JP2011204841A - Polyester film for solar cell back sheet - Google Patents

Polyester film for solar cell back sheet Download PDF

Info

Publication number
JP2011204841A
JP2011204841A JP2010069764A JP2010069764A JP2011204841A JP 2011204841 A JP2011204841 A JP 2011204841A JP 2010069764 A JP2010069764 A JP 2010069764A JP 2010069764 A JP2010069764 A JP 2010069764A JP 2011204841 A JP2011204841 A JP 2011204841A
Authority
JP
Japan
Prior art keywords
polyester film
temperature
film
mass
polyester
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010069764A
Other languages
Japanese (ja)
Other versions
JP5640421B2 (en
Inventor
Nozomi Yokoyama
希 横山
Masahito Horie
将人 堀江
Takuji Higashioji
卓司 東大路
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2010069764A priority Critical patent/JP5640421B2/en
Publication of JP2011204841A publication Critical patent/JP2011204841A/en
Application granted granted Critical
Publication of JP5640421B2 publication Critical patent/JP5640421B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a polyester film with excellent durability, specifically, a back sheet for a solar cell which is hardly deteriorated by an environmental change and is excellent in hydrolysis resistance, weather resistance, heat resistance, and bleeding-out property when used as the back sheet for the solar cell.SOLUTION: The polyester film for the solar cell back sheet is a film where a loss tangent (tan δ) peak temperature is 120-180°C and an amount of increase (a Δb value) of yellowness (a b value) after 48-hour irradiation of ultraviolet light of 295-450 nm in wavelength at 100 mW by using a metal halide lamp is 0-15.

Description

本発明は、耐加水分解性、耐熱性、耐候性、ブリードアウト性に優れた太陽電池バックシート用ポリエステルフィルムに関するものである。   The present invention relates to a polyester film for a solar battery back sheet, which is excellent in hydrolysis resistance, heat resistance, weather resistance, and bleed-out property.

ポリエステルフィルムは、優れた機械特性、熱特性、電気特性、表面特性および耐熱性などの性質を利用して、磁気記録媒体用、電気絶縁用、太陽電池用、コンデンサー用、包装用および各種工業用材料など種々の用途に用いられている。これらの用途の高品質化の中で、例えば、近年、半永久的で無公害の次世代のエネルギー源としてクリーンエネルギーである太陽電池の需要が伸びており、太陽電池の高寿命化として太陽電池用バックシートの耐久性(耐加水分解性、耐熱性、耐候性)向上の要求が高まっている。そのなかで耐久性の向上について、種々の検討が行われている。具体的に、カルボジイミド化合物を添加し、ポリエステル樹脂の耐加水分解性を向上させる技術が提案されている(特許文献1および特許文献2)。しかしながら、これらの提案ではフィルムについての詳細な記載はなく、樹脂の耐加水分解性向上がそのままフィルムでの耐加水分解性にはならない。また、他の耐熱性や耐候性などの向上も得られず要求特性を達成することは困難である。更に、フィルムの固有粘度(以下、IVと略すことがある)や面配向係数(以下、fnと略すことがある)を制御する技術が提案されている(特許文献3)。   Polyester film is used for magnetic recording media, for electrical insulation, for solar cells, for capacitors, for packaging, and for various industrial applications, utilizing its excellent properties such as mechanical properties, thermal properties, electrical properties, surface properties and heat resistance. It is used for various applications such as materials. In these high quality applications, for example, in recent years, the demand for solar cells that are clean energy as a next-generation energy source that is semi-permanent and non-polluting has been increasing. There is an increasing demand for improving the durability (hydrolysis resistance, heat resistance, weather resistance) of the backsheet. In the midst of this, various studies have been conducted on improving durability. Specifically, techniques for adding a carbodiimide compound to improve the hydrolysis resistance of the polyester resin have been proposed (Patent Document 1 and Patent Document 2). However, in these proposals, there is no detailed description of the film, and the improvement of the hydrolysis resistance of the resin does not directly become the hydrolysis resistance of the film. In addition, it is difficult to achieve the required characteristics without obtaining other improvements in heat resistance and weather resistance. Furthermore, a technique for controlling the intrinsic viscosity (hereinafter sometimes abbreviated as IV) and the plane orientation coefficient (hereinafter sometimes abbreviated as fn) of a film has been proposed (Patent Document 3).

しかしながら、次世代の要求はさらに高まっており、この提案では要求特性を達成することは困難である。ポリエステルフィルムの耐候性向上のためには、紫外線吸収剤による紫外線劣化を抑える必要があり、二軸配向ポリエステルフィルムに紫外線吸収剤をブレンドする方法が提案されている(特許文献4および特許文献5)。しかし、ポリエステルフィルムの作製工程にて熱により昇華やブリードアウトし製膜機の汚染や表面汚染がおこり他部材との接着性が悪化するなど問題がある。また、耐加水分解性や耐熱性の向上が得られず要求特性を達成することは困難である。また、ポリイミドやカルボジイミド化合物を添加し、ポリエステルフィルムの耐加水分解性・耐熱性を向上させる技術が提案されている(特許文献6)。   However, the demand for the next generation is further increasing, and it is difficult to achieve the required characteristics with this proposal. In order to improve the weather resistance of the polyester film, it is necessary to suppress UV deterioration due to the UV absorber, and a method of blending the UV absorber with the biaxially oriented polyester film has been proposed (Patent Documents 4 and 5). . However, there are problems such as sublimation and bleed-out due to heat in the production process of the polyester film, resulting in contamination of the film-forming machine and surface contamination, and deterioration of adhesion to other members. In addition, it is difficult to achieve the required characteristics because hydrolysis resistance and heat resistance cannot be improved. Moreover, the technique which adds a polyimide and a carbodiimide compound and improves the hydrolysis resistance and heat resistance of a polyester film is proposed (patent document 6).

しかしながら、ポリイミドと混合する際のブレンドチップ内のポリエステルは一度加熱されているために、特に紫外線による劣化が起こりやすく耐候性が悪化する。また、カルボジイミド化合物はポリエステルの押出条件では熱分解を起こし、分解ガスの発生やブリードアウトなど問題がある。そこで、本発明者らは鋭意検討した結果、ポリエステルフィルムの耐久性を向上させるには、損失正接(以下、tanδと略すことがある)ピーク温度と紫外線照射後の黄色度(以下、b値と略すことがある)の増加量(以下、Δbと略すことがある)値を制御することが重要であることを見出した。   However, since the polyester in the blend chip at the time of mixing with polyimide is once heated, deterioration due to ultraviolet rays is likely to occur, and weather resistance is deteriorated. In addition, carbodiimide compounds undergo thermal decomposition under the extrusion conditions of polyester, and there are problems such as generation of decomposition gas and bleeding out. Therefore, as a result of intensive studies, the present inventors have found that in order to improve the durability of the polyester film, the loss tangent (hereinafter sometimes abbreviated as tan δ) peak temperature and the yellowness after ultraviolet irradiation (hereinafter referred to as the b value) It has been found that it is important to control the amount of increase (hereinafter may be abbreviated as Δb).

特開平11−34048号公報JP 11-34048 A 特表平11−506487号公報Japanese National Patent Publication No. 11-506487 特開2007−70430号公報JP 2007-70430 A 特開2009−188105号公報JP 2009-188105 A 特開2004−161800号公報JP 2004-161800 A 特開2003−160718号公報JP 2003-160718 A

本発明の目的は、上記の問題を解決し、太陽電池用バックシートとした際に環境変化による劣化が少なく、耐加水分解性、耐候性、耐熱性に優れたポリエステルフィルムを提供することある。   The object of the present invention is to solve the above-mentioned problems and to provide a polyester film which is less deteriorated due to environmental changes when used as a solar cell backsheet and is excellent in hydrolysis resistance, weather resistance and heat resistance.

上記課題を解決するための本発明は、次の(1)〜(8)を特徴とするものである。
(1)損失正接(tanδ)ピーク温度が120〜180℃であり、メタルハライドランプを用いて295〜450nmの紫外線を100mWで48時間照射後の黄色度(b値)の増加量(Δb値)が0〜15であることを特徴とする太陽電池バックシート用ポリエステルフィルム。
(2)ポリエステル(A)とポリイミド(B)を用いてなるポリエステルフィルムであることを特徴とする上記(1)に記載の太陽電池バックシート用ポリエステルフィルム。
(3)ポリイミド(B)の含有量が、フィルム全体に対して、2質量%〜30質量%であることを特徴とする上記(1)〜(2)に記載の太陽電池バックシート用ポリエステルフィルム。
(4)紫外線吸収剤の含有量が、フィルム全体に対して、0.01質量%以下であることを特徴とする上記(1)〜(3)のいずれかに記載の太陽電池バックシート用ポリエステルフィルム。
(5)面配向係数fnが0.140〜0.280であることを特徴とする上記(1)〜(4)のいずれかに記載の太陽電池バックシート用ポリエステルフィルム。
(6)200℃の熱処理72時間後における少なくとも一方向の破断伸度の保持率が10〜100%であることを特徴とする上記(1)〜(5)のいずれかに記載の太陽電池バックシート用ポリエステルフィルム。
(7)125℃・100%RH72時間後における少なくとも一方向の破断伸度の保持率が10〜100%であることを特徴とする上記(1)〜(6)のいずれかに記載の太陽電池バックシート用ポリエステルフィルム。
(8)波長360nmの光線透過率が0〜20%であることを特徴とする上記(1)〜(7)のいずれかに記載の太陽電池バックシート用ポリエステルフィルム。
(9)以下の工程1〜3を、その順に経ることを特徴とする上記(1)〜(8)のいずれかに記載の太陽電池バックシート用ポリエステルフィルムの製造方法。
工程1:ポリエステル(A)とポリイミド(B)とを、質量分率(A/B)が70/30〜30/70となるように溶融混練し、コンパウンド原料(AB)を得る工程。
工程2:コンパウンド原料(AB)を0.1kPa以下の減圧下にて210〜250℃の温度で1〜100時間加熱処理し、熱処理されたコンパウンド原料(ABH)を得る工程。
工程3:ポリエステル(A’)と熱処理されたコンパウンド原料(ABH)とを混合し、溶融押出しし、未延伸シートを得て、該未延伸シートを二軸延伸し、二軸配向ポリエステルフィルムを得る工程。
The present invention for solving the above-described problems is characterized by the following (1) to (8).
(1) Loss tangent (tan δ) peak temperature is 120 to 180 ° C., and the amount of increase (Δb value) in yellowness (b value) after irradiation with 295 to 450 nm ultraviolet rays at 100 mW for 48 hours using a metal halide lamp It is 0-15, The polyester film for solar cell backsheets characterized by the above-mentioned.
(2) The polyester film for solar battery backsheet as described in (1) above, which is a polyester film using polyester (A) and polyimide (B).
(3) The polyester film for solar battery backsheet according to (1) to (2) above, wherein the content of the polyimide (B) is 2% by mass to 30% by mass with respect to the entire film. .
(4) Content of ultraviolet absorber is 0.01 mass% or less with respect to the whole film, The polyester for solar cell backsheets in any one of said (1)-(3) characterized by the above-mentioned. the film.
(5) The polyester film for solar cell backsheet according to any one of the above (1) to (4), wherein the plane orientation coefficient fn is 0.140 to 0.280.
(6) The solar cell bag according to any one of the above (1) to (5), wherein the retention rate of elongation at break in at least one direction after heat treatment at 200 ° C. is 10 to 100%. Polyester film for sheet.
(7) The solar cell according to any one of the above (1) to (6), wherein the retention of fracture elongation in at least one direction after 72 hours at 125 ° C. and 100% RH is 10 to 100%. Polyester film for back sheet.
(8) The polyester film for solar cell backsheet according to any one of (1) to (7) above, wherein the light transmittance at a wavelength of 360 nm is 0 to 20%.
(9) The process for producing a polyester film for a solar battery backsheet according to any one of the above (1) to (8), wherein the following steps 1 to 3 are performed in that order.
Step 1: A step of obtaining a compound raw material (AB) by melt-kneading polyester (A) and polyimide (B) so that the mass fraction (A / B) is 70/30 to 30/70.
Process 2: The process of obtaining the heat-processed compound raw material (ABH) by heat-processing the compound raw material (AB) at the temperature of 210-250 degreeC under the reduced pressure of 0.1 kPa or less for 1 to 100 hours.
Step 3: The polyester (A ′) and the heat-treated compound raw material (ABH) are mixed, melt-extruded to obtain an unstretched sheet, and the unstretched sheet is biaxially stretched to obtain a biaxially oriented polyester film. Process.

本発明は、太陽電池用バックシートとした際に環境変化による劣化が少なく、耐加水分解性、耐候性、耐熱性に優れたポリエステルフィルムを得ることが出来る。   The present invention can provide a polyester film that is less deteriorated due to environmental changes when used as a solar cell backsheet, and that is excellent in hydrolysis resistance, weather resistance, and heat resistance.

本発明において、ポリエステルフィルムとは、例えば、芳香族ジカルボン酸、脂環族ジカルボン酸または脂肪族ジカルボン酸などの酸成分とジオール成分を構成単位(重合単位)とするポリマー(ポリエステル)で構成されたものである。   In the present invention, the polyester film is composed of, for example, a polymer (polyester) having an acid component such as aromatic dicarboxylic acid, alicyclic dicarboxylic acid, or aliphatic dicarboxylic acid and a diol component as constituent units (polymerization units). Is.

芳香族ジカルボン酸成分としては、例えば、テレフタル酸、イソフタル酸、フタル酸、1、4−ナフタレンジカルボン酸、1、5−ナフタレンジカルボン酸、2、6−ナフタレンジカルボン酸、6、6’−(アルキレンジオキシ)ジ−2−ナフトエ酸、4、4’−ジフェニルジカルボン酸、4、4’−ジフェニルエーテルジカルボン酸および4、4’−ジフェニルスルホンジカルボン酸等を用いることができ、なかでも好ましくは、テレフタル酸、フタル酸および2、6−ナフタレンジカルボン酸を用いることができる。   Examples of the aromatic dicarboxylic acid component include terephthalic acid, isophthalic acid, phthalic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 6,6 ′-(alkyl). Rangeoxy) di-2-naphthoic acid, 4,4′-diphenyldicarboxylic acid, 4,4′-diphenyletherdicarboxylic acid, 4,4′-diphenylsulfonedicarboxylic acid, and the like can be used. Acid, phthalic acid and 2,6-naphthalenedicarboxylic acid can be used.

上記の6、6’−(アルキレンジオキシ)ジ−2−ナフトエ酸成分としては、炭素数2〜10のアレキレンが好ましく、具多的に6、6’−(エチレンジオキシ)ジ−2−ナフトエ酸、6、6’−(トリメチレンジオキシ)ジ−2−ナフトエ酸および6、6’−(ブチレンジオキシ)ジ−2−ナフトエ酸などが挙げられる。   The 6,6 ′-(alkylenedioxy) di-2-naphthoic acid component is preferably an alkylene having 2 to 10 carbon atoms, and more specifically 6,6 ′-(ethylenedioxy) di-2- Examples include naphthoic acid, 6,6 ′-(trimethylenedioxy) di-2-naphthoic acid, and 6,6 ′-(butylene dioxy) di-2-naphthoic acid.

脂環族ジカルボン酸成分としては、例えば、シクロヘキサンジカルボン酸等を用いることができる。脂肪族ジカルボン酸成分としては、例えば、アジピン酸、スベリン酸、セバシン酸およびドデカンジオン酸等を用いることができる。これらの酸成分は一種のみを用いてもよく、二種以上を併用してもよい。   As the alicyclic dicarboxylic acid component, for example, cyclohexane dicarboxylic acid or the like can be used. As the aliphatic dicarboxylic acid component, for example, adipic acid, suberic acid, sebacic acid, dodecanedioic acid and the like can be used. These acid components may be used alone or in combination of two or more.

6、6’−(アルキレンジオキシ)ジ−2−ナフトエ酸成分は主成分として用いることもできるが、他の芳香族ポリエステル成分と共重合させることが好ましい。6、6’−(アルキレンジオキシ)ジ−2−ナフトエ酸成分の好ましい共重合量は、5〜50モル%であり、より好ましくは10〜40モル%、さらに好ましくは15〜30モル%である。   The 6,6 '-(alkylenedioxy) di-2-naphthoic acid component can be used as a main component, but is preferably copolymerized with other aromatic polyester components. The preferable copolymerization amount of the 6,6 ′-(alkylenedioxy) di-2-naphthoic acid component is 5 to 50 mol%, more preferably 10 to 40 mol%, still more preferably 15 to 30 mol%. is there.

また、ジオール成分としては、例えば、エチレングリコール、1、2−プロパンジオール、1、3−プロパンジオール、ネオペンチルグリコール、1、3−ブタンジオール、1、4−ブタンジオール、1、5−ペンタンジオール、1、6−ヘキサンジオール、1、2−シクロヘキサンジメタノール、1、3−シクロヘキサンジメタノール、1、4−シクロヘキサンジメタノール、ジエチレングリコール、トリエチレングリコール、ポリアルキレングリコールおよび2、2’−ビス(4’−β−ヒドロキシエトキシフェニル)プロパン等を用いることができ、なかでも、エチレングリコール、1、4−ブタンジオール、1、4−シクロヘキサンジメタノールおよびジエチレングリコール等を好ましく用いることができ、特に好ましくは、エチレングリコール等を用いることができる。これらのジオール成分は一種のみを用いてもよく、二種以上を併用してもよい。   Examples of the diol component include ethylene glycol, 1,2-propanediol, 1,3-propanediol, neopentyl glycol, 1,3-butanediol, 1,4-butanediol, and 1,5-pentanediol. 1,6-hexanediol, 1,2-cyclohexanedimethanol, 1,3-cyclohexanedimethanol, 1,4-cyclohexanedimethanol, diethylene glycol, triethylene glycol, polyalkylene glycol, and 2,2′-bis (4 '-Β-hydroxyethoxyphenyl) propane and the like can be used, and among them, ethylene glycol, 1,4-butanediol, 1,4-cyclohexanedimethanol, diethylene glycol, and the like can be preferably used. Echile It can be used glycol. These diol components may be used alone or in combination of two or more.

本発明におけるポリエステルには、ラウリルアルコールやイソシアン酸フェニル等の単官能化合物が共重合されていてもよいし、トリメリット酸、ピロメリット酸、グリセロール、ペンタエリスリトールおよび2、4−ジオキシ安息香酸等の3官能化合物などが、過度に分枝や架橋をせずポリマーが実質的に線状である範囲内で共重合されていてもよい。さらに酸成分とジオール成分以外に、p−ヒドロキシ安息香酸、m−ヒドロキシ安息香酸および2、6−ヒドロキシナフトエ酸などの芳香族ヒドロキシカルボン酸、およびp−アミノフェノールやp−アミノ安息香酸などを、本発明の効果が損なわれない程度の少量であればさらに共重合させることができる。ポリマーの共重合割合は、NMR法(核磁気共鳴法)や顕微FT−IR法(フーリエ変換顕微赤外分光法)を用いて調べることができる。   The polyester in the present invention may be copolymerized with a monofunctional compound such as lauryl alcohol or phenyl isocyanate, or trimellitic acid, pyromellitic acid, glycerol, pentaerythritol and 2,4-dioxybenzoic acid. Trifunctional compounds and the like may be copolymerized within a range in which the polymer is substantially linear without excessive branching or crosslinking. In addition to the acid component and diol component, p-hydroxybenzoic acid, m-hydroxybenzoic acid and aromatic hydroxycarboxylic acids such as 2,6-hydroxynaphthoic acid, and p-aminophenol and p-aminobenzoic acid, The copolymer can be further copolymerized as long as the effect of the present invention is not impaired. The copolymerization ratio of the polymer can be examined by using an NMR method (nuclear magnetic resonance method) or a microscopic FT-IR method (Fourier transform microinfrared spectroscopy).

本発明のポリエステル(A)としては、ポリエチレンテレフタレートとポリエチレンナフタレートが好ましく用いられる。また、ポリエステルはこれらの共重合体、変性体でもよい。結晶性の観点からポリエチレンテレフタレートおよびポリエチレンナフタレートが主成分であることが好ましく、特に90%以上がポリエチレンテレフタレートとポリエチレンナフタレートであることが好ましい。また、他の熱可塑性樹脂とのポリマーアロイでもよい。ここでいうポリマーアロイとは高分子多成分系化合物のことであり、共重合によるブロックコポリマーであってもよいし、混合などによるポリマーブレンドでもよい。   As the polyester (A) of the present invention, polyethylene terephthalate and polyethylene naphthalate are preferably used. The polyester may be a copolymer or a modified product thereof. From the viewpoint of crystallinity, polyethylene terephthalate and polyethylene naphthalate are preferably the main components, and particularly preferably 90% or more is polyethylene terephthalate and polyethylene naphthalate. Further, it may be a polymer alloy with another thermoplastic resin. The polymer alloy here refers to a polymer multi-component compound, which may be a block copolymer by copolymerization or a polymer blend by mixing.

本発明のポリエステルフィルムは、耐加水分解性・耐熱性・耐候性向上の点から、ポリエステル(A)とポリイミド(B)を含むことが特に好ましい。ポリイミド(B)はポリエステルの耐熱性を向上させ、紫外線を吸収するためポリエステルの耐候性も向上させる。   The polyester film of the present invention particularly preferably contains polyester (A) and polyimide (B) from the viewpoint of improving hydrolysis resistance, heat resistance, and weather resistance. Polyimide (B) improves the heat resistance of the polyester and absorbs ultraviolet rays, thereby improving the weather resistance of the polyester.

本発明でいうポリイミド(B)とは、環状イミド基を含有する溶融成形性のポリマーであり、本発明の目的に適応出来るものであれば特に限定されないが、脂肪族、脂環状または芳香族のエーテル単位と環状イミド基を繰り返し単位として含有するポリエーテルイミド(以下、PEIと略すことがある)が好ましい。例えば米国特許第4141927号明細書、特許第2622678号、特許第2606912号、特許第2606914号、特許第2596865号、特許第2596566号、特許第2598478号各公報に記載のポリエーテルイミド、特許第2598536号、特許第2599171号各公報、特開平9−48852号公報、特許第2565556号、特許第2564636号、特許第2564637号、特許第2563548号、特許第2563547号、特許第2558341号、特許第2558339号、特許第2834580号各公報に記載のポリマー等が挙げられる。   The polyimide (B) referred to in the present invention is a melt moldable polymer containing a cyclic imide group, and is not particularly limited as long as it can be applied to the object of the present invention, but is aliphatic, alicyclic or aromatic. A polyetherimide (hereinafter sometimes abbreviated as PEI) containing an ether unit and a cyclic imide group as a repeating unit is preferred. For example, polyether imides described in U.S. Pat. Nos. 4,141,927, 2,262,678, 2,606,912, 2,606,914, 2,596,865, 2,596,662, and 2,598,478, and 2,598,536. No. 2, Japanese Patent No. 2599171, Japanese Patent Laid-Open No. 9-48852, Japanese Patent No. 2565556, Japanese Patent No. 2564636, Japanese Patent No. 2564537, Japanese Patent No. 2563548, Japanese Patent No. 2563547, Japanese Patent No. 2558341, Japanese Patent No. 2558339 And polymers described in Japanese Patent No. 2833580.

また、本発明の効果を阻害しない範囲であれば、ポリイミドの主鎖に環状のイミド、エーテル単位以外の構造単位、例えば、芳香族、脂肪族、脂環族エステル単位、オキシカルボニル単位等が含有されていても良い。また、本発明の効果を阻害しない範囲であれば、ポリエーテルイミドの主鎖に環状のイミド、エーテル単位以外の構造単位、例えば芳香族、脂肪族、脂環族エステル単位、オキシカルボニル単位等が含有されていても良い。
ポリイミド(B)としては、例えば、下記一般式で示されるような構造単位を含有するものが好ましい。
In addition, as long as the effect of the present invention is not impaired, the main chain of polyimide contains a cyclic imide, a structural unit other than an ether unit, for example, an aromatic, aliphatic, alicyclic ester unit, oxycarbonyl unit, etc. May be. Moreover, as long as the effect of the present invention is not impaired, the main chain of the polyetherimide has a cyclic imide, a structural unit other than the ether unit, such as an aromatic, aliphatic, alicyclic ester unit, oxycarbonyl unit, etc. It may be contained.
As the polyimide (B), for example, those containing a structural unit represented by the following general formula are preferable.

Figure 2011204841
Figure 2011204841

ただし、式中のRは、 However, R 1 in the formula is

Figure 2011204841
Figure 2011204841

Figure 2011204841
Figure 2011204841

などの脂肪族炭化水素基、脂環族炭化水素基、芳香族炭化水素基から選ばれた一種もしくは二種以上の基を表している。また、式中のRは、 Represents one or two or more groups selected from an aliphatic hydrocarbon group, an alicyclic hydrocarbon group, and an aromatic hydrocarbon group. R 2 in the formula is

Figure 2011204841
Figure 2011204841

などの脂肪族炭化水素基、脂環族炭化水素基、芳香族炭化水素基から選ばれた一種もしくは二種以上の基を表している。 Represents one or two or more groups selected from an aliphatic hydrocarbon group, an alicyclic hydrocarbon group, and an aromatic hydrocarbon group.

溶融成形性やポリエステルとの親和性などの点から、下記一般式で示されるような、ポリイミド構成成分にエーテル結合を含有するポリエーテルイミドが特に好ましい。   From the viewpoints of melt moldability and affinity with polyester, a polyetherimide containing an ether bond in the polyimide component as shown by the following general formula is particularly preferred.

Figure 2011204841
Figure 2011204841

(ただし、上記式中Rは、6〜30個の炭素原子を有する2価の芳香族または脂肪族残基、Rは6〜30個の炭素原子を有する2価の芳香族残基、2〜20個の炭素原子を有するアルキレン基、2〜20個の炭素原子を有するシクロアルキレン基、および2〜8個の炭素原子を有するアルキレン基で連鎖停止されたポリジオルガノシロキサン基からなる群より選択された2価の有機基である。)
上記R、Rとしては、例えば、下記式群に示される芳香族残基を挙げることができる。
(Wherein R 3 is a divalent aromatic or aliphatic residue having 6 to 30 carbon atoms, R 4 is a divalent aromatic residue having 6 to 30 carbon atoms, From the group consisting of alkylene groups having 2 to 20 carbon atoms, cycloalkylene groups having 2 to 20 carbon atoms, and polydiorganosiloxane groups chain-terminated with alkylene groups having 2 to 8 carbon atoms Selected divalent organic group.)
As said R < 3 >, R < 4 >, the aromatic residue shown by the following formula group can be mentioned, for example.

Figure 2011204841
Figure 2011204841

本発明では、ポリエステルとの親和性、コスト、溶融成形性等の観点から、2、2−ビス[4−(2、3−ジカルボキシフェノキシ)フェニル]プロパン二無水物とm−フェニレンジアミン、またはp−フェニレンジアミンとの縮合物である、下記式で示される繰り返し単位を有するポリマーが好ましい   In the present invention, 2,2-bis [4- (2,3-dicarboxyphenoxy) phenyl] propane dianhydride and m-phenylenediamine from the viewpoint of affinity with polyester, cost, melt moldability, and the like, or A polymer having a repeating unit represented by the following formula, which is a condensate with p-phenylenediamine, is preferable.

Figure 2011204841
Figure 2011204841

または Or

Figure 2011204841
Figure 2011204841

(nは2以上の整数、好ましくは20〜50の整数)
このポリエーテルイミドは、“ウルテム”(登録商標)の商品名で、SABICイノベーティブプラスチック社より入手可能である。
(N is an integer of 2 or more, preferably an integer of 20 to 50)
This polyetherimide is available from SABIC Innovative Plastics under the trade name “Ultem” (registered trademark).

本発明のポリエステルフィルムにおける、ポリイミド(B)の含有量は2〜30質量%であることが好ましい。ポリイミド(B)が2質量%より小さいと損失正接(tanδ)ピーク温度が低温になり、耐熱性、耐加水分解性が向上しにくくなる。また、ポリイミドは紫外線を吸収するため、紫外線が照射された時にポリエステルへの影響が小さく耐候性が向上するが、ポリイミド(B)の含有量が2質量%より小さいとその効果が小さく耐候性が向上しない。また、ポリイミド(B)が30質量%を超えると、フィルムの製膜性が悪く面配向係数を高めにくく耐熱性、耐加水分解性が向上しにくくなる。また、コスト、加工特性で問題になる。ポリイミド(B)の含有量のより好ましい下限値は5質量%であり、さらに好ましい下限値は7質量%である。ポリイミド(B)の含有量のより好ましい上限値は20質量%であり、さらに好ましい上限値は15質量%である。   The content of the polyimide (B) in the polyester film of the present invention is preferably 2 to 30% by mass. If the polyimide (B) is less than 2% by mass, the loss tangent (tan δ) peak temperature becomes low, and it becomes difficult to improve heat resistance and hydrolysis resistance. In addition, since polyimide absorbs ultraviolet rays, the influence on polyester is small and the weather resistance is improved when irradiated with ultraviolet rays. However, if the content of polyimide (B) is less than 2% by mass, the effect is small and the weather resistance is low. Does not improve. Moreover, when polyimide (B) exceeds 30 mass%, the film formability of a film is bad and it becomes difficult to raise a surface orientation coefficient, and it becomes difficult to improve heat resistance and hydrolysis resistance. Moreover, it becomes a problem in cost and processing characteristics. A more preferable lower limit of the content of the polyimide (B) is 5% by mass, and a more preferable lower limit is 7% by mass. A more preferable upper limit value of the content of the polyimide (B) is 20% by mass, and a more preferable upper limit value is 15% by mass.

本発明のポリエステルフィルムは、損失正接(tanδ)ピーク温度が120〜180℃であることが必要である。損失正接(tanδ)ピーク温度が120℃より小さいとポリエステルの分子鎖が120℃より低温で運動を始めるため、耐熱性や耐加水分解性が大きく低下する。また、損失正接(tanδ)ピーク温度が180℃以上を超えると、分子の運動性が低いため延伸が難しくフィルムの高配向化が行えない問題がある。損失正接(tanδ)ピーク温度のより好ましい下限値は130℃であり、さらに好ましい下限値は140℃である。また、損失正接(tanδ)ピーク温度のより好ましい上限値は170℃であり、さらに好ましい上限値は160℃である。損失正接(tanδ)ピーク温度のより好ましい範囲は130〜170℃であり、さらに好ましい範囲は140〜160℃である。   The polyester film of the present invention needs to have a loss tangent (tan δ) peak temperature of 120 to 180 ° C. When the loss tangent (tan δ) peak temperature is lower than 120 ° C., the molecular chain of the polyester starts to move at a temperature lower than 120 ° C., so that heat resistance and hydrolysis resistance are greatly reduced. Further, when the loss tangent (tan δ) peak temperature exceeds 180 ° C. or more, there is a problem that stretching is difficult because the molecular mobility is low and the film cannot be highly oriented. A more preferable lower limit value of the loss tangent (tan δ) peak temperature is 130 ° C, and a more preferable lower limit value is 140 ° C. A more preferable upper limit value of the loss tangent (tan δ) peak temperature is 170 ° C., and a more preferable upper limit value is 160 ° C. A more preferable range of the loss tangent (tan δ) peak temperature is 130 to 170 ° C, and a more preferable range is 140 to 160 ° C.

損失正接(tanδ)ピーク温度は、分子鎖の運動性を表す指標であり、ポリイミド(B)の含有量が大きくなれば高くなり、小さくなれば低くなる。   The loss tangent (tan δ) peak temperature is an index representing molecular chain mobility, and increases as the content of polyimide (B) increases, and decreases as it decreases.

本発明のポリエステルフィルムは、メタルハライドランプを用いて295〜450nmの紫外線を100mWで48時間照射後の黄色度(b値)の増加量(Δb値)が0〜15である必要がある。Δb値とは色味の変化であり、ポリエステルフィルムの劣化の度合いを示す。Δb値が0とは紫外線による劣化がほとんどないので最も好ましい。Δb値が15より大きいと、色味の変化が大きく耐候性が悪化する。Δb値のより好ましい上限値は10であり、さらに好ましい上限値は5である。Δb値の好ましい範囲は0〜10であり、さらに好ましい範囲は0〜5である。   The polyester film of the present invention needs to have an increase in yellowness (b value) (Δb value) of 0 to 15 after irradiation with ultraviolet rays of 295 to 450 nm at 100 mW for 48 hours using a metal halide lamp. The Δb value is a change in color and indicates the degree of deterioration of the polyester film. A Δb value of 0 is most preferable because there is almost no deterioration due to ultraviolet rays. If the Δb value is greater than 15, the color changes greatly and the weather resistance deteriorates. A more preferable upper limit value of Δb value is 10, and a more preferable upper limit value is 5. A preferable range of the Δb value is 0 to 10, and a more preferable range is 0 to 5.

Δb値は、ポリイミド(B)の含有量が多ければ小さくなり、少なければ小さくなる。また、ポリエステル(A)とポリイミド(B)からなるコンパウンド原料(AB)の固有粘度(IV)が大きいほど小さくなる。   The Δb value decreases as the polyimide (B) content increases, and decreases as it decreases. Moreover, it becomes so small that the intrinsic viscosity (IV) of the compound raw material (AB) which consists of polyester (A) and a polyimide (B) is large.

本発明のポリエステルフィルムは、紫外線吸収剤の含有量が、フィルム全体に対して、0.01%以下であることが必要である。紫外線吸収剤とは、次の分子構造を持つ(ベンゾフェノン系、ベンゾトリアゾール系、ヒドロキシフェニルトリアジン系)添加剤が挙げられる。前記ベンゾフェノン系添加剤としては、2−ヒドロキシ−4−メトキシベンゾフェノン、2−ヒドロキシ−4−n−オクトキシベンゾフェノン、2,2’−ジヒドロキシ−4,4’−ジメトキシベンゾフェノン、n−ヘキシル−2−(4−ジエチルアミノ−2−ヒドロキシベンゾイル)ベンゾエート等が挙げられる。前記ベンゾトリアゾール系添加剤としては、2−(2’−ヒドロキシ−5’−メチルフェニル)ベンゾトリアゾール、2−[2’−ヒドロキシ−5’−(1,1,3,3−テトラメチルブチル)フェニル]ベンゾトリアゾール、2−(2’−ヒドロキシ−3’−t−ブチル−5’−メチルフェニル)−5−クロロベンゾトリアゾール、2,2’−メチレンビス[6−(2H−ベンゾトリアゾール−2−イル)−4−(1,1,3,3−テトラメチルブチル)フェノール]が挙げられる。前期ヒドロキシフェニルトリアジン系添加剤としては、2−[(2−ヒドロキシ−4−n−ヘキシルオキシ)フェニル]−4,6−ジフェニルトリアジン、2,4−[ジ[2−ヒドロキシ−4−(2−エチルヘキシルオキシ)]フェニル]−6−(4−メトキシフェニル)トリアジン等が挙げられる。紫外線吸収剤の含有量が0.01質量%よりも多いとフィルム表面にブリードアウトし太陽電池バックシートとして使用する際に他部材との密着性が悪化する。   In the polyester film of the present invention, the content of the ultraviolet absorber needs to be 0.01% or less with respect to the entire film. Examples of the ultraviolet absorber include additives having the following molecular structure (benzophenone series, benzotriazole series, hydroxyphenyltriazine series). Examples of the benzophenone-based additive include 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-n-octoxybenzophenone, 2,2′-dihydroxy-4,4′-dimethoxybenzophenone, and n-hexyl-2- (4-diethylamino-2-hydroxybenzoyl) benzoate and the like. Examples of the benzotriazole-based additive include 2- (2′-hydroxy-5′-methylphenyl) benzotriazole and 2- [2′-hydroxy-5 ′-(1,1,3,3-tetramethylbutyl). Phenyl] benzotriazole, 2- (2′-hydroxy-3′-t-butyl-5′-methylphenyl) -5-chlorobenzotriazole, 2,2′-methylenebis [6- (2H-benzotriazole-2- Yl) -4- (1,1,3,3-tetramethylbutyl) phenol]. Examples of the hydroxyphenyl triazine-based additive include 2-[(2-hydroxy-4-n-hexyloxy) phenyl] -4,6-diphenyltriazine, 2,4- [di [2-hydroxy-4- (2 -Ethylhexyloxy)] phenyl] -6- (4-methoxyphenyl) triazine and the like. When the content of the ultraviolet absorber is more than 0.01% by mass, the adhesiveness with other members deteriorates when bleeding out on the film surface and using it as a solar battery back sheet.

なお、本発明の効果を阻害しない範囲内であれば、本発明のポリエステルフィルムは、各種添加剤、例えば、相溶化剤、可塑剤、酸化防止剤、熱安定剤、滑剤、帯電防止剤、増白剤、着色剤、導電剤、難燃剤、難燃助剤、顔料および染料などが添加されてもよい。   As long as the effects of the present invention are not impaired, the polyester film of the present invention contains various additives such as compatibilizers, plasticizers, antioxidants, heat stabilizers, lubricants, antistatic agents, Whitening agents, coloring agents, conductive agents, flame retardants, flame retardant aids, pigments and dyes may be added.

本発明のポリエステルフィルムは、面配向係数が0.140〜0.280であることが好ましい。面配向係数が0.14より小さいと分子鎖の配向が小さく耐加水分解性や耐熱性が低下する傾向がある。また、面配向係数が0.280より大きいフィルムは極度に配向させる必要があるため製膜時にフィルム破れが多発し安定して製膜できない。より好ましい面配向係数の下限値は0.150であり、さらに好ましい下限値は0.155である。より好ましい面配向係数の上限値は0.180であり、さらに好ましい上限値は0.165である。面配向係数のより好ましい範囲は0.150〜0.180であり、さらに好ましい範囲は0.155〜0.165である。   The polyester film of the present invention preferably has a plane orientation coefficient of 0.140 to 0.280. When the plane orientation coefficient is smaller than 0.14, the orientation of the molecular chain is small and the hydrolysis resistance and heat resistance tend to decrease. In addition, since a film having a plane orientation coefficient larger than 0.280 needs to be extremely oriented, film tearing frequently occurs at the time of film formation, and the film cannot be stably formed. A more preferable lower limit value of the plane orientation coefficient is 0.150, and a more preferable lower limit value is 0.155. A more preferable upper limit value of the plane orientation coefficient is 0.180, and a more preferable upper limit value is 0.165. A more preferable range of the plane orientation coefficient is 0.150 to 0.180, and a more preferable range is 0.155 to 0.165.

面配向係数は、ポリエステルフィルムの延伸条件によって制御することができる。特に、本発明のポリエステルフィルムは、ポリイミドの含有量が大きくなると面配向係数を高めにくい。また、原料のIVが高いとフィルムのIVも高くなるため面配向係数を高めにくくなる。面配向係数を上記のような範囲内にするには、最初に低温で機械方向(以下、MDと略すことがある)延伸を行い、その後温度を上げてMD延伸する2段階MD延伸を行うことが好ましい。面配向係数は延伸倍率が高いほど高くなるが、倍率が高すぎると製膜性が悪くなるため、最適な延伸倍率がある。   The plane orientation coefficient can be controlled by the stretching conditions of the polyester film. In particular, it is difficult for the polyester film of the present invention to increase the plane orientation coefficient when the polyimide content increases. Moreover, since IV of a film will also become high when IV of a raw material is high, it becomes difficult to raise a plane orientation coefficient. In order to make the plane orientation coefficient within the range as described above, first, a two-stage MD stretching is performed in which a machine direction (hereinafter sometimes abbreviated as MD) stretching is performed at a low temperature, and then the temperature is increased and MD stretching is performed. Is preferred. The plane orientation coefficient increases as the draw ratio increases, but if the ratio is too high, the film-forming property is deteriorated, and therefore there is an optimum draw ratio.

本発明のポリエステルフィルムは、200℃72時間の熱処理後における少なくとも一方向の破断伸度の保持率が10〜100%であることが好ましい。また、125℃、100%RHで72時時間後における少なくとも一方向の破断伸度の保持率が10〜100%であることが好ましい。破断伸度の保持率が10%より小さいと、太陽電池用バックシートとして使用した際に耐久性が悪化する傾向を示す。また、破断伸度の保持率が100%であることは、125℃の温度、100%RHの湿度で72時間の処理では変化しないことを表し、最も好ましい態様である。破断伸度の保持率が100%より大きいとポリエステルフィルムが配向緩和し易いことを表すため、機械物性が低く取扱が困難となる。より好ましい破断伸度の保持率の下限値は20%であり、さらに好ましい下限値は30%である。破断伸度の保持率のより好ましい範囲は20〜100%であり、さらに好ましい範囲は30〜100%である。破断伸度の保持率は二軸配向ポリエステルフィルムの面配向係数が高いほど良好になり、さらに、損失正接(tanδ)が高く、フィルムIVが高いほど良好になる。   The polyester film of the present invention preferably has a retention rate of elongation at break in at least one direction after heat treatment at 200 ° C. for 72 hours of 10 to 100%. Moreover, it is preferable that the retention of the elongation at break in at least one direction after 72 hours at 125 ° C. and 100% RH is 10 to 100%. When the retention of breaking elongation is less than 10%, the durability tends to deteriorate when used as a solar cell backsheet. Moreover, the retention rate of breaking elongation being 100% represents the fact that it does not change in a treatment for 72 hours at a temperature of 125 ° C. and a humidity of 100% RH, and is the most preferred embodiment. If the retention of breaking elongation is greater than 100%, the polyester film is likely to be relaxed in orientation, so that the mechanical properties are low and handling is difficult. A more preferable lower limit of the retention of breaking elongation is 20%, and a more preferable lower limit is 30%. A more preferable range of the retention of breaking elongation is 20 to 100%, and a more preferable range is 30 to 100%. The retention of breaking elongation becomes better as the plane orientation coefficient of the biaxially oriented polyester film is higher, and the loss tangent (tan δ) is higher, and the higher the film IV is, the better.

本発明のポリエステルフィルムは、波長360nmの光線透過率が0〜20%であることが好ましい。波長360nmの光線透過率が20%よりも大きいと紫外線吸収性が小さいため耐候性が悪化しやすい。また波長360nmの光線透過率が0%であることはすべてを吸収することを意味し最も好ましい態様である。より好ましい範囲は0〜15%であり、さらに好ましい範囲は0〜10%である。光線透過率はポリイミド(B)の含有量が大きいほど小さくなる。   The polyester film of the present invention preferably has a light transmittance of 0 to 20% at a wavelength of 360 nm. If the light transmittance at a wavelength of 360 nm is greater than 20%, the weather resistance tends to deteriorate because the ultraviolet absorptivity is small. Further, the light transmittance at a wavelength of 360 nm being 0% means that it absorbs all and is the most preferable mode. A more preferable range is 0 to 15%, and a further preferable range is 0 to 10%. The light transmittance decreases as the content of polyimide (B) increases.

次に、本発明のポリエステルフィルムの製造方法について、ポリエチレンテレフタレート(PET)をポリエステルとして用いた例を代表例として説明する。本発明のポリエステルフィルムは、以下の工程1から3を、その順に経る事が好ましい。
工程1:ポリエステル(A)とポリイミド(B)とを、質量分率(A/B)が70/30〜30/70となるように溶融混練し、コンパウンド原料(AB)を得る工程。
ポリエステル(A)とポリイミド(B)の質量分率(A/B)は好ましくは65/35〜35/65であり、更に好ましくは60/40〜40/60である。70/30よりもポリエステル(A)の比率が大きくなると、ポリイミド(B)の溶融粘度が高すぎるために、溶融粘度の低いポリエステル(A)にポリイミド(B)が分散しにくくなり、分散不良物が発生する。分散不良物はポリエステルフィルム作製工程にて、押出トラブルや延伸不良の原因となり、耐熱性や耐加水分解性の向上が難しくなる。逆に、30/70よりもポリイミド(B)の比率が大きくなると全体の溶融粘度が高くなるためコンパウンド時に剪断発熱が発生し、ポリエステル(A)の劣化がおこる。ポリエステル(A)の劣化はポリエステルフィルム作製工程にて、延伸不良の問題や熱や湿度で劣化しやすく、耐熱性や耐加水分解性の向上が難しくなる。
工程2:コンパウンド原料(AB)を0.1kPa以下の減圧下にて210〜250℃の温度で1〜100時間加熱処理し、熱処理されたコンパウンド原料(ABH)を得る工程。加熱温度は、より好ましくは215〜245℃、さらに好ましくは220〜230℃である。加熱処理する時間は、より好ましくは10〜80時間、さらに好ましくは20〜50時間である。工程2を実施しないとコンパウンド原料(AB)は溶融押出時の熱によってIVが低下しているため、そのまま用いるとポリエステルが劣化しやすく、耐熱性・耐加水分解性・耐候性が低下しやすい。特に耐候性が低下し、紫外線照射によってΔb値が大きくなる。加熱処理温度が210℃よりも低いと固相重合がほとんどおこらず、熱処理による効果が得られない。加熱処理温度が250℃よりも高いとポリエステルが溶融してしまいチップ形状が得られず、ポリエステルフィルム作製の原料として用いることができない。加熱処理時間が1時間よりも短いと固相重合の効果が小さく耐熱性・耐加水分解性・耐候性が向上しない。逆に加熱時間が100時間よりも長いとIVが高くなりすぎるため延伸が行えず、耐熱性・耐加水分解性・耐候性の向上が難しくなる。
工程3:ポリエステル(A’)と熱処理されたコンパウンド原料(ABH)とを混合し、溶融押出しし、未延伸シートを得て、該未延伸シートを二軸延伸し、二軸配向ポリエステルフィルムを得る工程。
以上の1〜3の工程を経ることにより耐熱性、耐加水分解性、耐候性、低ブリードアウト性を兼ね備えた太陽電池バックシート用ポリエステルフィルムを得ることが出来る。
Next, the method for producing the polyester film of the present invention will be described as an example in which polyethylene terephthalate (PET) is used as polyester. The polyester film of the present invention preferably undergoes the following steps 1 to 3 in that order.
Step 1: A step of obtaining a compound raw material (AB) by melt-kneading polyester (A) and polyimide (B) so that the mass fraction (A / B) is 70/30 to 30/70.
The mass fraction (A / B) of the polyester (A) and the polyimide (B) is preferably 65/35 to 35/65, and more preferably 60/40 to 40/60. When the ratio of the polyester (A) is larger than 70/30, the melt viscosity of the polyimide (B) is too high, so that the polyimide (B) is difficult to disperse in the polyester (A) having a low melt viscosity, resulting in poor dispersion. Occurs. Insufficient dispersion causes extrusion troubles and poor stretching in the polyester film production process, making it difficult to improve heat resistance and hydrolysis resistance. On the other hand, if the ratio of polyimide (B) is larger than 30/70, the overall melt viscosity becomes high, so shear heat is generated during compounding, and polyester (A) is deteriorated. Deterioration of the polyester (A) tends to deteriorate due to poor stretching, heat and humidity in the polyester film production process, and it becomes difficult to improve heat resistance and hydrolysis resistance.
Process 2: The process of obtaining the heat-processed compound raw material (ABH) by heat-processing the compound raw material (AB) at the temperature of 210-250 degreeC under the reduced pressure of 0.1 kPa or less for 1 to 100 hours. The heating temperature is more preferably 215 to 245 ° C, still more preferably 220 to 230 ° C. The time for the heat treatment is more preferably 10 to 80 hours, still more preferably 20 to 50 hours. If step 2 is not carried out, the compound raw material (AB) has a low IV due to the heat during melt extrusion. Therefore, if it is used as it is, the polyester tends to deteriorate and the heat resistance, hydrolysis resistance and weather resistance tend to decrease. In particular, the weather resistance is lowered, and the Δb value is increased by ultraviolet irradiation. When the heat treatment temperature is lower than 210 ° C., solid phase polymerization hardly occurs and the effect of heat treatment cannot be obtained. When the heat treatment temperature is higher than 250 ° C., the polyester melts and a chip shape cannot be obtained, and cannot be used as a raw material for producing a polyester film. When the heat treatment time is shorter than 1 hour, the effect of solid phase polymerization is small, and heat resistance, hydrolysis resistance, and weather resistance are not improved. On the other hand, if the heating time is longer than 100 hours, the IV becomes too high and stretching cannot be performed, making it difficult to improve heat resistance, hydrolysis resistance, and weather resistance.
Step 3: The polyester (A ′) and the heat-treated compound raw material (ABH) are mixed, melt-extruded to obtain an unstretched sheet, and the unstretched sheet is biaxially stretched to obtain a biaxially oriented polyester film. Process.
A polyester film for a solar battery back sheet having both heat resistance, hydrolysis resistance, weather resistance, and low bleed-out property can be obtained through the steps 1 to 3 described above.

もちろん、本発明は、PETフィルムを用いたポリエステルフィルムに限定されるものではなく、他のポリマーを用いたものでもよい。例えば、ガラス転移温度や融点の高いポリエチレン−2、6−ナフタレンジカルボキシレートなどを用いてポリエステルフィルムを構成する場合は、以下に示す温度よりも高温で押出や延伸を行えばよい。   Of course, the present invention is not limited to a polyester film using a PET film, and may be one using another polymer. For example, when a polyester film is formed using polyethylene-2,6-naphthalenedicarboxylate having a high glass transition temperature or a high melting point, extrusion or stretching may be performed at a temperature higher than the temperature shown below.

まず、ポリエチレンテレフタレートを準備する。ポリエチレンテレフタレートは、次のいずれかのプロセスで製造される。すなわち、(1)テレフタル酸とエチレングリコールを原料とし、直接エステル化反応によって低分子量のポリエチレンテレフタレートまたはオリゴマーを得、さらにその後の三酸化アンチモンやチタン化合物を触媒に用いた重縮合反応によってポリマーを得るプロセス、および(2)ジメチルテレフタレートとエチレングリコールを原料とし、エステル交換反応によって低分子量体を得、さらにその後の三酸化アンチモンやチタン化合物を触媒に用いた重縮合反応によってポリマーを得るプロセスである。ここで、エステル化は無触媒でも反応は進行するが、エステル交換反応においては、通常、マンガン、カルシウム、マグネシウム、亜鉛、リチウムおよびチタン等の化合物を触媒に用いてエステル化を進行させ、またエステル交換反応が実質的に完結した後に、その反応に用いた触媒を不活性化する目的で、リン化合物を添加する場合もある。得られたPETペレットを回転型真空重合装置を用いて0.1kPaの減圧下、210〜250℃の温度で1〜100時間加熱処理し、固有粘度を高めることが好ましい。   First, polyethylene terephthalate is prepared. Polyethylene terephthalate is manufactured by one of the following processes. (1) Using terephthalic acid and ethylene glycol as raw materials, a low molecular weight polyethylene terephthalate or oligomer is obtained by direct esterification reaction, and then a polymer is obtained by polycondensation reaction using antimony trioxide or titanium compound as a catalyst. And (2) a process in which dimethyl terephthalate and ethylene glycol are used as raw materials, a low molecular weight product is obtained by a transesterification reaction, and a polymer is obtained by a subsequent polycondensation reaction using antimony trioxide or a titanium compound as a catalyst. Here, the reaction proceeds even without a catalyst, but in the transesterification reaction, the esterification usually proceeds using a compound such as manganese, calcium, magnesium, zinc, lithium and titanium as a catalyst. After the exchange reaction is substantially completed, a phosphorus compound may be added for the purpose of inactivating the catalyst used in the reaction. The obtained PET pellet is preferably heat-treated at a temperature of 210 to 250 ° C. for 1 to 100 hours under a reduced pressure of 0.1 kPa using a rotary vacuum polymerization apparatus to increase the intrinsic viscosity.

次に、このポリエチレンテレフタレートのペレットとSABICイノベーティブプラスチック社から入手したポリエーテルイミドのペレットを、所定の割合で混合して、270〜300℃に加熱されたベント式の2軸混練押出機に供給して、溶融押出する。このときの剪断速度は50〜300sec−1が好ましく、より好ましくは100〜200sec−1であり、滞留時間は0.5〜10分が好ましく、より好ましくは1〜5分の条件である。さらに、上記混練条件で相溶しない場合は、得られたチップを再び2軸押出機に投入し相溶するまで混練押出を繰り返してもよい。得られたPET/PEIブレンドチップは溶融押出時の熱によってIVが低下しているため、そのまま用いるとポリエチレンテレフタレートが劣化しやすく、耐熱性・耐加水分解性・耐候性が低下しやすい。特に耐候性が低下し、紫外線照射によってΔb値が大きくなる。そのため得られたPET/PEIブレンドチップを回転型真空重合装置を用いて0.1kPaの減圧下、210〜250℃の温度で1〜100時間加熱処理し、固有粘度を高めることが好ましい。好ましい固有粘度IVは0.6〜1.2であり、より好ましくは0.7〜1.1、さらに好ましくは0.8〜1.0である。 Next, the polyethylene terephthalate pellets and polyetherimide pellets obtained from SABIC Innovative Plastics Co., Ltd. are mixed at a predetermined ratio and supplied to a vent type twin-screw kneading extruder heated to 270 to 300 ° C. And melt extrusion. The shear rate at this time is preferably 50 to 300 sec −1 , more preferably 100 to 200 sec −1 , and the residence time is preferably 0.5 to 10 minutes, more preferably 1 to 5 minutes. Furthermore, when the above-mentioned kneading conditions do not make them compatible, the obtained chips may be put into the twin screw extruder again and kneading extrusion may be repeated until they are compatible. Since the obtained PET / PEI blend chip has IV decreased due to heat during melt extrusion, if used as it is, polyethylene terephthalate tends to deteriorate, and heat resistance, hydrolysis resistance, and weather resistance tend to decrease. In particular, the weather resistance is lowered, and the Δb value is increased by ultraviolet irradiation. Therefore, it is preferable to heat-treat the obtained PET / PEI blend chip using a rotary vacuum polymerization apparatus under a reduced pressure of 0.1 kPa at a temperature of 210 to 250 ° C. for 1 to 100 hours to increase the intrinsic viscosity. Preferred intrinsic viscosity IV is 0.6 to 1.2, more preferably 0.7 to 1.1, and still more preferably 0.8 to 1.0.

次に、得られたPETのペレットとPET/PEIブレンドチップを所望の割合で混合し、180℃の温度で3時間以上減圧乾燥した後、固有粘度が低下しないように窒素気流下あるいは減圧下で、265〜280℃の温度に加熱された押出機に供給し、スリット状のダイから押出し、キャスティングロール上で冷却して未延伸フィルムを得る。この際、異物や変質ポリマーを除去するために各種のフィルター、例えば、焼結金属、多孔性セラミック、サンドおよび金網などの素材からなるフィルターを用いることが好ましい。また、必要に応じて、定量供給性を向上させるためにギアポンプを設けてもよい。フィルムを積層する場合には、2台以上の押出機およびマニホールドまたは合流ブロックを用いて、複数の異なるポリマーを溶融積層する。   Next, the obtained PET pellets and the PET / PEI blend chip are mixed in a desired ratio, dried under reduced pressure at 180 ° C. for 3 hours or more, and then under a nitrogen stream or under reduced pressure so that the intrinsic viscosity does not decrease. , Supplied to an extruder heated to a temperature of 265 to 280 ° C., extruded from a slit-shaped die, and cooled on a casting roll to obtain an unstretched film. At this time, it is preferable to use various types of filters, for example, filters made of materials such as sintered metal, porous ceramic, sand and wire mesh, in order to remove foreign substances and denatured polymers. Moreover, you may provide a gear pump as needed in order to improve fixed_quantity | feed_rate supply property. When laminating films, a plurality of different polymers are melt laminated using two or more extruders and manifolds or merging blocks.

次に、このようにして得られた未延伸フィルムを、数本のロールの配置された縦延伸機を用いて、ロールの周速差を利用して縦方向に延伸し(MD延伸)、続いてステンターにより横延伸を行う(以下、横方向をTDと略すことがある)二軸延伸方法について説明する。   Next, the unstretched film thus obtained is stretched in the machine direction using the difference in peripheral speed of the roll (MD stretching) using a longitudinal stretching machine in which several rolls are arranged, and subsequently A biaxial stretching method in which transverse stretching is performed using a stenter (hereinafter, the transverse direction may be abbreviated as TD) will be described.

まず、未延伸フィルムをMD延伸する。本発明のポリエステルフィルムは損失正接(tanδ)を制御するためにPEIを含むことが好ましい。ポリエステルにPEIが含まれると配向結晶化が起こりにくくなる。そこで、MD延伸では最初に低温で延伸を行い、その後温度を上げて2段階延伸すると配向結晶化が起こり配向を高めることができる。最初の低温での延伸(MD1延伸)は(Tg−20)〜(Tg+10)℃の範囲、さらに好ましくは(Tg−10)〜(Tg+5)℃の範囲にある加熱ロール群で加熱し、長手方向に好ましくは1.1〜3.0倍、より好ましくは1.2〜2.5倍、さらに好ましくは1.5〜2.0倍に延伸し、次にMD延伸1温度より高温(Tg+10)〜(Tg+50)でMD延伸2を行う。より好ましい温度は(Tg+15)(〜Tg+30)である。MD延伸2の好ましい延伸倍率は1.2〜4.0倍であり、より好ましくは1.5〜3.0倍である。MD延伸1とMD延伸2の合わせたMD延伸倍率は、好ましくは2.0〜6.0倍であり、より好ましくは3.0〜5.5倍であり、さらに好ましくは3.5〜5.0倍である。延伸後、20〜50℃の温度の冷却ロール群で冷却することが好ましい。   First, the unstretched film is MD stretched. The polyester film of the present invention preferably contains PEI in order to control loss tangent (tan δ). When PEI is contained in the polyester, orientation crystallization hardly occurs. Therefore, in MD stretching, first, stretching is performed at a low temperature, and then the temperature is raised, and two-stage stretching is performed, whereby orientation crystallization occurs and the orientation can be increased. The first low-temperature stretching (MD1 stretching) is performed by a heating roll group in the range of (Tg-20) to (Tg + 10) ° C., more preferably in the range of (Tg-10) to (Tg + 5) ° C., and the longitudinal direction. Preferably, the film is stretched 1.1 to 3.0 times, more preferably 1.2 to 2.5 times, still more preferably 1.5 to 2.0 times, and then higher than the MD stretching 1 temperature (Tg + 10). MD stretching 2 is performed at ~ (Tg + 50). A more preferable temperature is (Tg + 15) (˜Tg + 30). The preferable draw ratio of MD drawing 2 is 1.2 to 4.0 times, more preferably 1.5 to 3.0 times. The MD stretching ratio of MD stretching 1 and MD stretching 2 is preferably 2.0 to 6.0 times, more preferably 3.0 to 5.5 times, and even more preferably 3.5 to 5 times. .0 times. It is preferable to cool with the cooling roll group of the temperature of 20-50 degreeC after extending | stretching.

次に、ステンターを用いて、幅方向の延伸を行う(TD延伸)。その延伸倍率は、好ましくは2.0〜6.0倍であり、より好ましくは3.0〜5.5倍であり、さらに好ましくは3.5〜5.0倍である。また、温度は好ましくは(Tg)〜(Tg+50)℃の範囲であり、さらに好ましくは(Tg)〜(Tg+30)℃の範囲で行う。TD延伸後、熱固定処理を行う。熱固定処理はフィルムを緊張下または幅方向に弛緩しながら(弛緩率0〜10%)、好ましくは(Tm−70)〜(Tm)℃の温度、より好ましくは(Tm−50)〜(Tm−10)℃の温度、さらに好ましくは(Tm−40)〜(Tm−20)℃の温度の範囲で熱処理する。熱処理時間は0.5〜20秒の範囲で行うことが好ましい。その後、25℃に冷却後、フィルムエッジを除去し、本発明のポリエステルフィルムを得ることができる。   Next, stretching in the width direction is performed using a stenter (TD stretching). The draw ratio is preferably 2.0 to 6.0 times, more preferably 3.0 to 5.5 times, and still more preferably 3.5 to 5.0 times. The temperature is preferably in the range of (Tg) to (Tg + 50) ° C., more preferably in the range of (Tg) to (Tg + 30) ° C. After TD stretching, heat setting is performed. In the heat setting treatment, the film is relaxed under tension or in the width direction (relaxation rate 0 to 10%), preferably at a temperature of (Tm-70) to (Tm) ° C., more preferably (Tm-50) to (Tm -10) Heat treatment is performed at a temperature of ° C, more preferably in the range of (Tm-40) to (Tm-20) ° C. The heat treatment time is preferably in the range of 0.5 to 20 seconds. Then, after cooling to 25 ° C., the film edge can be removed to obtain the polyester film of the present invention.

[物性の測定方法ならびに効果の評価方法]
(1)損失正接(tanδ)ピーク温度
エスアイアイナノテクノロジー(株)製動的粘弾性装置DMS6100型を用い、下記条件にて損失正接(tanδ)を測定し、そのピークの最大高さにおける温度をtanδピーク温度とした。ピークが複数存在あるいはショルダーを有する場合は最も高いピークで評価する。サンプルおよび測定装置の設定は下記の通り。
サンプル長:20mm
サンプル幅:10mm
温度範囲:25〜200℃
昇温速度;2℃/分
歪振幅:10mN
圧縮力ゲイン:1.5
力振幅初期値:100mN。
[Methods for measuring physical properties and methods for evaluating effects]
(1) Loss tangent (tan δ) peak temperature Using a dynamic viscoelastic device DMS6100 manufactured by SII Nano Technology, the loss tangent (tan δ) is measured under the following conditions, and the temperature at the maximum height of the peak is measured. The tan δ peak temperature was used. When there are multiple peaks or shoulders, the highest peak is evaluated. Sample and measurement device settings are as follows.
Sample length: 20mm
Sample width: 10mm
Temperature range: 25-200 ° C
Temperature increase rate: 2 ° C./min Strain amplitude: 10 mN
Compression force gain: 1.5
Initial value of force amplitude: 100 mN.

(2)黄色度(b値)の増加量(Δb値)
分光式色差計CM−3600d(KONICA−MINOLTA製)を用い、JIS−K−7105(1981)に従って透過法で三刺激値X,Y,Zを測定した。そこから、下記式にてハンターLab表色系の黄色度(b値)を算出した。
b値=7.0×(Y−0.847×Z)/Y1/2
さらに、Δb値は下記の式にて算出した。紫外線照射は紫外線劣化促進試験機(SUV−W131:岩崎電気(株)製UV照度:100mW/cm、UV波長:295nm〜450nm、ランプ種:メタルハライド、温湿度:60℃×50%RH)を用いて行った。
Δb値=(紫外線48時間照射後のb値)―(照射前の初期b値)。
(2) Increase in yellowness (b value) (Δb value)
Tristimulus values X, Y, and Z were measured by a transmission method according to JIS-K-7105 (1981) using a spectroscopic color difference meter CM-3600d (manufactured by KONICA-MINOLTA). From there, the yellowness (b value) of the Hunter Lab color system was calculated according to the following formula.
b value = 7.0 × (Y−0.847 × Z) / Y 1/2
Further, the Δb value was calculated by the following formula. For ultraviolet irradiation, an ultraviolet deterioration accelerating tester (SUV-W131: manufactured by Iwasaki Electric Co., Ltd., UV illuminance: 100 mW / cm 2 , UV wavelength: 295 nm to 450 nm, lamp type: metal halide, temperature and humidity: 60 ° C. × 50% RH) Used.
Δb value = (b value after irradiation for 48 hours of ultraviolet rays) − (initial b value before irradiation).

(3)フィルム中の樹脂の含有量の測定
フィルムを秤量後、ヘキサフルオロイソプロパノール(HFIP)/クロロホルム(質量比50/50)の混合溶媒に溶解する。不溶な成分がある場合は、この不溶成分を遠心分離で分取した後、質量を測定し、元素分析、FT−IR、NMR法により該成分の構造と質量分率を測定する。上澄み成分についても同様に分析すれば、ポリエステル成分および他成分の質量分率と構造が特定できる。詳しくは、この上澄み成分から溶媒を留去した後にHFIP/重クロロホルム(質量比50/50)混合溶媒に溶解した後、1H核のNMRスペクトルを測定する。得られたスペクトルで、各成分に特有の吸収(例えば、PETであればテレフタル酸の芳香族プロトン、PEIであればビスフェノールAの芳香族のプロトン)のピーク面積強度を求め、その比率とプロトン数よりブレンドのモル比を算出する。さらにポリマーの単位ユニットに相当する式量より質量比を算出する。このようにして各成分の質量分率と構造が特定できる。
(3) Measurement of resin content in film After weighing the film, it is dissolved in a mixed solvent of hexafluoroisopropanol (HFIP) / chloroform (mass ratio 50/50). When there is an insoluble component, the insoluble component is separated by centrifugation, then the mass is measured, and the structure and mass fraction of the component are measured by elemental analysis, FT-IR, and NMR methods. If the supernatant component is analyzed in the same manner, the mass fraction and structure of the polyester component and other components can be specified. Specifically, after the solvent is distilled off from the supernatant component and dissolved in a mixed solvent of HFIP / deuterated chloroform (mass ratio 50/50), the NMR spectrum of 1 H nucleus is measured. In the obtained spectrum, the peak area intensity of absorption peculiar to each component (for example, aromatic proton of terephthalic acid for PET, aromatic proton of bisphenol A for PEI) is determined, and the ratio and number of protons are obtained. The blend molar ratio is calculated. Further, the mass ratio is calculated from the formula amount corresponding to the unit unit of the polymer. In this way, the mass fraction and structure of each component can be specified.

(4)面配向係数
面配向係数は、JIS−K7142(1996)に準拠して測定する。ナトリウムD線を光源として、アッベ屈折率計を用いてMD、TDおよび厚み方向(ZD)方向の屈折率を測定した。マウント液はヨウ化メチレンを用い、温度25℃、湿度65%RHの条件下で測定した。
・試料幅:25mm
・試料長:30mm
・測定装置:アッベ屈折率計 NAR−1T (株)アタゴ社製
・マウント液:ヨウ化メチレン(ポリエチレンナフタレートの場合は、硫黄ヨウ化メチレン)
・測定環境:温度23℃湿度65%RH。
・算出式:面配向係数fn=(nMD+nTD)/2−nZD
ここで、nMDはMD方向屈折率、nTDはTD方向屈折率、nZDはZD方向屈折率。
(4) Plane orientation coefficient The plane orientation coefficient is measured according to JIS-K7142 (1996). Using sodium D line as a light source, the refractive index in the MD, TD and thickness direction (ZD) directions was measured using an Abbe refractometer. The mount solution was methylene iodide, and measurement was performed under conditions of a temperature of 25 ° C. and a humidity of 65% RH.
・ Sample width: 25mm
・ Sample length: 30 mm
・ Measurement device: Abbe refractometer NAR-1T manufactured by Atago Co., Ltd. ・ Mount solution: methylene iodide (in the case of polyethylene naphthalate, sulfur methylene iodide)
Measurement environment: temperature 23 ° C., humidity 65% RH.
Calculation formula: plane orientation coefficient fn = (nMD + nTD) / 2−nZD
Here, nMD is a refractive index in the MD direction, nTD is a refractive index in the TD direction, and nZD is a refractive index in the ZD direction.

(5)伸度保持率(温度200℃、72時間)
破断伸度E0は、ASTM−D882(1997)に基づいて、サンプルを1cm×20cmの大きさに切り出し、チャック間5cm、引っ張り速度300mm/minにて引っ張ったときの破断伸度を測定した。測定は、5サンプルについて測定を実施しその平均値でもって破断伸度E0とした。次いで、試料を測定片の形状(1cm×20cm)に切り出した後、エスペック(株)製STPH−102にて、温度200℃にて72時間処理を行った後、処理後のサンプルの破断伸度をASTM−D882(1997)に基づいて、チャック間5cm、引っ張り速度300mm/minで測定した。測定は、5サンプルについて測定しその平均値を破断伸度E1とした。得られた破断伸度E0とE1を用いて、下記式により伸度保持率(温度200℃、72時間)を算出した。
・伸度保持率(温度200℃、72時間)(%)=(E1/E0)×100。
(5) Elongation retention (temperature 200 ° C., 72 hours)
The breaking elongation E0 was determined by measuring the breaking elongation when a sample was cut into a size of 1 cm × 20 cm and pulled at a chucking speed of 5 cm and a pulling speed of 300 mm / min based on ASTM-D882 (1997). The measurement was performed on five samples, and the elongation at break was defined as the average value. Next, after cutting the sample into the shape of a measurement piece (1 cm × 20 cm), the sample was treated with STPH-102 manufactured by Espec Co., Ltd. for 72 hours at a temperature of 200 ° C., and then the fracture elongation of the sample after the treatment. Was measured according to ASTM-D882 (1997) at a chuck distance of 5 cm and a pulling speed of 300 mm / min. The measurement was performed on five samples, and the average value was defined as the elongation at break E1. Using the obtained elongation at break E0 and E1, the elongation retention (temperature 200 ° C., 72 hours) was calculated according to the following formula.
Elongation retention rate (temperature 200 ° C., 72 hours) (%) = (E1 / E0) × 100.

(6)伸度保持率(温度125℃、湿度100%RH、72時間)
破断伸度E0は、上記(5)と同様にして求める。次いで、試料を測定片の形状(1cm×20cm)に切り出した後、(株)平山製作所製プレッシャークッカーPC304R8Dにて、温度125℃、湿度100%RHの条件下で72時間処理を行った後、処理後のサンプルの破断伸度をASTM−D882(1997)に基づいて、チャック間5cm、引っ張り速度300mm/minで測定した。測定は、5サンプルについて測定しその平均値を破断伸度E2とした。得られた破断伸度E0とE2を用いて、下記式により伸度保持率(温度125℃、湿度100%RH、72時間)を算出した。
・伸度保持率(温度125℃、湿度100%RH、72時間)(%)=(E2/E0)×100。
(6) Elongation retention (temperature 125 ° C., humidity 100% RH, 72 hours)
The breaking elongation E0 is obtained in the same manner as (5) above. Next, after the sample was cut into the shape of the measurement piece (1 cm × 20 cm), it was treated for 72 hours under the conditions of a temperature cooker PC304R8D manufactured by Hirayama Seisakusho at a temperature of 125 ° C. and a humidity of 100% RH. Based on ASTM-D882 (1997), the breaking elongation of the sample after the treatment was measured at a chuck distance of 5 cm and a pulling speed of 300 mm / min. The measurement was performed on five samples, and the average value was defined as the elongation at break E2. Using the obtained elongation at break E0 and E2, the elongation retention (temperature 125 ° C., humidity 100% RH, 72 hours) was calculated according to the following formula.
Elongation retention (temperature 125 ° C., humidity 100% RH, 72 hours) (%) = (E2 / E0) × 100.

(7)光線透過率測定
日立製作所製分光光度計(U−4100 Spectrophotomater)で光線透過率を測定した。光波長範囲は240〜800nmとし、360nmの透過率を評価した。
(7) Light transmittance measurement The light transmittance was measured with a spectrophotometer (U-4100 Spectrophotometer) manufactured by Hitachi, Ltd. The light wavelength range was 240 to 800 nm, and the transmittance at 360 nm was evaluated.

(8)固有粘度(IV)
オルトクロロフェノール中、25℃の温度で測定した溶液粘度から、下式に基づいて計算する。
ηsp/C=[η]+K[η]×C
ここで、ηsp=(溶液粘度/溶媒粘度)−1であり、Cは溶媒100mlあたりの溶解ポリマー質量(g/100ml、通常1.2)であり、Kはハギンス定数(0.343とする)である。また、溶液粘度と溶媒粘度は、オストワルド粘度計を用いて測定する。
(8) Intrinsic viscosity (IV)
Calculation is made based on the following formula from the solution viscosity measured at a temperature of 25 ° C. in orthochlorophenol.
ηsp / C = [η] + K [η] 2 × C
Here, ηsp = (solution viscosity / solvent viscosity) −1, C is the dissolved polymer mass per 100 ml of solvent (g / 100 ml, usually 1.2), and K is the Huggins constant (assuming 0.343). It is. The solution viscosity and solvent viscosity are measured using an Ostwald viscometer.

(9)耐加水分解性
本発明の太陽電池バックシート用フィルムを第1層として用い、接着層として“タケラック”(登録商標)A310(三井武田ケミカル(株)製)90質量部と“タケネート”(登録商標)A3(三井武田ケミカル(株)製)を塗布し、その上に第2層として厚さ125μmの二軸延伸ポリエステルフィルム“ルミラー”(登録商標)S10(東レ(株)製)を貼り合わせた。次に、上記の第2層上に上述の接着層を塗布し、厚さ12μmのバリアロックス“HGTS”(登録商標)(東レフィルム加工(株)製のアルミナ蒸着PETフィルム)を蒸着層が第2層と反対側になるように貼り合わせ、厚さ188μmのバックシートを形成した。得られたバックシートの破断伸度E0は、上記(5)と同様にして求める。次いで、試料を測定片の形状(1cm×20cm)に切り出した後、恒温恒湿槽(エスペック(株)製恒温恒湿槽KH−60A)を用いて、温度85℃、湿度85%RHの雰囲気下で3000時間放置した後、処理後のサンプルの破断伸度をASTM−D882(1997)に基づいて、チャック間5cm、引っ張り速度300mm/minで測定した。測定は、5サンプルについて測定しその平均値を破断伸度E3とした。得られた破断伸度E0とE3を用いて、下記式により伸度保持率(温度85℃、湿度85%RH、3000時間)を算出した。
・伸度保持率(温度85℃、湿度85%RH、3000時間)(%)=(E3/E0)×100
その伸度保持率を下記の基準で判定し、耐加水分解性を評価した。
◎:伸度保持率が70%以上 非常に良好
○:伸度保持率が50%以上70%未満 良好
△:伸度保持率が30%以上50%未満 やや良好
×:伸度保持率が30%未満 不良。
(9) Hydrolysis resistance Using the film for solar cell backsheet of the present invention as the first layer, 90 parts by mass of “Takelac” (registered trademark) A310 (manufactured by Mitsui Takeda Chemical Co., Ltd.) and “Takenate” as the adhesive layer (Registered trademark) A3 (manufactured by Mitsui Takeda Chemical Co., Ltd.) is applied, and a biaxially stretched polyester film “Lumirror” (registered trademark) S10 (manufactured by Toray Industries, Inc.) having a thickness of 125 μm is applied as a second layer thereon. Pasted together. Next, the above-mentioned adhesive layer is applied onto the above-mentioned second layer, and the barrier layer “HGTS” (registered trademark) having a thickness of 12 μm (alumina-deposited PET film manufactured by Toray Film Processing Co., Ltd.) A back sheet having a thickness of 188 μm was formed by bonding so as to be opposite to the two layers. The breaking elongation E0 of the obtained back sheet is obtained in the same manner as in the above (5). Next, after cutting the sample into the shape of a measurement piece (1 cm × 20 cm), using a constant temperature and humidity chamber (Espec Co., Ltd. constant temperature and humidity chamber KH-60A), an atmosphere having a temperature of 85 ° C. and a humidity of 85% RH. The sample was allowed to stand for 3,000 hours, and the breaking elongation of the treated sample was measured at 5 cm between chucks and 300 mm / min pulling speed based on ASTM-D882 (1997). The measurement was performed on five samples, and the average value was defined as the elongation at break E3. Using the obtained elongation at break E0 and E3, the elongation retention (temperature 85 ° C., humidity 85% RH, 3000 hours) was calculated according to the following formula.
Elongation retention (temperature 85 ° C., humidity 85% RH, 3000 hours) (%) = (E3 / E0) × 100
The elongation retention was determined according to the following criteria, and the hydrolysis resistance was evaluated.
◎: Elongation retention 70% or more Very good ◯: Elongation retention 50% or more and less than 70% Good △: Elongation retention 30% or more but less than 50% Slightly good X: Elongation retention 30 Less than% Poor.

(10)耐熱性
(9)と同様にバックシートを作製し破断伸度E0を測定した。次いで、試料を測定片の形状(1cm×20cm)に切り出した後、エスペック(株)製高温恒温器STPH−102を用いて、温度150℃の雰囲気下で3000時間放置した後、処理後のサンプルの破断伸度をASTM−D882(1997)に基づいて、チャック間5cm、引っ張り速度300mm/minで測定した。測定は、5サンプルについて測定しその平均値を破断伸度E4とした。得られた破断伸度E0とE4を用いて、下記式により伸度保持率(温度150℃、3000時間)を算出した。
・伸度保持率(温度150℃、3000時間)(%)=(E4/E0)×100
その伸度保持率を下記の基準で判定し、耐熱性を評価した。
◎:伸度保持率が70%以上 非常に良好
○:伸度保持率が50%以上70%未満 良好
△:伸度保持率が30%以上50%未満 やや良好
×:伸度保持率が30%未満 不良。
(10) Heat resistance As in (9), a back sheet was prepared and the elongation at break E0 was measured. Next, after cutting the sample into the shape of a measurement piece (1 cm × 20 cm), using a high temperature thermostat STPH-102 manufactured by Espec Co., Ltd., left for 3000 hours in an atmosphere at a temperature of 150 ° C., and then a sample after treatment Based on ASTM-D882 (1997), the elongation at break was measured at 5 cm between chucks and at a pulling speed of 300 mm / min. The measurement was performed on five samples, and the average value was defined as the elongation at break E4. Using the obtained elongation at break E0 and E4, the elongation retention (temperature 150 ° C., 3000 hours) was calculated according to the following formula.
Elongation retention (temperature 150 ° C., 3000 hours) (%) = (E4 / E0) × 100
The elongation retention was determined according to the following criteria, and the heat resistance was evaluated.
◎: Elongation retention 70% or more Very good ◯: Elongation retention 50% or more and less than 70% Good △: Elongation retention 30% or more but less than 50% Slightly good X: Elongation retention 30 Less than% Poor.

(11)耐候性
(9)と同様にバックシートを作製し破断伸度E0を測定した。次いで、試料を測定片の形状(1cm×20cm)に切り出した後、屋外の暴露試験で3000時間放置した後、処理後のサンプルの破断伸度をASTM−D882(1997)に基づいて、チャック間5cm、引っ張り速度300mm/minで測定した。測定は、5サンプルについて測定しその平均値を破断伸度E5とした。得られた破断伸度E0とE5を用いて、下記式により伸度保持率(屋外、3000時間)を算出した。
・伸度保持率(屋外、3000時間)(%)=(E5/E0)×100
伸度保持率を下記の基準で判定し、耐候性を評価した。
◎:伸度保持率が70%以上 非常に良好
○:伸度保持率が50%以上70%未満 良好
△:伸度保持率が30%以上50%未満 やや良好
×:伸度保持率が30%未満 不良。
(11) A back sheet was prepared in the same manner as the weather resistance (9), and the elongation at break E0 was measured. Next, after cutting the sample into the shape of a measurement piece (1 cm × 20 cm) and leaving it for 3000 hours in an outdoor exposure test, the fracture elongation of the treated sample was measured between chucks based on ASTM-D882 (1997). The measurement was performed at 5 cm and a pulling speed of 300 mm / min. The measurement was performed on five samples, and the average value was defined as the elongation at break E5. Using the obtained elongation at break E0 and E5, the elongation retention (outdoor, 3000 hours) was calculated according to the following formula.
・ Elongation retention (outdoor, 3000 hours) (%) = (E5 / E0) × 100
The elongation retention was determined according to the following criteria, and the weather resistance was evaluated.
◎: Elongation retention 70% or more Very good ◯: Elongation retention 50% or more and less than 70% Good △: Elongation retention 30% or more but less than 50% Slightly good X: Elongation retention 30 Less than% Poor.

(12)ブリードアウト性
本発明の太陽電池バックシート用フィルムを第1層として用い、接着層として“タケラック”(登録商標)A310(三井武田ケミカル(株)製)90質量部と“タケネート”(登録商標)A3(三井武田ケミカル(株)製)を塗布し、その上に第2層として厚さ125μmの二軸延伸ポリエステルフィルム“ルミラー”(登録商標)S10(東レ(株)製)を貼り合わせた。23℃、50%RH雰囲気下において、JIS−Z0237(2009)に準じて、上下のクリップに貼り合わせたフィルムの未接着部を挟み、剥離角180°、引張速度100mm/分でブリードアウトを測定した。添加剤がブリードアウトすると接着性が悪化し接着力が低下する。
○:10N/20mm以上、20N/20mm未満・・・接着性良好
△:5N/20mm以上、10N/20mm未満・・・接着性やや良好
×:5N/20mm未満・・・接着性不良
(12) Bleed-out property Using the film for solar cell backsheet of the present invention as the first layer, 90 parts by mass of “Takelac” (registered trademark) A310 (manufactured by Mitsui Takeda Chemical Co., Ltd.) and “Takenate” ( (Registered Trademark) A3 (Mitsui Takeda Chemical Co., Ltd.) is applied, and a 125 μm thick biaxially stretched polyester film “Lumirror” (Registered Trademark) S10 (Toray Industries, Inc.) is applied as a second layer thereon. Combined. In an atmosphere of 23 ° C. and 50% RH, according to JIS-Z0237 (2009), the unbonded part of the film bonded to the upper and lower clips is sandwiched, and the bleed out is measured at a peeling angle of 180 ° and a pulling speed of 100 mm / min. did. When the additive bleeds out, the adhesiveness deteriorates and the adhesive strength decreases.
○: 10N / 20mm or more, less than 20N / 20mm ... adhesiveness good Δ: 5N / 20mm or more, less than 10N / 20mm ... adhesiveness slightly good x: less than 5N / 20mm ... adhesion poor

(参考例1)
テレフタル酸ジメチル100質量部とエチレングリコール64質量部とをエステル交換反応装置に仕込み、内容物を140℃の温度に加熱して溶解した。その後、内容物を撹拌しながら、酢酸カルシウム0.09質量部および三酸化アンチモン0.03質量部を加え、140〜230℃の温度でメタノールを留出しつつエステル交換反応を行った。次いで、酢酸リチウム0.18質量部とリン酸トリメチルの5質量%エチレングリコール溶液を4.8質量部(リン酸トリメチルとして0.24質量部)添加した。
(Reference Example 1)
100 parts by mass of dimethyl terephthalate and 64 parts by mass of ethylene glycol were charged into a transesterification reaction apparatus, and the contents were heated to a temperature of 140 ° C. and dissolved. Thereafter, 0.09 parts by mass of calcium acetate and 0.03 parts by mass of antimony trioxide were added while stirring the contents, and a transesterification reaction was performed while distilling methanol at a temperature of 140 to 230 ° C. Next, 0.18 parts by mass of lithium acetate and 4.8 parts by mass of a 5% by mass ethylene glycol solution of trimethyl phosphate (0.24 parts by mass as trimethyl phosphate) were added.

トリメチルリン酸のエチレングリコール溶液を添加すると、反応内容物の温度が低下する。そこで、余剰のエチレングリコールを留出させながら、反応内容物の温度が230℃に復帰するまで撹拌を継続した。このようにしてエステル交換反応装置内の反応内容物の温度が230℃に達したら、反応内容物を重合装置に移行した。   When the ethylene glycol solution of trimethyl phosphoric acid is added, the temperature of the reaction contents decreases. Therefore, stirring was continued until the temperature of the reaction contents returned to 230 ° C. while distilling excess ethylene glycol. When the temperature of the reaction contents in the transesterification reactor thus reached 230 ° C., the reaction contents were transferred to the polymerization apparatus.

反応内容物を重合装置に移行後、反応系を230℃から290℃の温度にまで徐々に昇温するとともに、圧力を0.1kPaまで下げた。最終温度290℃と最終圧力0.1kPa到達までの時間はともに60分とした。最終温度と最終圧力に到達した後、2時間(重合を始めて3時間)反応させたところ、重合装置の撹拌トルクが所定の値(重合装置の仕様によって具体的な値は異なるが、本重合装置で固有粘度0.65のポリエチレンテレフタレートが示す値を所定の値とした)を示した。そこで反応系を、窒素パージし常圧に戻して重縮合反応を停止し、冷水にストランド状に吐出し、直ちにカッティングして、固有粘度0.65のポリエチレンテレフタレートのPETペレットA(3mm立方)を得た。   After the reaction contents were transferred to the polymerization apparatus, the reaction system was gradually heated from 230 ° C. to 290 ° C. and the pressure was reduced to 0.1 kPa. The time to reach a final temperature of 290 ° C. and a final pressure of 0.1 kPa was both 60 minutes. After reaching the final temperature and final pressure, the reaction was carried out for 2 hours (3 hours after the start of polymerization), and the stirring torque of the polymerization apparatus was a predetermined value (the specific value differs depending on the specifications of the polymerization apparatus, but this polymerization apparatus The value indicated by polyethylene terephthalate having an intrinsic viscosity of 0.65 was a predetermined value). Therefore, the reaction system was purged with nitrogen and returned to normal pressure to stop the polycondensation reaction, discharged into cold water in a strand form, and immediately cut to obtain PET pellet A (3 mm cubic) of polyethylene terephthalate having an intrinsic viscosity of 0.65. Obtained.

(参考例2)
回転型真空重合装置を用いて、上記の参考例1で得られたPETペレットAを0.1kPaの減圧下230℃の温度で長時間加熱処理し、固相重合を行った。加熱処理時間が長いほど固有粘度は高くなる。処理時間20時間で固有粘度は0.80である。
(Reference Example 2)
Using a rotary vacuum polymerization apparatus, the PET pellet A obtained in the above Reference Example 1 was heat-treated at a temperature of 230 ° C. under a reduced pressure of 0.1 kPa for a long time to carry out solid phase polymerization. The longer the heat treatment time, the higher the intrinsic viscosity. The intrinsic viscosity is 0.80 after a treatment time of 20 hours.

(参考例3)
参考例2で得た固有粘度0.8のポリエチレンテレフタレート(PET)50質量部とSABIC社製のポリエーテルイミド(PEI)“ウルテム”1010を50質量部、150℃で5時間除湿乾燥した後、320〜290℃に加熱された(スクリューゾーン、押出ヘッド部で温度勾配を設定)2軸三段タイプのスクリュー(PETとPEIの混練可塑化ゾーン/ダルメージ混練ゾーン/逆ネジダルメージによる微分散相溶化ゾーン)と具備したベント式二軸押出機(L/D=40、ベント孔の減圧度は200Paとした)に供給して、滞留時間3分にて溶融押出し、PEIを50質量%含有したPET/PEIブレンドチップを得た。このチップをブレンドチップAとした。
(Reference Example 3)
After 50 parts by mass of polyethylene terephthalate (PET) having an intrinsic viscosity of 0.8 obtained in Reference Example 2 and 50 parts by mass of polyetherimide (PEI) “Ultem” 1010 manufactured by SABIC, dehumidifying and drying at 150 ° C. for 5 hours, Heated to 320-290 ° C (screw zone, temperature gradient set at extrusion head), twin-screw, three-stage type screw (PET and PEI kneading plasticization zone / Dalmage kneading zone / Fine dispersion compatibilizing zone by reverse screwing Dalmage ) And a vent type twin screw extruder (L / D = 40, the pressure reduction degree of the vent hole is 200 Pa), melt-extruded in a residence time of 3 minutes, and PET / PET containing 50% by mass of PEI. A PEI blend chip was obtained. This chip was designated as blend chip A.

(参考例4)
回転型真空重合装置を用いて、上記の参考例3で得られたブレンドチップAを0.1kPaの減圧下230℃の温度で長時間加熱処理し、固相重合を行った。加熱処理時間が長いほど固有粘度は高くなる。処理時間40時間で固有粘度は0.90である。処理時間90時間で固有粘度は1.2である。処理時間110時間で固有粘度は1.3である。
(Reference Example 4)
Using a rotary vacuum polymerization apparatus, the blend chip A obtained in Reference Example 3 was heat-treated at a temperature of 230 ° C. under a reduced pressure of 0.1 kPa for a long time to perform solid phase polymerization. The longer the heat treatment time, the higher the intrinsic viscosity. The intrinsic viscosity is 0.90 after a treatment time of 40 hours. The intrinsic viscosity is 1.2 at a treatment time of 90 hours. The intrinsic viscosity is 1.3 at a treatment time of 110 hours.

(実施例1)
280℃の温度に加熱された押出機Eには、参考例2で得られた固有粘度0.8のPETペレット80質量部と、参考例4で得られた固有粘度0.9のブレンドチップA20質量部を180℃の温度で3時間減圧乾燥した後に供給し、窒素雰囲気下Tダイ口金に導入した。次いで、Tダイ口金内から、シート状に押出して溶融単層シートとし、表面温度25℃に保たれたドラム上に静電印加法で密着冷却固化させて未延伸単層フィルムを得た。
Example 1
In extruder E heated to a temperature of 280 ° C., 80 parts by mass of PET pellets having an intrinsic viscosity of 0.8 obtained in Reference Example 2 and blend chip A20 having an intrinsic viscosity of 0.9 obtained in Reference Example 4 were used. The mass part was supplied after drying under reduced pressure at a temperature of 180 ° C. for 3 hours, and introduced into a T-die die under a nitrogen atmosphere. Next, from the inside of the T die die, it was extruded into a sheet shape to obtain a molten single layer sheet, which was closely cooled and solidified by an electrostatic application method on a drum maintained at a surface temperature of 25 ° C. to obtain an unstretched single layer film.

続いて、得られた未延伸単層フィルムを加熱したロール群で予熱した後、90℃の温度で1.8倍MD延伸1を行い、さらに110℃の温度で2.3倍MD延伸2を行った。トータルで長手方向(MD方向)に4.1倍延伸を行った後、25℃の温度のロール群で冷却して一軸延伸フィルムを得た。得られた一軸延伸フィルムの両端をクリップで把持しながらテンター内の95℃の温度の予熱ゾーンに導き、引き続き連続的に100℃の温度の加熱ゾーンで長手方向に直角な幅方向(TD方向)に4.0倍延伸した。さらに引き続いて、テンター内の熱処理ゾーンで220℃の温度で10秒間の熱処理を施し、さらに220℃の温度で4%幅方向に弛緩処理を行った。次いで、均一に徐冷後、巻き取って、厚さ50μmの二軸配向ポリエステルフィルムを得た。   Subsequently, after preheating the obtained unstretched monolayer film with a heated roll group, 1.8 times MD stretching 1 is performed at a temperature of 90 ° C., and 2.3 times MD stretching 2 is further performed at a temperature of 110 ° C. went. The film was stretched 4.1 times in the longitudinal direction (MD direction) in total, and then cooled with a roll group having a temperature of 25 ° C. to obtain a uniaxially stretched film. While holding both ends of the obtained uniaxially stretched film with clips, it is led to a preheating zone at a temperature of 95 ° C. in the tenter, and continuously in the heating zone at a temperature of 100 ° C. in the width direction (TD direction) perpendicular to the longitudinal direction The film was stretched 4.0 times. Subsequently, a heat treatment was performed for 10 seconds at a temperature of 220 ° C. in a heat treatment zone in the tenter, and a relaxation treatment was further performed in the 4% width direction at a temperature of 220 ° C. Subsequently, the film was gradually cooled and wound up to obtain a biaxially oriented polyester film having a thickness of 50 μm.

得られたポリエステルフィルムを評価したところ、表1と表2に示すように、耐加水分解性、耐熱性、耐候性、ブリードアウト性に優れた特性を有していた。   When the obtained polyester film was evaluated, as shown in Tables 1 and 2, the polyester film had excellent resistance to hydrolysis, heat resistance, weather resistance, and bleed out.

(実施例2)
参考例2で得られた固有粘度0.8のPETペレット96質量部と、参考例4で得られた固有粘度0.9のブレンドチップA4質量部を使用すること、82℃の温度で1.8倍MD延伸1を行い、さらに102℃の温度で2.3倍MD延伸2を行った。トータルで長手方向(MD方向)に4.1倍延伸を行った後、25℃の温度のロール群で冷却して一軸延伸フィルムを得た。得られた一軸延伸フィルムの両端をクリップで把持しながらテンター内の87℃の温度の予熱ゾーンに導き、引き続き連続的に92℃の温度の加熱ゾーンで長手方向に直角な幅方向(TD方向)に4.0倍延伸したこと以外は、実施例1と同様の方法で二軸配向ポリエステルフィルムを得た。得られたポリエステルフィルムを評価したところ、耐熱性、耐加水分解性、耐候性、ブリードアウト性に優れた特性を有していた。
(Example 2)
Use 96 parts by mass of PET pellets having an intrinsic viscosity of 0.8 obtained in Reference Example 2 and 4 parts by mass of blend chip A having an intrinsic viscosity of 0.9 obtained in Reference Example 4; 8 times MD stretching 1 was performed, and 2.3 times MD stretching 2 was further performed at a temperature of 102 ° C. The film was stretched 4.1 times in the longitudinal direction (MD direction) in total, and then cooled with a roll group having a temperature of 25 ° C. to obtain a uniaxially stretched film. While holding both ends of the obtained uniaxially stretched film with clips, the tenter is guided to a preheating zone at a temperature of 87 ° C. in the tenter, and then continuously in the heating zone at a temperature of 92 ° C. in the width direction (TD direction) perpendicular to the longitudinal direction. A biaxially oriented polyester film was obtained in the same manner as in Example 1 except that the film was stretched 4.0 times. When the obtained polyester film was evaluated, it had excellent heat resistance, hydrolysis resistance, weather resistance, and bleed-out properties.

(実施例3)
参考例2で得られた固有粘度0.8のPETペレット40質量部と、参考例4で得られた固有粘度0.9のブレンドチップA60質量部を使用すること、110℃の温度で1.8倍MD延伸1を行い、さらに130℃の温度で2.3倍MD延伸2を行った。トータルで長手方向(MD方向)に4.1倍延伸を行った後、25℃の温度のロール群で冷却して一軸延伸フィルムを得た。得られた一軸延伸フィルムの両端をクリップで把持しながらテンター内の115℃の温度の予熱ゾーンに導き、引き続き連続的に120℃の温度の加熱ゾーンで長手方向に直角な幅方向(TD方向)に4.0倍延伸したこと以外は、実施例1と同様の方法で二軸配向ポリエステルフィルムを得た。得られたポリエステルフィルムを評価したところ、耐加水分解性、耐熱性、耐候性、ブリードアウト性に優れた特性を有していた。
(Example 3)
Use 40 parts by mass of PET pellets having an intrinsic viscosity of 0.8 obtained in Reference Example 2 and 60 parts by mass of Blend Chip A having an intrinsic viscosity of 0.9 obtained in Reference Example 4, and at a temperature of 110 ° C. 8 times MD stretching 1 was performed, and 2.3 times MD stretching 2 was further performed at a temperature of 130 ° C. The film was stretched 4.1 times in the longitudinal direction (MD direction) in total, and then cooled with a roll group having a temperature of 25 ° C. to obtain a uniaxially stretched film. While holding both ends of the obtained uniaxially stretched film with clips, it is guided to a preheating zone at a temperature of 115 ° C in the tenter, and then continuously in the heating zone at a temperature of 120 ° C in the width direction (TD direction) perpendicular to the longitudinal direction. A biaxially oriented polyester film was obtained in the same manner as in Example 1 except that the film was stretched 4.0 times. When the obtained polyester film was evaluated, it had excellent resistance to hydrolysis, heat resistance, weather resistance, and bleed out.

(実施例4)
参考例2で得られた固有粘度0.8のPETペレット84質量部と、参考例4で得られた固有粘度0.9のブレンドチップA16質量部を使用すること、88℃の温度で1.8倍MD延伸1を行い、さらに108℃の温度で2.3倍MD延伸2を行った。トータルで長手方向(MD方向)に4.1倍延伸を行った後、25℃の温度のロール群で冷却して一軸延伸フィルムを得た。得られた一軸延伸フィルムの両端をクリップで把持しながらテンター内の93℃の温度の予熱ゾーンに導き、引き続き連続的に98℃の温度の加熱ゾーンで長手方向に直角な幅方向(TD方向)に4.0倍延伸したこと以外は、実施例1と同様の方法で二軸配向ポリエステルフィルムを得た。得られたポリエステルフィルムを評価したところ、耐加水分解性、耐熱性、耐候性、ブリードアウト性に優れた特性を有していた。
Example 4
Use 84 parts by mass of PET pellets having an intrinsic viscosity of 0.8 obtained in Reference Example 2 and 16 parts by mass of blend chip A having an intrinsic viscosity of 0.9 obtained in Reference Example 4; 8 times MD stretching 1 was performed, and 2.3 times MD stretching 2 was further performed at a temperature of 108 ° C. The film was stretched 4.1 times in the longitudinal direction (MD direction) in total, and then cooled with a roll group having a temperature of 25 ° C. to obtain a uniaxially stretched film. While holding both ends of the obtained uniaxially stretched film with clips, it is led to a preheating zone at a temperature of 93 ° C. in the tenter, and then continuously in the heating zone at a temperature of 98 ° C. in the width direction (TD direction) perpendicular to the longitudinal direction. A biaxially oriented polyester film was obtained in the same manner as in Example 1 except that the film was stretched 4.0 times. When the obtained polyester film was evaluated, it had excellent resistance to hydrolysis, heat resistance, weather resistance, and bleed out.

(実施例5)
参考例2で得られた固有粘度0.8のPETペレット60質量部と、参考例4で得られた固有粘度0.9のブレンドチップA40質量部を使用すること、100℃の温度で1.8倍MD延伸1を行い、さらに120℃の温度で2.3倍MD延伸2を行った。トータルで長手方向(MD方向)に4.1倍延伸を行った後、25℃の温度のロール群で冷却して一軸延伸フィルムを得た。得られた一軸延伸フィルムの両端をクリップで把持しながらテンター内の105℃の温度の予熱ゾーンに導き、引き続き連続的に110℃の温度の加熱ゾーンで長手方向に直角な幅方向(TD方向)に4.0倍延伸したこと以外は、実施例1と同様の方法で二軸配向ポリエステルフィルムを得た。得られたポリエステルフィルムを評価したところ、耐加水分解性、耐熱性、耐候性、ブリードアウト性に優れた特性を有していた。
(Example 5)
Use 60 parts by mass of PET pellets having an intrinsic viscosity of 0.8 obtained in Reference Example 2 and 40 parts by mass of blend chip A having an intrinsic viscosity of 0.9 obtained in Reference Example 4 and at a temperature of 100 ° C. 8 times MD stretching 1 was performed, and further 2.3 times MD stretching 2 was performed at a temperature of 120 ° C. The film was stretched 4.1 times in the longitudinal direction (MD direction) in total, and then cooled with a roll group having a temperature of 25 ° C. to obtain a uniaxially stretched film. While holding both ends of the obtained uniaxially stretched film with clips, it is guided to a preheating zone at a temperature of 105 ° C. in the tenter, and then continuously in a heating zone at a temperature of 110 ° C. in the width direction perpendicular to the longitudinal direction (TD direction). A biaxially oriented polyester film was obtained in the same manner as in Example 1 except that the film was stretched 4.0 times. When the obtained polyester film was evaluated, it had excellent resistance to hydrolysis, heat resistance, weather resistance, and bleed out.

(実施例6)
参考例2で得られた固有粘度0.8のPETペレット40質量部と、参考例3で得られた固有粘度0.59のブレンドチップA60質量部を使用すること、110℃の温度で1.8倍MD延伸1を行い、さらに130℃の温度で2.3倍MD延伸2を行った。トータルで長手方向(MD方向)に4.1倍延伸を行った後、25℃の温度のロール群で冷却して一軸延伸フィルムを得た。得られた一軸延伸フィルムの両端をクリップで把持しながらテンター内の115℃の温度の予熱ゾーンに導き、引き続き連続的に120℃の温度の加熱ゾーンで長手方向に直角な幅方向(TD方向)に4.0倍延伸したこと以外は、実施例1と同様の方法で二軸配向ポリエステルフィルムを得た。得られたポリエステルフィルムを評価したところ、耐加水分解性、耐熱性、ブリードアウト性に優れた特性を有していた。
(Example 6)
Use 40 parts by mass of PET pellets having an intrinsic viscosity of 0.8 obtained in Reference Example 2 and 60 parts by mass of Blend Chip A having an intrinsic viscosity of 0.59 obtained in Reference Example 3, and at a temperature of 110 ° C. 8 times MD stretching 1 was performed, and 2.3 times MD stretching 2 was further performed at a temperature of 130 ° C. The film was stretched 4.1 times in the longitudinal direction (MD direction) in total, and then cooled with a roll group having a temperature of 25 ° C. to obtain a uniaxially stretched film. While holding both ends of the obtained uniaxially stretched film with clips, it is guided to a preheating zone at a temperature of 115 ° C in the tenter, and then continuously in the heating zone at a temperature of 120 ° C in the width direction (TD direction) perpendicular to the longitudinal direction. A biaxially oriented polyester film was obtained in the same manner as in Example 1 except that the film was stretched 4.0 times. When the obtained polyester film was evaluated, it had excellent resistance to hydrolysis, heat resistance and bleed out.

(実施例7)
参考例2で得られた固有粘度0.8のPETペレット80質量部と、回転型真空重合装置を用いて、参考例3で得られたブレンドチップAを0.1kPaの減圧下230℃で1時間処理後し固有粘度は0.60としたブレンドチップA20質量部を使用すること以外は、実施例1と同様の方法で二軸配向ポリエステルフィルムを得た。得られたポリエステルフィルムを評価したところ、耐加水分解性、耐熱性、ブリードアウト性優れた特性を有していた。
(Example 7)
Using 80 parts by mass of PET pellets having an intrinsic viscosity of 0.8 obtained in Reference Example 2 and a rotary vacuum polymerization apparatus, blend chip A obtained in Reference Example 3 was reduced to 1 at 230 ° C. under a reduced pressure of 0.1 kPa. A biaxially oriented polyester film was obtained in the same manner as in Example 1 except that 20 parts by mass of blend chip A after the time treatment and having an intrinsic viscosity of 0.60 was used. When the obtained polyester film was evaluated, it had excellent hydrolysis resistance, heat resistance, and bleed out properties.

(実施例8)
参考例2で得られた固有粘度0.8のPETペレット80質量部と、参考例4で得られた固有粘度ブレンドチップA(固有粘度1.2)20質量部を使用すること以外は、実施例1と同様の方法で二軸配向ポリエステルフィルムを得た。得られたポリエステルフィルムを評価したところ、耐加水分解性、耐熱性、耐候性、ブリードアウト性に優れた特性を有していた。
(Example 8)
Except for using 80 parts by mass of PET pellets having an intrinsic viscosity of 0.8 obtained in Reference Example 2 and 20 parts by mass of intrinsic viscosity blend chip A (inherent viscosity 1.2) obtained in Reference Example 4. A biaxially oriented polyester film was obtained in the same manner as in Example 1. When the obtained polyester film was evaluated, it had excellent resistance to hydrolysis, heat resistance, weather resistance, and bleed out.

(実施例9)
実施例1で得られた未延伸単層フィルムを加熱したロール群で予熱した後、90℃の温度で1.8倍MD延伸1を行い、さらに110℃の温度で2.5倍MD延伸2を行った。トータルで長手方向(MD方向)に4.5倍延伸を行った後、25℃の温度のロール群で冷却して一軸延伸フィルムを得た。得られた一軸延伸フィルムの両端をクリップで把持しながらテンター内の95℃の温度の予熱ゾーンに導き、引き続き連続的に100℃の温度の加熱ゾーンで長手方向に直角な幅方向(TD方向)に4.3倍延伸した。さらに引き続いて、テンター内の熱処理ゾーンで220℃の温度で10秒間の熱処理を施し、さらに220℃の温度で2%幅方向に弛緩処理を行ったこと以外は実施例1と同様の方法で二軸配向ポリエステルフィルムを得た。得られたポリエステルフィルムを評価したところ、耐加水分解性、耐熱性、耐候性、ブリードアウト性に優れた特性を有していた。
Example 9
After preheating the unstretched single layer film obtained in Example 1 with a heated roll group, 1.8 times MD stretching 1 is performed at a temperature of 90 ° C., and 2.5 times MD stretching 2 is performed at a temperature of 110 ° C. Went. The film was stretched 4.5 times in the longitudinal direction (MD direction) in total, and then cooled with a roll group at a temperature of 25 ° C. to obtain a uniaxially stretched film. While holding both ends of the obtained uniaxially stretched film with clips, it is led to a preheating zone at a temperature of 95 ° C. in the tenter, and then continuously in the heating zone at a temperature of 100 ° C. in the width direction (TD direction) perpendicular to the longitudinal direction. The film was stretched 4.3 times. Subsequently, heat treatment was carried out in the same manner as in Example 1 except that heat treatment was performed at a temperature of 220 ° C. for 10 seconds in the heat treatment zone in the tenter, and further relaxation treatment was performed in the 2% width direction at a temperature of 220 ° C. An axially oriented polyester film was obtained. When the obtained polyester film was evaluated, it had excellent resistance to hydrolysis, heat resistance, weather resistance, and bleed out.

(実施例10)
実施例1で得られた未延伸単層フィルムを加熱したロール群で予熱した後、90℃の温度で1.8倍MD延伸1を行い、さらに110℃の温度で2.1倍MD延伸2を行った。トータルで長手方向(MD方向)に3.8倍延伸を行った後、25℃の温度のロール群で冷却して一軸延伸フィルムを得た。得られた一軸延伸フィルムの両端をクリップで把持しながらテンター内の95℃の温度の予熱ゾーンに導き、引き続き連続的に100℃の温度の加熱ゾーンで長手方向に直角な幅方向(TD方向)に3.8倍延伸した。さらに引き続いて、テンター内の熱処理ゾーンで220℃の温度で10秒間の熱処理を施し、さらに220℃の温度で5%幅方向に弛緩処理を行ったこと以外は実施例1と同様の方法で二軸配向ポリエステルフィルムを得た。得られたポリエステルフィルムを評価したところ、耐候性、ブリードアウト性に優れた特性を有していた。
(Example 10)
After preheating the unstretched monolayer film obtained in Example 1 with a heated roll group, 1.8 times MD stretching 1 is performed at a temperature of 90 ° C., and 2.1 times MD stretching 2 is performed at a temperature of 110 ° C. Went. The film was stretched 3.8 times in the longitudinal direction (MD direction) in total, and then cooled with a roll group at a temperature of 25 ° C. to obtain a uniaxially stretched film. While holding both ends of the obtained uniaxially stretched film with clips, it is led to a preheating zone at a temperature of 95 ° C. in the tenter, and then continuously in the heating zone at a temperature of 100 ° C. in the width direction (TD direction) perpendicular to the longitudinal direction. The film was stretched 3.8 times. Subsequently, heat treatment was performed in the same manner as in Example 1 except that heat treatment was performed at a temperature of 220 ° C. for 10 seconds in the heat treatment zone in the tenter, and further relaxation treatment was performed in the 5% width direction at a temperature of 220 ° C. An axially oriented polyester film was obtained. When the obtained polyester film was evaluated, it had characteristics excellent in weather resistance and bleed-out property.

(実施例11)
参考例2で得られた固有粘度0.8のPETペレット90質量部と、参考例4で得られた固有粘度0.9のブレンドチップA10質量部を使用すること、85℃の温度で1.8倍MD延伸1を行い、さらに105℃の温度で2.1倍MD延伸2を行った。トータルで長手方向(MD方向)に3.8倍延伸を行った後、25℃の温度のロール群で冷却して一軸延伸フィルムを得た。得られた一軸延伸フィルムの両端をクリップで把持しながらテンター内の90℃の温度の予熱ゾーンに導き、引き続き連続的に95℃の温度の加熱ゾーンで長手方向に直角な幅方向(TD方向)に3.8倍延伸したこと以外は、実施例10と同様の方法で二軸配向ポリエステルフィルムを得た。得られたポリエステルフィルムを評価したところ、ブリードアウト性に優れた特性を有していた。
(Example 11)
Use 90 parts by mass of PET pellets having an intrinsic viscosity of 0.8 obtained in Reference Example 2 and 10 parts by mass of blend chip A having an intrinsic viscosity of 0.9 obtained in Reference Example 4; 8 times MD stretching 1 was performed, and further 2.1 times MD stretching 2 was performed at a temperature of 105 ° C. The film was stretched 3.8 times in the longitudinal direction (MD direction) in total, and then cooled with a roll group at a temperature of 25 ° C. to obtain a uniaxially stretched film. While holding both ends of the obtained uniaxially stretched film with clips, it is guided to a preheating zone at a temperature of 90 ° C. in the tenter, and continuously in the heating zone at a temperature of 95 ° C. in the width direction (TD direction) perpendicular to the longitudinal direction. A biaxially oriented polyester film was obtained in the same manner as in Example 10 except that the film was stretched 3.8 times. When the obtained polyester film was evaluated, it had excellent bleed-out properties.

(実施例12)
参考例1で得られた固有粘度0.65のPETペレット80質量部と、参考例4で得られた固有粘度0.9のブレンドチップA20質量部を使用すること以外は、実施例10と同様の方法で二軸配向ポリエステルフィルムを得た。得られたポリエステルフィルムを評価したところ、耐候性、ブリードアウト性に優れた特性を有していた。
(Example 12)
Same as Example 10 except that 80 parts by mass of PET pellets having an intrinsic viscosity of 0.65 obtained in Reference Example 1 and 20 parts by mass of blend chip A having an intrinsic viscosity of 0.9 obtained in Reference Example 4 are used. A biaxially oriented polyester film was obtained by this method. When the obtained polyester film was evaluated, it had characteristics excellent in weather resistance and bleed-out property.

(実施例13)
参考例1で得られた固有粘度0.65のPETペレット80質量部と、参考例3で得られた固有粘度0.59のブレンドチップA20質量部を使用し、紫外線吸収剤(ベンゾフェノン系アデカスタブLA−51)を0.02質量%添加する事以外は実施例1と同様の方法で二軸配向ポリエステルフィルムを得た。得られたポリエステルフィルムを評価したところ、耐加水分解性、耐候性、耐熱性に優れた特性を有していた。
(Example 13)
Using 80 parts by mass of PET pellets having an intrinsic viscosity of 0.65 obtained in Reference Example 1 and 20 parts by mass of Blend Chip A having an intrinsic viscosity of 0.59 obtained in Reference Example 3, an ultraviolet absorber (benzophenone-based Adekastab LA A biaxially oriented polyester film was obtained in the same manner as in Example 1 except that 0.02% by mass of -51) was added. When the obtained polyester film was evaluated, it had excellent properties in hydrolysis resistance, weather resistance, and heat resistance.

(実施例14)
2、6−ナフタレンジカルボン酸ジメチル100質量部とエチレングリコール60質量部の混合物に、酢酸マンガン・4水和物塩0.03質量部を添加し、150℃の温度から240℃の温度に徐々に昇温しながらエステル交換反応を行った。途中、反応温度が170℃に達した時点で三酸化アンチモン0.024質量部を添加した。また、反応温度が220℃に達した時点で3、5−ジカルボキシベンゼンスルホン酸テトラブチルホスホニウム塩0.042質量部(2mmol%に相当)を添加した。その後、引き続いてエステル交換反応を行い、トリメチルリン酸0.023質量部を添加した。次いで、反応生成物を重合装置に移し、290℃の温度まで昇温し、30Paの高減圧下で重縮合反応を行い、重合装置の撹拌トルクが所定の値(重合装置の仕様によって具体的な値は異なるが、本重合装置で固有粘度0.65のポリエチレン−2、6−ナフタレートが示す値を所定の値とした)を示した。そこで、反応系を窒素パージし常圧に戻して重縮合反応を停止し、冷水にストランド状に吐出し、直ちにカッティングして固有粘度0.65のポリエチレン−2、6−ナフタレートペレットX’を得た。
(Example 14)
To a mixture of 100 parts by mass of dimethyl 2,6-naphthalenedicarboxylate and 60 parts by mass of ethylene glycol, 0.03 parts by mass of manganese acetate tetrahydrate salt is added, and gradually from 150 ° C. to 240 ° C. The transesterification was carried out while raising the temperature. In the middle, when the reaction temperature reached 170 ° C., 0.024 parts by mass of antimony trioxide was added. When the reaction temperature reached 220 ° C., 0.042 parts by mass (corresponding to 2 mmol%) of 3,5-dicarboxybenzenesulfonic acid tetrabutylphosphonium salt was added. Thereafter, a transesterification reaction was carried out, and 0.023 parts by mass of trimethyl phosphoric acid was added. Next, the reaction product is transferred to a polymerization apparatus, heated to a temperature of 290 ° C., and subjected to a polycondensation reaction under a high vacuum of 30 Pa. Although the values were different, the values indicated by polyethylene-2,6-naphthalate having an intrinsic viscosity of 0.65 in this polymerization apparatus were set as predetermined values). Therefore, the reaction system was purged with nitrogen and returned to normal pressure to stop the polycondensation reaction, discharged into cold water in a strand form, and immediately cut to obtain polyethylene-2,6-naphthalate pellets X ′ having an intrinsic viscosity of 0.65. Obtained.

回転型真空重合装置を用いて、得られたPENペレットを0.1kPaの減圧下、250℃の温度で20時間固相重合を行い固有粘度0.80のPENペレットX”を得た。上記で得た固有粘度0.80のPENペレットX”50質量部とSABIC社製のポリエーテルイミド(PEI)“ウルテム”1010を50質量部、150℃で5時間除湿乾燥した後、320〜290℃に加熱された(スクリューゾーン、押出ヘッド部で温度勾配を設定)2軸三段タイプのスクリュー(PENとPEIの混練可塑化ゾーン/ダルメージ混練ゾーン/逆ネジダルメージによる微分散相溶化ゾーン)と具備したベント式二軸押出機(L/D=40、ベント孔の減圧度は200Paとした)に供給して、滞留時間3分にて溶融押出し、PEIを50質量%含有したPEN/PEIブレンドチップを得た。このチップをブレンドチップBとした。   Using the rotary vacuum polymerization apparatus, the obtained PEN pellet was subjected to solid phase polymerization at a temperature of 250 ° C. under a reduced pressure of 0.1 kPa for 20 hours to obtain a PEN pellet X ″ having an intrinsic viscosity of 0.80. 50 parts by weight of the obtained PEN pellet X having an intrinsic viscosity of 0.80 and polyetherimide (PEI) “Ultem” 1010 made by SABIC were dehumidified and dried at 150 ° C. for 5 hours, and then at 320 to 290 ° C. Vent equipped with heated (screw zone, temperature gradient set at extrusion head), twin-screw, three-stage type screw (PEN and PEI kneading plasticizing zone / Dalmerizing kneading zone / inverted screw Dalmerizing fine dispersion compatibilizing zone) This is fed to a twin screw extruder (L / D = 40, the degree of pressure reduction of the vent hole is 200 Pa), melt extruded with a residence time of 3 minutes, and PEI is 50% by mass To obtain a PEN / PEI blend chips having. This chip was designated as Blend Chip B.

さらに、回転型真空重合装置を用いて、上記で得られたブレンドチップBを0.1kPaの減圧下250℃の温度で40時間固相重合を行い固有粘度0.90のブレンドチップB’を得た。   Further, using a rotary vacuum polymerization apparatus, the blend chip B obtained above was subjected to solid phase polymerization at a temperature of 250 ° C. under a reduced pressure of 0.1 kPa for 40 hours to obtain a blend chip B ′ having an intrinsic viscosity of 0.90. It was.

300℃の温度に加熱された押出機Eに、固相重合で得られた固有粘度0.80のPENペレットX”80質量部と、固有粘度0.9のブレンドチップB’20質量部を180℃の温度で3時間減圧乾燥した後に供給し、窒素雰囲気下Tダイ口金に導入した。次いで、Tダイ口金内から、シート状に押出して溶融単層シートとし、表面温度25℃に保たれたドラム上に静電印加法で密着冷却固化させて未延伸単層フィルムを得た。   In an extruder E heated to a temperature of 300 ° C., 80 parts by mass of PEN pellet X ″ having an intrinsic viscosity of 0.80 obtained by solid phase polymerization and 20 parts by mass of blend chip B ′ having an intrinsic viscosity of 0.9 are added. After drying under reduced pressure at a temperature of 3 ° C. for 3 hours, the mixture was supplied and introduced into a T-die die under a nitrogen atmosphere, and then extruded into a sheet from the T-die die to obtain a molten single-layer sheet, which was maintained at a surface temperature of 25 ° C. An unstretched single-layer film was obtained by tightly cooling and solidifying on a drum by an electrostatic application method.

続いて、得られた未延伸単層フィルムを加熱したロール群で予熱した後、115℃の温度で1.8倍MD延伸1を行い、さらに135℃の温度で2.3倍MD延伸2を行った。トータルで長手方向(MD方向)に4.1倍延伸を行った後、25℃の温度のロール群で冷却して一軸延伸フィルムを得た。得られた一軸延伸フィルムの両端をクリップで把持しながらテンター内の135℃の温度の予熱ゾーンに導き、引き続き連続的に145℃の温度の加熱ゾーンで長手方向に直角な幅方向(TD方向)に4.5倍延伸した。さらに引き続いて、テンター内の熱処理ゾーンで230℃の温度で10秒間の熱処理を施し、さらに230℃の温度で4%幅方向に弛緩処理を行った。次いで、均一に徐冷後、巻き取って、厚さ50μmの二軸配向ポリエステルフィルムを得た。   Subsequently, after preheating the obtained unstretched monolayer film with a heated roll group, 1.8 times MD stretching 1 is performed at a temperature of 115 ° C., and 2.3 times MD stretching 2 is performed at a temperature of 135 ° C. went. The film was stretched 4.1 times in the longitudinal direction (MD direction) in total, and then cooled with a roll group having a temperature of 25 ° C. to obtain a uniaxially stretched film. While holding both ends of the obtained uniaxially stretched film with clips, it is guided to a preheating zone at a temperature of 135 ° C. in the tenter, and then continuously in the heating zone at a temperature of 145 ° C. in the width direction (TD direction) perpendicular to the longitudinal direction. The film was stretched 4.5 times. Subsequently, a heat treatment for 10 seconds was performed at a temperature of 230 ° C. in a heat treatment zone in the tenter, and a relaxation treatment was further performed in the 4% width direction at a temperature of 230 ° C. Subsequently, after uniform cooling, the film was wound up to obtain a biaxially oriented polyester film having a thickness of 50 μm.

得られたポリエステルフィルムを評価したところ、耐加水分解性、耐熱性、耐候性、ブリードアウト性に優れた特性を有していた。   When the obtained polyester film was evaluated, it had excellent resistance to hydrolysis, heat resistance, weather resistance, and bleed out.

(比較例1)
参考例2で得られた固有粘度0.80のPETペレット100質量部で、ブレンドチップAを用いず、紫外線吸収剤(ベンゾフェノン系アデカスタブLA−51)を0.1質量%添加すること、80℃の温度で1.8倍MD延伸1を行い、さらに100℃の温度で2.3倍MD延伸2を行った。トータルで長手方向(MD方向)に4.1倍延伸を行った後、25℃の温度のロール群で冷却して一軸延伸フィルムを得た。得られた一軸延伸フィルムの両端をクリップで把持しながらテンター内の85℃の温度の予熱ゾーンに導き、引き続き連続的に90℃の温度の加熱ゾーンで長手方向に直角な幅方向(TD方向)に4.0倍延伸したこと以外は実施例1と同様の方法で二軸配向ポリエステルフィルムを得た。得られたポリエステルフィルムを評価したところ、損失正接(tanδ)が本発明の範囲外であったため、耐加水分解性、耐熱性、ブリードアウト性に劣る特性を有していた。
(Comparative Example 1)
Adding 100% by weight of PET pellets having an intrinsic viscosity of 0.80 obtained in Reference Example 2 and adding 0.1% by weight of an ultraviolet absorber (benzophenone-based Adekastab LA-51) without using the blend chip A, 80 ° C. Then, 1.8 times MD stretching 1 was performed at a temperature of 2.3 ° C., and 2.3 times MD stretching 2 was performed at a temperature of 100 ° C. The film was stretched 4.1 times in the longitudinal direction (MD direction) in total, and then cooled with a roll group having a temperature of 25 ° C. to obtain a uniaxially stretched film. While holding both ends of the obtained uniaxially stretched film with clips, the tenter is guided to a preheating zone at a temperature of 85 ° C. in the tenter, and then continuously in the heating zone at a temperature of 90 ° C. in the width direction (TD direction) perpendicular to the longitudinal direction. A biaxially oriented polyester film was obtained in the same manner as in Example 1 except that the film was stretched 4.0 times. When the obtained polyester film was evaluated, the loss tangent (tan δ) was out of the range of the present invention, and therefore, the polyester film had characteristics inferior in hydrolysis resistance, heat resistance, and bleed-out property.

(比較例2)
参考例2で得られた固有粘度0.8のPETペレット20質量部と、参考例4で得られた固有粘度0.9のブレンドチップA80質量部を使用すること、120℃の温度で1.7倍MD延伸1を行い、さらに140℃の温度で2.1倍MD延伸2を行った。トータルで長手方向(MD方向)に3.6倍延伸を行った後、25℃の温度のロール群で冷却して一軸延伸フィルムを得た。得られた一軸延伸フィルムの両端をクリップで把持しながらテンター内の125℃の温度の予熱ゾーンに導き、引き続き連続的に130℃の温度の加熱ゾーンで長手方向に直角な幅方向(TD方向)に3.6倍延伸したこと以外は、実施例1と同様の方法で二軸配向ポリエステルフィルムを得た。得られたポリエステルフィルムを評価したところ、損失正接(tanδ)が本発明の範囲外であったため、耐加水分解性、耐熱性に劣る特性を有していた。
(Comparative Example 2)
Use 20 parts by mass of PET pellets having an intrinsic viscosity of 0.8 obtained in Reference Example 2 and 80 parts by mass of Blend Chip A having an intrinsic viscosity of 0.9 obtained in Reference Example 4, and at a temperature of 120 ° C. 7-fold MD stretching 1 was performed, and 2.1-fold MD stretching 2 was further performed at a temperature of 140 ° C. The film was stretched 3.6 times in the longitudinal direction (MD direction) in total, and then cooled with a roll group having a temperature of 25 ° C. to obtain a uniaxially stretched film. While holding both ends of the obtained uniaxially stretched film with clips, it is led to a preheating zone at a temperature of 125 ° C. in the tenter, and then continuously in the heating zone at a temperature of 130 ° C. in the width direction (TD direction) perpendicular to the longitudinal direction. A biaxially oriented polyester film was obtained in the same manner as in Example 1 except that the film was stretched 3.6 times. When the obtained polyester film was evaluated, the loss tangent (tan δ) was out of the range of the present invention, and therefore, the polyester film had characteristics inferior in hydrolysis resistance and heat resistance.

(比較例3)
参考例2で得られた固有粘度0.8のPETペレット80質量部と、参考例3で得られた固有粘度0.59のブレンドチップA20質量部を使用すること以外は、実施例1と同様の方法で二軸配向ポリエステルフィルムを得た。得られたポリエステルフィルムを評価したところ、Δb値が本発明の範囲外であったため、耐加水分解性、耐熱性、耐候性に劣る特性を有していた。
(Comparative Example 3)
Same as Example 1, except that 80 parts by mass of PET pellets having an intrinsic viscosity of 0.8 obtained in Reference Example 2 and 20 parts by mass of blend chip A having an intrinsic viscosity of 0.59 obtained in Reference Example 3 are used. A biaxially oriented polyester film was obtained by this method. When the obtained polyester film was evaluated, the Δb value was outside the range of the present invention, and therefore, the polyester film had characteristics inferior in hydrolysis resistance, heat resistance, and weather resistance.

(比較例4)
参考例2で得られた固有粘度0.80のPETペレット100質量部を使用すること、80℃の温度で1.8倍MD延伸1を行い、さらに100℃の温度で2.3倍MD延伸2を行った。トータルで長手方向(MD方向)に4.1倍延伸を行った後、25℃の温度のロール群で冷却して一軸延伸フィルムを得た。得られた一軸延伸フィルムの両端をクリップで把持しながらテンター内の85℃の温度の予熱ゾーンに導き、引き続き連続的に90℃の温度の加熱ゾーンで長手方向に直角な幅方向(TD方向)に4.0倍延伸したこと以外は実施例1と同様の方法で二軸配向ポリエステルフィルムを得た。得られたポリエステルフィルムを評価したところ、損失正接(tanδ)とΔb値が本発明の範囲外であったため、耐加水分解性、耐熱性、耐候性に劣る特性を有していた。
(Comparative Example 4)
Using 100 parts by mass of PET pellets having an intrinsic viscosity of 0.80 obtained in Reference Example 2, performing 1.8 times MD stretching 1 at a temperature of 80 ° C., and further 2.3 times MD stretching at a temperature of 100 ° C. 2 was performed. The film was stretched 4.1 times in the longitudinal direction (MD direction) in total, and then cooled with a roll group having a temperature of 25 ° C. to obtain a uniaxially stretched film. While holding both ends of the obtained uniaxially stretched film with clips, the tenter is guided to a preheating zone at a temperature of 85 ° C. in the tenter, and then continuously in the heating zone at a temperature of 90 ° C. in the width direction (TD direction) perpendicular to the longitudinal direction. A biaxially oriented polyester film was obtained in the same manner as in Example 1 except that the film was stretched 4.0 times. When the obtained polyester film was evaluated, the loss tangent (tan δ) and Δb value were out of the range of the present invention, and therefore, the polyester film had characteristics inferior in hydrolysis resistance, heat resistance, and weather resistance.

(比較例5)
300℃の温度に加熱された押出機Eに、実施例14で得られた固有粘度0.80のPENペレットX”100質量部を使用しブレンドチップBを使用せず、紫外線吸収剤(ベンゾフェノン系アデカスタブLA−51)を0.1質量%添加すること以外は実施例14と同様の方法にして二軸配向ポリエステルフィルムを得た。得られたポリエステルフィルムを評価したところ、Δb値が本発明の範囲外であったため、耐候性、ブリードアウト性に劣る特性を有していた。
(Comparative Example 5)
In the extruder E heated to a temperature of 300 ° C., 100 parts by mass of the PEN pellet X ″ having an intrinsic viscosity of 0.80 obtained in Example 14 was used and the blend chip B was not used, but an ultraviolet absorber (benzophenone series) A biaxially oriented polyester film was obtained in the same manner as in Example 14 except that 0.1% by mass of ADK STAB LA-51) was added, and the obtained polyester film was evaluated. Since it was out of the range, the weather resistance and bleed-out properties were poor.

Figure 2011204841
Figure 2011204841

Figure 2011204841
Figure 2011204841

Figure 2011204841
Figure 2011204841

本発明の太陽電池バックシート用ポリエステルフィルムは環境変化による劣化が少なく、耐加水分解性、耐候性、耐熱性、ブリードアウト性に優れたバックシートを提供することができる。そのため、耐久性の高い太陽電池を得るために利用される可能性がある。   The polyester film for a solar battery backsheet of the present invention is less deteriorated due to environmental changes, and can provide a backsheet excellent in hydrolysis resistance, weather resistance, heat resistance, and bleed-out property. Therefore, it may be used to obtain a highly durable solar cell.

Claims (9)

損失正接(tanδ)ピーク温度が120〜180℃であり、メタルハライドランプを用いて295〜450nmの紫外線を100mWで48時間照射後の黄色度(b値)の増加量(Δb値)が0〜15であることを特徴とする太陽電池バックシート用ポリエステルフィルム。 Loss tangent (tan δ) peak temperature is 120 to 180 ° C., and increase in yellowness (b value) (Δb value) is 0 to 15 after irradiation with ultraviolet rays of 295 to 450 nm at 100 mW for 48 hours using a metal halide lamp. A polyester film for a solar battery backsheet. ポリエステル(A)とポリイミド(B)を含むポリエステルフィルムである請求項1に記載の太陽電池バックシート用ポリエステルフィルム。 The polyester film for a solar battery back sheet according to claim 1, which is a polyester film containing polyester (A) and polyimide (B). ポリイミド(B)の含有量が、フィルム全体に対して、2質量%〜30質量%である請求項2に記載の太陽電池バックシート用ポリエステルフィルム。 The polyester film for solar battery backsheet according to claim 2, wherein the content of the polyimide (B) is 2% by mass to 30% by mass with respect to the entire film. 紫外線吸収剤の含有量が、フィルム全体に対して、0.01質量%以下である請求項1〜3のいずれかに記載の太陽電池バックシート用ポリエステルフィルム。 The polyester film for solar cell backsheet according to any one of claims 1 to 3, wherein the content of the ultraviolet absorber is 0.01% by mass or less based on the whole film. 面配向係数fnが0.140〜0.280である請求項1〜4のいずれかに記載の太陽電池バックシート用ポリエステルフィルム。 The plane orientation coefficient fn is 0.140-0.280, The polyester film for solar cell backsheets in any one of Claims 1-4. 200℃の熱処理72時間後における少なくとも一方向の破断伸度の保持率が10〜100%である請求項1〜5のいずれかに記載の太陽電池バックシート用ポリエステルフィルム。 The polyester film for solar cell backsheet according to any one of claims 1 to 5, wherein a retention rate of breaking elongation in at least one direction after 72 hours of heat treatment at 200 ° C is 10 to 100%. 125℃・100%RHの熱処理72時間後における少なくとも一方向の破断伸度の保持率が10〜100%である請求項1〜6のいずれかに記載の太陽電池バックシート用ポリエステルフィルム。 The polyester film for a solar battery back sheet according to any one of claims 1 to 6, wherein a retention rate of elongation at break in at least one direction after 72 hours of heat treatment at 125 ° C and 100% RH is 10 to 100%. 波長360nmの光線透過率が0〜20%である請求項1〜7のいずれかに記載の太陽電池バックシート用ポリエステルフィルム。 The polyester film for solar cell backsheet according to any one of claims 1 to 7, wherein the light transmittance at a wavelength of 360 nm is 0 to 20%. 請求項1〜8のいずれかに記載の太陽電池バックシート用ポリエステルフィルムの製造方法であって、以下の工程1〜3をその順に経ることを特徴とする太陽電池バックシート用ポリエステルフィルムの製造方法。
工程1:ポリエステル(A)とポリイミド(B)とを、質量分率(A/B)が70/30〜30/70となるように溶融混練し、コンパウンド原料(AB)を得る工程。
工程2:コンパウンド原料(AB)を0.1kPa以下の減圧下にて210〜250℃の温度で1〜100時間加熱処理し、熱処理されたコンパウンド原料(ABH)を得る工程。
工程3:ポリエステル(A’)と熱処理されたコンパウンド原料(ABH)とを混合し、溶融押出しし、未延伸シートを得て、該未延伸シートを二軸延伸し、二軸配向ポリエステルフィルムを得る工程。
It is a manufacturing method of the polyester film for solar cell backsheets in any one of Claims 1-8, Comprising: The following processes 1-3 are passed in that order, The manufacturing method of the polyester film for solar cell backsheets characterized by the above-mentioned. .
Step 1: A step of obtaining a compound raw material (AB) by melt-kneading polyester (A) and polyimide (B) so that the mass fraction (A / B) is 70/30 to 30/70.
Process 2: The process of obtaining the heat-processed compound raw material (ABH) by heat-processing the compound raw material (AB) at the temperature of 210-250 degreeC under the reduced pressure of 0.1 kPa or less for 1 to 100 hours.
Step 3: The polyester (A ′) and the heat-treated compound raw material (ABH) are mixed, melt-extruded to obtain an unstretched sheet, and the unstretched sheet is biaxially stretched to obtain a biaxially oriented polyester film. Process.
JP2010069764A 2010-03-25 2010-03-25 Polyester film for solar battery backsheet Expired - Fee Related JP5640421B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010069764A JP5640421B2 (en) 2010-03-25 2010-03-25 Polyester film for solar battery backsheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010069764A JP5640421B2 (en) 2010-03-25 2010-03-25 Polyester film for solar battery backsheet

Publications (2)

Publication Number Publication Date
JP2011204841A true JP2011204841A (en) 2011-10-13
JP5640421B2 JP5640421B2 (en) 2014-12-17

Family

ID=44881199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010069764A Expired - Fee Related JP5640421B2 (en) 2010-03-25 2010-03-25 Polyester film for solar battery backsheet

Country Status (1)

Country Link
JP (1) JP5640421B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150013743A1 (en) * 2013-07-10 2015-01-15 Au Optronics Corporation Solar cell module
TWI694096B (en) * 2015-07-22 2020-05-21 日商住友化學股份有限公司 Front panel of flexible device
CN114551624A (en) * 2022-03-18 2022-05-27 浙江合特光电有限公司 Flexible light solar panel assembly and preparation method thereof
CN116581186A (en) * 2023-07-11 2023-08-11 江苏康辉新材料科技有限公司 Solar cell backboard and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002205332A (en) * 2000-11-09 2002-07-23 Toray Ind Inc Biaxially oriented polyester film
JP2003246870A (en) * 2001-12-17 2003-09-05 Toray Ind Inc Biaxially oriented polyester film
JP2004161800A (en) * 2002-11-08 2004-06-10 Toray Ind Inc Biaxially oriented polyester film
JP2009188105A (en) * 2008-02-05 2009-08-20 Teijin Dupont Films Japan Ltd Film for protecting rear surface of solar cell
JP2009263604A (en) * 2008-04-30 2009-11-12 Teijin Dupont Films Japan Ltd Polyester film for back protecting film of solar cell

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002205332A (en) * 2000-11-09 2002-07-23 Toray Ind Inc Biaxially oriented polyester film
JP2003246870A (en) * 2001-12-17 2003-09-05 Toray Ind Inc Biaxially oriented polyester film
JP2004161800A (en) * 2002-11-08 2004-06-10 Toray Ind Inc Biaxially oriented polyester film
JP2009188105A (en) * 2008-02-05 2009-08-20 Teijin Dupont Films Japan Ltd Film for protecting rear surface of solar cell
JP2009263604A (en) * 2008-04-30 2009-11-12 Teijin Dupont Films Japan Ltd Polyester film for back protecting film of solar cell

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150013743A1 (en) * 2013-07-10 2015-01-15 Au Optronics Corporation Solar cell module
TWI694096B (en) * 2015-07-22 2020-05-21 日商住友化學股份有限公司 Front panel of flexible device
CN114551624A (en) * 2022-03-18 2022-05-27 浙江合特光电有限公司 Flexible light solar panel assembly and preparation method thereof
CN116581186A (en) * 2023-07-11 2023-08-11 江苏康辉新材料科技有限公司 Solar cell backboard and preparation method thereof
CN116581186B (en) * 2023-07-11 2023-10-31 江苏康辉新材料科技有限公司 Solar cell backboard and preparation method thereof

Also Published As

Publication number Publication date
JP5640421B2 (en) 2014-12-17

Similar Documents

Publication Publication Date Title
JP5423106B2 (en) Biaxially oriented polyester film
TWI467776B (en) Polyester film for solar cells, solar battery backboard and solar cell using the same
WO2012133515A1 (en) Polyester film, solar cell backsheet using same, and process for producing polyester film
KR101851961B1 (en) Polyester composition and film using same, sheet-like structure, electric insulation sheet, and solar cell back sheet, and manufacturing methods therefor
WO2012104668A1 (en) A multilayer white polyester film, method for manufacturing said film and use of this film as part of a back sheet for photovoltaic cells
WO2010134454A1 (en) Polylactic acid resin composition and film
JP5640421B2 (en) Polyester film for solar battery backsheet
KR101594542B1 (en) Transparent biaxially oriented polyester film and preparation method thereof
JP4232004B2 (en) Biaxially oriented polyester film
JP5594005B2 (en) Biaxially oriented polyarylene sulfide film
JP2012178518A (en) White polyester film for protecting rear surface of solar cell
JP2012122000A (en) Polyester film and method for producing the same, back sheet for solar cell and solar cell module
JP5633255B2 (en) Polyester composition
JP2011256254A (en) Polyester film and method of manufacturing the same
JP5740236B2 (en) Film and manufacturing method thereof
JP2010234804A (en) Biaxially oriented lamination film
TWI614291B (en) Polyester film, solar cell backsheet, solar cell
JP6231580B2 (en) Polyester film for solar cell and protective film for solar cell comprising the same
KR20210120726A (en) Polyester film and methof for preparing thereof
JP4876551B2 (en) Flame retardant polyester film
JP5662202B2 (en) White polyester film for protecting the back side of solar cells
JP2004107471A (en) Biaxially oriented polyester film
JP2005169971A (en) Biaxially oriented laminated film
JP5209568B2 (en) White polyester film for solar cell back surface protection sheet
WO2014021323A1 (en) Manufacturing method for polyester film, polyester film, protective sheet for solar cell, and solar cell module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140930

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141013

R151 Written notification of patent or utility model registration

Ref document number: 5640421

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees