitrides such as aluminum nitride, boron nitride, and silicon nitride can be used.

これらの無機充填材は、単独でも混合して使用しても良い。これらの中でも樹脂組成物の耐熱性、耐湿性、強度などを向上できることから溶融シリカ、結晶シリカ、又は合成シリカ粉末が好ましい。無機充填材の形状は、粘度や流動特性の観点から形状は球状であることが好ましい。 These inorganic fillers may be used alone or in combination. Among these, fused silica, crystalline silica, or synthetic silica powder is preferable because the heat resistance, moisture resistance, strength, and the like of the resin composition can be improved. The shape of the inorganic filler is preferably spherical from the viewpoint of viscosity and flow characteristics.

さらに、本発明に使用する液状封止樹脂組成物には、前記エポキシ樹脂(A)、硬化剤(B)など以外に、必要に応じて希釈剤、顔料、難燃剤、レベリング剤、消泡剤などの添加剤を用いることができる。 Furthermore, in the liquid sealing resin composition used in the present invention, in addition to the epoxy resin (A), the curing agent (B) and the like, a diluent, a pigment, a flame retardant, a leveling agent, and an antifoaming agent as necessary. Additives such as can be used.

上記液状封止樹脂組成物は、上述した各成分、添加剤などをプラネタリーミキサー、三本ロール、二本熱ロール、ライカイ機などの装置を用いて分散混練したのち、真空下で脱泡処理して製造することができる。 The liquid encapsulating resin composition is prepared by dispersing and kneading the above-described components and additives using an apparatus such as a planetary mixer, three rolls, two hot rolls, and a laika machine, followed by defoaming under vacuum Can be manufactured.

次に、半導体装置の製造方法について説明する。
本発明の半導体装置はCOF方式あるいはSOF方式で組み立てられる半導体装置であり、液状封止樹脂組成物を充填して製造される。
Next, a method for manufacturing a semiconductor device will be described.
The semiconductor device of the present invention is a semiconductor device assembled by the COF method or the SOF method, and is manufactured by filling a liquid sealing resin composition.

例えば、ポリイミドフィルムなどの耐熱フィルム上のスズメッキを施した銅配線上に金バンプを有する半導体素子を共晶接合したCOF方式の半導体装置に対し、半導体素子と耐熱フィルムとの間隙に液状封止樹脂組成物を充填する。充填する方法としては、毛細管現象を利用する方法が一般的である。具体的には、半導体素子の一辺に液状封止樹脂組成物を塗布した後、半導体素子と耐熱フィルムとの間隙に毛細管現象で流し込む方法、半導体素子の2辺に液状封止樹脂組成物を塗布した後、半導体素子と耐熱フィルムとの間隙に毛細管現象で流し込む方法、半導体素子の中央部にスルーホールを開けておき、半導体素子の周囲に液状封止樹脂組成物を塗布した後、半導体素子と耐熱フィルムとの間隙に毛細管現象で流し込む方法などが挙げられる。また、一度に全量を塗布するのではなく、2度に分けて塗布する方法なども行われる。塗布する際十分な充填速度を得るために熱板上などで加熱しながら行うこともできるが、用いられる液状封止樹脂組成物及び充填条件は、製造しようとする半導体装置のフィルム基板下部に透明ヒーターを配置し、その透明ヒーター下部より半導体装置下部越しにフィルム基板と半導体素子あるいはその他の電子部品との接続部を観測すると同時に液状封止樹脂組成物を供給したとき、ボイド発生や未充填部発生の無いことを確認できている必要がある。
上記観測結果のうち、未充填の発生を観測した一例を図2に示す。
For example, for a COF type semiconductor device in which a semiconductor element having gold bumps on a copper wiring plated with tin on a heat-resistant film such as a polyimide film is eutectic bonded, a liquid sealing resin is provided in the gap between the semiconductor element and the heat-resistant film. Fill the composition. As a filling method, a method utilizing a capillary phenomenon is common. Specifically, the liquid sealing resin composition is applied to one side of the semiconductor element, and then poured into the gap between the semiconductor element and the heat-resistant film by capillary action. The liquid sealing resin composition is applied to the two sides of the semiconductor element. After that, a method of pouring into the gap between the semiconductor element and the heat-resistant film by capillary action, a through hole is opened in the center of the semiconductor element, and after applying the liquid sealing resin composition around the semiconductor element, the semiconductor element and For example, a method of pouring into the gap with the heat-resistant film by capillary action. Further, instead of applying the whole amount at once, a method of applying in two steps is also performed. Although it can be performed while heating on a hot plate or the like in order to obtain a sufficient filling speed when coating, the liquid sealing resin composition used and the filling conditions are transparent under the film substrate of the semiconductor device to be manufactured. When a liquid sealing resin composition is supplied at the same time that the heater is placed and the connection part between the film substrate and the semiconductor element or other electronic parts is observed from the lower part of the transparent heater to the lower part of the semiconductor device, voids are generated or unfilled parts. It must be confirmed that there is no occurrence.
An example of observing the occurrence of unfilling among the above observation results is shown in FIG.

液状封止樹脂組成物をボイド発生や未充填部発生無く充填完了後、硬化する。特に、リール状態での半導体装置の製造においては、第一段階での加熱によって液状封止樹脂組成物の硬化反応を一定以上進行させて、液ダレや付着、搬送や再巻取り工程での剥離を防止する必要が有り、さらに硬化反応を進行させて信頼性を確保するため、少なくとも二段階以上の加熱硬化工程を要するのが一般的であるが、第一段階の加熱硬化によって前述の不具合を防止し、且つ十分な信頼性を確保できる場合は、第一段の加熱硬化で済ませることも可能である。このようにして、半導体素子と耐熱フィルムとの間が、液状封止樹脂組成物の硬化物でボイド発生や未充填部発生無く封止され、信頼性に優れた半導体装置を得ることができる。 The liquid sealing resin composition is cured after completion of filling without generating voids or unfilled parts. In particular, in the manufacture of a semiconductor device in a reel state, the curing reaction of the liquid sealing resin composition proceeds by a certain degree or more by heating in the first stage, and peeling in liquid dripping, adhesion, transport and rewinding processes. In order to further promote the curing reaction and ensure reliability, it is common to require at least two stages of heat curing process. If it can be prevented and sufficient reliability can be ensured, the first stage of heat curing can be used. In this manner, the semiconductor element and the heat-resistant film are sealed with a cured product of the liquid sealing resin composition without generation of voids or unfilled portions, and a semiconductor device having excellent reliability can be obtained.

以下、本発明を実施例および比較例に基づいて詳細に説明するが、本発明はこれに限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated in detail based on an Example and a comparative example, this invention is not limited to this.

(実施例1)
1.液状封止樹脂組成物の製造
エポキシ樹脂(A)として、ビスフェノールF型エポキシ樹脂(東都化成(株)製 YDF−870GS)27重量%と芳香族アミン型エポキシ(ジャパンエポキシレジン(株)製 JER−630)27重量%、
硬化剤(B)として、1H−イミダゾール−1−プロパン酸−2−メチル−2−エチルヘキシルエステル((株)ADEKA製 アデカハードナーEH−2020)1.6重量%、
無機充填材として、球状シリカ(アドマテクス(株)製、アドマファインSE−2030 平均粒径0.5μm、最大粒径3μm)40重量%、
添加剤として、N-フェニル-3-アミノプロピルトリメトキシシラン(信越化学(株)製 KBM−573)0.1重量%、
着色剤として、C.I.ソルベントブラック7(オリヱント化学工業(株)製 NUBIAN BLACK PA−9803)0.1重量%、
密着助剤としてエポキシシランカップリング剤(信越化学(株)製 KBM−403E)4.2重量%を最終の配合量となるように、まずエポキシ樹脂(A)と着色剤とをミキサーにて混合した。
その後残りの成分を配合してさらにミキサーで混合した後、3本ロールで分散混練した。その混合物を真空脱泡して液状封止樹脂組成物Aを得た。
Example 1
1. Production of liquid encapsulating resin composition As epoxy resin (A), bisphenol F type epoxy resin (YDF-870GS manufactured by Toto Kasei Co., Ltd.) 27% by weight and aromatic amine type epoxy (Japan Epoxy Resin Co., Ltd. JER-) 630) 27% by weight,
As a curing agent (B), 1H-imidazole-1-propanoic acid-2-methyl-2-ethylhexyl ester (Adeka Hardener EH-2020 manufactured by ADEKA) 1.6% by weight,
As an inorganic filler, spherical silica (manufactured by Admatechs Co., Ltd., Admafine SE-2030 average particle size 0.5 μm, maximum particle size 3 μm) 40% by weight,
As an additive, N-phenyl-3-aminopropyltrimethoxysilane (KBM-573 manufactured by Shin-Etsu Chemical Co., Ltd.) 0.1% by weight,
As a colorant, C.I. I. Solvent Black 7 (NUBIAN BLACK PA-9803 manufactured by Orient Chemical Industry Co., Ltd.) 0.1% by weight,
First, the epoxy silane coupling agent (KBM-403E manufactured by Shin-Etsu Chemical Co., Ltd.) as an adhesion aid is mixed with a mixer with an epoxy resin (A) and a colorant so that the final blending amount is 4.2%. did.
Thereafter, the remaining components were blended and further mixed with a mixer, and then dispersed and kneaded with three rolls. The mixture was vacuum degassed to obtain a liquid sealing resin composition A.

2.液状封止樹脂組成物の流入挙動観測と半導体装置の製造
(COFパッケージA)
半導体素子として(株)日立超LSI製JTEG Phase6−25(保護膜=窒化珪素、金バンプ870個付き、サイズ=1.6mm×15mm×0.6mm厚)を、日立超LSI製JKIT COF TEG25−B フレキシブル回路基板(耐熱フィルム=カプトンEN、回路幅9μm(0.2μm厚Snメッキ付き銅箔)/回路間隔9μm)上へ、半導体素子と耐熱フィルムとの間隔が18μmmになるように共晶接合にて接合し、COFパッケージAを得た。
(フィルム基板と半導体素子との接続部への液状封止樹脂組成物の流入挙動観測)
得られたCOFパッケージAの半導体素子と耐熱フィルムとの隙間に上記液状封止樹脂組成物Aを充填する際、COFパッケージAの耐熱フィルム下部に100℃に加熱した透明ヒーター(ジオマティック(株)製 ガラス透明ヒーター 90mm×100mm×3mm厚)を設置し、さらにその透明ヒーター下部に拡大機能付きカメラ(キーエンス製デジタルスコープVHX−500)を設置した。そのうえで透明ヒーター下部より半導体装置下部越しにフィルム基板と半導体素子との接続部を撮影した映像をモニターに出力しながら、加圧式簡易ディスペンサーを用いて半導体素子の長辺(ディジーパット側)側へ液状封止樹脂組成物Aを供給し、フィルム基板と半導体素子との接続部への液状封止樹脂組成物の流入挙動を観測した。
(液状封止樹脂組成物の硬化)
上記により、異常なく液状封止樹脂組成物Aの充填が完了したCOFパッケージを熱版上へ移動し150℃で15分間予備加熱した後、150℃オーブン中で1時間硬化して半導体装置を得た
2. Observation of inflow behavior of liquid encapsulating resin composition and manufacture of semiconductor devices (COF package A)
JTEG Phase 6-25 manufactured by Hitachi Ultra LSI Co., Ltd. (protective film = silicon nitride, with 870 gold bumps, size = 1.6 mm × 15 mm × 0.6 mm thickness) as a semiconductor element, JKIT COF TEG25− manufactured by Hitachi Ultra LSI B Eutectic bonding on flexible circuit board (heat-resistant film = Kapton EN, circuit width 9 μm (0.2 μm thick Sn-plated copper foil) / circuit interval 9 μm) so that the distance between the semiconductor element and the heat-resistant film is 18 μm To obtain COF package A.
(Observation of inflow behavior of liquid encapsulating resin composition to the connection between the film substrate and the semiconductor element)
When the liquid sealing resin composition A is filled in the gap between the semiconductor element of the obtained COF package A and the heat-resistant film, a transparent heater heated to 100 ° C. under the heat-resistant film of the COF package A (Geomatic Co., Ltd.) A glass transparent heater (90 mm × 100 mm × 3 mm thickness) was installed, and a camera with an enlargement function (a digital scope VHX-500 manufactured by Keyence) was further installed below the transparent heater. In addition, liquid images are transferred from the lower part of the transparent heater to the long side (daisy pad side) of the semiconductor element using a pressure-type simple dispenser while outputting an image of the connection between the film substrate and the semiconductor element from the lower part of the semiconductor device to the monitor. The sealing resin composition A was supplied, and the inflow behavior of the liquid sealing resin composition to the connection portion between the film substrate and the semiconductor element was observed.
(Curing of the liquid sealing resin composition)
As described above, the COF package that has been completely filled with the liquid sealing resin composition A without any abnormality is moved onto the hot plate, preheated at 150 ° C. for 15 minutes, and then cured in an oven at 150 ° C. for 1 hour to obtain a semiconductor device. The

(実施例2)
(COFパッケージB)
半導体素子として(株)日立超LSI製JTEG Phase6−40(保護膜=窒化珪素、金バンプ870個付き、サイズ=1.6mm×15mm×0.6mm厚)を、日立超LSI製JKIT COF TEG40−B フレキシブル回路基板(耐熱フィルム=カプトンEN、回路幅25μm(0.2μm厚Snメッキ付き銅箔)/回路間隔15μm)上へ、半導体素子と耐熱フィルムとの間隔が18μmになるように共晶接合にて接合し、COFパッケージBを得た。COFパッケージAに換えて、得られたCOFパッケージBを用いた以外は、実施例1と同様にして半導体装置を得た。
(Example 2)
(COF package B)
JTEG Phase 6-40 (manufactured by Hitachi Ultra LSI Co., Ltd.) (protective film = silicon nitride, with 870 gold bumps, size = 1.6 mm × 15 mm × 0.6 mm thickness) as a semiconductor element, JKIT COF TEG 40− manufactured by Hitachi Ultra LSI B Eutectic bonding on flexible circuit board (heat-resistant film = Kapton EN, circuit width 25 μm (0.2 μm thick Sn-plated copper foil) / circuit interval 15 μm) so that the distance between the semiconductor element and the heat-resistant film is 18 μm To obtain COF package B. A semiconductor device was obtained in the same manner as in Example 1 except that the obtained COF package B was used in place of the COF package A.

(実施例3)
(COFパッケージC)
半導体素子として(株)日立超LSI製JTEG Phase6−50(保護膜=窒化珪素、金バンプ870個付き、サイズ=1.6mm×15mm×0.6mm厚)を、日立超LSI製JKIT COF TEG50−C フレキシブル回路基板(耐熱フィルム=エスパネックス、回路幅25μm(0.2μm厚Snメッキ付き銅箔)/回路間隔25μm)上へ、半導体素子と耐熱フィルムとの間隔が28μmになるように共晶接合にて接合し、COFパッケージCを得た。COFパッケージAに換えて、得られたCOFパッケージCを用いた以外は、実施例1と同様にして半導体装置を得た。
(Example 3)
(COF package C)
JTEG Phase 6-50 (manufactured by Hitachi Ultra LSI Co., Ltd.) (protective film = silicon nitride, with 870 gold bumps, size = 1.6 mm × 15 mm × 0.6 mm thickness) as a semiconductor element, JKIT COF TEG 50− manufactured by Hitachi Ultra LSI C Eutectic bonding on a flexible circuit board (heat-resistant film = Espanex, circuit width 25 μm (0.2 μm thick Sn-plated copper foil) / circuit interval 25 μm) so that the distance between the semiconductor element and the heat-resistant film is 28 μm To obtain a COF package C. A semiconductor device was obtained in the same manner as in Example 1 except that the obtained COF package C was used instead of the COF package A.

(実施例4)
エポキシ樹脂(A)として、ビスフェノールF型エポキシ樹脂(東都化成(株)製 YDF−870GS)36重量%と芳香族アミン型エポキシ(ジャパンエポキシレジン(株)製 JER−630)36重量%、
硬化剤(B)として、1H−イミダゾール−1−プロパン酸−2−メチル−2−エチルヘキシルエステル((株)ADEKA製 アデカハードナーEH−2020)2.2重量%、
無機充填材として、球状シリカ(アドマテクス(株)製、アドマファインSE−2030 平均粒径0.5μm、最大粒径3μm)20重量%、
添加剤(D)として、N-フェニル-3-アミノプロピルトリメトキシシラン(信越化学(株)製 KBM−573)0.1重量%、
着色剤として、C.I.ソルベントブラック7(オリヱント化学工業(株)製 NUBIAN BLACK PA−9803)0.1重量%、
密着助剤としてエポキシシランカップリング剤(信越化学(株)製 KBM−403E)5.6重量%を最終の配合量となるように、まずエポキシ樹脂(A)と着色剤とをミキサーにて混合した。
その後残りの成分を配合してさらにミキサーで混合した後、3本ロールで分散混練した。その混合物を真空脱泡して液状封止樹脂組成物Bを得た。
液状封止樹脂組成物Aに換えて、得られた液状封止樹脂組成物Bを用いた以外は実施例1と同様にして半導体装置を得た。
Example 4
As epoxy resin (A), bisphenol F type epoxy resin (YDF-870GS manufactured by Toto Kasei Co., Ltd.) 36% by weight and aromatic amine type epoxy (Japan Epoxy Resin Co., Ltd. JER-630) 36% by weight,
As a curing agent (B), 1H-imidazole-1-propanoic acid-2-methyl-2-ethylhexyl ester (Adeka Hardener EH-2020 manufactured by ADEKA Corporation) 2.2% by weight,
As an inorganic filler, spherical silica (manufactured by Admatechs Co., Ltd., Admafine SE-2030 average particle size 0.5 μm, maximum particle size 3 μm) 20% by weight,
As additive (D), N-phenyl-3-aminopropyltrimethoxysilane (KBM-573 manufactured by Shin-Etsu Chemical Co., Ltd.) 0.1% by weight,
As a colorant, C.I. I. Solvent Black 7 (NUBIAN BLACK PA-9803 manufactured by Orient Chemical Industry Co., Ltd.) 0.1% by weight,
First, the epoxy silane coupling agent (KBM-403E manufactured by Shin-Etsu Chemical Co., Ltd.) 5.6% by weight as an adhesion assistant is first mixed in a mixer with an epoxy resin (A) and a colorant so that the final blending amount is obtained. did.
Thereafter, the remaining components were blended and further mixed with a mixer, and then dispersed and kneaded with three rolls. The mixture was vacuum degassed to obtain a liquid sealing resin composition B.
A semiconductor device was obtained in the same manner as in Example 1 except that the obtained liquid sealing resin composition B was used in place of the liquid sealing resin composition A.

(実施例5)
エポキシ樹脂(A)として、ビスフェノールF型エポキシ樹脂(東都化成(株)製 YDF−870GS)18重量%と芳香族アミン型エポキシ(ジャパンエポキシレジン(株)製 JER−630)18重量%、
硬化剤(B)として、1H−イミダゾール−1−プロパン酸−2−メチル−2−エチルヘキシルエステル((株)ADEKA製 アデカハードナーEH−2020)1重量%、
無機充填材として、球状シリカ(アドマテクス(株)製、アドマファインSE−2030 平均粒径0.5μm、最大粒径3μm)60重量%、
添加剤として、N-フェニル-3-アミノプロピルトリメトキシシラン(信越化学(株)製 KBM−573)0.1重量%、
着色剤として、C.I.ソルベントブラック7(オリヱント化学工業(株)製 NUBIAN BLACK PA−9803)0.1重量%、
密着助剤としてエポキシシランカップリング剤(信越化学(株)製 KBM−403E)2.8重量%を最終の配合量となるように、まずエポキシ樹脂(A)と着色剤とをミキサーにて混合した。
その後残りの成分を配合してさらにミキサーで混合した後、3本ロールで分散混練した。その混合物を真空脱泡して液状封止樹脂組成物Cを得た。
液状封止樹脂組成物Aに換えて、得られた液状封止樹脂組成物Cを用いた以外は実施例1と同様にして半導体装置を得た。
(Example 5)
As epoxy resin (A), bisphenol F type epoxy resin (YDF-870GS manufactured by Toto Kasei Co., Ltd.) 18% by weight and aromatic amine type epoxy (Japan Epoxy Resin Co., Ltd. JER-630) 18% by weight,
1% by weight of 1H-imidazole-1-propanoic acid-2-methyl-2-ethylhexyl ester (Adeka Hardener EH-2020, manufactured by ADEKA) as a curing agent (B),
As an inorganic filler, spherical silica (manufactured by Admatechs Co., Ltd., Admafine SE-2030 average particle size 0.5 μm, maximum particle size 3 μm) 60% by weight,
As an additive, N-phenyl-3-aminopropyltrimethoxysilane (KBM-573 manufactured by Shin-Etsu Chemical Co., Ltd.) 0.1% by weight,
As a colorant, C.I. I. Solvent Black 7 (NUBIAN BLACK PA-9803 manufactured by Orient Chemical Industry Co., Ltd.) 0.1% by weight,
First, an epoxy resin (A) and a colorant are mixed in a mixer so that 2.8% by weight of epoxy silane coupling agent (KBM-403E manufactured by Shin-Etsu Chemical Co., Ltd.) is used as an adhesion aid. did.
Thereafter, the remaining components were blended and further mixed with a mixer, and then dispersed and kneaded with three rolls. The mixture was vacuum degassed to obtain a liquid sealing resin composition C.
A semiconductor device was obtained in the same manner as in Example 1 except that the obtained liquid sealing resin composition C was used in place of the liquid sealing resin composition A.

(実施例6)
半導体素子の長辺(孤立パット側)側へ液状封止樹脂組成物Aを供給した以外は実施例1と同様にして半導体装置を得た。
(Example 6)
A semiconductor device was obtained in the same manner as in Example 1 except that the liquid sealing resin composition A was supplied to the long side (isolated pad side) of the semiconductor element.

(実施例7)
半導体素子の長辺(ディジーパット側)側へ液状封止樹脂組成物Aを供給し、10秒後に半導体素子のもう一方の長辺(孤立パット側)側へも液状封止樹脂組成物Aを供給した以外は実施例1と同様にして半導体装置を得た。
(Example 7)
The liquid sealing resin composition A is supplied to the long side (daisy pad side) side of the semiconductor element, and the liquid sealing resin composition A is also applied to the other long side (isolated pad side) side of the semiconductor element after 10 seconds. A semiconductor device was obtained in the same manner as in Example 1 except that it was supplied.

(比較例1)
エポキシ樹脂(A)として、ビスフェノールF型エポキシ樹脂(東都化成(株)製 YDF−870GS)6.7重量%と芳香族アミン型エポキシ(ジャパンエポキシレジン(株)製 JER−630)6.7重量%、
硬化剤(B)として、1H−イミダゾール−1−プロパン酸−2−メチル−2−エチルヘキシルエステル((株)ADEKA製 アデカハードナーEH−2020)0.4重量%、
無機充填材として、球状シリカ(アドマテクス(株)製、アドマファインSE−2030 平均粒径0.5μm、最大粒径3μm)85重量%、
添加剤として、N-フェニル-3-アミノプロピルトリメトキシシラン(信越化学(株)製 KBM−573)0.1重量%、
着色剤として、C.I.ソルベントブラック7(オリヱント化学工業(株)製 NUBIAN BLACK PA−9803)0.1重量%、密着助剤としてエポキシシランカップリング剤(信越化学(株)製 KBM−403E)1重量%を
まずエポキシ樹脂(A)と着色剤とをミキサーにて混合した。その後残りの成分を配合してさらにミキサーで混合した後、3本ロールで分散混練した。その混合物を真空脱泡して液状封止樹脂組成物Dを得た。
得られた液状封止樹脂組成物DをCOFパッケージAの半導体素子と耐熱フィルムとの隙間に、100℃熱板上で加圧式簡易ディスペンサーを用いて充填し、150℃で15分間予備加熱した後、150℃で1時間硬化して半導体装置を得た。
(Comparative Example 1)
As epoxy resin (A), bisphenol F type epoxy resin (YDF-870GS manufactured by Toto Kasei Co., Ltd.) 6.7% by weight and aromatic amine type epoxy (Japan Epoxy Resin Co., Ltd. JER-630) 6.7% by weight %,
As a curing agent (B), 1H-imidazole-1-propanoic acid-2-methyl-2-ethylhexyl ester (Adeka Hardener EH-2020, manufactured by ADEKA Corporation) 0.4% by weight,
As an inorganic filler, spherical silica (manufactured by Admatechs Co., Ltd., Admafine SE-2030 average particle size 0.5 μm, maximum particle size 3 μm) 85% by weight,
As an additive, N-phenyl-3-aminopropyltrimethoxysilane (KBM-573 manufactured by Shin-Etsu Chemical Co., Ltd.) 0.1% by weight,
As a colorant, C.I. I. Solvent Black 7 (NUBIAN BLACK PA-9803 manufactured by Orient Chemical Co., Ltd.) 0.1% by weight, epoxy silane coupling agent (KBM-403E manufactured by Shin-Etsu Chemical Co., Ltd.) 1% by weight as an adhesion aid (A) and the colorant were mixed with a mixer. Thereafter, the remaining components were blended and further mixed with a mixer, and then dispersed and kneaded with three rolls. The mixture was vacuum degassed to obtain a liquid sealing resin composition D.
After filling the obtained liquid encapsulating resin composition D into the gap between the semiconductor element of the COF package A and the heat-resistant film using a simple pressure dispenser on a 100 ° C. hot plate and preheating at 150 ° C. for 15 minutes And cured at 150 ° C. for 1 hour to obtain a semiconductor device.

(比較例2)
添加剤N-フェニル-3-アミノプロピルトリメトキシシラン(信越化学(株)製 KBM−573)を配合しなかった以外は、実施例1と同様にして液状封止樹脂組成物Eを得た。得られた液状封止樹脂組成物EをCOFパッケージAの半導体素子と耐熱フィルムとの隙間に、100℃熱板上で加圧式簡易ディスペンサーを用いて充填し、150℃で15分間予備加熱した後、150℃で1時間硬化して半導体装置を得た。
(Comparative Example 2)
A liquid sealing resin composition E was obtained in the same manner as in Example 1 except that the additive N-phenyl-3-aminopropyltrimethoxysilane (KBM-573 manufactured by Shin-Etsu Chemical Co., Ltd.) was not blended. After filling the obtained liquid sealing resin composition E into the gap between the semiconductor element of the COF package A and the heat-resistant film using a simple pressure dispenser on a hot plate at 100 ° C. and preheating at 150 ° C. for 15 minutes And cured at 150 ° C. for 1 hour to obtain a semiconductor device.

[評価項目]
液状封止樹脂組成物の流入挙動を評価及び得られた半導体装置の外観・信頼性評価を下記のように実施し、得られた結果を表1に示す。
[Evaluation item]
The inflow behavior of the liquid sealing resin composition was evaluated and the appearance and reliability of the obtained semiconductor device were evaluated as follows. The results obtained are shown in Table 1.

1.流入挙動観測
上記実施例において流入挙動を観測した結果を、下記のように分類した。
なお、比較例においては流入挙動の観測を実施しなかった。
A:ボイドが発生。
B:未充填が発生。
C:色ムラが発生。
D:AとBの異常が同時に発生。
E:AとCの異常が同時に発生。
F:BとCの異常が同時に発生。
G:A〜Cの異常が同時に発生。
H:A〜Cの異常発生なし。
1. Inflow behavior observation The results of observation of the inflow behavior in the above examples were classified as follows.
In the comparative example, the inflow behavior was not observed.
A: Void occurs.
B: Unfilled.
C: Color unevenness occurs.
D: A and B abnormalities occur simultaneously.
E: A and C abnormalities occur simultaneously.
F: B and C abnormalities occur simultaneously.
G: Abnormalities A to C occur simultaneously.
H: No abnormality of A to C occurred.

2.半導体装置の外観評価
上記実施例および比較例により得られた半導体装置の下部耐熱フィルム越しにフィルム基板と半導体素子との接続部を観察した結果を、下記のように分類した。
A:ボイドが発生。
B:色ムラが発生。
C:AとBの異常が同時に発生。
F:AとBの異常は発生しない。
2. Appearance Evaluation of Semiconductor Device The results of observing the connection between the film substrate and the semiconductor element through the lower heat-resistant film of the semiconductor device obtained by the above examples and comparative examples were classified as follows.
A: Void occurs.
B: Color unevenness occurs.
C: A and B abnormalities occur simultaneously.
F: Abnormalities of A and B do not occur.

3.信頼性
信頼性は、上記実施例および比較例により得られた半導体装置を熱衝撃処理(高温125℃、低温−45℃、繰り返し1000回)した後の導通抵抗を測定し、処理前の導通抵抗値との比率(導通抵抗上昇率)で評価した。各符号は、以下の通りである。
◎:導通抵抗上昇率が、5%未満であったもの。
○:導通抵抗上昇率が、5%以上、10%未満であったもの。
△:導通抵抗上昇率が、10%以上、20%未満であったもの。
×:導通抵抗上昇率が、20%以上であったもの。
3. Reliability Reliability is determined by measuring the conduction resistance after the thermal shock treatment (high temperature 125 ° C., low temperature −45 ° C., 1000 times repeatedly) of the semiconductor devices obtained by the above-described examples and comparative examples, and conducting resistance before treatment. It evaluated by the ratio (conduction resistance increase rate) with a value. Each code is as follows.
A: The conduction resistance increase rate was less than 5%.
○: The rate of increase in conduction resistance was 5% or more and less than 10%.
Δ: The rate of increase in conduction resistance was 10% or more and less than 20%.
X: The rate of increase in conduction resistance was 20% or more.

本発明は、COF(チップ・オン・フィルム)方式あるいはSOF(システム・オン・フィルム)方式の半導体装置における、フィルム基板と半導体素子あるいはその他の電子部品との接続部への液状封止樹脂組成物の流入挙動観測方法、およびその観測方法を用いることで得られるボイドや未充填発生の無い半導体装置を得ることに利用することができる。 The present invention relates to a liquid sealing resin composition for connecting a film substrate to a semiconductor element or other electronic component in a COF (chip on film) or SOF (system on film) type semiconductor device. Inflow behavior observation method, and a semiconductor device free from voids and unfilled occurrences obtained by using the observation method can be used.

1 半導体素子
2 接続部
3 フィルム基板
4 透明ヒーター
5 液状封止樹脂組成物
6 観測方向
DESCRIPTION OF SYMBOLS 1 Semiconductor element 2 Connection part 3 Film substrate 4 Transparent heater 5 Liquid sealing resin composition 6 Observation direction

Claims (6)

耐熱性フィルム基板上の回路と該回路上に搭載される半導体素子又はその他の電子部品との接続部が2個以上存在し、前記接続部へ液状封止樹脂組成物を流入及び硬化させて組み立てられる、COF(チップ・オン・フィルム)方式又はSOF(システム・オン・フィルム)方式の半導体装置において、前記接続部への液状封止樹脂組成物の流入挙動を観測する方法であって、
半導体装置の耐熱性フィルム基板の下部に透明ヒーターを配置し、前記透明ヒーターの下部より半導体装置下部越しに前記接続部を観測すると同時に前記接続部に液状封止樹脂組成物を供給することを特徴とする、液状封止樹脂組成物の流入挙動観測方法。
There are two or more connecting portions between the circuit on the heat-resistant film substrate and the semiconductor element or other electronic component mounted on the circuit, and the liquid sealing resin composition is flown into the connecting portion and cured to be assembled. In a COF (chip on film) type or SOF (system on film) type semiconductor device, a method of observing the inflow behavior of the liquid sealing resin composition to the connection part,
A transparent heater is disposed under the heat resistant film substrate of the semiconductor device, and the liquid sealing resin composition is supplied to the connecting portion simultaneously with observing the connecting portion from the lower portion of the transparent heater over the lower portion of the semiconductor device. A method for observing the inflow behavior of the liquid sealing resin composition.
前記接続部において、耐熱性フィルムと半導体素子又はその他の電子部品との隙間が10μm以上50μm以下で、且つ隣接する接続部同士の間隔が5μm以上25μm以下の部位を有する半導体装置であることを特徴とする請求項1に記載の液状封止樹脂組成物の流入挙動観測方法。 In the connection part, the gap between the heat-resistant film and the semiconductor element or other electronic component is 10 μm or more and 50 μm or less, and the semiconductor device has a part where the distance between adjacent connection parts is 5 μm or more and 25 μm or less. A method for observing the inflow behavior of the liquid sealing resin composition according to claim 1. 前記液状封止樹脂組成物が、少なくとも(A)エポキシ樹脂と(B)硬化剤とを含むものであることを特徴とする請求項1又は2に記載の液状封止樹脂組成物の流入挙動観測方法。 The method for observing the inflow behavior of a liquid sealing resin composition according to claim 1 or 2, wherein the liquid sealing resin composition contains at least (A) an epoxy resin and (B) a curing agent. 請求項1〜3いずれか1項に記載の液状封止樹脂組成物の流入挙動観測方法を用いて、半導体装置への液状封止樹脂組成物の流入挙動を観測する工程を有することを特徴とする、COF(チップ・オン・フィルム)方式あるいはSOF(システム・オン・フィルム)方式で組み立てられる半導体装置の製造方法。 It has the process of observing the inflow behavior of the liquid sealing resin composition to a semiconductor device using the inflow behavior observation method of the liquid sealing resin composition according to any one of claims 1 to 3. A method of manufacturing a semiconductor device assembled by a COF (chip on film) method or an SOF (system on film) method. 請求項1〜3いずれか1項に記載の液状封止樹脂組成物の流入挙動観測方法を用いて、半導体装置への液状封止樹脂組成物の充填条件を求める工程を有することを特徴とする、COF(チップ・オン・フィルム)方式あるいはSOF(システム・オン・フィルム)方式で組み立てられる半導体装置の製造方法。 It has the process of calculating | requiring the filling conditions of the liquid sealing resin composition to a semiconductor device using the inflow behavior observation method of the liquid sealing resin composition of any one of Claims 1-3. A method of manufacturing a semiconductor device assembled by a COF (chip on film) method or an SOF (system on film) method. 請求項1〜3いずれか1項に記載の液状封止樹脂組成物の流入挙動観測方法を用いて、液状封止樹脂組成物のボイド発生や未充填部発生を調べる液状封止樹脂組成物の試験方法。 Using the method for observing the inflow behavior of the liquid sealing resin composition according to any one of claims 1 to 3, the liquid sealing resin composition for examining void generation and unfilled portion generation of the liquid sealing resin composition Test method.
JP2010071251A 2010-03-26 2010-03-26 Inflow behavior observation method of liquid sealing resin composition, and method of manufacturing semiconductor device Pending JP2011204936A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010071251A JP2011204936A (en) 2010-03-26 2010-03-26 Inflow behavior observation method of liquid sealing resin composition, and method of manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010071251A JP2011204936A (en) 2010-03-26 2010-03-26 Inflow behavior observation method of liquid sealing resin composition, and method of manufacturing semiconductor device

Publications (1)

Publication Number Publication Date
JP2011204936A true JP2011204936A (en) 2011-10-13

Family

ID=44881272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010071251A Pending JP2011204936A (en) 2010-03-26 2010-03-26 Inflow behavior observation method of liquid sealing resin composition, and method of manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP2011204936A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021045186A1 (en) * 2019-09-05 2021-09-27 日立金属株式会社 Manufacturing method of thermoelectric conversion module
WO2024025611A1 (en) * 2022-07-27 2024-02-01 Applied Materials, Inc. Transparent heaters for improved epitaxy reactor productivity

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021045186A1 (en) * 2019-09-05 2021-09-27 日立金属株式会社 Manufacturing method of thermoelectric conversion module
JP7037734B2 (en) 2019-09-05 2022-03-17 日立金属株式会社 Manufacturing method of thermoelectric conversion module
WO2024025611A1 (en) * 2022-07-27 2024-02-01 Applied Materials, Inc. Transparent heaters for improved epitaxy reactor productivity

Similar Documents

Publication Publication Date Title
JP3723483B2 (en) Electronic component equipment
JP2009292881A (en) High heat-conductive epoxy resin-based composition
JP2005350647A (en) Liquid epoxy resin composition
TWI453229B (en) Epoxy resin composition
JP3971995B2 (en) Electronic component equipment
WO2016148121A1 (en) Method for manufacturing flip chip package, flip chip package, and resin composition for pre-application type underfills
TW201346000A (en) Semiconductor device and production method therefor
WO2021029259A1 (en) Multi-layer sheet for mold underfill encapsulation, method for mold underfill encapsulation, electronic component mounting substrate, and production method for electronic component mounting substrate
JP2010171118A (en) Surface mounting method for component to be mounted, structure with mounted component obtained by the method, and liquid epoxy resin composition for underfill used in the method
JP4816333B2 (en) Manufacturing method of semiconductor device
JP3723461B2 (en) Electronic component equipment
JP6286959B2 (en) Epoxy resin composition, electronic component device, and method of manufacturing electronic component device
JP2011204936A (en) Inflow behavior observation method of liquid sealing resin composition, and method of manufacturing semiconductor device
WO2005108483A1 (en) Electronic component device
JP2005187508A (en) Adhesive film for semiconductor and semiconductor device
JP5493327B2 (en) Resin composition for sealing filling, semiconductor device and method for manufacturing the same
JP2012004340A (en) Liquid sealant resin composition and semiconductor device
JP2004204047A (en) Liquid epoxy resin composition
JP2012012431A (en) Fluid resin composition and semiconductor apparatus
JP2005191069A (en) Adhesive film for semiconductor, and semiconductor device
JP2015054952A (en) Epoxy resin composition, electronic part device and production method of electronic part device
TWI761578B (en) semiconductor device
TWI664230B (en) Liquid epoxy resin composition
JP2004256646A (en) Resin composition for underfilling, and semiconductor device
JP2005175338A (en) Adhesive film for semiconductor and semiconductor device