WO2014021323A1 - Manufacturing method for polyester film, polyester film, protective sheet for solar cell, and solar cell module - Google Patents

Manufacturing method for polyester film, polyester film, protective sheet for solar cell, and solar cell module Download PDF

Info

Publication number
WO2014021323A1
WO2014021323A1 PCT/JP2013/070616 JP2013070616W WO2014021323A1 WO 2014021323 A1 WO2014021323 A1 WO 2014021323A1 JP 2013070616 W JP2013070616 W JP 2013070616W WO 2014021323 A1 WO2014021323 A1 WO 2014021323A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
polyester
acid
polyester film
carbodiimide compound
Prior art date
Application number
PCT/JP2013/070616
Other languages
French (fr)
Japanese (ja)
Inventor
崇喜 ▲桑▼原
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2014021323A1 publication Critical patent/WO2014021323A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/29Compounds containing one or more carbon-to-nitrogen double bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders
    • B29C48/402Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders the screws having intermeshing parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/57Screws provided with kneading disc-like elements, e.g. with oval-shaped elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/049Protective back sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a method for producing a polyester film, a polyester film, a solar cell protective sheet, and a solar cell module.
  • polyesters used in solar cell modules and the like that are constantly exposed to wind and rain such as outdoors are required to have reduced hydrolyzability.
  • Japanese Patent Laid-Open No. 5-237927 discloses a polyester chip having a moisture content of 0.01 to 0.10% and an intrinsic viscosity (IV) of 0.50 to 0.90 with air having a dew point of ⁇ 12 ° C. or less.
  • IV intrinsic viscosity
  • Japanese Patent Application Publication No. 2004-530000 discloses a method for lowering the Tg of a poly (ethylene terephthalate) homopolymer or copolymer, in which (a) the poly (trimethylene terephthalate) homopolymer or copolymer is converted into a crystallized poly Adding to (ethylene terephthalate) homopolymer or copolymer to form a blend; and (b) dew point at a temperature in the range of about 120 ° C. to about 130 ° C. for at least about 6 hours or until sufficient drying has occurred. Drying the blend by exposing the blend to a flow of at least 0.028 m 3 / min (1 ft 3 / min) of dry air below 5 ° C. ( ⁇ 5 ° F.); (c) melting the blend Poly blended and having a lower Tg than the poly (ethylene terephthalate) of step (a) Method comprising the step of forming the over is disclosed.
  • Japanese Patent Application Laid-Open No. 2010-235824 uses a carbodiimide compound as an end-capping agent when melt-extruding a polyester resin, and the amount of isocyanate-based gas generated at a temperature of 300 ° C. for 30 minutes is 0 to 0.05.
  • Biaxially oriented polyester films that are weight percent are disclosed.
  • the carbodiimide compound exhibits a sealing effect in a relatively small amount, and the unreacted component exhibits a high sealing reaction (ambushing effect) even after film formation.
  • the method of reducing the compounding quantity of recycled polyester material can be considered, supply of the raw material by a feeder becomes unstable.
  • the method of using together the recycled polyester material containing terminal blocker and the recycled polyester material which does not contain terminal blocker can be considered, the recycled polyester material which does not contain terminal blocker is usually intrinsic viscosity ( IV) is high and the amount of terminal carboxyl groups (AV) is high, so that the physical properties of the produced polyester film are likely to vary.
  • IV intrinsic viscosity
  • AV terminal carboxyl groups
  • the present invention relates to a method for producing a polyester film, in which the generation of a gelled product is suppressed and excellent in hydrolysis resistance, using a recycled polyester material at a low cost, as well as a polyester film excellent in weather resistance, and protection for solar cells. It aims at providing a sheet
  • the recycled polyester material containing the first carbodiimide compound is dried by contacting with air or an inert gas having a dew point of ⁇ 25 ° C. or less and an isocyanate concentration of 0.01 ppm to 100 ppm.
  • a recycled material drying step for deactivating the first carbodiimide compound A melt extrusion process in which 50 to 95 parts by mass of a polyester resin, 5 to 50 parts by mass of the dried recycled polyester material, and a raw material containing a second carbodiimide compound are melt-kneaded by an extruder to extrude the molten resin; A film forming step of forming a polyester film having a total content of carbodiimide compounds of 0.1 to 2.0% by mass by molding the molten resin extruded from the extruder into a film; The manufacturing method of the polyester film which has this.
  • ⁇ 2> The method for producing a polyester film according to ⁇ 1>, wherein the recycled polyester material is dried at 135 to 180 ° C.
  • the amount of terminal carboxyl groups (AV) of the recycled polyester material is 3 to 20 equivalents / ton, and the amount of terminal carboxyl groups (AV) of the polyester resin is 3 to 55 equivalents / ton ⁇ 1> or ⁇ The manufacturing method of the polyester film of 2>.
  • At least one of the polyester resin and the recycled polyester material has a structure derived from 1,4-cyclohexanedimethanol in an amount of 0.1 to 20 mol% or 80 to 100 mol based on the total structure derived from the diol component. %.
  • At least one of the first carbodiimide compound contained in the recycled polyester material and the second carbodiimide compound contained in the raw material has one carbodiimide group, and the first nitrogen and the second nitrogen are
  • the method for producing a polyester film according to any one of ⁇ 1> to ⁇ 4> which is a cyclic carbodiimide compound containing a cyclic structure bonded by a bonding group.
  • cyclic carbodiimide compound is at least one selected from compounds represented by the following formulas (2) to (4).
  • Q a is an aliphatic group, an alicyclic group, an aromatic group or a divalent linking group which is a combination of these, it may contain a heteroatom.
  • Q b is an aliphatic group, an alicyclic group, an aromatic group or a trivalent linking group combinations thereof, and may contain a hetero atom.
  • Y represents a carrier supporting a cyclic structure.
  • Q c is any one tetravalent linking group selected from the group consisting of an aliphatic group, an alicyclic group, and an aromatic group, or an aliphatic group, an alicyclic group, And a tetravalent linking group that is a combination of two or more groups selected from the group consisting of aromatic groups, and may further have a heteroatom.
  • Z 1 and Z 2 each independently represent a carrier carrying a cyclic structure, and may be bonded to each other to form a cyclic structure.
  • production of a gelled substance is suppressed, the method of manufacturing the polyester film excellent in hydrolysis resistance at low cost using a recycled polyester material, the polyester film excellent in a weather resistance, and a solar cell A protective sheet and a solar cell module are provided.
  • the present inventor has conceived that it is effective to preferentially deactivate the carbodiimide compound remaining in the recycled polyester material under specific drying conditions.
  • a method for deactivating the carbodiimide compound in the recycled polyester material it may be possible to treat with wet heat, light, alkali, etc., but the polyester resin itself may be decomposed.
  • the hydrolysis rate of the carbodiimide compound is much higher than the hydrolysis rate of the polyester resin, the carbodiimide compound having a high hydrolysis rate can be preferentially decomposed by utilizing the difference in hydrolysis rate.
  • the carbodiimide compound in the recycled polyester material can be more effectively deactivated (decomposed) by using an isocyanate gas having an effect of preferentially deactivating the carbodiimide compound.
  • the method for producing a polyester film of the present invention includes a recycled polyester material containing a first carbodiimide compound, air or an inert gas having a dew point of ⁇ 25 ° C. or lower and an isocyanate concentration of 0.01 ppm to 100 ppm.
  • a recycled material drying step in which the first carbodiimide compound is deactivated by contacting and drying, a polyester resin in an amount of 50 to 95 parts by mass, a dried recycled polyester material in an amount of 5 to 50 parts by mass, and a second A melt extrusion process in which a raw material containing a carbodiimide compound is melt-kneaded by an extruder to extrude a molten resin, and the molten resin extruded from the extruder is formed into a film to have a total content of carbodiimide compounds of 0.1 to Film forming to form 2.0% by mass polyester film Has a degree, the.
  • Recycled material drying process a recycled polyester material containing a carbodiimide compound (hereinafter sometimes simply referred to as “recycled material”) is used as a part of the raw material.
  • Recycled polyester materials containing carbodiimide compounds include, for example, product films such as parts that have a relatively large thickness or parts that are clipped during lateral stretching when manufacturing polyester films that use carbodiimide compounds as end-capping agents. Because it cannot be used, a polyester piece that has been excised and recovered can be used.
  • Recycled polyester material obtained in the process of producing a polyester film using a carbodiimide compound is simply dried and mixed with a polyester resin and a carbodiimide compound in the production process of a new polyester film.
  • a carbodiimide compound also functions as a terminal blocking agent. Therefore, as described above, in the obtained film, as the number of times of recycling increases, the generation of high molecular weight substances due to the carbodiimide compound increases, causing problems such as gelation, coloring, and unstable product quality. is there.
  • the recycled polyester material containing a carbodiimide compound is recycled by bringing it into contact with air or an inert gas having a dew point of ⁇ 25 ° C. or less and an isocyanate concentration of 0.01 ppm to 100 ppm and drying it.
  • the carbodiimide compound contained in the material is deactivated.
  • the dew point in the drying process of the recycled polyester is ⁇ 25 ° C. or less, the moisture content of the recycled material is sufficiently lowered, and hydrolysis of the polyester resin is suppressed.
  • the dew point in the drying step of the recycled polyester is preferably ⁇ 60 ° C. or more and ⁇ 25 ° C. or less. It is more preferably ⁇ 50 ° C. or higher and ⁇ 30 ° C. or lower.
  • the isocyanate concentration in the air or inert gas in the drying process of the recycled polyester is 0.01 ppm or more, the first carbodiimide compound contained in the recycled material is sufficiently deactivated, and if it is 100 ppm or less, excess It is suppressed that even the 2nd carbodiimide compound newly added at the time of a melt-extrusion process by a simple isocyanate is deactivated.
  • the isocyanate concentration in the gas is preferably 0.01 ppm to 70 ppm, and more preferably 0.02 ppm to 50 ppm.
  • a recycled polyester material (chip) containing a carbodiimide compound recovered in the film manufacturing process is put into a drying tower, and contains 0.01 to 100 ppm of isocyanate gas and water vapor (dew point: ⁇ 25 ° C. or lower).
  • An example is a method in which an inert gas such as air or nitrogen is introduced into a drying tower as hot air, preferably 135 to 180 ° C., more preferably 140 to 175 ° C., and dried for 2 to 8 hours.
  • the water content of the recycled material dried as described above is preferably less than 100 ppm and more preferably 70 to 20 ppm from the viewpoint of suppressing hydrolysis of the polyester resin.
  • the water content of the recycled material can be measured by, for example, a Karl Fischer moisture meter (manufactured by Kyoto Electronics Industry Co., Ltd., MKC-520).
  • Intrinsic viscosity (IV) The intrinsic viscosity (IV) of the recycled polyester material varies depending on the amount of the recycled material. If the recycled material IV is too high, the melt viscosity at the time of melt extrusion increases, the shear heating value increases, and thermal decomposition proceeds. There is a possibility that the AV value increases and the hydrolysis resistance of the film decreases. On the other hand, if the IV of the recycled polyester material is too small, the mechanical properties of the film may be insufficient. From these viewpoints, the intrinsic viscosity (IV) of the recycled polyester material is preferably 0.50 to 1.05 dl / g, and more preferably 0.60 to 0.90 dl / g.
  • the intrinsic viscosity difference ⁇ IV between the recycled material and the polyester resin is preferably 0.4 dl / g or less from the viewpoint of ejection stability (thickness unevenness) during extrusion, and is 0.02 to 0.20 dl / More preferably, it is g.
  • Terminal carboxyl group content The terminal carboxyl group amount (AV) of the recycled polyester material varies depending on the blending amount of the recycled material, but if the AV of the recycled material is too large, the hydrolysis resistance of the film may be insufficient. Therefore, the AV of the recycled polyester material is preferably 3 to 20 equivalent / ton, and more preferably 4 to 15 equivalent / ton. In the present specification, “equivalent / ton” (“eq / ton”, “eq / t”) represents a molar equivalent per ton.
  • the content of the first carbodiimide compound contained in the recycled polyester material is preferably 0.1 to 2% by mass, more preferably 0.2 to 1.5% by mass, based on the total amount of the recycled polyester material. . Even if the content of the carbodiimide compound contained in the recycled material is 0.1% by mass or more, there is no actual harm when used as a recycled material, and if it is 2% by mass or less, the carbodiimide compound is sufficient with the isocyanate gas at the time of drying. The product quality can be maintained.
  • the melting point of the recycled polyester material varies depending on the blending amount of the recycled material, but if the melting point of the recycled material is too high, there is a risk that unmelted components are included during melt extrusion and the mechanical strength of the film is lowered. . Therefore, the melting point of the recycled polyester material is preferably in the range of 280 ° C to 320 ° C.
  • ⁇ Melt extrusion process 50 to 95 parts by mass of a polyester resin, 5 to 50 parts by mass of a recycled polyester material in which the first carbodiimide compound is deactivated by the drying, and a raw material containing the second carbodiimide compound are melted and melted by an extruder. Extrude the resin.
  • the amount of the second carbodiimide compound is such that the total content of the carbodiimide compound contained in the finally produced polyester film is 0.1 to 2% by mass.
  • the “total content of carbodiimide compounds” here refers to all carbodiimide compounds (may include carbodiimide compounds other than the first and second carbodiimide compounds) contained in the produced polyester film. Refers to the total amount.
  • Polyester resin Physical properties of the polyester resin as a raw material include, for example, a polyester having an intrinsic viscosity (IV) of 0.65 to 0.85 dl / g and a terminal carboxyl group amount (AV) of 15 to 45 equivalents / ton. Resin.
  • Intrinsic viscosity (IV) The intrinsic viscosity (IV) of the polyester resin used as a raw material can be adjusted by the polymerization method and polymerization conditions. Specifically, when the solid phase polymerization is performed after the liquid phase polymerization, the intrinsic viscosity (IV) is 0.65 to 0.85 dl / g by adjusting the processing temperature, processing time, processing atmosphere moisture, and oxygen concentration. The polyester resin can be obtained.
  • the intrinsic viscosity (IV) of the polyester resin used in the present invention is preferably 0.55 to 1.2 dl / g, more preferably 0.6 to 1.1 dl / g.
  • Terminal carboxyl group content (AV) The terminal carboxyl group amount (AV) of the polyester resin can be adjusted by the polymerization method and polymerization conditions. Specifically, when solid phase polymerization is performed after liquid phase polymerization, the amount of terminal carboxyl groups (AV) is 3 to 55 equivalents / ton by adjusting processing temperature, processing time, processing atmosphere moisture, and oxygen concentration. A polyester resin can be obtained. When the AV of the polyester raw material resin is 3 equivalents / ton or more, crystallization due to an increase in the linearity of the molecular chain is suppressed, the amount of shear heat generated at the time of melting is not increased, and the AV value of the polyester raw material resin is increased.
  • the amount of terminal carboxyl groups (AV) of the polyester resin used in the present invention is preferably 3 to 55 equivalents / ton, and more preferably 5 to 50 equivalents / ton.
  • the terminal carboxyl group amount (AV) was determined by dissolving 0.1 g of a sample in 10 ml of benzyl alcohol, further adding chloroform to obtain a mixed solution, and adding a phenol red indicator dropwise thereto, and adding this solution to a reference solution ( 0.01N KOH-benzyl alcohol mixed solution), and obtained from the amount of the reference solution dropped immediately before the color of the phenol red indicator changes from yellow to red.
  • the melting point (Tm) of the polyester resin used in the present invention is preferably in the range of 250 ° C to 300 ° C, more preferably in the range of 255 ° C to 295 ° C.
  • the melting point Tm of the polyester resin is a value determined by a differential scanning calorimetry method.
  • the polyester resin used as a raw material is preferably dried by contact with hot air of an inert gas (such as nitrogen) at 140 to 170 ° C. or vacuum drying to suppress hydrolysis.
  • an inert gas such as nitrogen
  • polyester resin used as a raw material examples include a polyester resin obtained by polycondensing a dicarboxylic acid component containing terephthalic acid as a main component and a diol component containing ethylene glycol as a main component.
  • a titanium (Ti) compound is used as a catalyst, and the amount of Ti added is 1 ppm or more and 30 ppm or less, more preferably 2 ppm or more and 20 ppm or less, more preferably, in terms of element.
  • the polymerization is preferably performed in the range of 3 ppm or more and 15 ppm or less.
  • the polyester film of the present invention contains 1 ppm to 30 ppm of titanium.
  • the amount of the Ti-based compound is 1 ppm or more, the polymerization rate is increased and preferable IV is obtained.
  • the amount of the Ti compound is 30 ppm or less, the amount of terminal carboxyl groups can be adjusted so as to satisfy the above range, and a good color tone can be obtained.
  • the methods described in Japanese Patent No. 340616, Japanese Patent Application Laid-Open No. 2005-239940, Japanese Patent Application Laid-Open No. 2004-319444, Japanese Patent Application Laid-Open No. 2007-204538, Japanese Patent No. 3436268, Japanese Patent No. 3780137, and the like can be applied.
  • Polyesters forming the polyester film of the present invention are (A) malonic acid, succinic acid, glutaric acid, adipic acid, suberic acid, sebacic acid, dodecanedioic acid, dimer acid, eicosandioic acid, pimelic acid, azelaic acid, Aliphatic dicarboxylic acids such as methylmalonic acid and ethylmalonic acid, alicyclic dicarboxylic acids such as adamantane dicarboxylic acid, norbornene dicarboxylic acid, isosorbide, cyclohexane dicarboxylic acid, decalin dicarboxylic acid, or terephthalic acid, isophthalic acid, phthalic acid, 1 , 4-Naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 1,8-naphthalenedicarboxylic acid, 4,4′-dipheny
  • the polyester of the present invention contains an aromatic dicarboxylic acid as a main component as a dicarboxylic acid component.
  • the “main component” means that the ratio of the aromatic dicarboxylic acid to the total amount of the dicarboxylic acid component is 80% by mass or more.
  • a dicarboxylic acid component other than the aromatic dicarboxylic acid may be included. Examples of such dicarboxylic acid components other than aromatic dicarboxylic acids include ester derivatives such as aromatic dicarboxylic acids. Further, it is preferable that at least one aliphatic diol is used as the diol component.
  • the polyester of the present invention can contain ethylene glycol as an aliphatic diol, and preferably contains ethylene glycol as a main component.
  • a main component means that the ratio of ethylene glycol with respect to diol component whole quantity is 80 mass% or more.
  • polyesters are polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyethylene-2,6-naphthalate (PEN), polycyclohexanedimethylene terephthalate (PCT), or a part of PET. It is copolymerized PET, more preferably PET or copolymerized PET.
  • the PET is preferably a PET polymerized using one or more selected from a germanium (Ge) compound, an antimony (Sb) compound, an aluminum (Al) compound, and a titanium (Ti) compound, More preferably, a Ti compound is used.
  • the Ti compound has high reaction activity, the polymerization temperature can be lowered. Therefore, in particular, it is possible to suppress the thermal decomposition of PET and the generation of COOH during the polymerization reaction, which is suitable for adjusting the amount of terminal carboxyl groups within a predetermined range in the polyester film of the present invention. .
  • Ti compound examples include oxides, hydroxides, alkoxides, carboxylates, carbonates, oxalates, organic chelate titanium complexes, and halides.
  • Ti-based catalyst two or more kinds of titanium compounds may be used in combination as long as the effects of the present invention are not impaired.
  • Ti-based catalysts include tetra-n-propyl titanate, tetra-i-propyl titanate, tetra-n-butyl titanate, tetra-n-butyl titanate tetramer, tetra-t-butyl titanate, tetracyclohexyl titanate, tetraphenyl Titanium alkoxide such as titanate and tetrabenzyl titanate, titanium oxide obtained by hydrolysis of titanium alkoxide, titanium-silicon composite oxide or titanium-zirconium composite obtained by hydrolysis of a mixture of titanium alkoxide and silicon alkoxide or zirconium alkoxide Oxide, titanium acetate, titanium oxalate, potassium titanium oxalate, sodium titanium oxalate, potassium titanate, sodium titanate, titanium titanate-aluminum hydroxide mixture, titanium chloride, Titanium - aluminum chloride mixture, titanium acetylacetonate, and organic acids include organic acids
  • At least one organic chelate titanium complex having an organic acid as a ligand can be suitably used.
  • the organic acid include citric acid, lactic acid, trimellitic acid, and malic acid.
  • an organic chelate complex having citric acid or citrate as a ligand is preferable.
  • At least one of the polyester resin and the recycled material preferably contains a polyester resin synthesized using a titanium citrate complex as a polymerization catalyst.
  • the titanium catalyst also has a catalytic effect of the esterification reaction.
  • the oligomer acid value at the end of the esterification reaction is lowered, and the subsequent polycondensation reaction is performed more efficiently.
  • complexes with citric acid as a ligand are more resistant to hydrolysis than titanium alkoxides, etc., and do not hydrolyze in the esterification reaction process, while maintaining the original activity and catalyzing the esterification and polycondensation reactions It is estimated to function effectively as Also, it is generally known that the greater the amount of terminal carboxyl groups of the polyester resin, the worse the hydrolysis resistance, and the amount of terminal carboxyl groups of the polyester resin is reduced by the addition method of the present invention. Improvement in sex is expected.
  • the citrate chelate titanium complex for example, commercially available products such as VERTEC AC-420 manufactured by Johnson Matthey are easily available.
  • the aromatic dicarboxylic acid and the aliphatic diol can be introduced by preparing a slurry containing them and continuously supplying it to the esterification reaction step.
  • the polyester resin according to the present invention polymerizes an aromatic dicarboxylic acid and an aliphatic diol in the presence of a catalyst containing a titanium compound, and at least one of the titanium compounds is an organic chelate titanium having an organic acid as a ligand.
  • An esterification reaction step including at least a process of adding an organic chelate titanium complex, a magnesium compound and a pentavalent phosphate ester having no aromatic ring as a substituent in this order, and an esterification reaction step And a polycondensation step in which a polycondensation product is produced by subjecting the esterification reaction product thus obtained to a polycondensation reaction.
  • Phosphorus compound As the pentavalent phosphorus compound, at least one pentavalent phosphate having no aromatic ring as a substituent can be used.
  • the pentavalent phosphate ester in the present invention include trimethyl phosphate, triethyl phosphate, tri-n-butyl phosphate, trioctyl phosphate, tris phosphate (triethylene glycol), methyl acid phosphate, and phosphoric acid. Examples include ethyl acid, isopropyl acid phosphate, butyl acid phosphate, monobutyl phosphate, dibutyl phosphate, dioctyl phosphate, and triethylene glycol acid phosphate.
  • R is an alkyl group having 1 or 2 carbon atoms.
  • trimethyl phosphate and triethyl phosphate are particularly preferred.
  • the pentavalent phosphate ester when the chelate titanium complex coordinated with citric acid or a salt thereof is used as the catalyst as the titanium compound, the pentavalent phosphate ester has better polymerization activity and color tone than the trivalent phosphate ester. . Furthermore, in the case of adding a pentavalent phosphate having 2 or less carbon atoms, the balance of polymerization activity, color tone, and heat resistance can be particularly improved.
  • the amount of phosphorus compound added is preferably such that the P element conversion value is in the range of 50 ppm to 90 ppm.
  • the amount of the phosphorus compound is more preferably 60 ppm to 80 ppm, and still more preferably 65 ppm to 75 ppm.
  • Magnesium compound Inclusion of a magnesium compound in the course of the esterification reaction improves electrostatic applicability.
  • coloring tends to occur.
  • the coloring is suppressed, and a polyester resin having excellent color tone and heat resistance can be obtained.
  • magnesium compound examples include magnesium salts such as magnesium oxide, magnesium hydroxide, magnesium alkoxide, magnesium acetate, and magnesium carbonate.
  • magnesium acetate is preferable from the viewpoint of solubility in ethylene glycol.
  • the Mg element conversion value is preferably 50 ppm or more, and more preferably 50 ppm or more and 100 ppm or less.
  • the addition amount of the magnesium compound is preferably such that the Mg element conversion value is in the range of 60 ppm or more and 90 ppm or less, and more preferably in the range of 70 ppm or more and 80 ppm or less in terms of imparting electrostatic applicability. .
  • the esterification reaction may be carried out using a multistage apparatus in which at least two reactors are connected in series under conditions where ethylene glycol is refluxed while removing water or alcohol produced by the reaction from the system. it can.
  • the esterification reaction described above may be performed in one stage or may be performed in multiple stages.
  • the esterification reaction temperature is preferably 230 to 260 ° C, more preferably 240 to 250 ° C.
  • the temperature of the esterification reaction in the first reaction tank is preferably 230 to 260 ° C, more preferably 240 to 250 ° C, and the pressure is 1.0 to 5.0 kg / cm 2 is preferable, and 2.0 to 3.0 kg / cm 2 is more preferable.
  • the temperature of the esterification reaction in the second reaction tank is preferably 230 to 260 ° C., more preferably 245 to 255 ° C., and the pressure is 0.5 to 5.0 kg / cm 2 , more preferably 1.0 to 3. 0 kg / cm 2 . Furthermore, when carrying out by dividing into three or more stages, it is preferable to set the conditions of the esterification reaction in the intermediate stage to a condition between the conditions of the first reaction tank and the final reaction tank.
  • a polycondensation product is produced by subjecting the esterification reaction product produced in the esterification reaction to a polycondensation reaction.
  • the polycondensation reaction may be performed in one stage or may be performed in multiple stages.
  • the esterification reaction product such as an oligomer generated by the esterification reaction is subsequently subjected to a polycondensation reaction.
  • This polycondensation reaction can be suitably performed by supplying an esterification reaction product to a multistage polycondensation reaction tank.
  • the polycondensation reaction conditions in a three-stage reaction tank are as follows: the first reaction tank has a reaction temperature of 255 to 280 ° C., more preferably 265 to 275 ° C., and a pressure of 100 to 10 torr (13.3). ⁇ 10 ⁇ 3 to 1.3 ⁇ 10 ⁇ 3 MPa), more preferably 50 to 20 torr (6.67 ⁇ 10 ⁇ 3 to 2.67 ⁇ 10 ⁇ 3 MPa). The temperature is 265 to 285 ° C., more preferably 270 to 280 ° C., and the pressure is 20 to 1 torr (2.67 ⁇ 10 ⁇ 3 to 1.33 ⁇ 10 ⁇ 4 MPa), more preferably 10 to 3 torr (1.
  • the third reaction tank which is the final reaction tank has a reaction temperature of 270 to 290 ° C., more preferably 275 to 285 ° C., and a pressure of 10 to 0.1 torr ( .33 ⁇ 10 -3 ⁇ 1.33 ⁇ 10 -5 MPa), aspect is preferably more preferably 5 ⁇ 0.5torr (6.67 ⁇ 10 -4 ⁇ 6.67 ⁇ 10 -5 MPa).
  • the polyester resin used in the present invention is preferably polybutylene terephthalate (PBT), polyethylene-2,6-naphthalate (PEN), polycyclohexanedimethylene terephthalate (PCT), or copolymerized PET obtained by modifying a part of PET. More preferred is PET or copolymerized PET.
  • PET polybutylene terephthalate
  • PEN polyethylene-2,6-naphthalate
  • PCT polycyclohexanedimethylene terephthalate
  • copolymerized PET obtained by modifying a part of PET. More preferred is PET or copolymerized PET.
  • Such a polyester film has a constitutional component in which the total of carboxylic acid groups and hydroxyl groups is 3 or more (hereinafter sometimes referred to as “ ⁇ trifunctional component”), or an isocyanate compound, a carbodiimide compound, and an epoxy compound. It is preferable that at least one kind of end capping agent selected from the group consisting of: These “ ⁇
  • the polyester film of the present invention contains “ ⁇ 3 functional component”, that is, a constituent component in which the total number (a + b) of the number of carboxylic acid groups (a) and the number of hydroxyl groups (b) is 3 or more.
  • the carboxylic acid composition in which the total number (a + b) of the carboxylic acid group number (a) and the hydroxyl group number (b) is 3 or more ( ⁇ trifunctional component: p) and the carboxylic acid group number (a) is 3 or more.
  • ingredients include trifunctional aromatic carboxylic acid constituents such as trimesic acid, trimellitic acid, pyromellitic acid, naphthalenetricarboxylic acid, and anthracentricarboxylic acid, methanetricarboxylic acid, ethanetricarboxylic acid, propanetricarboxylic acid, and Trifunctional aliphatic carboxylic acid constituents such as butanetricarboxylic acid, tetrafunctional aromatic carboxylic acids such as benzenetetracarboxylic acid, benzophenonetetracarboxylic acid, naphthalenetetracarboxylic acid, anthracenetetracarboxylic acid, and berylenetetracarboxylic acid Constituents, ethanetetracarboxylic acid, ethylene Tetrafunctional aliphatic carboxylic acid constituents such as lacarboxylic acid, butanetetracarboxylic acid, cyclopentanetetracarboxylic acid,
  • oxyacids such as l-lactide, d-lactide, hydroxybenzoic acid and the like, or a combination of a plurality of such oxyacids to the carboxy terminal of the carboxylic acid component. Used. Moreover, these may be used independently or may be used in multiple types as needed.
  • Examples of the component having 3 or more hydroxyl groups (b) include trifunctional aromatic components such as trihydroxybenzene, trihydroxynaphthalene, trihydroxyanthracene, trihydroxychalcone, trihydroxyflavone, and trihydroxycoumarin.
  • Examples of the component and trifunctional aliphatic alcohol component include trifunctional aliphatic alcohol components such as glycerin, trimethylolpropane, and propanetriol, and tetrafunctional aliphatic alcohol components such as pentaerythritol.
  • the structural component which added diol to the hydroxyl-terminal of the above-mentioned compound is also preferably used. Moreover, these may be used independently or may be used in multiple types as needed.
  • constituent component ( ⁇ trifunctional component: p) examples include both hydroxy and carboxylic acid groups in one molecule such as hydroxyisophthalic acid, hydroxyterephthalic acid, dihydroxyterephthalic acid, and dihydroxyterephthalic acid.
  • oxyacids possessed those having a total (a + b) of the number of carboxylic acid groups (a) and the number of hydroxyl groups (b) of 3 or more can be mentioned.
  • oxyacids such as l-lactide, d-lactide, and hydroxybenzoic acid, and derivatives thereof, or a combination of a plurality of such oxyacids added to the carboxy terminus of the above-described constituents are also preferably used. . Moreover, these may be used independently or may be used in multiple types as needed.
  • the content of the constituent component is 0.005 mol% to 2.5 mol% with respect to the amount of all the constituent components in the polyester film.
  • it is 0.020 mol% or more and 1 mol% or less, More preferably, it is 0.025 mol% or more and 1 mol% or less, More preferably, it is 0.035 mol% or more and 0.5 mol% or less, More preferably, it is 0.05.
  • the mol% is 0.5 mol% or less, particularly preferably 0.1 mol% or more and 0.25 mol% or less.
  • a functional group that has not been used for polycondensation has a hydrogen bond and / or a covalent bond with a component in the coating layer due to the presence of ⁇ 3 functional components in the polyester film.
  • the adhesion with the coating layer can be further improved.
  • At least one of the polyester resin and the recycled polyester material is a 1,4-cyclohexanedimethanol (CHDM) -containing polyester (CHDM polyester such as polycyclohexanedimethylene terephthalate (CHDM)). PCT)).
  • CHDM 1,4-cyclohexanedimethanol
  • PCT PCT
  • the CHDM-type polyester preferably contains a structure derived from 1,4-cyclohexanedimethanol in an amount of 0.1 to 20 mol% or 80 to 100 mol% based on the total amount of the structure derived from the diol component. More preferably 0.5 mol% to 16 mol% or 83 mol% to 98 mol%, and particularly preferably 1 mol% to 12 mol% or 86 mol% to 96 mol%. As described above, the two regions of the CHDM-derived structure are low (0.1 to 20 mol%) and high (80 to 100 mol%). The polyester easily takes a crystal structure in these regions. This is because high mechanical strength and heat resistance are easily exhibited. By using these CHDM polyesters, it is possible to produce a polyester film that is excellent in hydrolysis resistance and further has mechanical strength and heat resistance.
  • Examples of the diol component of the material for forming units other than the structure derived from 1,4-cyclohexanedimethanol of the CHDM polyester include ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,4 Aliphatic diols such as butanediol, 1,2-butanediol and 1,3-butanediol, alicyclic diols such as spiroglycol and isosorbide, and bisphenol A, 1,3-benzenedimethanol, Representative examples include diols such as aromatic diols such as 1,4-benzenedimethanol and 9,9′-bis (4-hydroxyphenyl) fluorene, but are not limited thereto. Among these, it is preferable to use ethylene glycol.
  • dicarboxylic acid component of the material for forming units other than the structure derived from 1,4-cyclohexanedimethanol of the CHDM polyester examples include terephthalic acid, isophthalic acid, malonic acid, succinic acid, glutaric acid, adipic acid , Suberic acid, sebacic acid, dodecanedioic acid, dimer acid, eicosandioic acid, pimelic acid, azelaic acid, methylmalonic acid, ethylmalonic acid and other aliphatic dicarboxylic acids, adamantane dicarboxylic acid, norbornene dicarboxylic acid, isosorbide, Cycloaliphatic dicarboxylic acid, alicyclic dicarboxylic acid such as decalin dicarboxylic acid, and isophthalic acid, phthalic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2,6-n
  • the CHDM polyester preferably includes at least a structure derived from terephthalic acid as a dicarboxylic component.
  • isophthalic acid IPA
  • the amount of IPA is preferably 0 mol% or more and 15 mol% or less, more preferably 0 mol% or more and 12 mol% or less, still more preferably 0 mol% or more and 9 mol% or less with respect to the total amount of the dicarboxylic acid component.
  • CHDM polyester such as polycyclohexanedimethylene terephthalate (PCT) tends to have a high intrinsic viscosity (IV)
  • the IV of CHDM polyester is preferably 1.2 dl / g or less, more preferably 1. It is 15 dl / g or less, More preferably, it is 1.1 dl / g or less.
  • the extrusion temperature of CHDM polyester is preferably 320 ° C. or less, more preferably 315 ° C or lower, more preferably 310 ° C or lower.
  • Carbodiimide compound The recycled material of the present invention includes a carbodiimide compound having a carbodiimide group (first carbodiimide compound). Furthermore, a carbodiimide compound having a carbodiimide group (second carbodiimide compound) is used as a terminal blocking agent in a part of the raw material for the melt extrusion process (hereinafter, the first carbodiimide compound and the second carbodiimide compound are used). Collectively, they are sometimes simply referred to as “carbodiimide compounds”.) In the present invention, the first carbodiimide compound and the second carbodiimide compound may be the same as or different from each other.
  • an oxazoline compound and an epoxy compound can be used as the end-capping agent for the polyester resin.
  • the carbodiimide compound exhibits a sealing effect in a relatively small amount, and an unreacted component is included. Even after film formation, a high sealing reaction (so-called ambush effect) is achieved.
  • carbodiimide compounds include monofunctional carbodiimides and polyfunctional carbodiimides.
  • monofunctional carbodiimides include dicyclohexylcarbodiimide, diisopropylcarbodiimide, dimethylcarbodiimide, diisobutylcarbodiimide, dioctylcarbodiimide, t-butylisopropylcarbodiimide, diphenylcarbodiimide, di-t-butylcarbodiimide and di- ⁇ -naphthylcarbodiimide. Particularly preferred are dicyclohexylcarbodiimide and diisopropylcarbodiimide.
  • polycarbodiimide having a polymerization degree of 3 to 15 is preferably used.
  • the polycarbodiimide generally has a repeating unit represented by “—R—N ⁇ C ⁇ N—” or the like, and the R represents a divalent linking group such as alkylene or arylene.
  • repeating units examples include 1,5-naphthalene carbodiimide, 4,4′-diphenylmethane carbodiimide, 4,4′-diphenyldimethylmethane carbodiimide, 1,3-phenylene carbodiimide, 2,4-tolylene carbodiimide, 2,6-tolylenecarbodiimide, mixture of 2,4-tolylenecarbodiimide and 2,6-tolylenecarbodiimide, hexamethylenecarbodiimide, cyclohexane-1,4-carbodiimide, xylylenecarbodiimide, isophoronecarbodiimide, dicyclohexylmethane-4, 4'-carbodiimide, methylcyclohexanecarbodiimide, tetramethylxylylene carbodiimide, 2,6-diisopropylphenylcarbodiimide and 1,3,5-triisopropylbenzene Such as 2,4-
  • the carbodiimide compound used as the end-capping agent is preferably a carbodiimide compound having high heat resistance in that generation of isocyanate gas due to thermal decomposition is suppressed.
  • a carbodiimide compound having a higher molecular weight (degree of polymerization) is more preferable, and it is more preferable that the terminal of the carbodiimide compound has a structure having high heat resistance. Further, by lowering the temperature at which the polyester resin is melt-extruded, the effect of improving weather resistance and the effect of reducing thermal shrinkage by the carbodiimide compound can be obtained more effectively.
  • carbodiimide end-capping agents examples include STABAXOL P (molecular weight: 3000 to 4000), STABAXOL P200 (molecular weight: about 2000), and STABAXOL P400 (molecular weight: about 20000) (above, Rhein Chemie). Japan Co., Ltd.), LA-1 (molecular weight: about 2000, manufactured by Nisshinbo Chemical Co., Ltd.), STABILIZER 9000 (molecular weight: about 20000, manufactured by Rhein Chemie), etc., but are not limited thereto. .
  • At least one of the first carbodiimide compound contained in the recycled polyester material and the second carbodiimide compound contained in the raw material has one carbodiimide group, and the first nitrogen and the second nitrogen are bonded by a bonding group. It may be a cyclic carbodiimide compound containing a cyclic structure.
  • the carbodiimide compound containing a cyclic structure preferably has a molecular weight of 400 or more, more preferably 500 to 1500.
  • the compound having a cyclic structure in which one carbodiimide group is included and the first nitrogen and the second nitrogen are bonded to each other through a bonding group may have a plurality of cyclic structures.
  • the cyclic structure has one carbodiimide group (—N ⁇ C ⁇ N—), and the first nitrogen and the second nitrogen are bonded by a bonding group.
  • One cyclic structure has only one carbodiimide group.
  • the compound may have a plurality of carbodiimide groups as long as it has a carbodiimide group.
  • the number of atoms in the cyclic structure is preferably 8 to 50, more preferably 10 to 30, further preferably 10 to 20, and particularly preferably 10 to 15.
  • the number of atoms in the cyclic structure means the number of atoms directly constituting the cyclic structure, and is, for example, 8 for an 8-membered ring and 50 for a 50-membered ring.
  • the number of atoms in the cyclic structure is smaller than 8, the stability of the cyclic carbodiimide compound is lowered, and it may be difficult to store and use.
  • the number of atoms in the cyclic structure is preferably selected from the range of 10 to 30, more preferably 10 to 20, and particularly preferably 10 to 15.
  • the ring structure is preferably a structure represented by the following formula (1).
  • Q represents a divalent to tetravalent linking group that is an aliphatic group, an alicyclic group, an aromatic group, or a combination thereof, each of which may contain a heteroatom and a substituent.
  • a heteroatom in this case refers to O, N, S, or P.
  • Two of the valences of this linking group are used to form a cyclic structure.
  • Q is a trivalent or tetravalent linking group, it is bonded to a polymer or other cyclic structure via a single bond, a double bond, an atom, or an atomic group.
  • the linking group (Q) is a divalent to tetravalent aliphatic group having 1 to 20 carbon atoms and a divalent to tetravalent carbon atom having 3 to 20 carbon atoms, which may each contain a heteroatom and a substituent.
  • a linking group is selected which is a cyclic group, a divalent to tetravalent aromatic group having 5 to 15 carbon atoms, or a combination thereof, and has the necessary number of carbon atoms to form the cyclic structure defined above. Examples of the combination include structures such as an alkylene-arylene group in which an alkylene group and an arylene group are bonded.
  • the linking group (Q) is preferably a divalent to tetravalent linking group represented by the following formula (1-1), (1-2) or (1-3).
  • Ar 1 and Ar 2 each independently represent a divalent to tetravalent aromatic group having 5 to 15 carbon atoms, which may contain a hetero atom and a substituent, respectively.
  • aromatic group represented by Ar 1 or Ar 2 include an arylene group having 5 to 15 carbon atoms and an arene having 5 to 15 carbon atoms, each of which contains a hetero atom and may have a heterocyclic structure. Examples include triyl group and arenetetrayl group having 5 to 15 carbon atoms.
  • the arylene group (divalent) include a phenylene group and a naphthalenediyl group.
  • Examples of the arenetriyl group include a benzenetriyl group and a naphthalenetriyl group.
  • Examples of the arenetetrayl group include a benzenetetrayl group and a naphthalenetetrayl group. These aromatic groups may be substituted.
  • Examples of the substituent include alkyl groups having 1 to 20 carbon atoms, aryl groups having 6 to 15 carbon atoms, halogen atoms, nitro groups, amide groups, hydroxyl groups, ester groups, ether groups, and aldehyde groups. .
  • R 1 and R 2 each independently contain a heteroatom and a substituent, each of which is a divalent to tetravalent C 1-20 aliphatic group or divalent to tetravalent.
  • Examples of the aliphatic group include an alkylene group having 1 to 20 carbon atoms, an alkanetriyl group having 1 to 20 carbon atoms, and an alkanetetrayl group having 1 to 20 carbon atoms.
  • Examples of the alkylene group include a methylene group, an ethylene group, a propylene group, a butylene group, a pentylene group, a hexylene group, a heptylene group, an octylene group, a nonylene group, a decylene group, a dodecylene group, and a hexadecylene group.
  • alkanetriyl groups include methanetriyl group, ethanetriyl group, propanetriyl group, butanetriyl group, pentanetriyl group, hexanetriyl group, heptanetriyl group, octanetriyl group, nonanthriyl group, decantriyl group, dodecantriyl group. Yl group and hexadecantriyl group.
  • alkanetetrayl groups include methanetetrayl, ethanetetrayl, propanetetrayl, butanetetrayl, pentanetetrayl, hexanetetrayl, heptanetetrayl, octanetetrayl, nonane Examples include a tetrayl group, a decanetetrayl group, a dodecanetetrayl group, and a hexadecanetetrayl group. These aliphatic groups may be substituted.
  • substituents examples include alkyl groups having 1 to 20 carbon atoms, aryl groups having 6 to 15 carbon atoms, halogen atoms, nitro groups, amide groups, hydroxyl groups, ester groups, ether groups, and aldehyde groups. .
  • Examples of the alicyclic group include a cycloalkylene group having 3 to 20 carbon atoms, a cycloalkanetriyl group having 3 to 20 carbon atoms, and a cycloalkanetetrayl group having 3 to 20 carbon atoms.
  • Examples of the cycloalkylene group include a cyclopropylene group, a cyclobutylene group, a cyclopentylene group, a cyclohexylene group, a cycloheptylene group, a cyclooctylene group, a cyclononylene group, a cyclodecylene group, a cyclododecylene group, and a cyclohexadecylene group.
  • a cyclopropylene group a cyclobutylene group, a cyclopentylene group, a cyclohexylene group, a cycloheptylene group, a cyclooctylene group, a cyclononylene group, a cyclodecylene group, a cyclododecylene group, and a cyclohexadecylene group.
  • alkanetriyl groups include cyclopropanetriyl, cyclobutanetriyl, cyclopentanetriyl, cyclohexanetriyl, cycloheptanetriyl, cyclooctanetriyl, cyclononanetriyl, cyclode A cantriyl group, a cyclododecantriyl group, and a cyclohexadecanetriyl group are mentioned.
  • alkanetetrayl groups include cyclopropanetetrayl, cyclobutanetetrayl, cyclopentanetetrayl, cyclohexanetetrayl, cycloheptanetetrayl, cyclooctanetetrayl, cyclononanetetrayl, cyclo A decane tetrayl group, a cyclododecane tetrayl group, and a cyclohexadecane tetrayl group are mentioned. These alicyclic groups may be substituted.
  • substituents examples include alkyl groups having 1 to 20 carbon atoms, aryl groups having 6 to 15 carbon atoms, halogen atoms, nitro groups, amide groups, hydroxyl groups, ester groups, ether groups, and aldehyde groups. .
  • Examples of the aromatic group include an arylene group having 5 to 15 carbon atoms, an arylene triyl group having 5 to 15 carbon atoms, and a carbon number of 5 each optionally containing a hetero atom and having a heterocyclic structure.
  • ⁇ 15 arenetetrayl groups examples include a phenylene group and a naphthalenediyl group.
  • Examples of the arenetriyl group (trivalent) include a benzenetriyl group and a naphthalenetriyl group.
  • Examples of the arenetetrayl group (tetravalent) include a benzenetetrayl group and a naphthalenetetrayl group. These aromatic groups may be substituted.
  • substituents examples include alkyl groups having 1 to 20 carbon atoms, aryl groups having 6 to 15 carbon atoms, halogen atoms, nitro groups, amide groups, hydroxyl groups, ester groups, ether groups, and aldehyde groups. .
  • X 1 and X 2 are each independently a divalent to tetravalent C 1-20 aliphatic optionally containing a heteroatom and a substituent.
  • a divalent to tetravalent alicyclic group having 3 to 20 carbon atoms a divalent to tetravalent aromatic group having 5 to 15 carbon atoms, or a combination thereof.
  • Examples of the aliphatic group include an alkylene group having 1 to 20 carbon atoms, an alkanetriyl group having 1 to 20 carbon atoms, and an alkanetetrayl group having 1 to 20 carbon atoms.
  • Examples of the alkylene group include a methylene group, an ethylene group, a propylene group, a butylene group, a pentylene group, a hexylene group, a heptylene group, an octylene group, a nonylene group, a decylene group, a dodecylene group, and a hexadecylene group.
  • alkanetriyl groups include methanetriyl group, ethanetriyl group, propanetriyl group, butanetriyl group, pentanetriyl group, hexanetriyl group, heptanetriyl group, octanetriyl group, nonanthriyl group, decantriyl group, dodecantriyl group. Yl group and hexadecantriyl group.
  • alkanetetrayl groups include methanetetrayl, ethanetetrayl, propanetetrayl, butanetetrayl, pentanetetrayl, hexanetetrayl, heptanetetrayl, octanetetrayl, nonane Examples include a tetrayl group, a decanetetrayl group, a dodecanetetrayl group, and a hexadecanetetrayl group. These aliphatic groups may be substituted.
  • substituents examples include alkyl groups having 1 to 20 carbon atoms, aryl groups having 6 to 15 carbon atoms, halogen atoms, nitro groups, amide groups, hydroxyl groups, ester groups, ether groups, and aldehyde groups. .
  • Examples of the alicyclic group include a cycloalkylene group having 3 to 20 carbon atoms, a cycloalkanetriyl group having 3 to 20 carbon atoms, and a cycloalkanetetrayl group having 3 to 20 carbon atoms.
  • Examples of the cycloalkylene group include a cyclopropylene group, a cyclobutylene group, a cyclopentylene group, a cyclohexylene group, a cycloheptylene group, a cyclooctylene group, a cyclononylene group, a cyclodecylene group, a cyclododecylene group, and a cyclohexadecylene group.
  • a cyclopropylene group a cyclobutylene group, a cyclopentylene group, a cyclohexylene group, a cycloheptylene group, a cyclooctylene group, a cyclononylene group, a cyclodecylene group, a cyclododecylene group, and a cyclohexadecylene group.
  • alkanetriyl groups include cyclopropanetriyl, cyclobutanetriyl, cyclopentanetriyl, cyclohexanetriyl, cycloheptanetriyl, cyclooctanetriyl, cyclononanetriyl, cyclode A cantriyl group, a cyclododecantriyl group, and a cyclohexadecanetriyl group are mentioned.
  • alkanetetrayl groups include cyclopropanetetrayl, cyclobutanetetrayl, cyclopentanetetrayl, cyclohexanetetrayl, cycloheptanetetrayl, cyclooctanetetrayl, cyclononanetetrayl, cyclo A decane tetrayl group, a cyclododecane tetrayl group, and a cyclohexadecane tetrayl group are mentioned. These alicyclic groups may be substituted.
  • substituents examples include alkyl groups having 1 to 20 carbon atoms, aryl groups having 6 to 15 carbon atoms, halogen atoms, nitro groups, amide groups, hydroxyl groups, ester groups, ether groups, and aldehyde groups. .
  • Examples of the aromatic group include an arylene group having 5 to 15 carbon atoms, an arylene triyl group having 5 to 15 carbon atoms, and a carbon number of 5 each optionally containing a hetero atom and having a heterocyclic structure.
  • ⁇ 15 arenetetrayl groups examples include a phenylene group and a naphthalenediyl group.
  • Examples of the arenetriyl group (trivalent) include a benzenetriyl group and a naphthalenetriyl group.
  • Examples of the arenetetrayl group (tetravalent) include a benzenetetrayl group and a naphthalenetetrayl group. These aromatic groups may be substituted.
  • substituents examples include alkyl groups having 1 to 20 carbon atoms, aryl groups having 6 to 15 carbon atoms, halogen atoms, nitro groups, amide groups, hydroxyl groups, ester groups, ether groups, and aldehyde groups. .
  • s and k each independently represent an integer of 0 to 10, preferably an integer of 0 to 3, more preferably an integer of 0 to 1. This is because if s or k exceeds 10, synthesis of the cyclic carbodiimide compound becomes difficult, and the cost may increase significantly. From this viewpoint, the integer represented by s or k is preferably selected in the range of 0 to 3. When s or k is 2 or more, X 1 or X 2 as a plurality of repeating units may be different from each other.
  • X 3 each may contain a heteroatom and a substituent, a divalent to tetravalent C 1-20 aliphatic group, a divalent to tetravalent carbon number of 3 to 20 Represents an alicyclic group, a divalent to tetravalent aromatic group having 5 to 15 carbon atoms, or a combination thereof.
  • Examples of the aliphatic group include an alkylene group having 1 to 20 carbon atoms, an alkanetriyl group having 1 to 20 carbon atoms, and an alkanetetrayl group having 1 to 20 carbon atoms.
  • Examples of the alkylene group include a methylene group, an ethylene group, a propylene group, a butylene group, a pentylene group, a hexylene group, a heptylene group, an octylene group, a nonylene group, a decylene group, a dodecylene group, and a hexadecylene group.
  • alkanetriyl groups include methanetriyl group, ethanetriyl group, propanetriyl group, butanetriyl group, pentanetriyl group, hexanetriyl group, heptanetriyl group, octanetriyl group, nonanthriyl group, decantriyl group, dodecantriyl group. Yl group and hexadecantriyl group.
  • alkanetetrayl groups include methanetetrayl, ethanetetrayl, propanetetrayl, butanetetrayl, pentanetetrayl, hexanetetrayl, heptanetetrayl, octanetetrayl, nonane Examples include a tetrayl group, a decanetetrayl group, a dodecanetetrayl group, and a hexadecanetetrayl group. These aliphatic groups may contain a substituent.
  • substituents examples include alkyl groups having 1 to 20 carbon atoms, aryl groups having 6 to 15 carbon atoms, halogen atoms, nitro groups, amide groups, hydroxyl groups. Groups, ester groups, ether groups, and aldehyde groups.
  • Examples of the alicyclic group include a cycloalkylene group having 3 to 20 carbon atoms, a cycloalkanetriyl group having 3 to 20 carbon atoms, and a cycloalkanetetrayl group having 3 to 20 carbon atoms.
  • Examples of the cycloalkylene group include a cyclopropylene group, a cyclobutylene group, a cyclopentylene group, a cyclohexylene group, a cycloheptylene group, a cyclooctylene group, a cyclononylene group, a cyclodecylene group, a cyclododecylene group, and a cyclohexadecylene group.
  • a cyclopropylene group a cyclobutylene group, a cyclopentylene group, a cyclohexylene group, a cycloheptylene group, a cyclooctylene group, a cyclononylene group, a cyclodecylene group, a cyclododecylene group, and a cyclohexadecylene group.
  • alkanetriyl groups include cyclopropanetriyl, cyclobutanetriyl, cyclopentanetriyl, cyclohexanetriyl, cycloheptanetriyl, cyclooctanetriyl, cyclononanetriyl, cyclode A cantriyl group, a cyclododecantriyl group, and a cyclohexadecanetriyl group are mentioned.
  • alkanetetrayl groups include cyclopropanetetrayl, cyclobutanetetrayl, cyclopentanetetrayl, cyclohexanetetrayl, cycloheptanetetrayl, cyclooctanetetrayl, cyclononanetetrayl, cyclo A decane tetrayl group, a cyclododecane tetrayl group, and a cyclohexadecane tetrayl group are mentioned. These alicyclic groups may contain a substituent.
  • substituents examples include an alkyl group having 1 to 20 carbon atoms, an arylene group having 6 to 15 carbon atoms, a halogen atom, a nitro group, an amide group, Examples include hydroxyl groups, ester groups, ether groups, and aldehyde groups.
  • Examples of the aromatic group include an arylene group having 5 to 15 carbon atoms, an arylene triyl group having 5 to 15 carbon atoms, and a carbon number of 5 each optionally containing a hetero atom and having a heterocyclic structure.
  • ⁇ 15 arenetetrayl groups examples include a phenylene group and a naphthalenediyl group.
  • Examples of the arenetriyl group (trivalent) include a benzenetriyl group and a naphthalenetriyl group.
  • Examples of the arenetetrayl group (tetravalent) include a benzenetetrayl group and a naphthalenetetrayl group. These aromatic groups may be substituted.
  • substituents examples include alkyl groups having 1 to 20 carbon atoms, aryl groups having 6 to 15 carbon atoms, halogen atoms, nitro groups, amide groups, hydroxyl groups, ester groups, ether groups, and aldehyde groups. .
  • Ar 1 , Ar 2 , R 1 , R 2 , X 1 , X 2 and X 3 may each contain a hetero atom.
  • Q is a divalent linking group
  • Ar 1 , Ar 2 , R 1 , R 2 , X 1 , X 2 and X 3 all represent a divalent group.
  • Q is a trivalent linking group
  • one of Ar 1 , Ar 2 , R 1 , R 2 , X 1 , X 2 and X 3 represents a trivalent group.
  • one of Ar 1 , Ar 2 , R 1 , R 2 , X 1 , X 2 and X 3 represents a tetravalent group, or two are trivalent Represents a group.
  • Examples of the cyclic carbodiimide compound that can be used in the present invention include compounds represented by the following (a) to (c).
  • Cyclic carbodiimide compound (a) examples of the cyclic carbodiimide compound used in the present invention include a compound represented by the following formula (2) (hereinafter sometimes referred to as “cyclic carbodiimide compound (a)”).
  • Q a is an aliphatic group, an alicyclic group, an aromatic group or a divalent linking group which is a combination of these, it may contain a heteroatom.
  • the definitions of the aliphatic group, alicyclic group, and aromatic group are the same as the definitions of the aliphatic group, alicyclic group, and aromatic group in Q described in Formula (1).
  • the aliphatic group represented by Q a, alicyclic group, aromatic group are all divalent group.
  • Q a is preferably a divalent linking group represented by the following formula (2-1), (2-2) or (2-3).
  • Cyclic carbodiimide compound (b) Furthermore, examples of the cyclic carbodiimide compound used in the present invention include a compound represented by the following formula (3) (hereinafter sometimes referred to as “cyclic carbodiimide compound (b)”).
  • Q b is an aliphatic group, an alicyclic group, an aromatic group or a trivalent linking group combinations thereof, and may contain a hetero atom.
  • Y represents a carrier supporting a cyclic structure.
  • the definitions of the aliphatic group, alicyclic group, and aromatic group are the same as the definitions of the aliphatic group, alicyclic group, and aromatic group in Q described in Formula (1).
  • the inner one of the group constituting the Q b is a trivalent group.
  • Q b is preferably a trivalent linking group represented by the following formula (3-1), (3-2) or (3-3).
  • Ar b 1 , Ar b 2 , R b 1 , R b 2 , X b 1 , X b 2 , X b 3 , s and k are defined as follows: Each has the same definition as Ar 1 , Ar 2 , R 1 , R 2 , X 1 , X 2 , X 3 , s and k in formulas (1-1) to (1-3). However, one of these represents a trivalent group.
  • Y is preferably a single bond, a double bond, an atom, an atomic group or a polymer.
  • Y is a bonding portion, and a plurality of cyclic structures are bonded via Y to form a structure represented by the formula (3).
  • Examples of the cyclic carbodiimide compound (b) include the following compounds.
  • Cyclic carbodiimide compound (c) Furthermore, examples of the cyclic carbodiimide compound used in the present invention include a compound represented by the following formula (4) (hereinafter sometimes referred to as “cyclic carbodiimide compound (c)”).
  • Q c is any one tetravalent linking group selected from the group consisting of an aliphatic group, an alicyclic group, and an aromatic group, or an aliphatic group, an alicyclic group, And a tetravalent linking group that is a combination of two or more groups selected from the group consisting of aromatic groups, and may further have a heteroatom.
  • Z 1 and Z 2 each independently represent a carrier carrying a cyclic structure. Z 1 and Z 2 may be bonded to each other to form a cyclic structure.
  • Q c is a tetravalent group. Accordingly, one of these groups is a tetravalent group or two are trivalent groups.
  • Q c is preferably a tetravalent linking group represented by the following formula (4-1), formula (4-2), or formula (4-3).
  • Ar c 1 , Ar c 2 , R c 1 , R c 2 , X c 1 , X c 2 , X c 3 , s and k are defined as follows: These are the same as the definitions of Ar 1 , Ar 2 , R 1 , R 2 , X 1 , X 2 , X 3 , s and k in the formulas (1-1) to (1-3), respectively.
  • Ar c 1 , Ar c 2 , R c 1 , R c 2 , X c 1 , X c 2 and X c 3 are one of these being a tetravalent group or two of which are trivalent It is a group.
  • Z 1 and Z 2 are preferably each independently a single bond, a double bond, an atom, an atomic group or a polymer.
  • Z 1 and Z 2 are bonding portions, and a plurality of cyclic structures are bonded via Z 1 and Z 2 to form a structure represented by the formula (4).
  • Examples of the cyclic carbodiimide compound (c) include the following compounds.
  • the cyclic carbodiimide compound according to the present invention can be synthesized based on the method described in paragraph [0076] of JP-A No. 2011-256337.
  • the blending amount of the second carbodiimide compound added as the end-capping agent is such that the total content of the carbodiimide compound is 100 parts by mass in total of the polyester resin and the recycled polyester material containing the first carbodiimide compound after drying. What is necessary is just to set according to the kind and quantity of a polyester resin and a recycled material, film forming conditions, etc. so that the polyester film which is 0.1-2.0 mass parts may be obtained.
  • a drying treatment by contacting hot air of an inert gas (such as nitrogen) at 135 to 170 ° C., for example.
  • an inert gas such as nitrogen
  • vacuum drying may be performed. If the carbodiimide compound is in powder form, it may be used as it is without being dried.
  • additives As raw materials used for melt extrusion, in addition to the above-mentioned polyester resin, recycled polyester material, carbodiimide compound, additives such as end-capping agents, light stabilizers, or antioxidants other than carbodiimide compounds are used. It can further contain in the range which does not impair the effect of invention.
  • a light stabilizer is added to the polyester film produced according to the present invention.
  • the light stabilizer By containing the light stabilizer, it is possible to prevent ultraviolet degradation.
  • light stabilizers include compounds that absorb light such as ultraviolet rays and convert them into thermal energy, and materials that absorb radicals generated by light absorption and decomposition and suppress decomposition chain reactions. Can be mentioned.
  • the light stabilizer is preferably a compound that absorbs light such as ultraviolet rays and converts it into heat energy.
  • a light stabilizer in the film, it becomes possible to keep the effect of improving the partial discharge voltage by the film high for a long time even if the film is irradiated with ultraviolet rays continuously for a long time. Changes in color tone, strength deterioration, and the like due to UV rays.
  • any of an organic ultraviolet absorber, an inorganic ultraviolet absorber, and a combination thereof are preferably used without any particular limitation. be able to.
  • the ultraviolet absorber is excellent in moisture and heat resistance and can be uniformly dispersed in the film.
  • the ultraviolet absorber examples include organic ultraviolet absorbers such as salicylic acid-based, benzophenone-based, benzotriazole-based, and cyanoacrylate-based ultraviolet absorbers, and hindered amine-based ultraviolet stabilizers.
  • organic ultraviolet absorbers such as salicylic acid-based, benzophenone-based, benzotriazole-based, and cyanoacrylate-based ultraviolet absorbers, and hindered amine-based ultraviolet stabilizers.
  • salicylic acid ultraviolet absorbers such as pt-butylphenyl salicylate and p-octylphenyl salicylate, 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4- Benzophenone ultraviolet absorbers such as methoxy-5-sulfobenzophenone, 2,2 ′, 4,4′-tetrahydroxybenzophenone, and bis (2-methoxy-4-hydroxy-5-benzoylphenyl) methane, 2- (2 '-Hy
  • triazine-based ultraviolet absorbers are preferable in that they have high resistance to repeated ultraviolet absorption.
  • these ultraviolet absorbers may be added to the film by the above-mentioned ultraviolet absorber alone, or in a form in which a monomer having ultraviolet absorbing ability is copolymerized with an organic conductive material or a water-insoluble resin. It may be introduced.
  • the content of the light stabilizer in the polyester film is preferably 0.1% by mass or more and 10% by mass or less, and more preferably 0.3% by mass or more and 7% by mass or less with respect to the total mass of the polyester film. More preferably, it is 0.7 mass% or more and 4 mass% or less.
  • the polyester film of the present invention may contain, for example, an easy lubricant (fine particles), a colorant, a heat stabilizer, a nucleating agent (crystallization agent), a flame retardant and the like in addition to the light stabilizer. It can contain as.
  • extruder used for melt kneading is not particularly limited, and a single screw extruder, a twin screw extruder, or the like can be used, but a twin screw extruder can be preferably used.
  • FIG. 1 schematically shows an example of the configuration of a twin-screw extruder used in carrying out the method for producing a polyester film according to the present invention.
  • FIG. 2 shows an example of a flow for carrying out the method for producing a polyester film according to the present invention.
  • a twin-screw extruder 100 shown in FIG. 1 is disposed around a cylinder 10 (barrel) having a supply port 12 and an extruder outlet 14, two screws 20A and 20B rotating in the cylinder 10, and around the cylinder 10.
  • Temperature control means 30 for controlling the temperature in the cylinder 10.
  • a raw material supply device 46 is provided as shown in FIG.
  • a gear pump 44, a filter 42, and a die 40 are provided at the tip of the extruder outlet 14 as shown in FIG.
  • the cylinder 10 has a supply port 12 for supplying the raw material resin and an extruder outlet 14 through which the heat-melted resin is extruded.
  • a material that is excellent in heat resistance, wear resistance, and corrosion resistance and that can ensure friction with the resin.
  • nitrided steel whose inner surface is nitrided is used, but chromium molybdenum steel, nickel chromium molybdenum steel, and stainless steel can also be nitrided and used.
  • a bimetallic cylinder in which a corrosion-resistant and wear-resistant material alloy such as nickel, cobalt, chromium or tungsten is lined on the inner wall surface of the cylinder 10 by centrifugal casting. It is effective to use or to form a ceramic sprayed coating on the inner wall surface of the cylinder 10.
  • a corrosion-resistant and wear-resistant material alloy such as nickel, cobalt, chromium or tungsten
  • the cylinder 10 is provided with vents 16A and 16B for evacuation. By evacuating through the vents 16A and 16B, volatile components such as moisture in the resin in the cylinder 10 can be efficiently removed.
  • the vents 16A and 16B are required to have an appropriate opening area and number of vents in relation to the deaeration efficiency.
  • the twin-screw extruder 100 used in the present invention desirably has one or more vents 16A and 16B. If the number of the vents 16A and 16B is too large, there is a concern that the molten resin may overflow from the vent and there is a concern that the staying deterioration foreign matter may increase. Therefore, it is preferable to provide one or two vents.
  • the resin staying on the wall surface near the vent or the deposited volatile component falls into the extruder 100 (cylinder 10), it may be manifested as a foreign substance in the product, so care must be taken. In order to prevent stagnation, it is effective to optimize the shape of the vent lid and to select the upper and side vents appropriately. For the precipitation of volatile components, a method that prevents the precipitation by heating the piping is used. It is done.
  • oxidative decomposition can be suppressed by evacuating the resin supply port 12 or performing a nitrogen purge.
  • segments such as kneading as much as possible within a range in which extrusion and deaeration can be achieved at the same time.
  • the pressure at the extruder outlet 14 is as much as possible within a range in which the degassing efficiency and the stability of the extrusion by the vents 16A and 16B can be secured. It is preferable to make it low.
  • the volatile components such as moisture in the resin in the cylinder 10 can be efficiently removed by evacuating through the vents 16A and 16B. If the vent pressure is too low, the molten resin may overflow from the cylinder 10, and if the vent pressure is too high, removal of volatile components may be insufficient, and the resulting film may be easily hydrolyzed. From the viewpoint of preventing the molten resin from overflowing the vents 16A and 16B and selectively removing volatile components, the vent pressure is preferably 0.01 Torr to 5 Torr (1.333 Pa to 666.5 Pa). More preferably, the pressure is set at 01 Torr to 4 Torr (1.333 Pa to 533.2 Pa).
  • the biaxial screw cylinder 10 two screws 20 ⁇ / b> A and 20 ⁇ / b> B that are rotated by driving means 21 including a motor and a gear are provided.
  • driving means 21 including a motor and a gear
  • the screw diameter D is preferably 30 to 250 mm or less, and more preferably 50 to 200 mm or less.
  • the twin-screw extruder 100 is roughly classified into a meshing type and a non-meshing type of the two screws 20A and 20B, and the meshing type has a larger kneading effect than the non-meshing type.
  • any of a meshing type and a non-meshing type may be used, but it is preferable to use a meshing type from the viewpoint of sufficiently mixing the raw material resin and suppressing melting unevenness.
  • the rotation directions of the two screws 20A and 20B are also classified into a same direction rotation type and a different direction rotation type.
  • the different-direction rotating screws 20A and 20B have a higher kneading effect than the same-direction rotating type, and the same-direction rotating type has a self-cleaning effect, which is effective for preventing retention in the extruder.
  • the axial direction of the screw also has a parallel direction and an oblique direction, and there is also a conical type shape that is used when applying strong shear.
  • screw segments having various shapes can be used.
  • As the shape of the screws 20 ⁇ / b> A and 20 ⁇ / b> B for example, a full flight screw provided with a single spiral flight 22 having an equal pitch is used.
  • a segment that imparts shear such as a kneading disk or a rotor, in the heating and melting part, the raw material resin can be more reliably melted.
  • a reverse screw or a seal ring the resin can be damped and a melt seal can be formed when evacuating through the vents 16A and 16B.
  • kneading parts 24A and 24B that promote melting of the raw material resin as described above can be provided in the vicinity of the vents 16A and 16B.
  • a temperature control unit 30 is provided around the cylinder 10.
  • heating / cooling devices C1 to C9 divided into nine in the longitudinal direction from the raw material supply port 12 to the extruder outlet 14 constitute the temperature control means 30.
  • the heating / cooling devices C1 to C9 arranged separately around the cylinder 10 are divided into, for example, heating / melting parts C1 to C7 and cooling parts C8 and C9, and the inside of the cylinder 10 is divided. Each region can be controlled to a desired temperature.
  • a band heater or a sheathed wire aluminum cast heater is usually used, but is not limited thereto, and for example, a heating medium circulating heating method can also be used.
  • air cooling by a blower is generally used for cooling, but there is also a method of flowing water or oil through a pipe (water passage) wound around the cylinder 10.
  • the die outlet 10 of the die cylinder 10 is provided with a die 40 for discharging the molten resin extruded from the extruder outlet 14 into a film (strip shape). Further, a filter 42 is provided between the extruder outlet 14 of the cylinder 10 and the die 40 to prevent unmelted resin and foreign matter from entering the film.
  • Gear pump In order to improve the thickness accuracy, it is important to reduce the fluctuation of the extrusion amount as much as possible.
  • a gear pump 44 may be provided between the extruder 100 and the die 40 in order to reduce the variation in the extrusion amount as much as possible. By supplying a certain amount of resin from the gear pump 44, the thickness accuracy can be improved. In particular, when using a twin screw extruder, it is preferable to stabilize the extrusion by the gear pump 44 because the pressurization capacity of the extruder itself is low.
  • the pressure fluctuation on the secondary side of the gear pump 44 can be reduced to 1/5 or less on the primary side, and the resin pressure fluctuation range can be within ⁇ 1%.
  • the gear pump 44 is installed, the length of the equipment becomes long depending on the equipment selection method, and the residence time of the resin becomes long, and the shearing stress of the gear pump section may cause the molecular chain to be broken. It is.
  • the differential pressure during operation is within 20 MPa, preferably within 15 MPa, and more preferably within 10 MPa. In order to make the film thickness uniform, it is also effective to control the screw rotation of the extruder or to use a pressure control valve in order to keep the primary pressure of the gear pump 44 constant.
  • the cylinder 10 is heated by the temperature control means 30 and the screw is rotated to supply the raw material from the supply port 12.
  • the supply port 12 is preferably cooled to prevent heat transfer from occurring in order to prevent the raw material pellets from being heated and fused, and to protect screw drive equipment such as a motor.
  • the raw material supplied into the cylinder 10 is melted not only by heating by the temperature control means 30 but also by heat generated by friction between the resins accompanying rotation of the screws 20A and 20B, friction between the resin and the screws 20A and 20B and the cylinder 10, and the like. And gradually moves toward the extruder outlet 14 as the screw rotates.
  • the raw material resin supplied into the cylinder 10 is heated to a temperature equal to or higher than the melting point Tm (° C.).
  • Tm melting point
  • the resin temperature is too low, melting during melt extrusion may be insufficient and ejection from the die 40 may be difficult.
  • the resin temperature is too high, the amount of terminal carboxyl groups of the resin is remarkably increased by thermal decomposition, which may lead to a decrease in hydrolysis resistance of the film formed.
  • the temperature of the cylinder 10 it is preferable to control the temperature of the cylinder 10 to 220 to 320 ° C., preferably to 280 to 300 ° C., by adjusting the heating temperature by the temperature control means 30 and the rotational speed of the screws 20A and 20B. More preferred. If the temperature of the cylinder 10 is 220 ° C. or higher, a part of the molten resin is solidified to prevent generation of unmelted resin, and if it is 320 ° C. or lower, the terminal COOH of the resin increases due to thermal decomposition. A decrease in hydrolysis resistance of the formed film is suppressed. It is more preferable to perform melt kneading by replacing the inside of the extruder with nitrogen in that the generation of terminal COOH due to thermal decomposition can be further suppressed.
  • the molten resin extruded from the extruder 100 is formed into a film to form a polyester film containing 0.1 to 2.0% by mass of a carbodiimide compound.
  • the molten resin (melt) melt-extruded from the extruder 100 is passed through the gear pump 44 and the filter 42 and extruded from the die 40 onto a cast roll (cooling roll) to be cooled.
  • the humidity in the air gap it is possible to adjust the amount of COOH and OH on the film surface, and by adjusting to low humidity, the amount of carboxylic acid on the film surface can be reduced. .
  • the molten resin extruded from the extrusion die is cooled and solidified using a cast roll (cooling roll). If the cooling is insufficient, spherulites are likely to be generated, which causes uneven stretching and may cause uneven thickness of the film.
  • the temperature of the cast roll is preferably 10 ° C or higher and 80 ° C or lower, more preferably 15 ° C or higher and 70 ° C or lower, and further preferably 20 ° C or higher and 60 ° C or lower.
  • the thickness of the resin sheet (unstretched film) cooled by the cooling roll is preferably 1000 to 4000 ⁇ m. If the thickness of the unstretched film is 1000 ⁇ m or more, the stretched film does not become too thin, and the rigidity (waist) of the film necessary for the product is maintained, and handling becomes easy. Thickness unevenness can be reduced.
  • the unstretched polyester film cooled by the cooling roll is stretched in the longitudinal direction (MD) and the width direction (TD) to perform biaxial stretching (longitudinal stretching and lateral stretching).
  • the unstretched film is led to a group of rolls heated to a temperature of 70 ° C. or higher and 140 ° C. or lower, and stretched at a stretch ratio of 3 to 5 times in the longitudinal direction (longitudinal direction, that is, the traveling direction of the film), It cools with the roll group of the temperature of 20 to 50 degreeC. Subsequently, the both ends of the unstretched film are guided to a tenter while being gripped with clips, and in an atmosphere heated to a temperature of 80 ° C. or higher and 150 ° C. or lower, the direction perpendicular to the longitudinal direction (width direction) is 3 to 5 times. The film is stretched at the following stretching ratio.
  • the stretching rate is preferably 3 to 5 times in each of the longitudinal direction and the width direction.
  • the area magnification (longitudinal stretch magnification x lateral stretch magnification) is 9 times or more and 15 times or less.
  • the area magnification is 9 times or more, the reflectance, concealability, and film strength of the resulting biaxially stretched polyester film are good, and when the area magnification is 15 times or less, tearing during stretching should be avoided. Can do.
  • functional layers such as a weather resistance layer, a colored layer, an easily bonding layer, may be provided by application
  • the biaxially stretched film is subsequently heat-set in the tenter and uniformly cooled slowly. Then cool to room temperature.
  • the heat setting treatment temperature Ts
  • the heat treatment temperature is preferably high.
  • the temperature is preferably 150 to 250 ° C, more preferably 180 to 240 ° C.
  • a relaxation (relaxation) treatment of 1 to 12% in the width direction or the longitudinal direction may be performed.
  • the heat-fixed polyester film is usually cooled to Tg or less, cut the clip gripping portions at both ends of the polyester film, and wound into a roll.
  • the cooling is preferably performed by gradually cooling from the final heat setting temperature to room temperature at a cooling rate of 1 ° C. to 100 ° C. per second.
  • Tg represents a glass transition temperature and can be measured based on JIS K7121 or ASTM D3418-82.
  • Tg is measured using a differential scanning calorimeter (DSC) manufactured by Shimadzu Corporation.
  • a polymer such as polyester is weighed as a sample, set in an aluminum pan, and heated at a rate of temperature increase of 10 ° C./min from room temperature to a final temperature of 300 ° C., with a DSC apparatus, the amount of heat with respect to temperature was measured as the glass transition temperature.
  • the polyester film produced according to the present invention is suitable for electric and electronic members, and in particular, is disposed on the back surface of the solar cell polyester film, specifically on the side opposite to the solar light incident side of the solar cell module. It is suitable for uses such as a protective sheet for solar cells such as a back surface protective sheet (so-called back sheet for solar cells), a barrier film substrate and the like.
  • polyester material excised and recovered in the film production process can be used as a recycled polyester material after being dried under specific conditions by the method of the present invention.
  • a power generating element (solar cell element) connected by a lead wiring for taking out electricity is sealed with a sealing agent such as ethylene / vinyl acetate copolymer (EVA) resin.
  • EVA ethylene / vinyl acetate copolymer
  • Solar cell elements include silicon-based materials such as single crystal silicon, polycrystalline silicon, and amorphous silicon, III-V groups such as copper-indium-gallium-selenium, copper-indium-selenium, cadmium-tellurium, gallium-arsenic, and II Various known solar cell elements such as a group VI compound semiconductor can be applied.
  • Example 1 As shown in Fig. 1, the twin screw extruder is equipped with a screw with the following configuration in a cylinder with two vents as shown in Fig. 1. The cylinder is divided into nine zones in the longitudinal direction around the cylinder for temperature control. A double vent type co-rotating and meshing type twin screw extruder equipped with a heater (temperature control means) that can be used was prepared. Screw diameter D: 65mm Length L [mm] / screw diameter D [mm]: 31.5 (width of one zone: 3.5D) Screw shape: plasticization kneading section just before the first vent, degassing promotion kneading section just before the second vent
  • gear pump 2-gear type Filter: Sintered metal fiber filter (pore diameter 20 ⁇ m) Die: Lip spacing 4mm
  • Raw material Polyester terephthalate produced using Ti-citric acid complex as catalyst as polyester resin A (Intrinsic viscosity (IV): 0.78 dl / g, terminal carboxyl group content (AV): 15 eq / ton, moisture content after drying) : 41 ppm) PET pellets were prepared.
  • As the carbodiimide-based end-capping agent A STABILIZER 9000 (molecular weight: about 20000, manufactured by Rhein Chemie) was prepared.
  • recycled material A a recycled chip containing 100 parts by mass of polyester resin A and 1 part by mass of end-capping agent A was prepared. The recycled material A was contacted with dehumidified air having a dew point of ⁇ 30 ° C.
  • the melt (melt) extruded from the extruder outlet was passed through a gear pump and a metal fiber filter (pore diameter 20 ⁇ m), and then extruded from a die to a cooling (chill) roll.
  • the extruded melt was brought into close contact with the cooling roll using an electrostatic application method.
  • As the cooling roll a hollow cast roll is used, and the temperature can be adjusted by passing water as a heating medium.
  • the conveyance area (air gap) from the die exit to the cooling roll surrounds this conveyance area, and humidity is adjusted to 30% RH by introducing humidity-conditioned air therein.
  • the melt thickness was about 3300 ⁇ m on average.
  • the obtained unstretched film was biaxially stretched.
  • the draw ratio was longitudinal stretch: 3.4 times and transverse stretch: 4.3 times.
  • a PET film having a thickness of 250 ⁇ m was obtained.
  • Terminal carboxyl group content A 0.1 g sample was dissolved in 10 ml of benzyl alcohol, and further chloroform was added to obtain a mixed solution, to which was added a phenol red indicator. This solution was titrated with a reference solution (0.01N KOH-benzyl alcohol mixed solution), and the amount of terminal carboxyl groups (AV) was determined from the amount of the reference solution added just before the color of the phenol red indicator changed from yellow to red. .
  • Isocyanate gas concentration The isocyanate gas concentration in the drying process of the recycled material was measured by the following method. The gas in the dryer was collected, the amount in the gas was quantified using gas chromatography, and the concentration was calculated.
  • the isocyanate / carbodiimide concentration ratio in the drying step of the recycled material was determined by the following method.
  • the carbodiimide concentration in the recycled material before drying was measured by infrared absorption.
  • a calibration curve was created from the relationship with the peak intensity of 2300 cm ⁇ 1 , and the measured peak intensity of the recycled material was converted to a concentration based on this calibration curve.
  • the isocyanate concentration was similarly measured by infrared absorption.
  • a calibration curve was prepared from the peak intensity of 2150 cm ⁇ 1 , and the measured peak intensity of the recycled material was converted to the isocyanate concentration based on this calibration curve.
  • Carbodiimide compound content The carbodiimide compound (unreacted component) contained in the recycled material and the produced polyester film was measured by the following method.
  • the carbodiimide concentration of each material and polyester film was measured by infrared absorption. Using samples having different carbodiimide concentrations, a calibration curve was created from the relationship with the peak intensity of 2300 cm ⁇ 1 , and the measured peak intensity of each material and polyester film was converted to a concentration based on this calibration curve.
  • the gelled product in the produced polyester film was confirmed by the following method.
  • the film is cut into 10 cm ⁇ 5 cm and attached to a glass plate.
  • ⁇ 20 an optical microscope
  • the periphery of the foreign material was polarized in a crossed Nicol state, 50 fields of 5 mm ⁇ 5 mm square were confirmed, and a gelled product (transparent and nucleus could not be visually confirmed) was confirmed.
  • Comparative Examples 1-10 A polyester film was produced and evaluated in the same manner as in Example 1 except that the raw materials and extrusion conditions were changed as shown in Table 4.
  • Carbodiimide compound Starvacol P200 (Rhein Chemie Japan Co., Ltd.) is a carbodiimide sealant having a molecular weight of about 2,000. Cyclic carbodiimide The following compounds were used as the cyclic carbodiimide.
  • the cyclic carbodiimide (1) is a compound having a molecular weight of 516 described in Examples of JP 2011-258541 A, and was synthesized with reference to the synthesis method described in Reference Example 1 of JP 2011-258641 A.
  • Cyclic carbodiimide (2) is a compound having a molecular weight of 252 described in Examples of JP 2010-285554 A, and was synthesized with reference to the synthesis method described in Production Example 1 of JP 2010-285554 A.
  • the structures of these cyclic carbodiimide terminal blockers are shown below.
  • CHDM polyester resins (polyester resins C to L) were produced as follows. First step: Isophthalic acid (IPA) and terephthalic acid (TPA) as dicarboxylic acid components, cyclohexanedimethanol (CHDM) and ethylene glycol (EG) as diol components, magnesium acetate and antimony trioxide as catalysts. After melting in a nitrogen atmosphere at 30 ° C., the temperature was raised to 230-250 ° C. over 3 hours with stirring, and methanol was distilled off to complete the transesterification reaction. At this time, each CHDM polyester resin was obtained by changing the addition amount of IPA, TPA, CHDM, and EG.
  • IPA isophthalic acid
  • TPA terephthalic acid
  • CHDM cyclohexanedimethanol
  • EG ethylene glycol
  • magnesium acetate and antimony trioxide as catalysts. After melting in a nitrogen atmosphere at 30 ° C., the temperature was raised to 230-250
  • Second step After completion of the transesterification reaction, an ethylene glycol solution in which phosphoric acid was dissolved in ethylene glycol was added.
  • Third step The polymerization reaction was performed at a final temperature of 285 to 310 ° C. and a degree of vacuum of 0.1 Torr to obtain a polyester, which was pelletized.
  • Step 4 For some levels, the polyester pellets obtained above were dried and crystallized at 160 ° C. for 6 hours.
  • the cyclohexanedimethanol content in the diol component and the isophthalic acid content in the dicarboxylic acid component were measured by the following methods.
  • CHDM polyester pellets were dissolved in hexafluoroisopropanol (HFIP) and then quantified by 1 H-NMR.
  • Standard samples CHDM, terephthalic acid, EG, isophthalic acid
  • the amount of the isophthalic acid residue obtained and the amount of the CHDM residue are shown in Table 1.
  • the 100 mol% -isophthalic acid content (mol%) is the terephthalic acid content (mol%)
  • the 100 (mol%)-CHDM ratio (mol%) is the EG content (mol%).
  • Some of these levels were dried and then subjected to solid state polymerization in a nitrogen stream at 200 to 240 ° C. for 24 hours.
  • the IV and AV of these CHDM polyester resins were measured by the above method. The results are shown in Table 1.
  • Comparative Example 1 the drying temperature (190 ° C.) of the recycled material is high, the carbodiimide compound contained in the recycled material is decomposed to increase the concentration of the isocyanate gas, and the carbodiimide compound in the recycled material is deactivated. The hydrolysis resistance of the finished polyester film is reduced. In addition, it is considered that the polyester film of Comparative Example 1 was colored and a gelled product was generated by the reaction between the carbodiimide compounds.
  • Comparative Example 5 it is considered that the drying temperature (120 ° C.) of the recycled material is too low, the amount of water present in the recycled material is increased, the isocyanate or carbodiimide compound is deactivated, and the end-capping effect is decreased. It is done.
  • Comparative Example 6 it is considered that the amount of the end-capping agent was too much to generate a gelled product, and coloring of the produced polyester film was increased.

Abstract

A starting material, which comprises: 5 to 50 parts by mass of a recycle polyester material in which a first carbodiimide compound is deactivated by bringing an inert gas or air with a dew point of -25°C or below and an isocyanate concentration of 0.01 ppm to 100 ppm into contact with a recycle polyester material including the first carbodiimide compound and then performing drying; 50 to 95 parts by mass of a polyester resin; and a second carbodiimide compound, is subjected to melt extrusion which involves performing melt-kneading and extruding a molten resin using an extruder, and then moulding is performed in order to form a film shape, and accordingly a polyester film having the total content of a carbodiimide compound of 0.1 to 2.0 mass% is formed.

Description

ポリエステルフィルムの製造方法、ポリエステルフィルム、太陽電池用保護シート、及び太陽電池モジュールMethod for producing polyester film, polyester film, protective sheet for solar cell, and solar cell module
 本発明は、ポリエステルフィルムの製造方法、ポリエステルフィルム、太陽電池用保護シート、及び太陽電池モジュールに関する。 The present invention relates to a method for producing a polyester film, a polyester film, a solar cell protective sheet, and a solar cell module.
 近年、太陽電池モジュールの太陽光入射側とは反対側に配される保護シートには、ポリエステルなどの樹脂材料が使用されるに至っている。ポリエステルには、通常はその表面にカルボキシル基や水酸基が多く存在しており、水分が存在する環境ではポリエステルが加水分解を起こしやすく、経時で劣化する傾向がある。そのため、屋外等の常に風雨に曝されるような環境におかれる太陽電池モジュール等に用いられるポリエステルには、その加水分解性が抑えられていることが求められる。
 例えば、特開平5-237927号公報には、水分率が0.01~0.10%、固有粘度(IV)が0.50~0.90のポリエステルチップを露点-12℃以下の空気または不活性ガスによるパージによってチップ水分率を0.01~0.10%に保つように乾燥した後、溶融押出し、長手方向および幅方向に二軸延伸するポリエステルフィルムの製造方法が開示されている。
In recent years, resin materials such as polyester have been used for protective sheets disposed on the side opposite to the sunlight incident side of the solar cell module. Polyester usually has many carboxyl groups and hydroxyl groups on its surface, and in an environment where moisture exists, the polyester tends to undergo hydrolysis and tends to deteriorate over time. For this reason, polyesters used in solar cell modules and the like that are constantly exposed to wind and rain such as outdoors are required to have reduced hydrolyzability.
For example, Japanese Patent Laid-Open No. 5-237927 discloses a polyester chip having a moisture content of 0.01 to 0.10% and an intrinsic viscosity (IV) of 0.50 to 0.90 with air having a dew point of −12 ° C. or less. There is disclosed a method for producing a polyester film which is dried by purging with an active gas so that the moisture content of the chip is maintained at 0.01 to 0.10%, melt-extruded, and biaxially stretched in the longitudinal direction and the width direction.
 また、特表2004-530000号公報には、ポリ(エチレンテレフタレート)ホモポリマーまたはコポリマーのTgを下げる方法であって、(a)ポリ(トリメチレンテレフタレート)ホモポリマーまたはコポリマーを、結晶化されたポリ(エチレンテレフタレート)ホモポリマーまたはコポリマーに添加し、ブレンドを形成する工程と、(b)少なくとも約6時間または十分な乾燥が行われるまで約120℃~約130℃の範囲の温度で露点-20.5℃(-5°F)未満の乾燥空気の少なくとも0.028m3/分(1ft3/分)の流れに前記ブレンドを曝すことにより前記ブレンドを乾燥させる工程と、(c)前記ブレンドを溶融ブレンディングし、前記工程(a)のポリ(エチレンテレフタレート)より低いTgを有するポリマーを形成する工程とを含む方法が開示されている。 Japanese Patent Application Publication No. 2004-530000 discloses a method for lowering the Tg of a poly (ethylene terephthalate) homopolymer or copolymer, in which (a) the poly (trimethylene terephthalate) homopolymer or copolymer is converted into a crystallized poly Adding to (ethylene terephthalate) homopolymer or copolymer to form a blend; and (b) dew point at a temperature in the range of about 120 ° C. to about 130 ° C. for at least about 6 hours or until sufficient drying has occurred. Drying the blend by exposing the blend to a flow of at least 0.028 m 3 / min (1 ft 3 / min) of dry air below 5 ° C. (−5 ° F.); (c) melting the blend Poly blended and having a lower Tg than the poly (ethylene terephthalate) of step (a) Method comprising the step of forming the over is disclosed.
 また、特開2010-235824号公報には、ポリエステル樹脂を溶融押出する際の末端封止剤としてカルボジイミド化合物を用い、300℃の温度で30分間におけるイソシアネート系ガスの発生量が0~0.05重量%である二軸配向ポリエステルフィルムが開示されている。 Japanese Patent Application Laid-Open No. 2010-235824 uses a carbodiimide compound as an end-capping agent when melt-extruding a polyester resin, and the amount of isocyanate-based gas generated at a temperature of 300 ° C. for 30 minutes is 0 to 0.05. Biaxially oriented polyester films that are weight percent are disclosed.
 カルボジイミド化合物は、比較的少量で封止効果を発揮するとともに、未反応成分がフィルム成形後にも高い封止反応(待伏せ効果)を奏する。末端封止剤としてカルボジイミド化合物を添加してポリエステルフィルムを製造する際、製品として使用できない部分を切除して回収し、これをリサイクルポリエステル材料として原料の一部として使用する場合、リサイクルポリエステル材料中には未反応のカルボジイミド化合物が残留しているため、得られたフィルムには、リサイクル回数が増えるほど高分子量物が増えてゲル化するほか、着色(透明度の低下)したり、製品品質が安定化しないなどの問題がある。 The carbodiimide compound exhibits a sealing effect in a relatively small amount, and the unreacted component exhibits a high sealing reaction (ambushing effect) even after film formation. When manufacturing a polyester film by adding a carbodiimide compound as an end-capping agent, the part that cannot be used as a product is cut out and collected, and when this is used as a part of the raw material as a recycled polyester material, Since unreacted carbodiimide compounds remain, the resulting film will gel with higher molecular weight as the number of recycles increases, and it will become colored (decrease in transparency) and stabilize the product quality. There is a problem such as not.
 例えば、リサイクルポリエステル材料の配合量を少なくする方法が考えられるが、フィーダーによる原料の供給が不安定となる。
 また、末端封止剤を含むリサイクルポリエステル材料と末端封止剤が含まれていないリサイクルポリエステル材料を併用する方法が考えられるが、末端封止剤を含まないリサイクルポリエステル材料は、通常、極限粘度(IV)が高く、末端カルボキシル基量(AV)が高いため、製造されるポリエステルフィルムの物性が変動し易い。
 また、リサイクルポリエステル材料中に残存するカルボジイミド化合物を真空乾燥して低減させる方法が考えられるが、リサイクルポリエステル材料を真空乾燥させる工程が別途必要となり、製造コストの上昇を招くことになる。
For example, although the method of reducing the compounding quantity of recycled polyester material can be considered, supply of the raw material by a feeder becomes unstable.
Moreover, although the method of using together the recycled polyester material containing terminal blocker and the recycled polyester material which does not contain terminal blocker can be considered, the recycled polyester material which does not contain terminal blocker is usually intrinsic viscosity ( IV) is high and the amount of terminal carboxyl groups (AV) is high, so that the physical properties of the produced polyester film are likely to vary.
Although a method of reducing the carbodiimide compound remaining in the recycled polyester material by vacuum drying is conceivable, a separate step of vacuum drying the recycled polyester material is required, resulting in an increase in manufacturing cost.
 本発明は、ゲル化物の発生が抑制され、且つ耐加水分解性に優れたポリエステルフィルムをリサイクルポリエステル材料を用いて低コストで製造する方法、並びに、耐候性に優れたポリエステルフィルム、太陽電池用保護シート、及び太陽電池モジュールを提供することを目的とする。 The present invention relates to a method for producing a polyester film, in which the generation of a gelled product is suppressed and excellent in hydrolysis resistance, using a recycled polyester material at a low cost, as well as a polyester film excellent in weather resistance, and protection for solar cells. It aims at providing a sheet | seat and a solar cell module.
 前記目的を達成するため、以下の発明が提供される。
<1> 第1のカルボジイミド化合物を含むリサイクルポリエステル材料に、露点が-25℃以下であり、且つ、イソシアネート濃度が0.01ppm~100ppmである空気又は不活性ガスを接触させて乾燥させることにより前記第1のカルボジイミド化合物を失活させるリサイクル材料乾燥工程と、
 ポリエステル樹脂を50~95質量部、前記乾燥させたリサイクルポリエステル材料を5~50質量部、及び第2のカルボジイミド化合物を含む原料を押出機により溶融混練して溶融樹脂を押出す溶融押出工程と、
 前記押出機から押出した溶融樹脂をフィルム状に成形してカルボジイミド化合物の合計含有量が0.1~2.0質量%であるポリエステルフィルムを成形するフィルム成形工程と、
 を有するポリエステルフィルムの製造方法。
<2> 前記リサイクル材料乾燥工程において前記リサイクルポリエステル材料を135~180℃で乾燥させる<1>に記載のポリエステルフィルムの製造方法。
<3> 前記リサイクルポリエステル材料の末端カルボキシル基量(AV)が3~20当量/トンであり、前記ポリエステル樹脂の末端カルボキシル基量(AV)が3~55当量/トンである<1>または<2>に記載のポリエステルフィルムの製造方法。
<4> 前記ポリエステル樹脂及び前記リサイクルポリエステル材料の少なくとも一方が、1,4-シクロヘキサンジメタノール由来の構造を、ジオール成分由来の構造全量に対して、0.1~20モル%または80~100モル%含む1,4-シクロヘキサンジメタノール系ポリエステルを含む<1>~<3>のいずれかに記載のポリエステルフィルムの製造方法。
<5> 前記リサイクルポリエステル材料に含まれる第1のカルボジイミド化合物及び前記原料に含まれる前記第2のカルボジイミド化合物の少なくとも一方が、カルボジイミド基を1個有し、その第一窒素と第二窒素とが結合基により結合されている環状構造を含む環状カルボジイミド化合物である<1>~<4>のいずれかに記載のポリエステルフィルムの製造方法。
<6> 前記環状カルボジイミド化合物が、下記式(2)~(4)で表される化合物から選択される少なくとも1種である<5>に記載のポリエステルフィルムの製造方法。
Figure JPOXMLDOC01-appb-C000004

 式(2)中、Qは、脂肪族基、脂環族基、芳香族基またはこれらの組み合わせである2価の結合基を表し、ヘテロ原子を含有していてもよい。
Figure JPOXMLDOC01-appb-C000005

 式(3)中、Qは、脂肪族基、脂環族基、芳香族基、またはこれらの組み合わせである3価の結合基を表し、ヘテロ原子を含有していてもよい。Yは、環状構造を担持する担体を表す。
Figure JPOXMLDOC01-appb-C000006

 式(4)中、Qは、脂肪族基、脂環族基、および芳香族基からなる群から選択されるいずれか1つの4価の結合基、又は脂肪族基、脂環族基、および芳香族基からなる群から選択される2つ以上の基の組み合わせである4価の結合基を表し、さらにヘテロ原子を保有していてもよい。Z及びZは、それぞれ独立に環状構造を担持する担体を表し、互いに結合して環状構造を形成していてもよい。
<7> <1>~<6>のいずれかに記載のポリエステルフィルムの製造方法により作製されたポリエステルフィルム。
<8> <7>に記載のポリエステルフィルムを含む太陽電池用保護シート。
<9> <8>に記載の太陽電池用保護シートを備えた太陽電池モジュール。
In order to achieve the above object, the following invention is provided.
<1> The recycled polyester material containing the first carbodiimide compound is dried by contacting with air or an inert gas having a dew point of −25 ° C. or less and an isocyanate concentration of 0.01 ppm to 100 ppm. A recycled material drying step for deactivating the first carbodiimide compound;
A melt extrusion process in which 50 to 95 parts by mass of a polyester resin, 5 to 50 parts by mass of the dried recycled polyester material, and a raw material containing a second carbodiimide compound are melt-kneaded by an extruder to extrude the molten resin;
A film forming step of forming a polyester film having a total content of carbodiimide compounds of 0.1 to 2.0% by mass by molding the molten resin extruded from the extruder into a film;
The manufacturing method of the polyester film which has this.
<2> The method for producing a polyester film according to <1>, wherein the recycled polyester material is dried at 135 to 180 ° C. in the recycled material drying step.
<3> The amount of terminal carboxyl groups (AV) of the recycled polyester material is 3 to 20 equivalents / ton, and the amount of terminal carboxyl groups (AV) of the polyester resin is 3 to 55 equivalents / ton <1> or < The manufacturing method of the polyester film of 2>.
<4> At least one of the polyester resin and the recycled polyester material has a structure derived from 1,4-cyclohexanedimethanol in an amount of 0.1 to 20 mol% or 80 to 100 mol based on the total structure derived from the diol component. %. The method for producing a polyester film according to any one of <1> to <3>, which contains 1,4-cyclohexanedimethanol-based polyester.
<5> At least one of the first carbodiimide compound contained in the recycled polyester material and the second carbodiimide compound contained in the raw material has one carbodiimide group, and the first nitrogen and the second nitrogen are The method for producing a polyester film according to any one of <1> to <4>, which is a cyclic carbodiimide compound containing a cyclic structure bonded by a bonding group.
<6> The method for producing a polyester film according to <5>, wherein the cyclic carbodiimide compound is at least one selected from compounds represented by the following formulas (2) to (4).
Figure JPOXMLDOC01-appb-C000004

Wherein (2), Q a is an aliphatic group, an alicyclic group, an aromatic group or a divalent linking group which is a combination of these, it may contain a heteroatom.
Figure JPOXMLDOC01-appb-C000005

Wherein (3), Q b is an aliphatic group, an alicyclic group, an aromatic group or a trivalent linking group combinations thereof, and may contain a hetero atom. Y represents a carrier supporting a cyclic structure.
Figure JPOXMLDOC01-appb-C000006

In formula (4), Q c is any one tetravalent linking group selected from the group consisting of an aliphatic group, an alicyclic group, and an aromatic group, or an aliphatic group, an alicyclic group, And a tetravalent linking group that is a combination of two or more groups selected from the group consisting of aromatic groups, and may further have a heteroatom. Z 1 and Z 2 each independently represent a carrier carrying a cyclic structure, and may be bonded to each other to form a cyclic structure.
<7> A polyester film produced by the method for producing a polyester film according to any one of <1> to <6>.
<8> A solar cell protective sheet comprising the polyester film according to <7>.
<9> A solar cell module comprising the solar cell protective sheet according to <8>.
 本発明によれば、ゲル化物の発生が抑制され、且つ耐加水分解性に優れたポリエステルフィルムをリサイクルポリエステル材料を用いて低コストで製造する方法、並びに、耐候性に優れたポリエステルフィルム、太陽電池用保護シート、及び太陽電池モジュールが提供される。 ADVANTAGE OF THE INVENTION According to this invention, the generation | occurrence | production of a gelled substance is suppressed, the method of manufacturing the polyester film excellent in hydrolysis resistance at low cost using a recycled polyester material, the polyester film excellent in a weather resistance, and a solar cell A protective sheet and a solar cell module are provided.
本発明に係るポリエステルフィルムの製造方法を実施するための二軸押出機の構成例を示す概略図である。It is the schematic which shows the structural example of the twin-screw extruder for enforcing the manufacturing method of the polyester film which concerns on this invention. 本発明に係るポリエステルフィルムの製造方法を実施するフローの一例を示す図である。It is a figure which shows an example of the flow which enforces the manufacturing method of the polyester film which concerns on this invention.
 以下、本発明のポリエステルフィルムの製造方法について詳細に説明する。なお、本願明細書において「~」とはその前後に記載される数値を下限値及び上限値として含む意味で使用される。 Hereinafter, the method for producing the polyester film of the present invention will be described in detail. In the present specification, “to” is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
 本発明者は、特定の乾燥条件によってリサイクルポリエステル材料中に残存するカルボジイミド化合物を優先的に失活させることが有効であることに想到した。
 リサイクルポリエステル材料中のカルボジイミド化合物を失活させる方法として、湿熱、光、アルカリなどで処理することが考えられるが、ポリエステル樹脂自体も分解してしまうおそれがある。しかし、カルボジイミド化合物の加水分解速度はポリエステル樹脂の加水分解速度よりも極めて大きいため、この加水分解速度の違いを利用することで、加水分解速度が大きいカルボジイミド化合物を優先的に分解することができる。同様に、カルボジイミド化合物を優先的に失活させる効果を有するイソシアネートガスを利用することでリサイクルポリエステル材料中のカルボジイミド化合物をさらに効果的に失活(分解)することができる。
The present inventor has conceived that it is effective to preferentially deactivate the carbodiimide compound remaining in the recycled polyester material under specific drying conditions.
As a method for deactivating the carbodiimide compound in the recycled polyester material, it may be possible to treat with wet heat, light, alkali, etc., but the polyester resin itself may be decomposed. However, since the hydrolysis rate of the carbodiimide compound is much higher than the hydrolysis rate of the polyester resin, the carbodiimide compound having a high hydrolysis rate can be preferentially decomposed by utilizing the difference in hydrolysis rate. Similarly, the carbodiimide compound in the recycled polyester material can be more effectively deactivated (decomposed) by using an isocyanate gas having an effect of preferentially deactivating the carbodiimide compound.
 そして、本発明者は、上記特定の乾燥条件によって第1のカルボジイミド化合物を失活させたリサイクルポリエステル材料と、重合によって得たポリエステル樹脂と、第2のカルボジイミド化合物をそれぞれ特定の量で配合して溶融押出を行い、フィルム成形してカルボジイミド化合物の合計含有量が0.1~2.0質量%であるポリエステルフィルムを製造すれば、リサイクルを繰り返しても、ゲル化物の発生が抑制され、且つ耐加水分解性に優れたポリエステルフィルムを低コストで製造することができることを見出した。 And this inventor mix | blends the recycled polyester material which deactivated the 1st carbodiimide compound by the said specific drying conditions, the polyester resin obtained by superposition | polymerization, and a 2nd carbodiimide compound in a specific quantity, respectively. If a polyester film having a total carbodiimide compound content of 0.1 to 2.0% by mass is formed by melt extrusion and film formation, the generation of gelled products is suppressed even when recycling is repeated, and the It has been found that a polyester film excellent in hydrolyzability can be produced at low cost.
 すなわち、本発明のポリエステルフィルムの製造方法は、第1のカルボジイミド化合物を含むリサイクルポリエステル材料に、露点が-25℃以下であり、且つ、イソシアネート濃度が0.01ppm~100ppmである空気又は不活性ガスを接触させて乾燥させることにより前記第1のカルボジイミド化合物を失活させるリサイクル材料乾燥工程と、ポリエステル樹脂を50~95質量部、前記乾燥させたリサイクルポリエステル材料を5~50質量部、及び第2のカルボジイミド化合物を含む原料を押出機により溶融混練して溶融樹脂を押出す溶融押出工程と、前記押出機から押出した溶融樹脂をフィルム状に成形してカルボジイミド化合物の合計含有量が0.1~2.0質量%であるポリエステルフィルムを成形するフィルム成形工程と、を有する。 That is, the method for producing a polyester film of the present invention includes a recycled polyester material containing a first carbodiimide compound, air or an inert gas having a dew point of −25 ° C. or lower and an isocyanate concentration of 0.01 ppm to 100 ppm. A recycled material drying step in which the first carbodiimide compound is deactivated by contacting and drying, a polyester resin in an amount of 50 to 95 parts by mass, a dried recycled polyester material in an amount of 5 to 50 parts by mass, and a second A melt extrusion process in which a raw material containing a carbodiimide compound is melt-kneaded by an extruder to extrude a molten resin, and the molten resin extruded from the extruder is formed into a film to have a total content of carbodiimide compounds of 0.1 to Film forming to form 2.0% by mass polyester film Has a degree, the.
<リサイクル材料乾燥工程>
 本発明では、原料の一部として、カルボジイミド化合物を含むリサイクルポリエステル材料(以下、単に「リサイクル材料」と言う場合がある。)を用いる。
 カルボジイミド化合物を含むリサイクルポリエステル材料としては、例えば、末端封止剤としてカルボジイミド化合物を用いたポリエステルフィルムを製造する際、厚みが相対的に大きくなった部分や横延伸時にクリップされた部分など、製品フィルムとしては使用できないため切除して回収したポリエステル片が挙げられる。
<Recycled material drying process>
In the present invention, a recycled polyester material containing a carbodiimide compound (hereinafter sometimes simply referred to as “recycled material”) is used as a part of the raw material.
Recycled polyester materials containing carbodiimide compounds include, for example, product films such as parts that have a relatively large thickness or parts that are clipped during lateral stretching when manufacturing polyester films that use carbodiimide compounds as end-capping agents. Because it cannot be used, a polyester piece that has been excised and recovered can be used.
 カルボジイミド化合物を用いたポリエステルフィルムの製造過程で得られたリサイクルポリエステル材料を単に乾燥させ、新たなポリエステルフィルムの製造工程においてポリエステル樹脂及びカルボジイミド化合物に混ぜてポリエステルフィルムを製造する場合、リサイクル材料に含まれるカルボジイミド化合物も末端封止剤として機能する。そのため、前記したように、得られるフィルムには、リサイクル回数が増えるほどカルボジイミド化合物による高分子量物の発生が増加してゲル化したり、着色したり、製品品質が安定しないなどの弊害が生じることがある。 Recycled polyester material obtained in the process of producing a polyester film using a carbodiimide compound is simply dried and mixed with a polyester resin and a carbodiimide compound in the production process of a new polyester film. A carbodiimide compound also functions as a terminal blocking agent. Therefore, as described above, in the obtained film, as the number of times of recycling increases, the generation of high molecular weight substances due to the carbodiimide compound increases, causing problems such as gelation, coloring, and unstable product quality. is there.
 一方、本発明では、カルボジイミド化合物を含むリサイクルポリエステル材料に、露点が-25℃以下であり、且つ、イソシアネート濃度が0.01ppm~100ppmである空気又は不活性ガスを接触させて乾燥させることによりリサイクル材料に含まれるカルボジイミド化合物を失活させる。 On the other hand, in the present invention, the recycled polyester material containing a carbodiimide compound is recycled by bringing it into contact with air or an inert gas having a dew point of −25 ° C. or less and an isocyanate concentration of 0.01 ppm to 100 ppm and drying it. The carbodiimide compound contained in the material is deactivated.
 リサイクルポリエステルの乾燥工程における露点が-25℃以下であると、リサイクル材の含水率が十分に低下し、ポリエステル樹脂の加水分解が抑制される。乾燥が不十分な際の溶融押出時における加水分解によってポリエステルフィルムの耐加水分解性能が低下することを抑制する観点から、リサイクルポリエステルの乾燥工程における露点は-60℃以上-25℃以下が好ましく、-50℃以上-30℃以下がより好ましい。 When the dew point in the drying process of the recycled polyester is −25 ° C. or less, the moisture content of the recycled material is sufficiently lowered, and hydrolysis of the polyester resin is suppressed. From the viewpoint of suppressing degradation of hydrolysis resistance of the polyester film due to hydrolysis during melt extrusion when drying is insufficient, the dew point in the drying step of the recycled polyester is preferably −60 ° C. or more and −25 ° C. or less. It is more preferably −50 ° C. or higher and −30 ° C. or lower.
 また、リサイクルポリエステルの乾燥工程における空気又は不活性ガス中のイソシアネート濃度が0.01ppm以上であると、リサイクル材料に含まれる第1のカルボジイミド化合物が十分に失活し、100ppm以下であると、過剰なイソシアネートによって溶融押出工程時に新たに追加される第2のカルボジイミド化合物まで失活されることが抑制される。かかる観点から、ガス中のイソシアネート濃度は0.01ppm~70ppmであることが好ましく、0.02ppm~50ppmであることがより好ましい。 Further, if the isocyanate concentration in the air or inert gas in the drying process of the recycled polyester is 0.01 ppm or more, the first carbodiimide compound contained in the recycled material is sufficiently deactivated, and if it is 100 ppm or less, excess It is suppressed that even the 2nd carbodiimide compound newly added at the time of a melt-extrusion process by a simple isocyanate is deactivated. From this viewpoint, the isocyanate concentration in the gas is preferably 0.01 ppm to 70 ppm, and more preferably 0.02 ppm to 50 ppm.
 具体的には、フィルム製造工程で回収されたカルボジイミド化合物を含むリサイクルポリエステル材料(チップ)を乾燥塔内に投入し、イソシアネートガスを0.01~100ppm及び水蒸気(露点:-25℃以下)を含む空気又は窒素などの不活性ガスを、好ましくは135~180℃、より好ましくは140~175℃の熱風として乾燥塔内に導入して2~8時間乾燥させる方法が挙げられる。 Specifically, a recycled polyester material (chip) containing a carbodiimide compound recovered in the film manufacturing process is put into a drying tower, and contains 0.01 to 100 ppm of isocyanate gas and water vapor (dew point: −25 ° C. or lower). An example is a method in which an inert gas such as air or nitrogen is introduced into a drying tower as hot air, preferably 135 to 180 ° C., more preferably 140 to 175 ° C., and dried for 2 to 8 hours.
 上記のように乾燥させたリサイクル材料の含水率は、ポリエステル樹脂の加水分解を抑制する観点から、100ppm未満にすることが好ましく、70~20ppmであることがより好ましい。なお、リサイクル材料の含水率は、例えば、カールフィッシャー水分計(京都電子工業(株)製、MKC-520)によって測定することができる。 The water content of the recycled material dried as described above is preferably less than 100 ppm and more preferably 70 to 20 ppm from the viewpoint of suppressing hydrolysis of the polyester resin. The water content of the recycled material can be measured by, for example, a Karl Fischer moisture meter (manufactured by Kyoto Electronics Industry Co., Ltd., MKC-520).
極限粘度(IV)
 リサイクルポリエステル材料の極限粘度(IV)は、リサイクル材料の配合量により異なるが、リサイクル材料のIVが高過ぎると溶融押出時の溶融粘度が高くなり、せん断発熱量が大きくなって、熱分解が進みAV値が増加して、フィルムの耐加水分解性が低下するおそれがある。一方、リサイクルポリエステル材料のIVが小さ過ぎるとフィルムの力学物性が不十分となるおそれがある。これらの観点から、リサイクルポリエステル材料の極限粘度(IV)は0.50~1.05dl/gであることが好ましく、0.60~0.90dl/gであることがさらに好ましい。
 リサイクル材料とポリエステル樹脂との間の極限粘度の差ΔIVは、押出時の吐出安定性(厚み斑)の観点から、0.4dl/g以下であることが好ましく、0.02~0.20dl/gであることがより好ましい。
Intrinsic viscosity (IV)
The intrinsic viscosity (IV) of the recycled polyester material varies depending on the amount of the recycled material. If the recycled material IV is too high, the melt viscosity at the time of melt extrusion increases, the shear heating value increases, and thermal decomposition proceeds. There is a possibility that the AV value increases and the hydrolysis resistance of the film decreases. On the other hand, if the IV of the recycled polyester material is too small, the mechanical properties of the film may be insufficient. From these viewpoints, the intrinsic viscosity (IV) of the recycled polyester material is preferably 0.50 to 1.05 dl / g, and more preferably 0.60 to 0.90 dl / g.
The intrinsic viscosity difference ΔIV between the recycled material and the polyester resin is preferably 0.4 dl / g or less from the viewpoint of ejection stability (thickness unevenness) during extrusion, and is 0.02 to 0.20 dl / More preferably, it is g.
末端カルボキシル基量(AV)
 リサイクルポリエステル材料の末端カルボキシル基量(AV)は、リサイクル材料の配合量により異なるが、リサイクル材料のAVが大き過ぎるとフィルムの耐加水分解性能が不十分となるおそれがある。そのため、リサイクルポリエステル材料のAVは3~20当量/トンであることが好ましく、4~15当量/トンであることがさらに好ましい。
 なお、本明細書中において、「当量/トン」(「eq/ton」、「eq/t」)とは1トンあたりのモル当量を表す。
Terminal carboxyl group content (AV)
The terminal carboxyl group amount (AV) of the recycled polyester material varies depending on the blending amount of the recycled material, but if the AV of the recycled material is too large, the hydrolysis resistance of the film may be insufficient. Therefore, the AV of the recycled polyester material is preferably 3 to 20 equivalent / ton, and more preferably 4 to 15 equivalent / ton.
In the present specification, “equivalent / ton” (“eq / ton”, “eq / t”) represents a molar equivalent per ton.
残存カルボジイミド化合物含有量
 リサイクルポリエステル材料に含まれる第1のカルボジイミド化合物の含有量は、リサイクルポリエステル材料全量に対して0.1~2質量%が好ましく、0.2~1.5質量%がより好ましい。リサイクル材料に含まれるカルボジイミド化合物の含有量が0.1質量%以上であってもリサイクル材料として利用した場合実害がなく、2質量%以下である場合は、乾燥時のイソシアネートガスでカルボジイミド化合物を十分に失活でき、製品品質を維持することができる。
Residual carbodiimide compound content The content of the first carbodiimide compound contained in the recycled polyester material is preferably 0.1 to 2% by mass, more preferably 0.2 to 1.5% by mass, based on the total amount of the recycled polyester material. . Even if the content of the carbodiimide compound contained in the recycled material is 0.1% by mass or more, there is no actual harm when used as a recycled material, and if it is 2% by mass or less, the carbodiimide compound is sufficient with the isocyanate gas at the time of drying. The product quality can be maintained.
融点
 また、リサイクルポリエステル材料の融点は、リサイクル材料の配合量により異なるが、リサイクル材料の融点が高過ぎると溶融押出の際に未溶融成分が含まれてフィルムの機械的強度を低下させるおそれがある。そのため、リサイクルポリエステル材料の融点は、280℃~320℃の範囲であることが好ましい。
The melting point of the recycled polyester material varies depending on the blending amount of the recycled material, but if the melting point of the recycled material is too high, there is a risk that unmelted components are included during melt extrusion and the mechanical strength of the film is lowered. . Therefore, the melting point of the recycled polyester material is preferably in the range of 280 ° C to 320 ° C.
<溶融押出工程>
 ポリエステル樹脂を50~95質量部、前記乾燥により第1のカルボジイミド化合物を失活させたリサイクルポリエステル材料を5~50質量部、及び第2のカルボジイミド化合物を含む原料を押出機により溶融混練して溶融樹脂を押出す。なお、第2のカルボジイミド化合物の配合量は、最終的に製造されるポリエステルフィルムに含まれるカルボジイミド化合物の合計含有量が0.1~2質量%となる配合量にする。なお、ここでいう「カルボジイミド化合物の合計含有量」とは、製造されるポリエステルフィルム中に含まれる全てのカルボジイミド化合物(第1および第2のカルボジイミド化合物以外のカルボジイミド化合物を含んでいてもよい)の合計量を指す。
<Melt extrusion process>
50 to 95 parts by mass of a polyester resin, 5 to 50 parts by mass of a recycled polyester material in which the first carbodiimide compound is deactivated by the drying, and a raw material containing the second carbodiimide compound are melted and melted by an extruder. Extrude the resin. The amount of the second carbodiimide compound is such that the total content of the carbodiimide compound contained in the finally produced polyester film is 0.1 to 2% by mass. The “total content of carbodiimide compounds” here refers to all carbodiimide compounds (may include carbodiimide compounds other than the first and second carbodiimide compounds) contained in the produced polyester film. Refers to the total amount.
ポリエステル樹脂
 原料となる上記ポリエステル樹脂の物性としては、例えば、極限粘度(IV)が0.65~0.85dl/gであり、末端カルボキシル基量(AV)が15~45当量/トンであるポリエステル樹脂が挙げられる。
Polyester resin Physical properties of the polyester resin as a raw material include, for example, a polyester having an intrinsic viscosity (IV) of 0.65 to 0.85 dl / g and a terminal carboxyl group amount (AV) of 15 to 45 equivalents / ton. Resin.
極限粘度(IV)
 原料となるポリエステル樹脂の極限粘度(IV)は、重合方式および重合条件によって調整することができる。具体的には、液相重合の後に固相重合を行う際、処理温度、処理時間、処理雰囲気水分、および酸素濃度を調節することによって極限粘度(IV)が0.65~0.85dl/gのポリエステル樹脂を得ることができる。
 ポリエステル樹脂の溶融押出工程では、せん断で発熱し易く、熱分解により末端カルボキシル基量が増加し易いが、IVが0.65~0.85dl/gにあるポリエステル樹脂を用いれば、加熱溶融部において原料樹脂を十分混練して極端なせん断発熱を起こさせることなく、溶融させることができるとともに、末端カルボキシル基量の増加を効果的に抑制することができる。
 本発明で用いるポリエステル樹脂は、極限粘度(IV)が0.55~1.2dl/gであることが好ましく、0.6~1.1dl/gであることがさらに好ましい。
Intrinsic viscosity (IV)
The intrinsic viscosity (IV) of the polyester resin used as a raw material can be adjusted by the polymerization method and polymerization conditions. Specifically, when the solid phase polymerization is performed after the liquid phase polymerization, the intrinsic viscosity (IV) is 0.65 to 0.85 dl / g by adjusting the processing temperature, processing time, processing atmosphere moisture, and oxygen concentration. The polyester resin can be obtained.
In the melt extrusion process of polyester resin, heat is easily generated by shearing, and the amount of terminal carboxyl groups is likely to increase due to thermal decomposition, but if a polyester resin having IV of 0.65 to 0.85 dl / g is used, The raw material resin can be sufficiently kneaded and melted without causing extreme shearing heat generation, and an increase in the amount of terminal carboxyl groups can be effectively suppressed.
The intrinsic viscosity (IV) of the polyester resin used in the present invention is preferably 0.55 to 1.2 dl / g, more preferably 0.6 to 1.1 dl / g.
 なお、極限粘度(IV)は、溶液粘度(η)と溶媒粘度(η0)の比ηr(=η/η0;相対粘度)から1を引いた比粘度(ηsp=ηr-1)を濃度で割った値を、濃度がゼロの状態に外挿した値である。IVは、ウベローデ型粘度計を用い、ポリエステル樹脂を1,1,2,2-テトラクロルエタン/フェノール(=2/3[質量比])混合溶媒に溶解させ、25℃の溶液粘度から求められる。 The intrinsic viscosity (IV) is a specific viscosity (η sp = η r −1) obtained by subtracting 1 from the ratio η r (= η / η 0 ; relative viscosity) of the solution viscosity (η) and the solvent viscosity (η 0 ). ) Is divided by the density and extrapolated to a density zero state. IV is obtained from a solution viscosity at 25 ° C. by using a Ubbelohde viscometer, dissolving a polyester resin in a 1,1,2,2-tetrachloroethane / phenol (= 2/3 [mass ratio]) mixed solvent. .
末端カルボキシル基量(AV)
 ポリエステル樹脂の末端カルボキシル基量(AV)は、重合方式および重合条件によって調整することができる。具体的には、液相重合の後に固相重合を行う際、処理温度、処理時間、処理雰囲気水分、および酸素濃度を調節することによって末端カルボキシル基量(AV)が3~55当量/トンのポリエステル樹脂を得ることができる。
 ポリエステル原料樹脂のAVが3当量/トン以上であると、分子鎖の直線性が高まることによる結晶化が抑制され、溶融時のせん断発熱量が高くならず、ポリエステル原料樹脂のAV値の増加および極限粘度の低下が抑制され、55当量/トン以下であると、形成されるフィルムの耐加水分解性が十分となる。
 本発明で用いるポリエステル樹脂の末端カルボキシル基量(AV)は3~55当量/トンであることが好ましく、5~50当量/トンであることがさらに好ましい。
Terminal carboxyl group content (AV)
The terminal carboxyl group amount (AV) of the polyester resin can be adjusted by the polymerization method and polymerization conditions. Specifically, when solid phase polymerization is performed after liquid phase polymerization, the amount of terminal carboxyl groups (AV) is 3 to 55 equivalents / ton by adjusting processing temperature, processing time, processing atmosphere moisture, and oxygen concentration. A polyester resin can be obtained.
When the AV of the polyester raw material resin is 3 equivalents / ton or more, crystallization due to an increase in the linearity of the molecular chain is suppressed, the amount of shear heat generated at the time of melting is not increased, and the AV value of the polyester raw material resin is increased. A decrease in the intrinsic viscosity is suppressed, and when it is 55 equivalents / ton or less, the formed film has sufficient hydrolysis resistance.
The amount of terminal carboxyl groups (AV) of the polyester resin used in the present invention is preferably 3 to 55 equivalents / ton, and more preferably 5 to 50 equivalents / ton.
 なお、末端カルボキシル基量(AV)は、0.1gの試料をベンジルアルコール10mlに溶解後、さらにクロロホルムを加えて混合溶液を得、これにフェノールレッド指示薬を滴下し、この溶液を、基準液(0.01N KOH-ベンジルアルコール混合溶液)で滴定して、フェノールレッド指示薬の色が黄色から赤色に変わる直前の基準液の滴下量から求められる。 The terminal carboxyl group amount (AV) was determined by dissolving 0.1 g of a sample in 10 ml of benzyl alcohol, further adding chloroform to obtain a mixed solution, and adding a phenol red indicator dropwise thereto, and adding this solution to a reference solution ( 0.01N KOH-benzyl alcohol mixed solution), and obtained from the amount of the reference solution dropped immediately before the color of the phenol red indicator changes from yellow to red.
融点
 本発明で用いるポリエステル樹脂の融点(Tm)は、250℃~300℃の範囲であることが好ましく、255℃~295℃の範囲であることがより好ましい。なお、ポリエステル樹脂の融点Tmは示差走査熱量測定法により求められる値である。
Melting point The melting point (Tm) of the polyester resin used in the present invention is preferably in the range of 250 ° C to 300 ° C, more preferably in the range of 255 ° C to 295 ° C. The melting point Tm of the polyester resin is a value determined by a differential scanning calorimetry method.
 原料として使用するポリエステル樹脂は、その加水分解を抑制するため、例えば140~170℃の不活性ガス(窒素など)の熱風と接触させて乾燥させるか、真空乾燥を行うことが好ましい。 The polyester resin used as a raw material is preferably dried by contact with hot air of an inert gas (such as nitrogen) at 140 to 170 ° C. or vacuum drying to suppress hydrolysis.
 原料となる上記ポリエステル樹脂としては、例えば、テレフタル酸を主たる成分とするジカルボン酸成分と、エチレングリコールを主たる成分とするジオール成分を縮重合することにより得られるポリエステル樹脂が挙げられる。 Examples of the polyester resin used as a raw material include a polyester resin obtained by polycondensing a dicarboxylic acid component containing terephthalic acid as a main component and a diol component containing ethylene glycol as a main component.
エステル化反応
 ポリエステルを重合する際のエステル化反応において、触媒としてチタン(Ti)系化合物を用い、Ti添加量が元素換算値で、1ppm以上30ppm以下、より好ましくは2ppm以上20ppm以下、さらに好ましくは3ppm以上15ppm以下の範囲で重合を行なうことが好ましい。この場合、本発明のポリエステルフィルムには、1ppm以上30ppm以下のチタンが含まれる。
 Ti系化合物の量が1ppm以上であると、重合速度が速くなり、好ましいIVが得られる。また、Ti系化合物の量が30ppm以下であると、末端カルボキシル基量を上記の範囲を満足するように調節することが可能であり、また良好な色調が得られる。
Esterification Reaction In the esterification reaction when polymerizing polyester, a titanium (Ti) compound is used as a catalyst, and the amount of Ti added is 1 ppm or more and 30 ppm or less, more preferably 2 ppm or more and 20 ppm or less, more preferably, in terms of element. The polymerization is preferably performed in the range of 3 ppm or more and 15 ppm or less. In this case, the polyester film of the present invention contains 1 ppm to 30 ppm of titanium.
When the amount of the Ti-based compound is 1 ppm or more, the polymerization rate is increased and preferable IV is obtained. When the amount of the Ti compound is 30 ppm or less, the amount of terminal carboxyl groups can be adjusted so as to satisfy the above range, and a good color tone can be obtained.
 このようなTi化合物を用いたTi系ポリエステルの合成には、例えば、特公平8-30119号公報、特許第2543624号、特許第3335683号、特許第3717380号、特許第3897756号、特許第3962226号、特許第3979866号、特許第3996871号、特許第4000867号、特許第4053837号、特許第4127119号、特許第4134710号、特許第4159154号、特許第4269704号、特許第4313538号、特開2005-340616号公報、特開2005-239940号公報、特開2004-319444号公報、特開2007-204538号公報、特許3436268号、特許第3780137号等に記載の方法を適用することができる。 To synthesize a Ti-based polyester using such a Ti compound, for example, Japanese Patent Publication No. 8-30119, Japanese Patent No. 2543624, Japanese Patent No. 3335683, Japanese Patent No. 3717380, Japanese Patent No. 3897756, Japanese Patent No. 396226 Patent No. 397866, Patent No. 3,996,871, Patent No. 40000867, Patent No. 4053837, Patent No. 4127119, Patent No. 4134710, Patent No. 4159154, Patent No. 4269704, Patent No. 4135538, JP-A No. 2005-2005 The methods described in Japanese Patent No. 340616, Japanese Patent Application Laid-Open No. 2005-239940, Japanese Patent Application Laid-Open No. 2004-319444, Japanese Patent Application Laid-Open No. 2007-204538, Japanese Patent No. 3436268, Japanese Patent No. 3780137, and the like can be applied.
 本発明のポリエステルフィルムを形成するポリエステルは、(A)マロン酸、コハク酸、グルタル酸、アジピン酸、スベリン酸、セバシン酸、ドデカンジオン酸、ダイマー酸、エイコサンジオン酸、ピメリン酸、アゼライン酸、メチルマロン酸、エチルマロン酸等の脂肪族ジカルボン酸類、アダマンタンジカルボン酸、ノルボルネンジカルボン酸、イソソルビド、シクロヘキサンジカルボン酸、デカリンジカルボン酸などの脂環族ジカルボン酸類、またはテレフタル酸、イソフタル酸、フタル酸、1,4-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、1,8-ナフタレンジカルボン酸、4,4’-ジフェニルジカルボン酸、4,4’-ジフェニルエーテルジカルボン酸、5-ナトリウムスルホイソフタル酸、フェニルインダンジカルボン酸、アントラセンジカルボン酸、フェナントレンジカルボン酸、9,9’-ビス(4-カルボキシフェニル)フルオレン酸等の芳香族ジカルボン酸類などのジカルボン酸もしくはそのエステル誘導体からなる群から選択されるジカルボン酸成分と、(B)エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,4-ブタンジオール、1,2-ブタンジオール、1,3-ブタンジオール等の脂肪族ジオール類、シクロヘキサンジメタノール、スピログリコール、イソソルビドなどの脂環式ジオール類、またはビスフェノールA、1,3―ベンゼンジメタノール,1,4-ベンゼンジメタノール、9,9’-ビス(4-ヒドロキシフェニル)フルオレンなどの芳香族ジオール類等のジオール化合物からなる群から選択されるジオール成分と、を周知の方法でエステル化反応及び/又はエステル交換反応させることによって得ることができる。 Polyesters forming the polyester film of the present invention are (A) malonic acid, succinic acid, glutaric acid, adipic acid, suberic acid, sebacic acid, dodecanedioic acid, dimer acid, eicosandioic acid, pimelic acid, azelaic acid, Aliphatic dicarboxylic acids such as methylmalonic acid and ethylmalonic acid, alicyclic dicarboxylic acids such as adamantane dicarboxylic acid, norbornene dicarboxylic acid, isosorbide, cyclohexane dicarboxylic acid, decalin dicarboxylic acid, or terephthalic acid, isophthalic acid, phthalic acid, 1 , 4-Naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 1,8-naphthalenedicarboxylic acid, 4,4′-diphenyldicarboxylic acid, 4,4′-diphenyletherdicarboxylic acid, 5 -sodium Selected from the group consisting of dicarboxylic acids such as rufoisophthalic acid, phenylindane dicarboxylic acid, anthracene dicarboxylic acid, phenanthrene dicarboxylic acid, aromatic dicarboxylic acids such as 9,9'-bis (4-carboxyphenyl) fluorenic acid or ester derivatives thereof A dicarboxylic acid component and an aliphatic group such as (B) ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, 1,2-butanediol, 1,3-butanediol Diols, cycloaliphatic dimethanol, spiroglycol, isosorbide and other alicyclic diols, or bisphenol A, 1,3-benzenedimethanol, 1,4-benzenedimethanol, 9,9'-bis (4-hydroxyphenyl) ) Aromatics such as fluorene A diol component selected from the group consisting of a diol compound of ol, and the like, can be obtained by esterification reaction and / or transesterification in a known method.
 前記ジカルボン酸成分として、芳香族ジカルボン酸の少なくとも1種が用いられる場合が好ましい。より好ましくは、本発明のポリエステルは、ジカルボン酸成分として、芳香族ジカルボン酸を主成分として含有する。なお、「主成分」とは、ジカルボン酸成分全量に対する芳香族ジカルボン酸の割合が80質量%以上であることをいう。芳香族ジカルボン酸以外のジカルボン酸成分を含んでもよい。このような芳香族ジカルボン酸以外のジカルボン酸成分の例としては、芳香族ジカルボン酸などのエステル誘導体が挙げられる。
 また、ジオール成分として、脂肪族ジオールの少なくとも1種が用いられる場合が好ましい。本発明のポリエステルは、脂肪族ジオールとして、エチレングリコールを含むことができ、好ましくはエチレングリコールを主成分として含有する。なお、主成分とは、ジオール成分全量に対するエチレングリコールの割合が80質量%以上であることをいう。
It is preferable that at least one aromatic dicarboxylic acid is used as the dicarboxylic acid component. More preferably, the polyester of the present invention contains an aromatic dicarboxylic acid as a main component as a dicarboxylic acid component. The “main component” means that the ratio of the aromatic dicarboxylic acid to the total amount of the dicarboxylic acid component is 80% by mass or more. A dicarboxylic acid component other than the aromatic dicarboxylic acid may be included. Examples of such dicarboxylic acid components other than aromatic dicarboxylic acids include ester derivatives such as aromatic dicarboxylic acids.
Further, it is preferable that at least one aliphatic diol is used as the diol component. The polyester of the present invention can contain ethylene glycol as an aliphatic diol, and preferably contains ethylene glycol as a main component. In addition, a main component means that the ratio of ethylene glycol with respect to diol component whole quantity is 80 mass% or more.
 これらの中でより好ましいポリエステルは、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリエチレン-2,6-ナフタレート(PEN)、ポリシクロヘキサンジメチレンテレフタレート(PCT)、又はPETの一部を変性した共重合PETであり、さらに好ましいのはPET、又は共重合PETである。
 また、前記PETとしては、ゲルマニウム(Ge)化合物、アンチモン(Sb)化合物、アルミニウム(Al)化合物、及びチタン(Ti)化合物から選ばれる1種又は2種以上を用いて重合されるPETが好ましく、より好ましくはTi化合物を用いたものである。
Among these, more preferable polyesters are polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyethylene-2,6-naphthalate (PEN), polycyclohexanedimethylene terephthalate (PCT), or a part of PET. It is copolymerized PET, more preferably PET or copolymerized PET.
The PET is preferably a PET polymerized using one or more selected from a germanium (Ge) compound, an antimony (Sb) compound, an aluminum (Al) compound, and a titanium (Ti) compound, More preferably, a Ti compound is used.
 前記Ti化合物は、反応活性が高いため、重合温度を低くすることができる。そのため、特に重合反応中にPETが熱分解し、COOHが発生するのを抑制することが可能であり、本発明のポリエステルフィルムにおいて、末端カルボキシル基量を所定の範囲に調整するのに好適である。 Since the Ti compound has high reaction activity, the polymerization temperature can be lowered. Therefore, in particular, it is possible to suppress the thermal decomposition of PET and the generation of COOH during the polymerization reaction, which is suitable for adjusting the amount of terminal carboxyl groups within a predetermined range in the polyester film of the present invention. .
 前記Ti化合物の例としては、酸化物、水酸化物、アルコキシド、カルボン酸塩、炭酸塩、蓚酸塩、有機キレートチタン錯体、及びハロゲン化物が挙げられる。Ti系触媒としては、本発明の効果を損なわない範囲であれば、二種以上のチタン化合物を併用してもよい。
 Ti系触媒の例としては、テトラ-n-プロピルチタネート、テトラ-i-プロピルチタネート、テトラ-n-ブチルチタネート、テトラ-n-ブチルチタネートテトラマー、テトラ-t-ブチルチタネート、テトラシクロヘキシルチタネート、テトラフェニルチタネート、テトラベンジルチタネート等のチタンアルコキシド、チタンアルコキシドの加水分解により得られるチタン酸化物、チタンアルコキシドと珪素アルコキシドもしくはジルコニウムアルコキシドとの混合物の加水分解により得られるチタン-珪素複合酸化物もしくはチタン-ジルコニウム複合酸化物、酢酸チタン、蓚酸チタン、蓚酸チタンカリウム、蓚酸チタンナトリウム、チタン酸カリウム、チタン酸ナトリウム、チタン酸-水酸化アルミニウム混合物、塩化チタン、塩化チタン-塩化アルミニウム混合物、チタンアセチルアセトナート、および有機酸を配位子とする有機キレートチタン錯体が挙げられる。
Examples of the Ti compound include oxides, hydroxides, alkoxides, carboxylates, carbonates, oxalates, organic chelate titanium complexes, and halides. As the Ti-based catalyst, two or more kinds of titanium compounds may be used in combination as long as the effects of the present invention are not impaired.
Examples of Ti-based catalysts include tetra-n-propyl titanate, tetra-i-propyl titanate, tetra-n-butyl titanate, tetra-n-butyl titanate tetramer, tetra-t-butyl titanate, tetracyclohexyl titanate, tetraphenyl Titanium alkoxide such as titanate and tetrabenzyl titanate, titanium oxide obtained by hydrolysis of titanium alkoxide, titanium-silicon composite oxide or titanium-zirconium composite obtained by hydrolysis of a mixture of titanium alkoxide and silicon alkoxide or zirconium alkoxide Oxide, titanium acetate, titanium oxalate, potassium titanium oxalate, sodium titanium oxalate, potassium titanate, sodium titanate, titanium titanate-aluminum hydroxide mixture, titanium chloride, Titanium - aluminum chloride mixture, titanium acetylacetonate, and organic acids include organic chelate titanium complex having a ligand.
 前記Ti化合物の中でも、有機酸を配位子とする有機キレートチタン錯体の少なくとも1種を好適に用いることができる。有機酸としては、例えば、クエン酸、乳酸、トリメリット酸、およびリンゴ酸を挙げることができる。中でも、クエン酸又はクエン酸塩を配位子とする有機キレート錯体が好ましい。 Among the Ti compounds, at least one organic chelate titanium complex having an organic acid as a ligand can be suitably used. Examples of the organic acid include citric acid, lactic acid, trimellitic acid, and malic acid. Among them, an organic chelate complex having citric acid or citrate as a ligand is preferable.
 ポリエステル樹脂及びリサイクル材料の少なくとも一方は、チタンのクエン酸錯体を重合触媒として合成されたポリエステル樹脂を含むことが好ましい。 At least one of the polyester resin and the recycled material preferably contains a polyester resin synthesized using a titanium citrate complex as a polymerization catalyst.
 例えばクエン酸を配位子とするキレートチタン錯体を用いた場合、微細粒子等の異物の発生が少なく、他のチタン化合物に比べ、重合活性と色調の良好なポリエステル樹脂が得られる。更に、クエン酸キレートチタン錯体を用いる場合でも、エステル化反応の段階で添加することにより、エステル化反応後に添加する場合に比べ、重合活性と色調が良好で、末端カルボキシル基の少ないポリエステル樹脂が得られる。この点については、チタン触媒はエステル化反応の触媒効果もあり、エステル化段階で添加することでエステル化反応終了時におけるオリゴマー酸価が低くなり、以降の重縮合反応がより効率的に行なわれること、またクエン酸を配位子とする錯体はチタンアルコキシド等に比べて加水分解耐性が高く、エステル化反応過程において加水分解せず、本来の活性を維持したままエステル化及び重縮合反応の触媒として効果的に機能するものと推定される。
 また、一般に、ポリエステル樹脂の末端カルボキシル基量が多いほど耐加水分解性が悪化することが知られており、本発明の添加方法によってポリエステル樹脂の末端カルボキシル基量が少なくなることで、耐加水分解性の向上が期待される。
 前記クエン酸キレートチタン錯体としては、例えば、ジョンソン・マッセイ社製のVERTEC AC-420などの市販品を容易に入手可能である。
For example, when a chelate titanium complex having citric acid as a ligand is used, there is little generation of foreign matters such as fine particles, and a polyester resin having better polymerization activity and color tone than other titanium compounds can be obtained. Furthermore, even when using a citric acid chelate titanium complex, by adding it at the stage of the esterification reaction, a polyester resin having better polymerization activity and color tone and less terminal carboxyl groups can be obtained compared to the case where it is added after the esterification reaction. It is done. In this regard, the titanium catalyst also has a catalytic effect of the esterification reaction. By adding it at the esterification stage, the oligomer acid value at the end of the esterification reaction is lowered, and the subsequent polycondensation reaction is performed more efficiently. In addition, complexes with citric acid as a ligand are more resistant to hydrolysis than titanium alkoxides, etc., and do not hydrolyze in the esterification reaction process, while maintaining the original activity and catalyzing the esterification and polycondensation reactions It is estimated to function effectively as
Also, it is generally known that the greater the amount of terminal carboxyl groups of the polyester resin, the worse the hydrolysis resistance, and the amount of terminal carboxyl groups of the polyester resin is reduced by the addition method of the present invention. Improvement in sex is expected.
As the citrate chelate titanium complex, for example, commercially available products such as VERTEC AC-420 manufactured by Johnson Matthey are easily available.
 芳香族ジカルボン酸と脂肪族ジオールは、これらが含まれたスラリーを調製し、これをエステル化反応工程に連続的に供給することにより導入することができる。 The aromatic dicarboxylic acid and the aliphatic diol can be introduced by preparing a slurry containing them and continuously supplying it to the esterification reaction step.
 本発明にけるポリエステル樹脂は、芳香族ジカルボン酸と脂肪族ジオールとを、チタン化合物を含有する触媒の存在下で重合するとともに、チタン化合物の少なくとも一種が有機酸を配位子とする有機キレートチタン錯体であって、有機キレートチタン錯体とマグネシウム化合物と置換基として芳香環を有しない5価のリン酸エステルとをこの順序で添加する過程を少なくとも含むエステル化反応工程と、エステル化反応工程で生成されたエステル化反応生成物を重縮合反応させて重縮合物を生成する重縮合工程と、を含む製造方法により作製されることが好ましい。 The polyester resin according to the present invention polymerizes an aromatic dicarboxylic acid and an aliphatic diol in the presence of a catalyst containing a titanium compound, and at least one of the titanium compounds is an organic chelate titanium having an organic acid as a ligand. An esterification reaction step including at least a process of adding an organic chelate titanium complex, a magnesium compound and a pentavalent phosphate ester having no aromatic ring as a substituent in this order, and an esterification reaction step And a polycondensation step in which a polycondensation product is produced by subjecting the esterification reaction product thus obtained to a polycondensation reaction.
 この場合、エステル化反応の過程において、チタン化合物として有機キレートチタン錯体を存在させた中に、マグネシウム化合物を添加し、次いで特定の5価のリン化合物を添加する添加順とすることで、チタン触媒の反応活性を適度に高く保ち、マグネシウムによる静電印加特性を付与しつつ、かつ重縮合における分解反応を効果的に抑制することができる。そのため、結果として着色が少なく、高い静電印加特性を有するとともに高温下に曝された際の黄変色が改善されたポリエステル樹脂が得られる。
 これにより、重合時の着色及びその後の溶融製膜時における着色が少なくなり、従来のアンチモン(Sb)触媒系のポリエステル樹脂に比べて黄色味が軽減され、また、透明性の比較的高いゲルマニウム触媒系のポリエステル樹脂に比べて遜色のない色調、透明性を持ち、しかも耐熱性に優れたポリエステル樹脂を提供できる。また、コバルト化合物や色素などの色調調整材を用いずに、高い透明性を有し、黄色味の少ないポリエステル樹脂が得られる。
In this case, in the course of the esterification reaction, the addition of a magnesium compound to the presence of an organic chelate titanium complex as a titanium compound, followed by the addition order of adding a specific pentavalent phosphorus compound, thereby providing a titanium catalyst. It is possible to effectively suppress the decomposition reaction in the polycondensation while keeping the reaction activity of the compound moderately high, imparting electrostatic application characteristics with magnesium. Therefore, as a result, a polyester resin having little coloring, high electrostatic application characteristics, and improved yellowing when exposed to high temperatures is obtained.
As a result, coloring during polymerization and subsequent coloring during melt film formation are reduced, and yellowishness is reduced compared to conventional antimony (Sb) catalyst-based polyester resins, and germanium catalysts having a relatively high transparency are also obtained. It is possible to provide a polyester resin having a color tone and transparency comparable to a polyester resin and having excellent heat resistance. In addition, a polyester resin having high transparency and less yellowness can be obtained without using a color tone adjusting material such as a cobalt compound or a pigment.
リン化合物
 前記5価のリン化合物としては、置換基として芳香環を有しない5価のリン酸エステルの少なくとも一種を用いることができる。本発明における5価のリン酸エステルとしては、例えば、リン酸トリメチル、リン酸トリエチル、リン酸トリ-n-ブチル、リン酸トリオクチル、リン酸トリス(トリエチレングリコール)、リン酸メチルアシッド、リン酸エチルアシッド、リン酸イソプロピルアシッド、リン酸ブチルアシッド、リン酸モノブチル、リン酸ジブチル、リン酸ジオクチル、およびリン酸トリエチレングリコールアシッドが挙げられる。
Phosphorus compound As the pentavalent phosphorus compound, at least one pentavalent phosphate having no aromatic ring as a substituent can be used. Examples of the pentavalent phosphate ester in the present invention include trimethyl phosphate, triethyl phosphate, tri-n-butyl phosphate, trioctyl phosphate, tris phosphate (triethylene glycol), methyl acid phosphate, and phosphoric acid. Examples include ethyl acid, isopropyl acid phosphate, butyl acid phosphate, monobutyl phosphate, dibutyl phosphate, dioctyl phosphate, and triethylene glycol acid phosphate.
 これらの5価のリン酸エステルの中では、炭素数2以下の低級アルキル基を置換基として有するリン酸エステル〔(OR)-P=O;Rは、炭素数1又は2のアルキル基を表す〕が好ましく、具体的には、リン酸トリメチル、およびリン酸トリエチルが特に好ましい。 Among these pentavalent phosphates, phosphates having a lower alkyl group having 2 or less carbon atoms as a substituent [(OR) 3 —P═O; R is an alkyl group having 1 or 2 carbon atoms. Are preferred. Specifically, trimethyl phosphate and triethyl phosphate are particularly preferred.
 特に、前記チタン化合物として、クエン酸又はその塩が配位するキレートチタン錯体を触媒として用いる場合、5価のリン酸エステルの方が3価のリン酸エステルよりも重合活性、色調が良好である。更に炭素数2以下の5価のリン酸エステルを添加する態様の場合に、重合活性、色調、耐熱性のバランスを特に向上させることができる。 In particular, when the chelate titanium complex coordinated with citric acid or a salt thereof is used as the catalyst as the titanium compound, the pentavalent phosphate ester has better polymerization activity and color tone than the trivalent phosphate ester. . Furthermore, in the case of adding a pentavalent phosphate having 2 or less carbon atoms, the balance of polymerization activity, color tone, and heat resistance can be particularly improved.
 リン化合物の添加量としては、P元素換算値が50ppm以上90ppm以下の範囲となる量が好ましい。リン化合物の量は、より好ましくは60ppm以上80ppm以下となる量であり、さらに好ましくは65ppm以上75ppm以下となる量である。 The amount of phosphorus compound added is preferably such that the P element conversion value is in the range of 50 ppm to 90 ppm. The amount of the phosphorus compound is more preferably 60 ppm to 80 ppm, and still more preferably 65 ppm to 75 ppm.
マグネシウム化合物
 エステル化反応の過程において、マグネシウム化合物を含めることにより、静電印加性が向上する。一般にマグネシウム化合物を用いる場合は着色がおきやすいが、本発明においては、着色が抑えられ、優れた色調および耐熱性を有するポリエステル樹脂が得られる。
Magnesium compound Inclusion of a magnesium compound in the course of the esterification reaction improves electrostatic applicability. In general, when a magnesium compound is used, coloring tends to occur. However, in the present invention, the coloring is suppressed, and a polyester resin having excellent color tone and heat resistance can be obtained.
 マグネシウム化合物としては、例えば、酸化マグネシウム、水酸化マグネシウム、マグネシウムアルコキシド、酢酸マグネシウム、および炭酸マグネシウム等のマグネシウム塩が挙げられる。中でも、エチレングリコールへの溶解性の観点から、酢酸マグネシウムが好ましい。 Examples of the magnesium compound include magnesium salts such as magnesium oxide, magnesium hydroxide, magnesium alkoxide, magnesium acetate, and magnesium carbonate. Among these, magnesium acetate is preferable from the viewpoint of solubility in ethylene glycol.
 マグネシウム化合物の添加量としては、高い静電印加性を付与するためには、Mg元素換算値が50ppm以上となる量が好ましく、50ppm以上100ppm以下の範囲となる量がより好ましい。マグネシウム化合物の添加量は、静電印加性の付与の点で、好ましくはMg元素換算値が60ppm以上90ppm以下の範囲となる量であり、さらに好ましくは70ppm以上80ppm以下の範囲となる量である。 As the addition amount of the magnesium compound, in order to impart high electrostatic applicability, the Mg element conversion value is preferably 50 ppm or more, and more preferably 50 ppm or more and 100 ppm or less. The addition amount of the magnesium compound is preferably such that the Mg element conversion value is in the range of 60 ppm or more and 90 ppm or less, and more preferably in the range of 70 ppm or more and 80 ppm or less in terms of imparting electrostatic applicability. .
 エステル化反応は、少なくとも2個の反応器を直列に連結した多段式装置を用いて、エチレングリコールが還流する条件下で、反応によって生成した水又はアルコールを系外に除去しながら実施することができる。 The esterification reaction may be carried out using a multistage apparatus in which at least two reactors are connected in series under conditions where ethylene glycol is refluxed while removing water or alcohol produced by the reaction from the system. it can.
 また、上記したエステル化反応は、一段階で行なってもよいし、多段階に分けて行なうようにしてもよい。
 エステル化反応を一段階で行なう場合、エステル化反応温度は230~260℃が好ましく、240~250℃がより好ましい。
 エステル化反応を多段階に分けて行なう場合、第一反応槽のエステル化反応の温度は230~260℃が好ましく、より好ましくは240~250℃であり、圧力は1.0~5.0kg/cmが好ましく、より好ましくは2.0~3.0kg/cmである。第二反応槽のエステル化反応の温度は230~260℃が好ましく、より好ましくは245~255℃であり、圧力は0.5~5.0kg/cm、より好ましくは1.0~3.0kg/cmである。さらに3段階以上に分けて実施する場合は、中間段階のエステル化反応の条件は、前記第一反応槽の条件と最終反応槽の条件の間の条件に設定するのが好ましい。
The esterification reaction described above may be performed in one stage or may be performed in multiple stages.
When the esterification reaction is carried out in one stage, the esterification reaction temperature is preferably 230 to 260 ° C, more preferably 240 to 250 ° C.
When the esterification reaction is carried out in multiple stages, the temperature of the esterification reaction in the first reaction tank is preferably 230 to 260 ° C, more preferably 240 to 250 ° C, and the pressure is 1.0 to 5.0 kg / cm 2 is preferable, and 2.0 to 3.0 kg / cm 2 is more preferable. The temperature of the esterification reaction in the second reaction tank is preferably 230 to 260 ° C., more preferably 245 to 255 ° C., and the pressure is 0.5 to 5.0 kg / cm 2 , more preferably 1.0 to 3. 0 kg / cm 2 . Furthermore, when carrying out by dividing into three or more stages, it is preferable to set the conditions of the esterification reaction in the intermediate stage to a condition between the conditions of the first reaction tank and the final reaction tank.
重縮合
 重縮合工程では、エステル化反応で生成されたエステル化反応生成物を重縮合反応させて重縮合物が生成される。重縮合反応は、1段階で行なってもよいし、多段階に分けて行なうようにしてもよい。
Polycondensation In the polycondensation step, a polycondensation product is produced by subjecting the esterification reaction product produced in the esterification reaction to a polycondensation reaction. The polycondensation reaction may be performed in one stage or may be performed in multiple stages.
 エステル化反応で生成したオリゴマー等のエステル化反応生成物は、引き続いて重縮合反応に供される。この重縮合反応は、多段階の重縮合反応槽にエステル化反応生成物を供給することにより好適に行なうことが可能である。 The esterification reaction product such as an oligomer generated by the esterification reaction is subsequently subjected to a polycondensation reaction. This polycondensation reaction can be suitably performed by supplying an esterification reaction product to a multistage polycondensation reaction tank.
 例えば、3段階の反応槽で行なう場合の重縮合反応条件は、第一反応槽は、反応温度が255~280℃、より好ましくは265~275℃であり、圧力が100~10torr(13.3×10-3~1.3×10-3MPa)、より好ましくは50~20torr(6.67×10-3~2.67×10-3MPa)であって、第二反応槽は、反応温度が265~285℃、より好ましくは270~280℃であり、圧力が20~1torr(2.67×10-3~1.33×10-4MPa)、より好ましくは10~3torr(1.33×10-3~4.0×10-4MPa)であって、最終反応槽である第三反応槽は、反応温度が270~290℃、より好ましくは275~285℃であり、圧力が10~0.1torr(1.33×10-3~1.33×10-5MPa)、より好ましくは5~0.5torr(6.67×10-4~6.67×10-5MPa)である態様が好ましい。 For example, the polycondensation reaction conditions in a three-stage reaction tank are as follows: the first reaction tank has a reaction temperature of 255 to 280 ° C., more preferably 265 to 275 ° C., and a pressure of 100 to 10 torr (13.3). × 10 −3 to 1.3 × 10 −3 MPa), more preferably 50 to 20 torr (6.67 × 10 −3 to 2.67 × 10 −3 MPa). The temperature is 265 to 285 ° C., more preferably 270 to 280 ° C., and the pressure is 20 to 1 torr (2.67 × 10 −3 to 1.33 × 10 −4 MPa), more preferably 10 to 3 torr (1. 33 × 10 −3 to 4.0 × 10 −4 MPa), and the third reaction tank which is the final reaction tank has a reaction temperature of 270 to 290 ° C., more preferably 275 to 285 ° C., and a pressure of 10 to 0.1 torr ( .33 × 10 -3 ~ 1.33 × 10 -5 MPa), aspect is preferably more preferably 5 ~ 0.5torr (6.67 × 10 -4 ~ 6.67 × 10 -5 MPa).
 本発明で用いられるポリエステル樹脂としては、ポリブチレンテレフタレート(PBT)、ポリエチレン-2,6-ナフタレート(PEN)、ポリシクロヘキサンジメチレンテレフタレート(PCT)、又はPETの一部を変性した共重合PETが好ましく、さらに好ましいのはPET、又は共重合PETである。
 このようなポリエステルフィルムは、カルボン酸基と水酸基との合計が3以上である構成成分(以下、「≧3官能成分」と記す場合がある。)、あるいは、イソシアネート化合物、カルボジイミド化合物、およびエポキシ化合物からなる群から選択される少なくとも1種類の末端封止剤を含むことが好ましい。これらの「≧3官能成分」、「末端封止剤」は単独で使用しても良く、組合せて使用しても良い。
The polyester resin used in the present invention is preferably polybutylene terephthalate (PBT), polyethylene-2,6-naphthalate (PEN), polycyclohexanedimethylene terephthalate (PCT), or copolymerized PET obtained by modifying a part of PET. More preferred is PET or copolymerized PET.
Such a polyester film has a constitutional component in which the total of carboxylic acid groups and hydroxyl groups is 3 or more (hereinafter sometimes referred to as “≧ trifunctional component”), or an isocyanate compound, a carbodiimide compound, and an epoxy compound. It is preferable that at least one kind of end capping agent selected from the group consisting of: These “≧ 3 functional components” and “terminal blocking agent” may be used alone or in combination.
 本発明のポリエステルフィルム中に、「≧3官能成分」即ち、カルボン酸基数(a)と水酸基数(b)の合計(a+b)が3以上である構成成分を含有することが好ましい。ここで、カルボン酸基数(a)と水酸基数(b)との合計(a+b)が3以上である構成成分(≧3官能成分:p)におけるカルボン酸基数(a)が3以上のカルボン酸構成成分の例としては、トリメシン酸、トリメリット酸、ピロメリット酸、ナフタレントリカルボン酸、およびアントラセントリカルボン酸等の三官能の芳香族カルボン酸構成成分、メタントリカルボン酸、エタントリカルボン酸、プロパントリカルボン酸、およびブタントリカルボン酸等の三官能の脂肪族カルボン酸構成成分、ベンゼンテトラカルボン酸、ベンゾフェノンテトラカルボン酸、ナフタレンテトラカルボン酸、アントラセンテトラカルボン酸、およびベリレンテトラカルボン酸等の四官能の芳香族カルボン酸構成成分、エタンテトラカルボン酸、エチレンテトラカルボン酸、ブタンテトラカルボン酸、シクロペンタンテトラカルボン酸、シクロヘキサンテトラカルボン酸、およびアダマンタンテトラカルボン酸等の四官能の脂肪族カルボン酸構成成分、ベンゼンペンタカルボン酸、ベンゼンヘキサカルボン酸、ナフタレンペンタカルボン酸、ナフタレンヘキサカルボン酸、ナフタレンヘプタカルボン酸、ナフタレンオクタカルボン酸、アントラセンペンタカルボン酸、アントラセンヘキサカルボン酸、アントラセンヘプタカルボン酸、およびアントラセンオクタカルボン酸等の五官能以上の芳香族カルボン酸構成成分、エタンペンタカルボン酸、エタンヘプタカルボン酸、ブタンペンタカルボン酸、ブタンヘプタカルボン酸、シクロペンタンペンタカルボン酸、シクロヘキサンペンタカルボン酸、シクロヘキサンヘキサカルボン酸、アダマンタンペンタカルボン酸、およびアダマンタンヘキサカルボン酸等の五官能以上の脂肪族カルボン酸構成成分、並びにこれらのエステル誘導体や酸無水物が挙げられるが、これらに限定されない。また上述のカルボン酸構成成分のカルボキシ末端に、l-ラクチド、d-ラクチド、ヒドロキシ安息香酸などのオキシ酸類、およびその誘導体、そのオキシ酸類が複数個連なったもの等を付加させたものも好適に用いられる。また、これらは単独で用いても、必要に応じて、複数種類用いてもよい。 It is preferable that the polyester film of the present invention contains “≧ 3 functional component”, that is, a constituent component in which the total number (a + b) of the number of carboxylic acid groups (a) and the number of hydroxyl groups (b) is 3 or more. Here, the carboxylic acid composition in which the total number (a + b) of the carboxylic acid group number (a) and the hydroxyl group number (b) is 3 or more (≧ trifunctional component: p) and the carboxylic acid group number (a) is 3 or more. Examples of ingredients include trifunctional aromatic carboxylic acid constituents such as trimesic acid, trimellitic acid, pyromellitic acid, naphthalenetricarboxylic acid, and anthracentricarboxylic acid, methanetricarboxylic acid, ethanetricarboxylic acid, propanetricarboxylic acid, and Trifunctional aliphatic carboxylic acid constituents such as butanetricarboxylic acid, tetrafunctional aromatic carboxylic acids such as benzenetetracarboxylic acid, benzophenonetetracarboxylic acid, naphthalenetetracarboxylic acid, anthracenetetracarboxylic acid, and berylenetetracarboxylic acid Constituents, ethanetetracarboxylic acid, ethylene Tetrafunctional aliphatic carboxylic acid constituents such as lacarboxylic acid, butanetetracarboxylic acid, cyclopentanetetracarboxylic acid, cyclohexanetetracarboxylic acid, and adamantanetetracarboxylic acid, benzenepentacarboxylic acid, benzenehexacarboxylic acid, naphthalenepentacarboxylic acid Pentafunctional or higher aromatic carboxylic acid components such as naphthalene hexacarboxylic acid, naphthalene heptacarboxylic acid, naphthalene octacarboxylic acid, anthracene pentacarboxylic acid, anthracene hexacarboxylic acid, anthracene heptacarboxylic acid, and anthracene octacarboxylic acid, ethane Pentacarboxylic acid, ethaneheptacarboxylic acid, butanepentacarboxylic acid, butaneheptacarboxylic acid, cyclopentanepentacarboxylic acid, cyclohexanepentacarboxylic acid, Cyclohexane hexacarboxylic acid, adamantane penta carboxylic acid, and penta-functional or more aliphatic carboxylic acid component such as adamantane hexacarboxylic acid, as well as ester derivatives thereof and acid anhydrides thereof, but are not limited to. In addition, it is also preferable to add oxyacids such as l-lactide, d-lactide, hydroxybenzoic acid and the like, or a combination of a plurality of such oxyacids to the carboxy terminal of the carboxylic acid component. Used. Moreover, these may be used independently or may be used in multiple types as needed.
 また、水酸基数(b)が3以上の構成成分の例としては、トリヒドロキシベンゼン、トリヒドロキシナフタレン、トリヒドロキシアントラセン、トリヒドロキシカルコン、トリヒドロキシフラボン、およびトリヒドロキシクマリン等の三官能の芳香族構成成分、三官能の脂肪族アルコール構成成分として、グリセリン、トリメチロールプロパン、およびプロパントリオール等の三官能の脂肪族アルコール構成成分、ならびにペンタエリスリトール等の四官能の脂肪族アルコール構成成分が挙げられる。また、上述の化合物の水酸基末端にジオール類を付加させた構成成分も好ましく用いられる。また、これらは単独で用いても、必要に応じて、複数種類用いてもよい。 Examples of the component having 3 or more hydroxyl groups (b) include trifunctional aromatic components such as trihydroxybenzene, trihydroxynaphthalene, trihydroxyanthracene, trihydroxychalcone, trihydroxyflavone, and trihydroxycoumarin. Examples of the component and trifunctional aliphatic alcohol component include trifunctional aliphatic alcohol components such as glycerin, trimethylolpropane, and propanetriol, and tetrafunctional aliphatic alcohol components such as pentaerythritol. Moreover, the structural component which added diol to the hydroxyl-terminal of the above-mentioned compound is also preferably used. Moreover, these may be used independently or may be used in multiple types as needed.
 また、前記構成成分(≧3官能成分:p)のその他の例としては、ヒドロキシイソフタル酸、ヒドロキシテレフタル酸、ジヒドロキシテレフタル酸、およびジヒドロキシテレフタル酸など、一分子中に水酸基とカルボン酸基の両方を有するオキシ酸類のうち、カルボン酸基数(a)と水酸基数(b)との合計(a+b)が3以上であるものが挙げられる。また上述の構成成分のカルボキシ末端に、l-ラクチド、d-ラクチド、ヒドロキシ安息香酸などのオキシ酸類、およびその誘導体、そのオキシ酸類が複数個連なったもの等を付加させたものも好適に用いられる。また、これらは単独で用いても、必要に応じて、複数種類用いてもよい。 Other examples of the constituent component (≧ trifunctional component: p) include both hydroxy and carboxylic acid groups in one molecule such as hydroxyisophthalic acid, hydroxyterephthalic acid, dihydroxyterephthalic acid, and dihydroxyterephthalic acid. Among the oxyacids possessed, those having a total (a + b) of the number of carboxylic acid groups (a) and the number of hydroxyl groups (b) of 3 or more can be mentioned. In addition, oxyacids such as l-lactide, d-lactide, and hydroxybenzoic acid, and derivatives thereof, or a combination of a plurality of such oxyacids added to the carboxy terminus of the above-described constituents are also preferably used. . Moreover, these may be used independently or may be used in multiple types as needed.
 本発明のポリエステルフィルムにおいて、前記構成成分(≧3官能成分:p)の含有量が、ポリエステルフィルム中の全構成成分の量に対して0.005モル%以上2.5モル%であることが好ましい。より好ましくは0.020モル%以上1モル%以下、更に好ましくは0.025モル%以上1モル%以下、更に好ましくは0.035モル%以上0.5モル%以下、更に好ましくは0.05モル%以上0.5モル%以下、特に好ましくは0.1モル%以上0.25モル%以下である。
 隣接層として塗布層を設けた場合、ポリエステルフィルム中に≧3官能成分が存在することで、重縮合に使用されなかった官能基が、塗布層中の成分と水素結合および/または共有結合することで塗布層との密着性をより向上させることができる。
In the polyester film of the present invention, the content of the constituent component (≧ trifunctional component: p) is 0.005 mol% to 2.5 mol% with respect to the amount of all the constituent components in the polyester film. preferable. More preferably, it is 0.020 mol% or more and 1 mol% or less, More preferably, it is 0.025 mol% or more and 1 mol% or less, More preferably, it is 0.035 mol% or more and 0.5 mol% or less, More preferably, it is 0.05. The mol% is 0.5 mol% or less, particularly preferably 0.1 mol% or more and 0.25 mol% or less.
When a coating layer is provided as an adjacent layer, a functional group that has not been used for polycondensation has a hydrogen bond and / or a covalent bond with a component in the coating layer due to the presence of ≧ 3 functional components in the polyester film. The adhesion with the coating layer can be further improved.
 前記ポリエステル樹脂及び前記リサイクルポリエステル材料の少なくとも一方は、1,4-シクロヘキサンジメタノール(CHDM)由来の構造を含む1,4-シクロヘキサンジメタノール系ポリエステル(CHDM系ポリエステル、例えば、ポリシクロヘキサンジメチレンテレフタレート(PCT))を含むことが好ましい。 At least one of the polyester resin and the recycled polyester material is a 1,4-cyclohexanedimethanol (CHDM) -containing polyester (CHDM polyester such as polycyclohexanedimethylene terephthalate (CHDM)). PCT)).
(1)CHDM系ポリエステル
 前記CHDM系ポリエステルは、1,4-シクロヘキサンジメタノール由来の構造をジオール成分由来の構造全量に対して、0.1~20モル%または80~100モル%含むことが好ましく、0.5モル%以上16モル%以下または83モル%以上98モル%以下含むことがより好ましく、1モル%以上12モル%以下または86モル%以上96モル%以下含むことが特に好ましい。
 このようにCHDM由来の構造が低い領域(0.1~20モル%)、高い領域(80~100モル%)の二つの領域が存在するのは、これらの領域においてポリエステルが結晶構造を取りやすく、高い力学強度及び耐熱性を発揮し易いためである。
 これらのCHDM系ポリエステルを用いることにより、耐加水分解性に優れ、さらに力学強度及び耐熱性を有するポリエステルフィルムを製造することができる。
(1) CHDM-type polyester The CHDM-type polyester preferably contains a structure derived from 1,4-cyclohexanedimethanol in an amount of 0.1 to 20 mol% or 80 to 100 mol% based on the total amount of the structure derived from the diol component. More preferably 0.5 mol% to 16 mol% or 83 mol% to 98 mol%, and particularly preferably 1 mol% to 12 mol% or 86 mol% to 96 mol%.
As described above, the two regions of the CHDM-derived structure are low (0.1 to 20 mol%) and high (80 to 100 mol%). The polyester easily takes a crystal structure in these regions. This is because high mechanical strength and heat resistance are easily exhibited.
By using these CHDM polyesters, it is possible to produce a polyester film that is excellent in hydrolysis resistance and further has mechanical strength and heat resistance.
 前記CHDM系ポリエステルの1,4-シクロヘキサンジメタノール由来の構造以外のユニットを形成するための材料のジオール成分としては、エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,4-ブタンジオール、1,2-ブタンジオール、および1,3-ブタンジオール等の脂肪族ジオール類、スピログリコール、およびイソソルビドなどの脂環式ジオール類、ならびにビスフェノールA、1,3―ベンゼンジメタノール、1,4-ベンゼンジメタノール、9,9’-ビス(4-ヒドロキシフェニル)フルオレンなどの芳香族ジオール類等のジオールが代表例としてあげられるが、これらに限定されるものではない。その中でも、エチレングリコールを用いることが好ましい。 Examples of the diol component of the material for forming units other than the structure derived from 1,4-cyclohexanedimethanol of the CHDM polyester include ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,4 Aliphatic diols such as butanediol, 1,2-butanediol and 1,3-butanediol, alicyclic diols such as spiroglycol and isosorbide, and bisphenol A, 1,3-benzenedimethanol, Representative examples include diols such as aromatic diols such as 1,4-benzenedimethanol and 9,9′-bis (4-hydroxyphenyl) fluorene, but are not limited thereto. Among these, it is preferable to use ethylene glycol.
 前記CHDM系ポリエステルの1,4-シクロヘキサンジメタノール由来の構造以外のユニットを形成するための材料のジカルボン酸成分の例としては、テレフタル酸、イソフタル酸、マロン酸、コハク酸、グルタル酸、アジピン酸、スベリン酸、セバシン酸、ドデカンジオン酸、ダイマー酸、エイコサンジオン酸、ピメリン酸、アゼライン酸、メチルマロン酸、およびエチルマロン酸等の脂肪族ジカルボン酸類、アダマンタンジカルボン酸、ノルボルネンジカルボン酸、イソソルビド、シクロヘキサンジカルボン酸、およびデカリンジカルボン酸などの脂環族ジカルボン酸、ならびにイソフタル酸、フタル酸、1,4-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、1,8-ナフタレンジカルボン酸、4,4’-ジフェニルジカルボン酸、4,4’-ジフェニルエーテルジカルボン酸、5-ナトリウムスルホイソフタル酸、フェニルインダンジカルボン酸、アントラセンジカルボン酸、フェナントレンジカルボン酸、および9,9’-ビス(4-カルボキシフェニル)フルオレン酸等の芳香族ジカルボン酸などのジカルボン酸、もしくはそのエステル誘導体が代表例としてあげられるが、これらに限定されるものではない。
 前記CHDM系ポリエステルは、ジカルボン成分として、少なくともテレフタル酸由来の構造を含むことが好ましい。
 本発明では前記CHDM系ポリエステルのジカルボン酸成分として、テレフタル酸以外にイソフタル酸(IPA)を加えてもよい。好ましいIPA量はジカルボン酸成分全量に対して0モル%以上15モル%以下が好ましく、より好ましくは0モル%以上12モル%以下、さらに好ましくは0モル%以上9モル%以下である。
Examples of the dicarboxylic acid component of the material for forming units other than the structure derived from 1,4-cyclohexanedimethanol of the CHDM polyester include terephthalic acid, isophthalic acid, malonic acid, succinic acid, glutaric acid, adipic acid , Suberic acid, sebacic acid, dodecanedioic acid, dimer acid, eicosandioic acid, pimelic acid, azelaic acid, methylmalonic acid, ethylmalonic acid and other aliphatic dicarboxylic acids, adamantane dicarboxylic acid, norbornene dicarboxylic acid, isosorbide, Cycloaliphatic dicarboxylic acid, alicyclic dicarboxylic acid such as decalin dicarboxylic acid, and isophthalic acid, phthalic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 1,8 -Naphthalene range Rubonic acid, 4,4′-diphenyldicarboxylic acid, 4,4′-diphenylether dicarboxylic acid, 5-sodium sulfoisophthalic acid, phenylindanedicarboxylic acid, anthracene dicarboxylic acid, phenanthrene dicarboxylic acid, and 9,9′-bis (4 -Carboxyphenyl) A dicarboxylic acid such as an aromatic dicarboxylic acid such as fluoric acid, or an ester derivative thereof is given as a representative example, but is not limited thereto.
The CHDM polyester preferably includes at least a structure derived from terephthalic acid as a dicarboxylic component.
In the present invention, isophthalic acid (IPA) may be added in addition to terephthalic acid as the dicarboxylic acid component of the CHDM polyester. The amount of IPA is preferably 0 mol% or more and 15 mol% or less, more preferably 0 mol% or more and 12 mol% or less, still more preferably 0 mol% or more and 9 mol% or less with respect to the total amount of the dicarboxylic acid component.
 なお、ポリシクロヘキサンジメチレンテレフタレート(PCT)などのCHDM系ポリエステルは極限粘度(IV)が高くなりやすいため、CHDM系ポリエステルのIVは1.2dl/g以下にすることが好ましく、より好ましくは1.15dl/g以下、さらに好ましくは1.1dl/g以下である。 Since CHDM polyester such as polycyclohexanedimethylene terephthalate (PCT) tends to have a high intrinsic viscosity (IV), the IV of CHDM polyester is preferably 1.2 dl / g or less, more preferably 1. It is 15 dl / g or less, More preferably, it is 1.1 dl / g or less.
 また、ポリシクロヘキサンジメチレンテレフタレート(PCT)などのCHDM系ポリエステルの融点は約275℃とPETより約20℃高いため、CHDM系ポリエステルの押出し温度は320℃以下とすることが好ましく、より好ましくは315℃以下、さらに好ましくは310℃以下である。 Further, since the melting point of CHDM polyester such as polycyclohexanedimethylene terephthalate (PCT) is about 275 ° C. and about 20 ° C. higher than PET, the extrusion temperature of CHDM polyester is preferably 320 ° C. or less, more preferably 315 ° C or lower, more preferably 310 ° C or lower.
カルボジイミド化合物
 本発明のリサイクル材料は、カルボジイミド基を有するカルボジイミド化合物(第1のカルボジイミド化合物)を含む。さらに、溶融押出工程の原料の一部には、末端封止剤として、カルボジイミド基を有するカルボジイミド化合物(第2のカルボジイミド化合物)が用いられる(以下、第1のカルボジイミド化合物および第2のカルボジイミド化合物を総称して、単に「カルボジイミド化合物」ということがある。)。本発明において、第1のカルボジイミド化合物及び第2のカルボジイミド化合物は、互いに同じであっても異なっていてもよい。
 なお、ポリエステル樹脂の末端封止剤としては、カルボジイミド化合物以外に、例えば、オキサゾリン化合物、およびエポキシ化合物が挙げられるが、カルボジイミド化合物は、比較的少量で封止効果を発揮するとともに、未反応成分がフィルム成形後にも高い封止反応(所謂、待伏せ効果)を奏する。
Carbodiimide compound The recycled material of the present invention includes a carbodiimide compound having a carbodiimide group (first carbodiimide compound). Furthermore, a carbodiimide compound having a carbodiimide group (second carbodiimide compound) is used as a terminal blocking agent in a part of the raw material for the melt extrusion process (hereinafter, the first carbodiimide compound and the second carbodiimide compound are used). Collectively, they are sometimes simply referred to as “carbodiimide compounds”.) In the present invention, the first carbodiimide compound and the second carbodiimide compound may be the same as or different from each other.
In addition to the carbodiimide compound, for example, an oxazoline compound and an epoxy compound can be used as the end-capping agent for the polyester resin. The carbodiimide compound exhibits a sealing effect in a relatively small amount, and an unreacted component is included. Even after film formation, a high sealing reaction (so-called ambush effect) is achieved.
 カルボジイミド化合物の例としては、一官能性カルボジイミドおよび多官能性カルボジイミドが挙げられる。
 一官能性カルボジイミドの例としては、ジシクロヘキシルカルボジイミド、ジイソプロピルカルボジイミド、ジメチルカルボジイミド、ジイソブチルカルボジイミド、ジオクチルカルボジイミド、t-ブチルイソプロピルカルボジイミド、ジフェニルカルボジイミド、ジ-t-ブチルカルボジイミドおよびジ-β-ナフチルカルボジイミドが挙げられる。特に好ましくは、ジシクロヘキシルカルボジイミドおよびジイソプロピルカルボジイミドである。
Examples of carbodiimide compounds include monofunctional carbodiimides and polyfunctional carbodiimides.
Examples of monofunctional carbodiimides include dicyclohexylcarbodiimide, diisopropylcarbodiimide, dimethylcarbodiimide, diisobutylcarbodiimide, dioctylcarbodiimide, t-butylisopropylcarbodiimide, diphenylcarbodiimide, di-t-butylcarbodiimide and di-β-naphthylcarbodiimide. Particularly preferred are dicyclohexylcarbodiimide and diisopropylcarbodiimide.
 多官能性カルボジイミドとしては、重合度3~15のポリカルボジイミドが好ましく用いられる。ポリカルボジイミドは、一般に、「-R-N=C=N-」等で表される繰り返し単位を有し、前記Rは、アルキレン、アリーレン等の2価の連結基を表す。このような繰り返し単位としては、例えば、1,5-ナフタレンカルボジイミド、4,4’-ジフェニルメタンカルボジイミド、4,4’-ジフェニルジメチルメタンカルボジイミド、1,3-フェニレンカルボジイミド、2,4-トリレンカルボジイミド、2,6-トリレンカルボジイミド、2,4-トリレンカルボジイミドと2,6-トリレンカルボジイミドの混合物、ヘキサメチレンカルボジイミド、シクロヘキサン-1,4-カルボジイミド、キシリレンカルボジイミド、イソホロンカルボジイミド、ジシクロヘキシルメタン-4,4’-カルボジイミド、メチルシクロヘキサンカルボジイミド、テトラメチルキシリレンカルボジイミド、2,6-ジイソプロピルフェニルカルボジイミドおよび1,3,5-トリイソプロピルベンゼン-2,4-カルボジイミドなどを例示することができる。 As the polyfunctional carbodiimide, polycarbodiimide having a polymerization degree of 3 to 15 is preferably used. The polycarbodiimide generally has a repeating unit represented by “—R—N═C═N—” or the like, and the R represents a divalent linking group such as alkylene or arylene. Examples of such repeating units include 1,5-naphthalene carbodiimide, 4,4′-diphenylmethane carbodiimide, 4,4′-diphenyldimethylmethane carbodiimide, 1,3-phenylene carbodiimide, 2,4-tolylene carbodiimide, 2,6-tolylenecarbodiimide, mixture of 2,4-tolylenecarbodiimide and 2,6-tolylenecarbodiimide, hexamethylenecarbodiimide, cyclohexane-1,4-carbodiimide, xylylenecarbodiimide, isophoronecarbodiimide, dicyclohexylmethane-4, 4'-carbodiimide, methylcyclohexanecarbodiimide, tetramethylxylylene carbodiimide, 2,6-diisopropylphenylcarbodiimide and 1,3,5-triisopropylbenzene Such as 2,4-carbodiimide can be exemplified.
 末端封止剤として用いるカルボジイミド化合物は、熱分解によるイソシアネート系ガスの発生が抑えられる点で、耐熱性の高いカルボジイミド化合物が好ましい。耐熱性を高めるためには、分子量(重合度)が高いカルボジイミド化合物ほど好ましく、カルボジイミド化合物の末端を耐熱性の高い構造にすることがより好ましい。また、ポリエステル樹脂を溶融押出する温度を下げることで、カルボジイミド化合物による耐候性の向上効果及び熱収縮の低減効果がより効果的に得られる。 The carbodiimide compound used as the end-capping agent is preferably a carbodiimide compound having high heat resistance in that generation of isocyanate gas due to thermal decomposition is suppressed. In order to improve heat resistance, a carbodiimide compound having a higher molecular weight (degree of polymerization) is more preferable, and it is more preferable that the terminal of the carbodiimide compound has a structure having high heat resistance. Further, by lowering the temperature at which the polyester resin is melt-extruded, the effect of improving weather resistance and the effect of reducing thermal shrinkage by the carbodiimide compound can be obtained more effectively.
 市販されているカルボジイミド系末端封止剤としては、例えば、スタバクゾール(STABAXOL)P(分子量:3000~4000)、スタバクゾールP200(分子量:約2000)、スタバクゾールP400(分子量:約20000)(以上、ラインケミージャパン(株)製)、LA-1(分子量:約2000、日清紡ケミカル(株)製)、STABILIZER9000(分子量:約20000、Rhein Chemie社製)などが挙げられるが、これに限定されるものではない。 Examples of commercially available carbodiimide end-capping agents include STABAXOL P (molecular weight: 3000 to 4000), STABAXOL P200 (molecular weight: about 2000), and STABAXOL P400 (molecular weight: about 20000) (above, Rhein Chemie). Japan Co., Ltd.), LA-1 (molecular weight: about 2000, manufactured by Nisshinbo Chemical Co., Ltd.), STABILIZER 9000 (molecular weight: about 20000, manufactured by Rhein Chemie), etc., but are not limited thereto. .
 リサイクルポリエステル材料に含まれる第1のカルボジイミド化合物及び原料に含まれる第2のカルボジイミド化合物の少なくとも一方が、カルボジイミド基を1個有し、その第一窒素と第二窒素とが結合基により結合されている環状構造を含む環状カルボジイミド化合物であってもよい。 At least one of the first carbodiimide compound contained in the recycled polyester material and the second carbodiimide compound contained in the raw material has one carbodiimide group, and the first nitrogen and the second nitrogen are bonded by a bonding group. It may be a cyclic carbodiimide compound containing a cyclic structure.
 環状構造を含むカルボジイミド化合物は、分子量が400以上であることが好ましく、500~1500であることがより好ましい。 The carbodiimide compound containing a cyclic structure preferably has a molecular weight of 400 or more, more preferably 500 to 1500.
 カルボジイミド基を1個有し、その第一窒素と第二窒素とが結合基により結合されている環状構造を含む化合物は、環状構造を複数有していてもよい。 The compound having a cyclic structure in which one carbodiimide group is included and the first nitrogen and the second nitrogen are bonded to each other through a bonding group may have a plurality of cyclic structures.
 環状構造は、カルボジイミド基(-N=C=N-)を1個有しその第一窒素と第二窒素とが結合基により結合されている。一つの環状構造中には、1個のカルボジイミド基のみを有するが、例えば、スピロ環など、分子中に複数の環状構造を有する場合にはスピロ原子に結合するそれぞれの環状構造中に1個のカルボジイミド基を有していれば、化合物として複数のカルボジイミド基を有していてよいことはいうまでもない。環状構造中の原子数は、好ましくは8~50、より好ましくは10~30、さらに好ましくは10~20、特に、10~15が好ましい。 The cyclic structure has one carbodiimide group (—N═C═N—), and the first nitrogen and the second nitrogen are bonded by a bonding group. One cyclic structure has only one carbodiimide group. For example, when there are a plurality of cyclic structures in the molecule, such as a spiro ring, one cyclic structure bonded to a spiro atom is included in each cyclic structure. Needless to say, the compound may have a plurality of carbodiimide groups as long as it has a carbodiimide group. The number of atoms in the cyclic structure is preferably 8 to 50, more preferably 10 to 30, further preferably 10 to 20, and particularly preferably 10 to 15.
 ここで、環状構造中の原子数とは、環状構造を直接構成する原子の数を意味し、例えば、8員環であれば8、50員環であれば50である。環状構造中の原子数が8より小さいと、環状カルボジイミド化合物の安定性が低下して、保管、使用が困難となる場合がある。また反応性の観点よりは環員数の上限値に関しては特別の制限はないが、50を超える原子数の環状カルボジイミド化合物は合成上困難となり、コストが大きく上昇する場合が発生する。かかる観点より環状構造中の原子数は好ましくは、10~30、より好ましくは10~20、特に好ましくは10~15の範囲から選択される。 Here, the number of atoms in the cyclic structure means the number of atoms directly constituting the cyclic structure, and is, for example, 8 for an 8-membered ring and 50 for a 50-membered ring. When the number of atoms in the cyclic structure is smaller than 8, the stability of the cyclic carbodiimide compound is lowered, and it may be difficult to store and use. From the viewpoint of reactivity, there is no particular limitation on the upper limit of the number of ring members, but cyclic carbodiimide compounds having more than 50 atoms are difficult to synthesize, and the cost may increase significantly. From this viewpoint, the number of atoms in the cyclic structure is preferably selected from the range of 10 to 30, more preferably 10 to 20, and particularly preferably 10 to 15.
 環状構造は、下記式(1)で表される構造であることが好ましい。 The ring structure is preferably a structure represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000007

 
Figure JPOXMLDOC01-appb-C000007

 
 式(1)中、Qは、それぞれヘテロ原子ならびに置換基を含んでいてもよい、脂肪族基、脂環族基、芳香族基またはこれらの組み合わせである2~4価の結合基を表す。ヘテロ原子とはこの場合、O、N、S、またはPを指す。この結合基の価のうち2つの価は環状構造を形成するために使用される。Qが3価あるいは4価の結合基である場合、単結合、二重結合、原子、又は原子団を介して、ポリマーあるいは他の環状構造と結合している。 In the formula (1), Q represents a divalent to tetravalent linking group that is an aliphatic group, an alicyclic group, an aromatic group, or a combination thereof, each of which may contain a heteroatom and a substituent. A heteroatom in this case refers to O, N, S, or P. Two of the valences of this linking group are used to form a cyclic structure. When Q is a trivalent or tetravalent linking group, it is bonded to a polymer or other cyclic structure via a single bond, a double bond, an atom, or an atomic group.
 すなわち、結合基(Q)としては、それぞれヘテロ原子ならびに置換基を含んでいてもよい、2~4価の炭素数1~20の脂肪族基、2~4価の炭素数3~20の脂環族基、2~4価の炭素数5~15の芳香族基またはこれらの組み合わせであって、上記で規定される環状構造を形成するための必要炭素数を有する結合基が選択される。上記組み合わせの例としては、アルキレン基とアリーレン基が結合した、アルキレン-アリーレン基のような構造などが挙げられる。
 結合基(Q)は、下記式(1-1)、(1-2)または(1-3)で表される2~4価の結合基であることが好ましい。
That is, the linking group (Q) is a divalent to tetravalent aliphatic group having 1 to 20 carbon atoms and a divalent to tetravalent carbon atom having 3 to 20 carbon atoms, which may each contain a heteroatom and a substituent. A linking group is selected which is a cyclic group, a divalent to tetravalent aromatic group having 5 to 15 carbon atoms, or a combination thereof, and has the necessary number of carbon atoms to form the cyclic structure defined above. Examples of the combination include structures such as an alkylene-arylene group in which an alkylene group and an arylene group are bonded.
The linking group (Q) is preferably a divalent to tetravalent linking group represented by the following formula (1-1), (1-2) or (1-3).
Figure JPOXMLDOC01-appb-C000008

 
Figure JPOXMLDOC01-appb-C000008

 
 式(1-1)中、ArおよびArは各々独立に、それぞれヘテロ原子ならびに置換基を含んでいてもよい、2~4価の炭素数5~15の芳香族基を表す。
 Ar又はArとして表される芳香族基の例としては、それぞれへテロ原子を含んで複素環構造を持っていてもよい、炭素数5~15のアリーレン基、炭素数5~15のアレーントリイル基、および炭素数5~15のアレーンテトライル基が挙げられる。アリーレン基(2価)の例としては、フェニレン基およびナフタレンジイル基が挙げられる。アレーントリイル基(3価)の例としては、ベンゼントリイル基およびナフタレントリイル基が挙げられる。アレーンテトライル基(4価)の例としては、ベンゼンテトライル基およびナフタレンテトライル基が挙げられる。これらの芳香族基は置換されていてもよい。該置換基の例としては、炭素数1~20のアルキル基、炭素数6~15のアリール基、ハロゲン原子、ニトロ基、アミド基、ヒドロキシル基、エステル基、エーテル基、およびアルデヒド基が挙げられる。
In formula (1-1), Ar 1 and Ar 2 each independently represent a divalent to tetravalent aromatic group having 5 to 15 carbon atoms, which may contain a hetero atom and a substituent, respectively.
Examples of the aromatic group represented by Ar 1 or Ar 2 include an arylene group having 5 to 15 carbon atoms and an arene having 5 to 15 carbon atoms, each of which contains a hetero atom and may have a heterocyclic structure. Examples include triyl group and arenetetrayl group having 5 to 15 carbon atoms. Examples of the arylene group (divalent) include a phenylene group and a naphthalenediyl group. Examples of the arenetriyl group (trivalent) include a benzenetriyl group and a naphthalenetriyl group. Examples of the arenetetrayl group (tetravalent) include a benzenetetrayl group and a naphthalenetetrayl group. These aromatic groups may be substituted. Examples of the substituent include alkyl groups having 1 to 20 carbon atoms, aryl groups having 6 to 15 carbon atoms, halogen atoms, nitro groups, amide groups, hydroxyl groups, ester groups, ether groups, and aldehyde groups. .
 式(1-2)中、RおよびRは各々独立に、それぞれヘテロ原子ならびに置換基を含んでいてもよい、2~4価の炭素数1~20の脂肪族基、2~4価の炭素数3~20の脂環族基、およびこれらの組み合わせ、またはこれら脂肪族基もしくは脂環族基と2~4価の炭素数5~15の芳香族基の組み合わせを表す。 In formula (1-2), R 1 and R 2 each independently contain a heteroatom and a substituent, each of which is a divalent to tetravalent C 1-20 aliphatic group or divalent to tetravalent. Represents an alicyclic group having 3 to 20 carbon atoms, a combination thereof, or a combination of these aliphatic group or alicyclic group and a divalent to tetravalent aromatic group having 5 to 15 carbon atoms.
 前記脂肪族基の例としては、炭素数1~20のアルキレン基、炭素数1~20のアルカントリイル基、および炭素数1~20のアルカンテトライル基が挙げられる。アルキレン基の例としては、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基、へプチレン基、オクチレン基、ノニレン基、デシレン基、ドデシレン基、およびへキサデシレン基が挙げられる。アルカントリイル基の例としては、メタントリイル基、エタントリイル基、プロパントリイル基、ブタントリイル基、ペンタントリイル基、ヘキサントリイル基、ヘプタントリイル基、オクタントリイル基、ノナントリイル基、デカントリイル基、ドデカントリイル基、およびヘキサデカントリイル基が挙げられる。アルカンテトライル基の例としては、メタンテトライル基、エタンテトライル基、プロパンテトライル基、ブタンテトライル基、ペンタンテトライル基、ヘキサンテトライル基、ヘプタンテトライル基、オクタンテトライル基、ノナンテトライル基、デカンテトライル基、ドデカンテトライル基、およびヘキサデカンテトライル基が挙げられる。これらの脂肪族基は置換されていてもよい。該置換基の例としては、炭素数1~20のアルキル基、炭素数6~15のアリール基、ハロゲン原子、ニトロ基、アミド基、ヒドロキシル基、エステル基、エーテル基、およびアルデヒド基が挙げられる。 Examples of the aliphatic group include an alkylene group having 1 to 20 carbon atoms, an alkanetriyl group having 1 to 20 carbon atoms, and an alkanetetrayl group having 1 to 20 carbon atoms. Examples of the alkylene group include a methylene group, an ethylene group, a propylene group, a butylene group, a pentylene group, a hexylene group, a heptylene group, an octylene group, a nonylene group, a decylene group, a dodecylene group, and a hexadecylene group. Examples of alkanetriyl groups include methanetriyl group, ethanetriyl group, propanetriyl group, butanetriyl group, pentanetriyl group, hexanetriyl group, heptanetriyl group, octanetriyl group, nonanthriyl group, decantriyl group, dodecantriyl group. Yl group and hexadecantriyl group. Examples of alkanetetrayl groups include methanetetrayl, ethanetetrayl, propanetetrayl, butanetetrayl, pentanetetrayl, hexanetetrayl, heptanetetrayl, octanetetrayl, nonane Examples include a tetrayl group, a decanetetrayl group, a dodecanetetrayl group, and a hexadecanetetrayl group. These aliphatic groups may be substituted. Examples of the substituent include alkyl groups having 1 to 20 carbon atoms, aryl groups having 6 to 15 carbon atoms, halogen atoms, nitro groups, amide groups, hydroxyl groups, ester groups, ether groups, and aldehyde groups. .
 前記脂環族基の例としては、炭素数3~20のシクロアルキレン基、炭素数3~20のシクロアルカントリイル基、および炭素数3~20のシクロアルカンテトライル基が挙げられる。シクロアルキレン基の例としては、シクロプロピレン基、シクロブチレン基、シクロペンチレン基、シクロヘキシレン基、シクロへプチレン基、シクロオクチレン基、シクロノニレン基、シクロデシレン基、シクロドデシレン基、およびシクロへキサデシレン基が挙げられる。アルカントリイル基の例としては、シクロプロパントリイル基、シクロブタントリイル基、シクロペンタントリイル基、シクロヘキサントリイル基、シクロヘプタントリイル基、シクロオクタントリイル基、シクロノナントリイル基、シクロデカントリイル基、シクロドデカントリイル基、およびシクロヘキサデカントリイル基が挙げられる。アルカンテトライル基の例としては、シクロプロパンテトライル基、シクロブタンテトライル基、シクロペンタンテトライル基、シクロヘキサンテトライル基、シクロヘプタンテトライル基、シクロオクタンテトライル基、シクロノナンテトライル基、シクロデカンテトライル基、シクロドデカンテトライル基、およびシクロヘキサデカンテトライル基が挙げられる。これらの脂環族基は置換されていてもよい。該置換基の例としては、炭素数1~20のアルキル基、炭素数6~15のアリール基、ハロゲン原子、ニトロ基、アミド基、ヒドロキシル基、エステル基、エーテル基、およびアルデヒド基が挙げられる。 Examples of the alicyclic group include a cycloalkylene group having 3 to 20 carbon atoms, a cycloalkanetriyl group having 3 to 20 carbon atoms, and a cycloalkanetetrayl group having 3 to 20 carbon atoms. Examples of the cycloalkylene group include a cyclopropylene group, a cyclobutylene group, a cyclopentylene group, a cyclohexylene group, a cycloheptylene group, a cyclooctylene group, a cyclononylene group, a cyclodecylene group, a cyclododecylene group, and a cyclohexadecylene group. Can be mentioned. Examples of alkanetriyl groups include cyclopropanetriyl, cyclobutanetriyl, cyclopentanetriyl, cyclohexanetriyl, cycloheptanetriyl, cyclooctanetriyl, cyclononanetriyl, cyclode A cantriyl group, a cyclododecantriyl group, and a cyclohexadecanetriyl group are mentioned. Examples of alkanetetrayl groups include cyclopropanetetrayl, cyclobutanetetrayl, cyclopentanetetrayl, cyclohexanetetrayl, cycloheptanetetrayl, cyclooctanetetrayl, cyclononanetetrayl, cyclo A decane tetrayl group, a cyclododecane tetrayl group, and a cyclohexadecane tetrayl group are mentioned. These alicyclic groups may be substituted. Examples of the substituent include alkyl groups having 1 to 20 carbon atoms, aryl groups having 6 to 15 carbon atoms, halogen atoms, nitro groups, amide groups, hydroxyl groups, ester groups, ether groups, and aldehyde groups. .
 前記芳香族基の例としては、それぞれへテロ原子を含んで複素環構造を持っていてもよい、炭素数5~15のアリーレン基、炭素数5~15のアレーントリイル基、および炭素数5~15のアレーンテトライル基が挙げられる。アリーレン基の例としては、フェニレン基、およびナフタレンジイル基が挙げられる。アレーントリイル基(3価)の例としては、ベンゼントリイル基、およびナフタレントリイル基が挙げられる。アレーンテトライル基(4価)の例としては、ベンゼンテトライル基、およびナフタレンテトライル基が挙げられる。これら芳香族基は置換されていてもよい。該置換基の例としては、炭素数1~20のアルキル基、炭素数6~15のアリール基、ハロゲン原子、ニトロ基、アミド基、ヒドロキシル基、エステル基、エーテル基、およびアルデヒド基が挙げられる。 Examples of the aromatic group include an arylene group having 5 to 15 carbon atoms, an arylene triyl group having 5 to 15 carbon atoms, and a carbon number of 5 each optionally containing a hetero atom and having a heterocyclic structure. ˜15 arenetetrayl groups. Examples of the arylene group include a phenylene group and a naphthalenediyl group. Examples of the arenetriyl group (trivalent) include a benzenetriyl group and a naphthalenetriyl group. Examples of the arenetetrayl group (tetravalent) include a benzenetetrayl group and a naphthalenetetrayl group. These aromatic groups may be substituted. Examples of the substituent include alkyl groups having 1 to 20 carbon atoms, aryl groups having 6 to 15 carbon atoms, halogen atoms, nitro groups, amide groups, hydroxyl groups, ester groups, ether groups, and aldehyde groups. .
 上記式(1-1)、(1-2)においてXおよびXは各々独立に、それぞれヘテロ原子ならびに置換基を含んでいてもよい、2~4価の炭素数1~20の脂肪族基、2~4価の炭素数3~20の脂環族基、2~4価の炭素数5~15の芳香族基、またはこれらの組み合わせを表す。 In the above formulas (1-1) and (1-2), X 1 and X 2 are each independently a divalent to tetravalent C 1-20 aliphatic optionally containing a heteroatom and a substituent. Group, a divalent to tetravalent alicyclic group having 3 to 20 carbon atoms, a divalent to tetravalent aromatic group having 5 to 15 carbon atoms, or a combination thereof.
 前記脂肪族基の例としては、炭素数1~20のアルキレン基、炭素数1~20のアルカントリイル基、および炭素数1~20のアルカンテトライル基が挙げられる。アルキレン基の例としては、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基、へプチレン基、オクチレン基、ノニレン基、デシレン基、ドデシレン基、およびへキサデシレン基が挙げられる。アルカントリイル基の例としては、メタントリイル基、エタントリイル基、プロパントリイル基、ブタントリイル基、ペンタントリイル基、ヘキサントリイル基、ヘプタントリイル基、オクタントリイル基、ノナントリイル基、デカントリイル基、ドデカントリイル基、およびヘキサデカントリイル基が挙げられる。アルカンテトライル基の例としては、メタンテトライル基、エタンテトライル基、プロパンテトライル基、ブタンテトライル基、ペンタンテトライル基、ヘキサンテトライル基、ヘプタンテトライル基、オクタンテトライル基、ノナンテトライル基、デカンテトライル基、ドデカンテトライル基、およびヘキサデカンテトライル基が挙げられる。これらの脂肪族基は置換されていてもよい。該置換基の例としては、炭素数1~20のアルキル基、炭素数6~15のアリール基、ハロゲン原子、ニトロ基、アミド基、ヒドロキシル基、エステル基、エーテル基、およびアルデヒド基が挙げられる。 Examples of the aliphatic group include an alkylene group having 1 to 20 carbon atoms, an alkanetriyl group having 1 to 20 carbon atoms, and an alkanetetrayl group having 1 to 20 carbon atoms. Examples of the alkylene group include a methylene group, an ethylene group, a propylene group, a butylene group, a pentylene group, a hexylene group, a heptylene group, an octylene group, a nonylene group, a decylene group, a dodecylene group, and a hexadecylene group. Examples of alkanetriyl groups include methanetriyl group, ethanetriyl group, propanetriyl group, butanetriyl group, pentanetriyl group, hexanetriyl group, heptanetriyl group, octanetriyl group, nonanthriyl group, decantriyl group, dodecantriyl group. Yl group and hexadecantriyl group. Examples of alkanetetrayl groups include methanetetrayl, ethanetetrayl, propanetetrayl, butanetetrayl, pentanetetrayl, hexanetetrayl, heptanetetrayl, octanetetrayl, nonane Examples include a tetrayl group, a decanetetrayl group, a dodecanetetrayl group, and a hexadecanetetrayl group. These aliphatic groups may be substituted. Examples of the substituent include alkyl groups having 1 to 20 carbon atoms, aryl groups having 6 to 15 carbon atoms, halogen atoms, nitro groups, amide groups, hydroxyl groups, ester groups, ether groups, and aldehyde groups. .
 前記脂環族基の例としては、炭素数3~20のシクロアルキレン基、炭素数3~20のシクロアルカントリイル基および、炭素数3~20のシクロアルカンテトライル基が挙げられる。シクロアルキレン基の例としては、シクロプロピレン基、シクロブチレン基、シクロペンチレン基、シクロヘキシレン基、シクロへプチレン基、シクロオクチレン基、シクロノニレン基、シクロデシレン基、シクロドデシレン基、およびシクロへキサデシレン基が挙げられる。アルカントリイル基の例としては、シクロプロパントリイル基、シクロブタントリイル基、シクロペンタントリイル基、シクロヘキサントリイル基、シクロヘプタントリイル基、シクロオクタントリイル基、シクロノナントリイル基、シクロデカントリイル基、シクロドデカントリイル基、およびシクロヘキサデカントリイル基が挙げられる。アルカンテトライル基の例としては、シクロプロパンテトライル基、シクロブタンテトライル基、シクロペンタンテトライル基、シクロヘキサンテトライル基、シクロヘプタンテトライル基、シクロオクタンテトライル基、シクロノナンテトライル基、シクロデカンテトライル基、シクロドデカンテトライル基、およびシクロヘキサデカンテトライル基が挙げられる。これらの脂環族基は置換されていてもよい。該置換基の例としては、炭素数1~20のアルキル基、炭素数6~15のアリール基、ハロゲン原子、ニトロ基、アミド基、ヒドロキシル基、エステル基、エーテル基、およびアルデヒド基が挙げられる。 Examples of the alicyclic group include a cycloalkylene group having 3 to 20 carbon atoms, a cycloalkanetriyl group having 3 to 20 carbon atoms, and a cycloalkanetetrayl group having 3 to 20 carbon atoms. Examples of the cycloalkylene group include a cyclopropylene group, a cyclobutylene group, a cyclopentylene group, a cyclohexylene group, a cycloheptylene group, a cyclooctylene group, a cyclononylene group, a cyclodecylene group, a cyclododecylene group, and a cyclohexadecylene group. Can be mentioned. Examples of alkanetriyl groups include cyclopropanetriyl, cyclobutanetriyl, cyclopentanetriyl, cyclohexanetriyl, cycloheptanetriyl, cyclooctanetriyl, cyclononanetriyl, cyclode A cantriyl group, a cyclododecantriyl group, and a cyclohexadecanetriyl group are mentioned. Examples of alkanetetrayl groups include cyclopropanetetrayl, cyclobutanetetrayl, cyclopentanetetrayl, cyclohexanetetrayl, cycloheptanetetrayl, cyclooctanetetrayl, cyclononanetetrayl, cyclo A decane tetrayl group, a cyclododecane tetrayl group, and a cyclohexadecane tetrayl group are mentioned. These alicyclic groups may be substituted. Examples of the substituent include alkyl groups having 1 to 20 carbon atoms, aryl groups having 6 to 15 carbon atoms, halogen atoms, nitro groups, amide groups, hydroxyl groups, ester groups, ether groups, and aldehyde groups. .
 前記芳香族基の例としては、それぞれへテロ原子を含んで複素環構造を持っていてもよい、炭素数5~15のアリーレン基、炭素数5~15のアレーントリイル基、および炭素数5~15のアレーンテトライル基が挙げられる。アリーレン基の例としては、フェニレン基、およびナフタレンジイル基が挙げられる。アレーントリイル基(3価)の例としては、ベンゼントリイル基、およびナフタレントリイル基が挙げられる。アレーンテトライル基(4価)の例としては、ベンゼンテトライル基、およびナフタレンテトライル基が挙げられる。これらの芳香族基は置換されていてもよい。該置換基の例としては、炭素数1~20のアルキル基、炭素数6~15のアリール基、ハロゲン原子、ニトロ基、アミド基、ヒドロキシル基、エステル基、エーテル基、およびアルデヒド基が挙げられる。 Examples of the aromatic group include an arylene group having 5 to 15 carbon atoms, an arylene triyl group having 5 to 15 carbon atoms, and a carbon number of 5 each optionally containing a hetero atom and having a heterocyclic structure. ˜15 arenetetrayl groups. Examples of the arylene group include a phenylene group and a naphthalenediyl group. Examples of the arenetriyl group (trivalent) include a benzenetriyl group and a naphthalenetriyl group. Examples of the arenetetrayl group (tetravalent) include a benzenetetrayl group and a naphthalenetetrayl group. These aromatic groups may be substituted. Examples of the substituent include alkyl groups having 1 to 20 carbon atoms, aryl groups having 6 to 15 carbon atoms, halogen atoms, nitro groups, amide groups, hydroxyl groups, ester groups, ether groups, and aldehyde groups. .
 上記式(1-1)、(1-2)においてsおよびkは、各々独立に、0~10の整数、好ましくは0~3の整数、より好ましくは0~1の整数を表す。
 s又はkが10を超えると、環状カルボジイミド化合物の合成が困難となり、コストが大きく上昇する場合があるためである。かかる観点よりs又はkで表される整数は好ましくは0~3の範囲で選択される。なお、sまたはkが2以上であるとき、複数存在する繰り返し単位としてのXあるいはXは、互いに異なっていてもよい。
In the above formulas (1-1) and (1-2), s and k each independently represent an integer of 0 to 10, preferably an integer of 0 to 3, more preferably an integer of 0 to 1.
This is because if s or k exceeds 10, synthesis of the cyclic carbodiimide compound becomes difficult, and the cost may increase significantly. From this viewpoint, the integer represented by s or k is preferably selected in the range of 0 to 3. When s or k is 2 or more, X 1 or X 2 as a plurality of repeating units may be different from each other.
 上記式(1-3)においてXは、それぞれヘテロ原子ならびに置換基を含んでいてもよい、2~4価の炭素数1~20の脂肪族基、2~4価の炭素数3~20の脂環族基、2~4価の炭素数5~15の芳香族基、またはこれらの組み合わせを表す。 In the above formula (1-3), X 3 each may contain a heteroatom and a substituent, a divalent to tetravalent C 1-20 aliphatic group, a divalent to tetravalent carbon number of 3 to 20 Represents an alicyclic group, a divalent to tetravalent aromatic group having 5 to 15 carbon atoms, or a combination thereof.
 前記脂肪族基の例としては、炭素数1~20のアルキレン基、炭素数1~20のアルカントリイル基、および炭素数1~20のアルカンテトライル基が挙げられる。アルキレン基の例としては、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基、へプチレン基、オクチレン基、ノニレン基、デシレン基、ドデシレン基、およびへキサデシレン基が挙げられる。アルカントリイル基の例としては、メタントリイル基、エタントリイル基、プロパントリイル基、ブタントリイル基、ペンタントリイル基、ヘキサントリイル基、ヘプタントリイル基、オクタントリイル基、ノナントリイル基、デカントリイル基、ドデカントリイル基、およびヘキサデカントリイル基が挙げられる。アルカンテトライル基の例としては、メタンテトライル基、エタンテトライル基、プロパンテトライル基、ブタンテトライル基、ペンタンテトライル基、ヘキサンテトライル基、ヘプタンテトライル基、オクタンテトライル基、ノナンテトライル基、デカンテトライル基、ドデカンテトライル基、およびヘキサデカンテトライル基が挙げられる。
 これら脂肪族基は置換基を含んでいてもよく、該置換基の例としては、炭素数1~20のアルキル基、炭素数6~15のアリール基、ハロゲン原子、ニトロ基、アミド基、ヒドロキシル基、エステル基、エーテル基、およびアルデヒド基が挙げられる。
Examples of the aliphatic group include an alkylene group having 1 to 20 carbon atoms, an alkanetriyl group having 1 to 20 carbon atoms, and an alkanetetrayl group having 1 to 20 carbon atoms. Examples of the alkylene group include a methylene group, an ethylene group, a propylene group, a butylene group, a pentylene group, a hexylene group, a heptylene group, an octylene group, a nonylene group, a decylene group, a dodecylene group, and a hexadecylene group. Examples of alkanetriyl groups include methanetriyl group, ethanetriyl group, propanetriyl group, butanetriyl group, pentanetriyl group, hexanetriyl group, heptanetriyl group, octanetriyl group, nonanthriyl group, decantriyl group, dodecantriyl group. Yl group and hexadecantriyl group. Examples of alkanetetrayl groups include methanetetrayl, ethanetetrayl, propanetetrayl, butanetetrayl, pentanetetrayl, hexanetetrayl, heptanetetrayl, octanetetrayl, nonane Examples include a tetrayl group, a decanetetrayl group, a dodecanetetrayl group, and a hexadecanetetrayl group.
These aliphatic groups may contain a substituent. Examples of the substituent include alkyl groups having 1 to 20 carbon atoms, aryl groups having 6 to 15 carbon atoms, halogen atoms, nitro groups, amide groups, hydroxyl groups. Groups, ester groups, ether groups, and aldehyde groups.
 前記脂環族基の例としては、炭素数3~20のシクロアルキレン基、炭素数3~20のシクロアルカントリイル基、および炭素数3~20のシクロアルカンテトライル基が挙げられる。シクロアルキレン基の例としては、シクロプロピレン基、シクロブチレン基、シクロペンチレン基、シクロヘキシレン基、シクロへプチレン基、シクロオクチレン基、シクロノニレン基、シクロデシレン基、シクロドデシレン基、およびシクロへキサデシレン基が挙げられる。アルカントリイル基の例としては、シクロプロパントリイル基、シクロブタントリイル基、シクロペンタントリイル基、シクロヘキサントリイル基、シクロヘプタントリイル基、シクロオクタントリイル基、シクロノナントリイル基、シクロデカントリイル基、シクロドデカントリイル基、およびシクロヘキサデカントリイル基が挙げられる。アルカンテトライル基の例としては、シクロプロパンテトライル基、シクロブタンテトライル基、シクロペンタンテトライル基、シクロヘキサンテトライル基、シクロヘプタンテトライル基、シクロオクタンテトライル基、シクロノナンテトライル基、シクロデカンテトライル基、シクロドデカンテトライル基、およびシクロヘキサデカンテトライル基が挙げられる。これら脂環族基は置換基を含んでいてもよく、該置換基の例としては、炭素数1~20のアルキル基、炭素数6~15のアリーレン基、ハロゲン原子、ニトロ基、アミド基、ヒドロキシル基、エステル基、エーテル基、およびアルデヒド基が挙げられる。 Examples of the alicyclic group include a cycloalkylene group having 3 to 20 carbon atoms, a cycloalkanetriyl group having 3 to 20 carbon atoms, and a cycloalkanetetrayl group having 3 to 20 carbon atoms. Examples of the cycloalkylene group include a cyclopropylene group, a cyclobutylene group, a cyclopentylene group, a cyclohexylene group, a cycloheptylene group, a cyclooctylene group, a cyclononylene group, a cyclodecylene group, a cyclododecylene group, and a cyclohexadecylene group. Can be mentioned. Examples of alkanetriyl groups include cyclopropanetriyl, cyclobutanetriyl, cyclopentanetriyl, cyclohexanetriyl, cycloheptanetriyl, cyclooctanetriyl, cyclononanetriyl, cyclode A cantriyl group, a cyclododecantriyl group, and a cyclohexadecanetriyl group are mentioned. Examples of alkanetetrayl groups include cyclopropanetetrayl, cyclobutanetetrayl, cyclopentanetetrayl, cyclohexanetetrayl, cycloheptanetetrayl, cyclooctanetetrayl, cyclononanetetrayl, cyclo A decane tetrayl group, a cyclododecane tetrayl group, and a cyclohexadecane tetrayl group are mentioned. These alicyclic groups may contain a substituent. Examples of the substituent include an alkyl group having 1 to 20 carbon atoms, an arylene group having 6 to 15 carbon atoms, a halogen atom, a nitro group, an amide group, Examples include hydroxyl groups, ester groups, ether groups, and aldehyde groups.
 前記芳香族基の例としては、それぞれへテロ原子を含んで複素環構造を持っていてもよい、炭素数5~15のアリーレン基、炭素数5~15のアレーントリイル基、および炭素数5~15のアレーンテトライル基が挙げられる。アリーレン基の例としては、フェニレン基、およびナフタレンジイル基が挙げられる。アレーントリイル基(3価)の例としては、ベンゼントリイル基、およびナフタレントリイル基が挙げられる。アレーンテトライル基(4価)の例としては、ベンゼンテトライル基、およびナフタレンテトライル基が挙げられる。これらの芳香族基は置換されていてもよい。該置換基の例としては、炭素数1~20のアルキル基、炭素数6~15のアリール基、ハロゲン原子、ニトロ基、アミド基、ヒドロキシル基、エステル基、エーテル基、およびアルデヒド基が挙げられる。 Examples of the aromatic group include an arylene group having 5 to 15 carbon atoms, an arylene triyl group having 5 to 15 carbon atoms, and a carbon number of 5 each optionally containing a hetero atom and having a heterocyclic structure. ˜15 arenetetrayl groups. Examples of the arylene group include a phenylene group and a naphthalenediyl group. Examples of the arenetriyl group (trivalent) include a benzenetriyl group and a naphthalenetriyl group. Examples of the arenetetrayl group (tetravalent) include a benzenetetrayl group and a naphthalenetetrayl group. These aromatic groups may be substituted. Examples of the substituent include alkyl groups having 1 to 20 carbon atoms, aryl groups having 6 to 15 carbon atoms, halogen atoms, nitro groups, amide groups, hydroxyl groups, ester groups, ether groups, and aldehyde groups. .
 また、Ar、Ar、R、R、X、XおよびXは、それぞれヘテロ原子を含有していてもよい。また、Qが2価の結合基であるときは、Ar、Ar、R、R、X、XおよびXは全て2価の基を表す。Qが3価の結合基であるときは、Ar、Ar、R、R、X、XおよびXの内の一つが3価の基を表す。Qが4価の結合基であるときは、Ar、Ar、R、R、X、XおよびXの内の一つが4価の基を表すか、二つが3価の基を表す。 Ar 1 , Ar 2 , R 1 , R 2 , X 1 , X 2 and X 3 may each contain a hetero atom. When Q is a divalent linking group, Ar 1 , Ar 2 , R 1 , R 2 , X 1 , X 2 and X 3 all represent a divalent group. When Q is a trivalent linking group, one of Ar 1 , Ar 2 , R 1 , R 2 , X 1 , X 2 and X 3 represents a trivalent group. When Q is a tetravalent linking group, one of Ar 1 , Ar 2 , R 1 , R 2 , X 1 , X 2 and X 3 represents a tetravalent group, or two are trivalent Represents a group.
 本発明で用いることができる環状カルボジイミド化合物の例としては、以下(a)~(c)で表される化合物が挙げられる。 Examples of the cyclic carbodiimide compound that can be used in the present invention include compounds represented by the following (a) to (c).
環状カルボジイミド化合物(a)
 本発明で用いる環状カルボジイミド化合物の例としては、下記式(2)で表される化合物(以下、「環状カルボジイミド化合物(a)」ということがある。)を挙げることができる。
Cyclic carbodiimide compound (a)
Examples of the cyclic carbodiimide compound used in the present invention include a compound represented by the following formula (2) (hereinafter sometimes referred to as “cyclic carbodiimide compound (a)”).
Figure JPOXMLDOC01-appb-C000009

 
Figure JPOXMLDOC01-appb-C000009

 
 式(2)中、Qは、脂肪族基、脂環族基、芳香族基またはこれらの組み合わせである2価の結合基を表し、ヘテロ原子を含有していてもよい。脂肪族基、脂環族基、芳香族基の定義は、式(1)で説明したQにおける脂肪族基、脂環族基、芳香族基の定義とそれぞれ同じである。但し、式(2)の化合物においては、Qで表される脂肪族基、脂環族基、芳香族基は、全て2価の基である。Qは、下記式(2-1)、(2-2)または(2-3)で表される2価の結合基であることが好ましい。 Wherein (2), Q a is an aliphatic group, an alicyclic group, an aromatic group or a divalent linking group which is a combination of these, it may contain a heteroatom. The definitions of the aliphatic group, alicyclic group, and aromatic group are the same as the definitions of the aliphatic group, alicyclic group, and aromatic group in Q described in Formula (1). However, in the compound of formula (2), the aliphatic group represented by Q a, alicyclic group, aromatic group are all divalent group. Q a is preferably a divalent linking group represented by the following formula (2-1), (2-2) or (2-3).
Figure JPOXMLDOC01-appb-C000010

 
Figure JPOXMLDOC01-appb-C000010

 
 式(2-1)~(2-3)中、Ar 、Ar 、R 、R 、X 、X 、X 、sおよびkの定義は、各々式(1-1)~(1-3)中のAr、Ar、R、R、X、X、X、sおよびkの定義と同じである。但し、これらは全て2価の基を表す。
 かかる環状カルボジイミド化合物(a)の例としては、以下の化合物が挙げられる。
In formulas (2-1) to (2-3), the definitions of Ar a 1 , Ar a 2 , R a 1 , R a 2 , X a 1 , X a 2 , X a 3 , s and k are respectively The same as the definitions of Ar 1 , Ar 2 , R 1 , R 2 , X 1 , X 2 , X 3 , s and k in the formulas (1-1) to (1-3). However, these all represent a divalent group.
Examples of the cyclic carbodiimide compound (a) include the following compounds.
Figure JPOXMLDOC01-appb-C000011

 
Figure JPOXMLDOC01-appb-C000011

 
環状カルボジイミド化合物(b)
 さらに、本発明で用いる環状カルボジイミド化合物の例としては、下記式(3)で表される化合物(以下、「環状カルボジイミド化合物(b)」ということがある。)を挙げることができる。
Cyclic carbodiimide compound (b)
Furthermore, examples of the cyclic carbodiimide compound used in the present invention include a compound represented by the following formula (3) (hereinafter sometimes referred to as “cyclic carbodiimide compound (b)”).
Figure JPOXMLDOC01-appb-C000012

 
Figure JPOXMLDOC01-appb-C000012

 
 式(3)中、Qは、脂肪族基、脂環族基、芳香族基、またはこれらの組み合わせである3価の結合基を表し、ヘテロ原子を含有していてもよい。Yは、環状構造を担持する担体を表す。脂肪族基、脂環族基、芳香族基の定義は、式(1)で説明したQにおける脂肪族基、脂環族基、芳香族基の定義とそれぞれ同じである。但し、式(3)の化合物においては、Qを構成する基の内一つは3価の基である。
 Qは、下記式(3-1)、(3-2)または(3-3)で表される3価の結合基であることが好ましい。
Wherein (3), Q b is an aliphatic group, an alicyclic group, an aromatic group or a trivalent linking group combinations thereof, and may contain a hetero atom. Y represents a carrier supporting a cyclic structure. The definitions of the aliphatic group, alicyclic group, and aromatic group are the same as the definitions of the aliphatic group, alicyclic group, and aromatic group in Q described in Formula (1). However, in the compound of formula (3), the inner one of the group constituting the Q b is a trivalent group.
Q b is preferably a trivalent linking group represented by the following formula (3-1), (3-2) or (3-3).
Figure JPOXMLDOC01-appb-C000013

 
Figure JPOXMLDOC01-appb-C000013

 
 式(3-1)~式(3-3)中、Ar 、Ar 、R 、R 、X 、X 、X 、sおよびkの定義は、各々式(1-1)~(1-3)のAr、Ar、R、R、X、X、X、sおよびkの定義と同じである。但しこれらの内の一つは3価の基を表す。
 Yは、単結合、二重結合、原子、原子団またはポリマーであることが好ましい。Yは結合部であり、複数の環状構造がYを介して結合し、式(3)で表される構造を形成している。
 かかる環状カルボジイミド化合物(b)の例としては、下記化合物が挙げられる。
In the formulas (3-1) to (3-3), Ar b 1 , Ar b 2 , R b 1 , R b 2 , X b 1 , X b 2 , X b 3 , s and k are defined as follows: Each has the same definition as Ar 1 , Ar 2 , R 1 , R 2 , X 1 , X 2 , X 3 , s and k in formulas (1-1) to (1-3). However, one of these represents a trivalent group.
Y is preferably a single bond, a double bond, an atom, an atomic group or a polymer. Y is a bonding portion, and a plurality of cyclic structures are bonded via Y to form a structure represented by the formula (3).
Examples of the cyclic carbodiimide compound (b) include the following compounds.
Figure JPOXMLDOC01-appb-C000014

 
Figure JPOXMLDOC01-appb-C000014

 
環状カルボジイミド化合物(c)
 さらに、本発明で用いる環状カルボジイミド化合物の例としては、下記式(4)で表される化合物(以下、「環状カルボジイミド化合物(c)」ということがある。)を挙げることができる。
Cyclic carbodiimide compound (c)
Furthermore, examples of the cyclic carbodiimide compound used in the present invention include a compound represented by the following formula (4) (hereinafter sometimes referred to as “cyclic carbodiimide compound (c)”).
Figure JPOXMLDOC01-appb-C000015

 
Figure JPOXMLDOC01-appb-C000015

 
 式(4)中、Qは、脂肪族基、脂環族基、および芳香族基からなる群から選択されるいずれか1つの4価の結合基、又は脂肪族基、脂環族基、および芳香族基からなる群から選択される2つ以上の基の組み合わせである4価の結合基を表し、さらにヘテロ原子を保有していてもよい。Z及びZは、それぞれ独立に環状構造を担持する担体を表す。Z及びZは、互いに結合して環状構造を形成していてもよい。
 脂肪族基、脂環族基、及び芳香族基の定義は、式(1)で説明したQにおける脂肪族基、脂環族基、及び芳香族基の定義とそれぞれ同じである。但し、式(4)の化合物において、Qは4価の基である。従って、これらの基の内の一つが4価の基であるか、二つが3価の基である。
 Qは、下記式(4-1)、式(4-2)又は式(4-3)で表される4価の結合基であることが好ましい。
In formula (4), Q c is any one tetravalent linking group selected from the group consisting of an aliphatic group, an alicyclic group, and an aromatic group, or an aliphatic group, an alicyclic group, And a tetravalent linking group that is a combination of two or more groups selected from the group consisting of aromatic groups, and may further have a heteroatom. Z 1 and Z 2 each independently represent a carrier carrying a cyclic structure. Z 1 and Z 2 may be bonded to each other to form a cyclic structure.
The definitions of the aliphatic group, the alicyclic group, and the aromatic group are the same as the definitions of the aliphatic group, the alicyclic group, and the aromatic group in Q described in Formula (1). However, in the compound of the formula (4), Q c is a tetravalent group. Accordingly, one of these groups is a tetravalent group or two are trivalent groups.
Q c is preferably a tetravalent linking group represented by the following formula (4-1), formula (4-2), or formula (4-3).
Figure JPOXMLDOC01-appb-C000016

 
Figure JPOXMLDOC01-appb-C000016

 
 式(4-1)~式(4-3)中の、Ar 、Ar 、R 、R 、X 、X 、X 、s及びkの定義は、各々式(1-1)~式(1-3)の、Ar、Ar、R、R、X、X、X、s及びkの定義と同じである。但し、Ar 、Ar 、R 、R 、X 、X 及びX は、これらの内の一つが4価の基であるか、二つが3価の基である。Z及びZは各々独立に、単結合、二重結合、原子、原子団又はポリマーであることが好ましい。Z及びZは結合部であり、複数の環状構造がZ及びZを介して結合し、式(4)で表される構造を形成している。
 かかる環状カルボジイミド化合物(c)の例としては、下記化合物を挙げることができる。
In the formulas (4-1) to (4-3), Ar c 1 , Ar c 2 , R c 1 , R c 2 , X c 1 , X c 2 , X c 3 , s and k are defined as follows: These are the same as the definitions of Ar 1 , Ar 2 , R 1 , R 2 , X 1 , X 2 , X 3 , s and k in the formulas (1-1) to (1-3), respectively. Provided that Ar c 1 , Ar c 2 , R c 1 , R c 2 , X c 1 , X c 2 and X c 3 are one of these being a tetravalent group or two of which are trivalent It is a group. Z 1 and Z 2 are preferably each independently a single bond, a double bond, an atom, an atomic group or a polymer. Z 1 and Z 2 are bonding portions, and a plurality of cyclic structures are bonded via Z 1 and Z 2 to form a structure represented by the formula (4).
Examples of the cyclic carbodiimide compound (c) include the following compounds.
Figure JPOXMLDOC01-appb-C000017

 
Figure JPOXMLDOC01-appb-C000017

 
環状カルボジイミド化合物の製造方法
 本発明に係る環状カルボジイミド化合物は、特開2011-256337号公報の段落番号[0076]に記載の方法などに基づいて合成することができる。
Method for Producing Cyclic Carbodiimide Compound The cyclic carbodiimide compound according to the present invention can be synthesized based on the method described in paragraph [0076] of JP-A No. 2011-256337.
 末端封止剤として添加する第2のカルボジイミド化合物の配合量は、ポリエステル樹脂と上記乾燥後の第1のカルボジイミド化合物を含むリサイクルポリエステル材料との合計100質量部に対し、カルボジイミド化合物の合計含有量が0.1~2.0質量部であるポリエステルフィルムが得られるように、ポリエステル樹脂及びリサイクル材料の種類及び量、並びに製膜条件等に応じて設定すればよい。 The blending amount of the second carbodiimide compound added as the end-capping agent is such that the total content of the carbodiimide compound is 100 parts by mass in total of the polyester resin and the recycled polyester material containing the first carbodiimide compound after drying. What is necessary is just to set according to the kind and quantity of a polyester resin and a recycled material, film forming conditions, etc. so that the polyester film which is 0.1-2.0 mass parts may be obtained.
 ポリエステル樹脂とカルボジイミド化合物を含むマスターバッチとして使用する場合は、例えば、135~170℃の不活性ガス(窒素など)の熱風を接触させて乾燥処理を行うことが好ましい。あるいは、真空乾燥を行ってもよい。なお、カルボジイミド化合物が粉末状であれば、乾燥させずにそのまま使用してもよい。 When used as a masterbatch containing a polyester resin and a carbodiimide compound, for example, it is preferable to perform a drying treatment by contacting hot air of an inert gas (such as nitrogen) at 135 to 170 ° C., for example. Alternatively, vacuum drying may be performed. If the carbodiimide compound is in powder form, it may be used as it is without being dried.
その他の添加剤
 溶融押出に用いる原料としては、上記ポリエステル樹脂、リサイクルポリエステル材料、カルボジイミド化合物のほか、カルボジイミド化合物以外の末端封止剤、光安定化剤、または酸化防止剤などの添加剤を、本発明の効果を損なわない範囲で更に含有することができる。
Other additives As raw materials used for melt extrusion, in addition to the above-mentioned polyester resin, recycled polyester material, carbodiimide compound, additives such as end-capping agents, light stabilizers, or antioxidants other than carbodiimide compounds are used. It can further contain in the range which does not impair the effect of invention.
 本発明により製造されるポリエステルフィルムには、光安定化剤が添加されていることが好ましい。光安定化剤を含有することで、紫外線劣化を防ぐことができる。光安定化剤の例とは、紫外線などの光線を吸収して熱エネルギーに変換する化合物、及びフィルム等が光吸収して分解して発生したラジカルを捕捉し、分解連鎖反応を抑制する材料が挙げられる。 It is preferable that a light stabilizer is added to the polyester film produced according to the present invention. By containing the light stabilizer, it is possible to prevent ultraviolet degradation. Examples of light stabilizers include compounds that absorb light such as ultraviolet rays and convert them into thermal energy, and materials that absorb radicals generated by light absorption and decomposition and suppress decomposition chain reactions. Can be mentioned.
 光安定化剤として好ましくは、紫外線などの光線を吸収して熱エネルギーに変換する化合物である。このような光安定化剤をフィルム中に含有することで、長期間継続的に紫外線の照射を受けても、フィルムによる部分放電電圧の向上効果を長期間高く保つことが可能になったり、フィルムの紫外線による色調変化、強度劣化等が防止される。 The light stabilizer is preferably a compound that absorbs light such as ultraviolet rays and converts it into heat energy. By including such a light stabilizer in the film, it becomes possible to keep the effect of improving the partial discharge voltage by the film high for a long time even if the film is irradiated with ultraviolet rays continuously for a long time. Changes in color tone, strength deterioration, and the like due to UV rays.
 例えば紫外線吸収剤としては、ポリエステルの他の特性が損なわれない範囲であれば、有機系紫外線吸収剤、無機系紫外線吸収剤、及びこれらの併用のいずれも、特に限定されることなく好適に用いることができる。一方、紫外線吸収剤は、耐湿熱性に優れ、フィルム中に均一分散できることが望まれる。 For example, as an ultraviolet absorber, as long as other properties of the polyester are not impaired, any of an organic ultraviolet absorber, an inorganic ultraviolet absorber, and a combination thereof are preferably used without any particular limitation. be able to. On the other hand, it is desired that the ultraviolet absorber is excellent in moisture and heat resistance and can be uniformly dispersed in the film.
 紫外線吸収剤の例としては、サリチル酸系、ベンゾフェノン系、ベンゾトリアゾール系、シアノアクリレート系等の紫外線吸収剤及びヒンダードアミン系等の紫外線安定剤などの有機系の紫外線吸収剤が挙げられる。具体的には、例えば、p-t-ブチルフェニルサリシレートおよびp-オクチルフェニルサリシレートなどのサリチル酸系紫外線吸収剤、2,4-ジヒドロキシベンゾフェノン、2-ヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-メトキシ-5-スルホベンゾフェノン、2,2’,4,4’-テトラヒドロキシベンゾフェノン、およびビス(2-メトキシ-4-ヒドロキシ-5-ベンゾイルフェニル)メタンなどのベンゾフェノン系紫外線吸収剤、2-(2’-ヒドロキシ-5’-メチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-5’-メチルフェニル)ベンゾトリアゾール、および2,2’-メチレンビス[4-(1,1,3,3-テトラメチルブチル)-6-(2Hベンゾトリアゾール-2-イル)フェノール]などのベンゾトリアゾール系紫外線吸収剤、エチル-2-シアノ-3,3’-ジフェニルアクリレート)などのシアノアクリレート系紫外線吸収剤、2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-[(ヘキシル)オキシ]-フェノールなどのトリアジン系紫外線吸収剤、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、コハク酸ジメチル・1-(2-ヒドロキシエチル)-4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン重縮合物などのヒンダードアミン系紫外線吸収剤、並びにニッケルビス(オクチルフェニル)サルファイド、及び2,4-ジ・t-ブチルフェニル-3’,5’-ジ・t-ブチル-4’-ヒドロキシベンゾエートが挙げられる。
 これらの紫外線吸収剤のうち、繰り返し紫外線吸収に対する耐性が高いという点で、トリアジン系紫外線吸収剤が好ましい。なお、これらの紫外線吸収剤は、上述の紫外線吸収剤単体でフィルムに添加してもよいし、有機系導電性材料や非水溶性樹脂に、紫外線吸収能を有するモノマーを共重合させた形態で導入してもよい。
Examples of the ultraviolet absorber include organic ultraviolet absorbers such as salicylic acid-based, benzophenone-based, benzotriazole-based, and cyanoacrylate-based ultraviolet absorbers, and hindered amine-based ultraviolet stabilizers. Specifically, for example, salicylic acid ultraviolet absorbers such as pt-butylphenyl salicylate and p-octylphenyl salicylate, 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4- Benzophenone ultraviolet absorbers such as methoxy-5-sulfobenzophenone, 2,2 ′, 4,4′-tetrahydroxybenzophenone, and bis (2-methoxy-4-hydroxy-5-benzoylphenyl) methane, 2- (2 '-Hydroxy-5'-methylphenyl) benzotriazole, 2- (2'-hydroxy-5'-methylphenyl) benzotriazole, and 2,2'-methylenebis [4- (1,1,3,3-tetra Methylbutyl) -6- (2Hbenzotriazol-2-yl) phenol Benzotriazole ultraviolet absorbers such as ethyl-2-cyano-3,3′-diphenyl acrylate), 2- (4,6-diphenyl-1,3,5-triazine- 2-yl) -5-[(hexyl) oxy] -phenol and other triazine UV absorbers, bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, dimethyl succinate 1- (2 -Hydroxyethyl) -4-hydroxy-2,2,6,6-tetramethylpiperidine polycondensate and other hindered amine ultraviolet absorbers, nickel bis (octylphenyl) sulfide, and 2,4-di-t-butyl And phenyl-3 ′, 5′-di-t-butyl-4′-hydroxybenzoate.
Of these ultraviolet absorbers, triazine-based ultraviolet absorbers are preferable in that they have high resistance to repeated ultraviolet absorption. In addition, these ultraviolet absorbers may be added to the film by the above-mentioned ultraviolet absorber alone, or in a form in which a monomer having ultraviolet absorbing ability is copolymerized with an organic conductive material or a water-insoluble resin. It may be introduced.
 光安定化剤のポリエステルフィルム中における含有量は、ポリエステルフィルムの全質量に対して、0.1質量%以上10質量%以下が好ましく、より好ましくは0.3質量%以上7質量%以下であり、さらに好ましくは0.7質量%以上4質量%以下である。光安定化剤の含有量を上記範囲にすることで、長期経時での光劣化によるポリエステルの分子量低下を抑止でき、その結果発生するフィルム内の凝集破壊に起因する密着力低下を抑止できる。 The content of the light stabilizer in the polyester film is preferably 0.1% by mass or more and 10% by mass or less, and more preferably 0.3% by mass or more and 7% by mass or less with respect to the total mass of the polyester film. More preferably, it is 0.7 mass% or more and 4 mass% or less. By setting the content of the light stabilizer in the above range, it is possible to suppress a decrease in the molecular weight of the polyester due to light degradation over a long period of time, and it is possible to suppress a decrease in adhesion due to cohesive failure in the resulting film.
 更に、本発明のポリエステルフィルムは、前記光安定化剤の他にも、例えば、易滑剤(微粒子)、着色剤、熱安定剤、核剤(結晶化剤)、難燃化剤などを添加剤として含有することができる。 Furthermore, the polyester film of the present invention may contain, for example, an easy lubricant (fine particles), a colorant, a heat stabilizer, a nucleating agent (crystallization agent), a flame retardant and the like in addition to the light stabilizer. It can contain as.
押出機
 溶融混練に使用する押出機は特に限定されず、単軸押出機、二軸押出機などを使用することができるが、二軸押出機を好適に用いることができる。
Extruder The extruder used for melt kneading is not particularly limited, and a single screw extruder, a twin screw extruder, or the like can be used, but a twin screw extruder can be preferably used.
 本発明で用いることができる二軸押出機について説明する。図1は、本発明に係るポリエステルフィルムの製造方法を実施する際に使用する二軸押出機の構成の一例を概略的に示している。図2は、本発明に係るポリエステルフィルムの製造方法を実施するフローの一例を示している。
 図1に示す二軸押出機100は、供給口12及び押出機出口14を有するシリンダー10(バレル)と、シリンダー10内で回転する2つのスクリュ20A,20Bと、シリンダー10の周囲に配置され、該シリンダー10内の温度を制御する温度制御手段30と、を備えている。供給口12の手前には、図2に示すように原料供給装置46が設けられている。また、押出機出口14の先には、図2に示すようにギアポンプ44と、フィルタ42と、ダイ40が設けられている。
The twin screw extruder that can be used in the present invention will be described. FIG. 1 schematically shows an example of the configuration of a twin-screw extruder used in carrying out the method for producing a polyester film according to the present invention. FIG. 2 shows an example of a flow for carrying out the method for producing a polyester film according to the present invention.
A twin-screw extruder 100 shown in FIG. 1 is disposed around a cylinder 10 (barrel) having a supply port 12 and an extruder outlet 14, two screws 20A and 20B rotating in the cylinder 10, and around the cylinder 10. Temperature control means 30 for controlling the temperature in the cylinder 10. In front of the supply port 12, a raw material supply device 46 is provided as shown in FIG. Further, a gear pump 44, a filter 42, and a die 40 are provided at the tip of the extruder outlet 14 as shown in FIG.
シリンダー
 シリンダー10は原料樹脂を供給するための供給口12と、加熱溶融された樹脂が押し出される押出機出口14を有する。
 シリンダー10の内壁面は、耐熱、耐磨耗性、及び腐食性に優れ、樹脂との摩擦が確保可能な素材を用いることが必要である。一般的には内面を窒化処理した窒化鋼が使用されているが、クロムモリブデン鋼、ニッケルクロムモリブデン鋼、ステンレス鋼を窒化処理して用いることもできる。特に耐摩耗性、耐食性を要求される用途では、遠心鋳造法によりニッケル、コバルト、クロム、タングステン等の耐腐食性、耐磨耗性素材合金をシリンダー10の内壁面にライニングさせたバイメタリックシリンダーを用いることや、セラミックの溶射皮膜をシリンダー10の内壁面に形成させることが有効である。
Cylinder The cylinder 10 has a supply port 12 for supplying the raw material resin and an extruder outlet 14 through which the heat-melted resin is extruded.
For the inner wall surface of the cylinder 10, it is necessary to use a material that is excellent in heat resistance, wear resistance, and corrosion resistance and that can ensure friction with the resin. Generally, nitrided steel whose inner surface is nitrided is used, but chromium molybdenum steel, nickel chromium molybdenum steel, and stainless steel can also be nitrided and used. For applications that require wear resistance and corrosion resistance in particular, a bimetallic cylinder in which a corrosion-resistant and wear-resistant material alloy such as nickel, cobalt, chromium or tungsten is lined on the inner wall surface of the cylinder 10 by centrifugal casting. It is effective to use or to form a ceramic sprayed coating on the inner wall surface of the cylinder 10.
 シリンダー10には真空化するためのベント16A,16Bが設けられている。ベント16A,16Bを通じて真空化することでシリンダー10内の樹脂中の水分等の揮発成分を効率的に除去することができる。
 ベント16A,16Bには、脱気効率との関係で、開口面積やベントの数を適正にすることが求められる。本発明で用いる二軸押出機100は、1箇所以上のベント16A,16Bを有することが望ましい。なお、ベント16A,16Bの数が多過ぎると、溶融樹脂がベントから溢れ出るおそれ、滞留劣化異物増加の懸念があるので、ベントは1箇所又は2箇所設けることが好ましい。
 また、ベント付近の壁面に滞留した樹脂や析出した揮発成分が押出機100(シリンダー10)の内部に落下すると、製品に異物として顕在化する可能性があり、注意が必要である。滞留を防止するためには、ベント蓋の形状の適正化や、上部ベント、側面ベントの適正な選定が有効であり、揮発成分の析出については、配管等の加熱で析出を防止する手法が用いられる。
The cylinder 10 is provided with vents 16A and 16B for evacuation. By evacuating through the vents 16A and 16B, volatile components such as moisture in the resin in the cylinder 10 can be efficiently removed.
The vents 16A and 16B are required to have an appropriate opening area and number of vents in relation to the deaeration efficiency. The twin-screw extruder 100 used in the present invention desirably has one or more vents 16A and 16B. If the number of the vents 16A and 16B is too large, there is a concern that the molten resin may overflow from the vent and there is a concern that the staying deterioration foreign matter may increase. Therefore, it is preferable to provide one or two vents.
In addition, if the resin staying on the wall surface near the vent or the deposited volatile component falls into the extruder 100 (cylinder 10), it may be manifested as a foreign substance in the product, so care must be taken. In order to prevent stagnation, it is effective to optimize the shape of the vent lid and to select the upper and side vents appropriately. For the precipitation of volatile components, a method that prevents the precipitation by heating the piping is used. It is done.
 例えば、ポリエチレンテレフタレート(PET)を押出す場合、加水分解、熱分解、酸化分解の抑制が製品(フィルム)の品質に大きな影響を及ぼす。
 例えば、樹脂供給口12を真空化したり、窒素パージを行うことで酸化分解を抑えることができる。
 剪断発熱による樹脂分解を抑えるため、押出と脱気が両立できる範囲でニーディング等のセグメントは極力設けないことが好ましい。
 また、スクリュ出口(押出機出口)14の圧力が大きいほど剪断発熱が大きくなるため、ベント16A,16Bによる脱気効率と押出の安定性が確保できる範囲内で、押出機出口14の圧力は極力低くすることが好ましい。
For example, when polyethylene terephthalate (PET) is extruded, the suppression of hydrolysis, thermal decomposition, and oxidative decomposition has a great influence on the quality of the product (film).
For example, oxidative decomposition can be suppressed by evacuating the resin supply port 12 or performing a nitrogen purge.
In order to suppress resin decomposition due to shearing heat generation, it is preferable not to provide segments such as kneading as much as possible within a range in which extrusion and deaeration can be achieved at the same time.
Further, since the shear heat generation increases as the pressure at the screw outlet (extruder outlet) 14 increases, the pressure at the extruder outlet 14 is as much as possible within a range in which the degassing efficiency and the stability of the extrusion by the vents 16A and 16B can be secured. It is preferable to make it low.
 ベント16A,16Bを通じて真空化することでシリンダー10内の樹脂中の水分等の揮発成分を効率的に除去することができる。ベント圧力が低過ぎると溶融樹脂がシリンダー10の外に溢れ出るおそれがあり、ベント圧力が高過ぎると揮発成分の除去が不十分となり、得られたフィルムの加水分解が生じ易くなるおそれがある。溶融樹脂がベント16A,16Bから溢れ出ることを防ぐとともに揮発成分を選択的に除去する観点から、ベント圧力は0.01Torr~5Torr(1.333Pa~666.5Pa)とすることが好ましく、0.01Torr~4Torr(1.333Pa~533.2Pa)とすることがより好ましい。 The volatile components such as moisture in the resin in the cylinder 10 can be efficiently removed by evacuating through the vents 16A and 16B. If the vent pressure is too low, the molten resin may overflow from the cylinder 10, and if the vent pressure is too high, removal of volatile components may be insufficient, and the resulting film may be easily hydrolyzed. From the viewpoint of preventing the molten resin from overflowing the vents 16A and 16B and selectively removing volatile components, the vent pressure is preferably 0.01 Torr to 5 Torr (1.333 Pa to 666.5 Pa). More preferably, the pressure is set at 01 Torr to 4 Torr (1.333 Pa to 533.2 Pa).
二軸スクリュ
 シリンダー10内には、モータおよびギアを含む駆動手段21によって回転する2つのスクリュ20A,20Bが設けられている。スクリュ径Dが大きくなるほど、大量生産が可能である一方、溶融ムラが生じ易い。スクリュ径Dは、30~250mm以下が好ましく、より好ましくは50~200mm以下である。
In the biaxial screw cylinder 10, two screws 20 </ b> A and 20 </ b> B that are rotated by driving means 21 including a motor and a gear are provided. As the screw diameter D increases, mass production is possible, but uneven melting tends to occur. The screw diameter D is preferably 30 to 250 mm or less, and more preferably 50 to 200 mm or less.
 二軸押出機100は、2つのスクリュ20A,20Bの噛み合い型と非噛み合い型に大別され、噛み合い型のほうが、非噛み合い型よりも混練効果が大きい。本発明では、噛み合い型と非噛み合い型のいずれのタイプを用いても良いが、原料樹脂を十分混練して溶融ムラを抑制する観点から、噛み合い型を用いることが好ましい。
 2つのスクリュ20A,20Bの回転方向についても、同方向回転型と異方向回転型に分けられる。異方向回転スクリュ20A,20Bは同方向回転型よりも混練効果が高く、同方向回転型は自己清掃効果を持っているため、押出機内の滞留防止には有効である。
 さらにスクリュの軸方向についても、平行方向と斜交方向があり、強いせん断を付与する場合に用いられるコニカルタイプの形状もある。
The twin-screw extruder 100 is roughly classified into a meshing type and a non-meshing type of the two screws 20A and 20B, and the meshing type has a larger kneading effect than the non-meshing type. In the present invention, any of a meshing type and a non-meshing type may be used, but it is preferable to use a meshing type from the viewpoint of sufficiently mixing the raw material resin and suppressing melting unevenness.
The rotation directions of the two screws 20A and 20B are also classified into a same direction rotation type and a different direction rotation type. The different- direction rotating screws 20A and 20B have a higher kneading effect than the same-direction rotating type, and the same-direction rotating type has a self-cleaning effect, which is effective for preventing retention in the extruder.
Further, the axial direction of the screw also has a parallel direction and an oblique direction, and there is also a conical type shape that is used when applying strong shear.
 本発明で用いる二軸押出機では、様々な形状のスクリュセグメントを用いることができる。スクリュ20A,20Bの形状としては、例えば、等ピッチの1条のらせん状フライト22が設けられたフルフライトスクリュが用いられる。
 加熱溶融部に、ニーディングディスクやローターなどの剪断を付与するセグメントを用いることで、原料樹脂をより確実に溶融することができる。また、逆スクリュやシールリングを用いることにより、樹脂をせき止め、ベント16A,16Bを通じて真空化する際のメルトシールを形成することができる。例えば、図1に示すように、ベント16A,16B付近に、上記のような原料樹脂の溶融を促進する混練部24A,24Bを設けることができる。
In the twin screw extruder used in the present invention, screw segments having various shapes can be used. As the shape of the screws 20 </ b> A and 20 </ b> B, for example, a full flight screw provided with a single spiral flight 22 having an equal pitch is used.
By using a segment that imparts shear, such as a kneading disk or a rotor, in the heating and melting part, the raw material resin can be more reliably melted. Further, by using a reverse screw or a seal ring, the resin can be damped and a melt seal can be formed when evacuating through the vents 16A and 16B. For example, as shown in FIG. 1, kneading parts 24A and 24B that promote melting of the raw material resin as described above can be provided in the vicinity of the vents 16A and 16B.
 押出機100の出口付近では溶融樹脂を冷却するための温調ゾーン(冷却部)を設けることが有効である。剪断発熱よりもシリンダー10の伝熱効率が高い場合は、例えば、温調ゾーン(冷却部)にピッチの短いスクリュ28を設けることで、シリンダー10壁面の樹脂移動速度が高まり、温調効率を上げることができる。 It is effective to provide a temperature control zone (cooling part) for cooling the molten resin in the vicinity of the exit of the extruder 100. When the heat transfer efficiency of the cylinder 10 is higher than the shear heat generation, for example, by providing a screw 28 with a short pitch in the temperature control zone (cooling section), the resin moving speed of the wall surface of the cylinder 10 is increased and the temperature control efficiency is increased. Can do.
温度制御手段
 シリンダー10の周囲には、温度制御手段30が設けられている。図1に示す押出機100では、原料供給口12から押出機出口14に向けて長手方向に9つに分割された加熱/冷却装置C1~C9が温度制御手段30を構成している。このようにシリンダー10の周囲に分割して配置された加熱/冷却装置C1~C9によって、例えば加熱溶融部C1~C7と冷却部C8,C9の各領域(ゾーン)に区画し、シリンダー10内を領域ごとに所望の温度に制御することができる。
Temperature Control Unit A temperature control unit 30 is provided around the cylinder 10. In the extruder 100 shown in FIG. 1, heating / cooling devices C1 to C9 divided into nine in the longitudinal direction from the raw material supply port 12 to the extruder outlet 14 constitute the temperature control means 30. Thus, the heating / cooling devices C1 to C9 arranged separately around the cylinder 10 are divided into, for example, heating / melting parts C1 to C7 and cooling parts C8 and C9, and the inside of the cylinder 10 is divided. Each region can be controlled to a desired temperature.
 加熱には、通常バンドヒーターまたはシーズ線アルミ鋳込みヒーターが用いられるが、これらに限定されず、例えば熱媒循環加熱方法も用いることができる。一方、冷却はブロワーによる空冷が一般的であるが、シリンダー10の周囲に巻き付けたパイプ(通水路)に水または油を流す方法もある。 For heating, a band heater or a sheathed wire aluminum cast heater is usually used, but is not limited thereto, and for example, a heating medium circulating heating method can also be used. On the other hand, air cooling by a blower is generally used for cooling, but there is also a method of flowing water or oil through a pipe (water passage) wound around the cylinder 10.
ダイ
 シリンダー10の押出機出口14には、押出機出口14から押出された溶融樹脂をフィルム状(帯状)に吐出するためのダイ40が設けられている。また、シリンダー10の押出機出口14とダイ40との間には、フィルムに未溶融樹脂や異物が混入することを防ぐためのフィルタ42が設けられている。
The die outlet 10 of the die cylinder 10 is provided with a die 40 for discharging the molten resin extruded from the extruder outlet 14 into a film (strip shape). Further, a filter 42 is provided between the extruder outlet 14 of the cylinder 10 and the die 40 to prevent unmelted resin and foreign matter from entering the film.
ギアポンプ
 厚み精度を向上させるためには、押出量の変動を極力減少させることが重要である。押出量の変動を極力減少させるために押出機100とダイ40との間にギアポンプ44を設けてもよい。ギアポンプ44から一定量の樹脂を供給することにより、厚み精度を向上させることができる。特に、二軸スクリュ押出機を用いる場合には、押出機自身の昇圧能力が低いため、ギアポンプ44による押出安定化を図ることが好ましい。
Gear pump In order to improve the thickness accuracy, it is important to reduce the fluctuation of the extrusion amount as much as possible. A gear pump 44 may be provided between the extruder 100 and the die 40 in order to reduce the variation in the extrusion amount as much as possible. By supplying a certain amount of resin from the gear pump 44, the thickness accuracy can be improved. In particular, when using a twin screw extruder, it is preferable to stabilize the extrusion by the gear pump 44 because the pressurization capacity of the extruder itself is low.
 ギアポンプ44を用いることにより、ギアポンプ44の2次側の圧力変動を1次側の1/5以下にすることも可能であり、樹脂圧力変動幅を±1%以内にできる。その他のメリットとしては、スクリュ先端部の圧力を上げることなしにフィルタによる濾過が可能なことから、樹脂温度の上昇の防止、輸送効率の向上、及び押出機内での滞留時間の短縮が期待できる。また、フィルタの濾圧上昇が原因で、スクリュから供給される樹脂量が経時変動することも防止できる。ただし、ギアポンプ44を設置すると、設備の選定方法によっては設備の長さが長くなり、樹脂の滞留時間が長くなることと、ギアポンプ部のせん断応力によって分子鎖の切断を引き起こすことがあり注意が必要である。 By using the gear pump 44, the pressure fluctuation on the secondary side of the gear pump 44 can be reduced to 1/5 or less on the primary side, and the resin pressure fluctuation range can be within ± 1%. As other merits, it is possible to perform filtration with a filter without increasing the pressure at the tip of the screw, so that prevention of an increase in the resin temperature, improvement in transport efficiency, and shortening of the residence time in the extruder can be expected. It is also possible to prevent the amount of resin supplied from the screw from fluctuating with time due to the increase in the filtration pressure of the filter. However, if the gear pump 44 is installed, the length of the equipment becomes long depending on the equipment selection method, and the residence time of the resin becomes long, and the shearing stress of the gear pump section may cause the molecular chain to be broken. It is.
 ギアポンプ44は1次圧力(入圧)と2次圧力(出圧)の差を大きくし過ぎると、ギアポンプ44の負荷が大きくなり、せん断発熱が大きくなる。そのため、運転時の差圧は20MPa以内、好ましくは15MPa以内、更に好ましくは10MPa以内とする。また、フィルム厚みの均一化のためには、ギアポンプ44の一次圧力を一定にするために、押出機のスクリュ回転を制御したり、圧力調節弁を用いたりすることも有効である。 If the difference between the primary pressure (input pressure) and the secondary pressure (output pressure) of the gear pump 44 is excessively increased, the load on the gear pump 44 increases and shear heat generation increases. Therefore, the differential pressure during operation is within 20 MPa, preferably within 15 MPa, and more preferably within 10 MPa. In order to make the film thickness uniform, it is also effective to control the screw rotation of the extruder or to use a pressure control valve in order to keep the primary pressure of the gear pump 44 constant.
 温度制御手段30によりシリンダー10を加熱するとともにスクリュを回転させ、供給口12から原料を供給する。なお、供給口12は、原料のペレット等が加熱されて融着しないようにすることと、モータなどのスクリュ駆動設備を保護するため、伝熱防止として冷却することが好ましい。 The cylinder 10 is heated by the temperature control means 30 and the screw is rotated to supply the raw material from the supply port 12. The supply port 12 is preferably cooled to prevent heat transfer from occurring in order to prevent the raw material pellets from being heated and fused, and to protect screw drive equipment such as a motor.
 シリンダー10内に供給された原料は、温度制御手段30による加熱のほか、スクリュ20A,20Bの回転に伴う樹脂同士の摩擦、樹脂とスクリュ20A,20Bやシリンダー10との摩擦などによる発熱によって溶融されるとともに、スクリュの回転に伴って押出機出口14に向けて徐々に移動する。
 シリンダー10内に供給された原料樹脂は融点Tm(℃)以上の温度に加熱されるが、樹脂温度が低過ぎると溶融押出時の溶融が不足し、ダイ40からの吐出が困難になるおそれがあり、樹脂温度が高過ぎると熱分解によって樹脂の末端カルボキシル基量が著しく増加して形成されるフィルムの耐加水分解性の低下を招くおそれがある。
The raw material supplied into the cylinder 10 is melted not only by heating by the temperature control means 30 but also by heat generated by friction between the resins accompanying rotation of the screws 20A and 20B, friction between the resin and the screws 20A and 20B and the cylinder 10, and the like. And gradually moves toward the extruder outlet 14 as the screw rotates.
The raw material resin supplied into the cylinder 10 is heated to a temperature equal to or higher than the melting point Tm (° C.). However, if the resin temperature is too low, melting during melt extrusion may be insufficient and ejection from the die 40 may be difficult. In addition, if the resin temperature is too high, the amount of terminal carboxyl groups of the resin is remarkably increased by thermal decomposition, which may lead to a decrease in hydrolysis resistance of the film formed.
 本発明では、温度制御手段30による加熱温度及びスクリュ20A,20Bの回転数を調整することにより、シリンダー10の温度を220~320℃に制御することが好ましく、280~300℃に制御することがより好ましい。シリンダー10の温度が220℃以上であれば、溶融樹脂の一部が固化して未溶融樹脂が発生することが抑制され、320℃以下であれば、熱分解により樹脂の末端COOHが増大して形成されるフィルムの耐加水分解性の低下が抑制される。
 熱分解による末端COOHの発生をより抑制できる点で、押出機内を窒素置換して溶融混練を行なうことがより好ましい。
In the present invention, it is preferable to control the temperature of the cylinder 10 to 220 to 320 ° C., preferably to 280 to 300 ° C., by adjusting the heating temperature by the temperature control means 30 and the rotational speed of the screws 20A and 20B. More preferred. If the temperature of the cylinder 10 is 220 ° C. or higher, a part of the molten resin is solidified to prevent generation of unmelted resin, and if it is 320 ° C. or lower, the terminal COOH of the resin increases due to thermal decomposition. A decrease in hydrolysis resistance of the formed film is suppressed.
It is more preferable to perform melt kneading by replacing the inside of the extruder with nitrogen in that the generation of terminal COOH due to thermal decomposition can be further suppressed.
<フィルム成形工程>
 押出機100から押出した溶融樹脂をフィルム状に成形してカルボジイミド化合物を0.1~2.0質量%含有するポリエステルフィルムを成形する。
<Film forming process>
The molten resin extruded from the extruder 100 is formed into a film to form a polyester film containing 0.1 to 2.0% by mass of a carbodiimide compound.
冷却
 まず、押出機100から溶融押出された溶融樹脂(メルト)を、ギアポンプ44、フィルタ42に通してダイ40からキャストロール(冷却ロール)上に帯状に押出して冷却する。
Cooling First, the molten resin (melt) melt-extruded from the extruder 100 is passed through the gear pump 44 and the filter 42 and extruded from the die 40 onto a cast roll (cooling roll) to be cooled.
 ダイ40から溶融樹脂を押出した後、キャストロールに接触させるまでの間(エアギャップ)は、湿度を5%RH~60%RHに調整することが好ましく、15%RH~50%RHに調整することがより好ましい。エアギャップでの湿度を上記範囲にすることで、フィルム表面のCOOH量やOH量を調節することが可能であり、低湿度に調節することで、フィルム表面のカルボン酸量を減少させることができる。 It is preferable to adjust the humidity to 5% RH to 60% RH and to adjust to 15% RH to 50% RH from the time when the molten resin is extruded from the die 40 until it contacts the cast roll (air gap). It is more preferable. By adjusting the humidity in the air gap to the above range, it is possible to adjust the amount of COOH and OH on the film surface, and by adjusting to low humidity, the amount of carboxylic acid on the film surface can be reduced. .
 押出ダイから押出された溶融樹脂は、キャストロール(冷却ロール)を用いて冷却され、固化される。冷却が不充分な場合には、球晶が発生しやすく、これが延伸ムラを引き起こし、フィルムの厚みムラを発生させることがある。
 キャストロールの温度は、10℃以上80℃以下が好ましく、より好ましくは15℃以上70℃以下、さらに好ましくは20℃以上60℃以下である。さらに、メルトとキャストロールとの間で密着性を高め、冷却効率を上げる観点からは、キャストロールにメルトが接触する前に静電気を印加しておくことが好ましい。さらに、キャストロール反対面から冷風を当てたり、冷却ロールを接触させたりして、冷却を促すことも好ましい。これにより、厚手のフィルムであっても、効果的に冷却が行なえる。
The molten resin extruded from the extrusion die is cooled and solidified using a cast roll (cooling roll). If the cooling is insufficient, spherulites are likely to be generated, which causes uneven stretching and may cause uneven thickness of the film.
The temperature of the cast roll is preferably 10 ° C or higher and 80 ° C or lower, more preferably 15 ° C or higher and 70 ° C or lower, and further preferably 20 ° C or higher and 60 ° C or lower. Furthermore, from the viewpoint of improving the adhesion between the melt and the cast roll and increasing the cooling efficiency, it is preferable to apply static electricity before the melt contacts the cast roll. Furthermore, it is also preferable to promote cooling by applying cold air from the opposite surface of the cast roll or by bringing a cooling roll into contact therewith. Thereby, even a thick film can be cooled effectively.
 冷却ロールによって冷却された樹脂シート(未延伸フィルム)の厚みは、1000~4000μmであることが好ましい。未延伸フィルムの厚みが1000μm以上であれば延伸後フィルムが薄くなりすぎず、製品に必要なフィルムの剛性(腰)が保たれ、取扱扱い易くなり、4000μm以下であれば延伸し易く、延伸後の厚みムラを小さく抑えることができる。 The thickness of the resin sheet (unstretched film) cooled by the cooling roll is preferably 1000 to 4000 μm. If the thickness of the unstretched film is 1000 μm or more, the stretched film does not become too thin, and the rigidity (waist) of the film necessary for the product is maintained, and handling becomes easy. Thickness unevenness can be reduced.
二軸延伸
 冷却ロールによって冷却された未延伸のポリエステルフィルムを長手方向(MD)及び幅方向(TD)にそれぞれ延伸して二軸延伸(縦延伸及び横延伸)を行う。
Biaxial stretching The unstretched polyester film cooled by the cooling roll is stretched in the longitudinal direction (MD) and the width direction (TD) to perform biaxial stretching (longitudinal stretching and lateral stretching).
 例えば、未延伸フィルムを、70℃以上140℃以下の温度に加熱されたロール群に導き、長手方向(縦方向、すなわちフィルムの進行方向)に3倍以上5倍以下の延伸率で延伸し、20℃以上50℃以下の温度のロール群で冷却する。続いて、未延伸フィルムの両端をクリップで把持しながらテンターに導き、80℃以上150℃以下の温度に加熱された雰囲気中で、長手方向に直角な方向(幅方向)に3倍以上5倍以下の延伸率で延伸する。 For example, the unstretched film is led to a group of rolls heated to a temperature of 70 ° C. or higher and 140 ° C. or lower, and stretched at a stretch ratio of 3 to 5 times in the longitudinal direction (longitudinal direction, that is, the traveling direction of the film), It cools with the roll group of the temperature of 20 to 50 degreeC. Subsequently, the both ends of the unstretched film are guided to a tenter while being gripped with clips, and in an atmosphere heated to a temperature of 80 ° C. or higher and 150 ° C. or lower, the direction perpendicular to the longitudinal direction (width direction) is 3 to 5 times. The film is stretched at the following stretching ratio.
 延伸率は、長手方向と幅方向それぞれ3倍以上5倍以下とするのが好ましい。また、その面積倍率(縦延伸倍率×横延伸倍率)は、9倍以上15倍以下であることが好ましい。面積倍率が9倍以上であると、得られる二軸延伸ポリエステルフィルムの反射率や隠蔽性、フィルム強度が良好であり、また面積倍率が15倍以下であると、延伸時の破れを回避することができる。 The stretching rate is preferably 3 to 5 times in each of the longitudinal direction and the width direction. Moreover, it is preferable that the area magnification (longitudinal stretch magnification x lateral stretch magnification) is 9 times or more and 15 times or less. When the area magnification is 9 times or more, the reflectance, concealability, and film strength of the resulting biaxially stretched polyester film are good, and when the area magnification is 15 times or less, tearing during stretching should be avoided. Can do.
 二軸延伸する方法としては、上述のように、長手方向と幅方向の延伸とを分離して行なう逐次二軸延伸方法、および長手方向と幅方向の延伸を同時に行なう同時二軸延伸方法のいずれであってもよい。
 また、ポリエステルフィルムの強度を向上させる目的で、多段縦延伸、再縦延伸、再縦横延伸、横-縦延伸など公知の延伸フィルムに用いられる延伸を行ってもよい。縦延伸と横延伸の順序を逆にしてもよい。
 また、未延伸フィルムを一方向に延伸した後、フィルムの表面に耐候性層、着色層、易接着層などの機能層を塗布によって設け、その後、他の方向に延伸してもよい。
As the biaxial stretching method, as described above, any one of the sequential biaxial stretching method in which the stretching in the longitudinal direction and the width direction is separated and the simultaneous biaxial stretching method in which the stretching in the longitudinal direction and the width direction are simultaneously performed. It may be.
Further, for the purpose of improving the strength of the polyester film, stretching used for known stretched films such as multi-stage longitudinal stretching, re-longitudinal stretching, re-longitudinal and transverse stretching, and transverse-longitudinal stretching may be performed. The order of longitudinal stretching and lateral stretching may be reversed.
Moreover, after extending | stretching an unstretched film to one direction, functional layers, such as a weather resistance layer, a colored layer, an easily bonding layer, may be provided by application | coating on the surface of a film, and you may extend | stretch in another direction after that.
熱固定
 得られた二軸延伸フィルムの結晶配向を完了させて、平面性と寸法安定性を付与するために、引き続きテンター内にて、二軸延伸フィルムの熱固定処理を行い、均一に徐冷後、室温まで冷却する。一般に、熱固定処理温度(Ts)が低いとフィルムの熱収縮が大きいため、高い熱寸法安定性を付与するためには、熱処理温度は高い方が好ましい。しかしながら、熱処理温度を高くし過ぎると配向結晶性が低下し、その結果形成されたフィルムが耐加水分解性に劣ることがある。
 本発明では、二軸延伸フィルムの熱固定処理を行う際、150~250℃とすることが好ましく、180~240℃とすることがより好ましい。
Heat setting In order to complete the crystal orientation of the obtained biaxially stretched film and to impart flatness and dimensional stability, the biaxially stretched film is subsequently heat-set in the tenter and uniformly cooled slowly. Then cool to room temperature. In general, when the heat setting treatment temperature (Ts) is low, the heat shrinkage of the film is large. Therefore, in order to impart high thermal dimensional stability, the heat treatment temperature is preferably high. However, if the heat treatment temperature is too high, the orientation crystallinity is lowered, and as a result, the formed film may be inferior in hydrolysis resistance.
In the present invention, when heat-setting the biaxially stretched film, the temperature is preferably 150 to 250 ° C, more preferably 180 to 240 ° C.
熱緩和
 また必要に応じて、幅方向あるいは長手方向に1~12%の緩和(弛緩)処理を施してもよい。
 熱固定されたポリエステルフィルムは通常Tg以下まで冷却され、ポリエステルフィルム両端のクリップ把持部分をカットし、ロール状に巻き取られる。この際、最終熱固定処理温度以下、Tg以上の温度範囲内で、幅方向及び/または長手方向に1~12%弛緩処理することが好ましい。
 また、冷却は、最終熱固定温度から室温までを毎秒1℃以上100℃以下の冷却速度で徐冷することが寸法安定性の点で好ましい。特に、Tg+50℃からTgまでを、毎秒1℃以上100℃以下の冷却速度で徐冷することが好ましい。冷却、弛緩処理する手段は特
に限定はないが、特に複数の温度領域で順次冷却しながら、これらの処理を行うことが、ポリエステルフィルムの寸法安定性向上の点で好ましい。
 なお、Tgはガラス転移温度を表し、JIS K7121或いはASTM D3418-82等に基づいて測定することができる。例えば、本発明では、島津製作所社製の示差走査熱量測定装置(DSC)を用いてTgを測定する。
 具体的には、試料としてポリエステル等のポリマーを10mg秤量し、アルミパンにセットし、昇温速度10℃/minで、室温から最終温度300℃まで昇温しながら、DSC装置で、温度に対する熱量を測定したとき、DSC曲線が屈曲する温度をガラス転移温度とした。
Thermal relaxation If necessary, a relaxation (relaxation) treatment of 1 to 12% in the width direction or the longitudinal direction may be performed.
The heat-fixed polyester film is usually cooled to Tg or less, cut the clip gripping portions at both ends of the polyester film, and wound into a roll. In this case, it is preferable to perform a relaxation treatment of 1 to 12% in the width direction and / or the longitudinal direction within a temperature range not higher than the final heat setting temperature and not lower than Tg.
In terms of dimensional stability, the cooling is preferably performed by gradually cooling from the final heat setting temperature to room temperature at a cooling rate of 1 ° C. to 100 ° C. per second. In particular, it is preferable to slowly cool Tg + 50 ° C. to Tg at a cooling rate of 1 ° C. or more and 100 ° C. or less per second. There are no particular limitations on the means for cooling and relaxation treatment, but it is preferable to perform these treatments while sequentially cooling in a plurality of temperature regions, particularly in terms of improving the dimensional stability of the polyester film.
Tg represents a glass transition temperature and can be measured based on JIS K7121 or ASTM D3418-82. For example, in the present invention, Tg is measured using a differential scanning calorimeter (DSC) manufactured by Shimadzu Corporation.
Specifically, 10 mg of a polymer such as polyester is weighed as a sample, set in an aluminum pan, and heated at a rate of temperature increase of 10 ° C./min from room temperature to a final temperature of 300 ° C., with a DSC apparatus, the amount of heat with respect to temperature Was measured as the glass transition temperature.
<ポリエステルフィルム>
 上記のような工程を経て、カルボジイミド化合物を0.1~2.0質量%含有するポリエステルフィルムを製造することができる。
 本発明により製造されるポリエステルフィルムは、カルボジイミド化合物を0.1~2.0質量%含有するため、フィルム成形後においてもカルボジイミド化合物による封止反応が進み、長期に渡って高温高湿度下での高い耐加水分解性を発揮することができる。そのため、本発明により製造されるポリエステルフィルムは、電気電子部材に好適であり、特に、太陽電池用ポリエステルフィルム、具体的には、太陽電池モジュールの太陽光入射側とは反対側の裏面に配置される裏面保護シート(いわゆる太陽電池用バックシート)などの太陽電池用保護シート、バリアフィルム基材等の用途に好適である。
<Polyester film>
Through the steps as described above, a polyester film containing 0.1 to 2.0% by mass of a carbodiimide compound can be produced.
Since the polyester film produced according to the present invention contains 0.1 to 2.0% by mass of the carbodiimide compound, the sealing reaction with the carbodiimide compound proceeds even after film formation, and the film is subjected to high temperature and high humidity for a long time. High hydrolysis resistance can be exhibited. Therefore, the polyester film produced according to the present invention is suitable for electric and electronic members, and in particular, is disposed on the back surface of the solar cell polyester film, specifically on the side opposite to the solar light incident side of the solar cell module. It is suitable for uses such as a protective sheet for solar cells such as a back surface protective sheet (so-called back sheet for solar cells), a barrier film substrate and the like.
 また、フィルム製造工程で切除して回収したポリエステル材料は、本発明の方法によって特定の条件で乾燥させてリサイクルポリエステル材料として使用することができる。 Also, the polyester material excised and recovered in the film production process can be used as a recycled polyester material after being dried under specific conditions by the method of the present invention.
<太陽電池モジュール>
 太陽電池モジュールの用途の構成の例としては、電気を取り出すリード配線で接続された発電素子(太陽電池素子)をエチレン・酢酸ビニル共重合体系(EVA系)樹脂等の封止剤で封止し、これを、ガラス等の透明基板と、本発明のポリエステルフィルム(バックシート)との間に挟んで互いに張り合わせることによって得られる構成が挙げられる。
 太陽電池素子としては、単結晶シリコン、多結晶シリコン、アモルファスシリコンなどのシリコン系、銅-インジウム-ガリウム-セレン、銅-インジウム-セレン、カドミウム-テルル、ガリウム-砒素などのIII-V族やII-VI族化合物半導体系など、各種公知の太陽電池素子を適用することができる。
<Solar cell module>
As an example of the configuration of the use of the solar cell module, a power generating element (solar cell element) connected by a lead wiring for taking out electricity is sealed with a sealing agent such as ethylene / vinyl acetate copolymer (EVA) resin. The structure obtained by sandwiching this between a transparent substrate such as glass and the polyester film (back sheet) of the present invention and sticking them together is mentioned.
Solar cell elements include silicon-based materials such as single crystal silicon, polycrystalline silicon, and amorphous silicon, III-V groups such as copper-indium-gallium-selenium, copper-indium-selenium, cadmium-tellurium, gallium-arsenic, and II Various known solar cell elements such as a group VI compound semiconductor can be applied.
 以下、本発明を実施例により更に具体的に説明するが、本発明はその主旨を越えない限り、以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples as long as the gist thereof is not exceeded.
実施例1
二軸押出機
 押出機として、図1に示すように2箇所にベントが設けられたシリンダー内に下記構成のスクリュを備え、シリンダーの周囲には長手方向に9つのゾーンに分割して温度制御を行うことができるヒータ(温度制御手段)を備えたダブルベント式同方向回転噛合型の二軸押出機を準備した。
 スクリュ径D:65mm
 長さL[mm]/スクリュ径D[mm]:31.5(1ゾーンの幅:3.5D)
 スクリュ形状:第1ベント直前に可塑化混練部、第2ベント直前に脱気促進混練部
Example 1
As shown in Fig. 1, the twin screw extruder is equipped with a screw with the following configuration in a cylinder with two vents as shown in Fig. 1. The cylinder is divided into nine zones in the longitudinal direction around the cylinder for temperature control. A double vent type co-rotating and meshing type twin screw extruder equipped with a heater (temperature control means) that can be used was prepared.
Screw diameter D: 65mm
Length L [mm] / screw diameter D [mm]: 31.5 (width of one zone: 3.5D)
Screw shape: plasticization kneading section just before the first vent, degassing promotion kneading section just before the second vent
 二軸押出機の押出機出口以降には、図2に示すように、下記構成のギアポンプ、金属繊維フィルタおよびダイを接続し、ダイを加熱するヒータの設定温度は280℃とし、平均滞留時間は10分とした。
 ギアポンプ:2ギアタイプ
 フィルタ:金属繊維焼結フィルタ(孔径20μm)
 ダイ:リップ間隔4mm
After the extruder exit of the twin screw extruder, as shown in FIG. 2, a gear pump, a metal fiber filter and a die having the following constitution are connected, the set temperature of the heater for heating the die is 280 ° C., and the average residence time is 10 minutes.
Gear pump: 2-gear type Filter: Sintered metal fiber filter (pore diameter 20μm)
Die: Lip spacing 4mm
原料
 ポリエステル樹脂Aとして、触媒としてTi-クエン酸錯体を用いて製造したポリエチレンテレフタレート(極限粘度(IV):0.78dl/g、末端カルボキシル基量(AV):15eq/ton、乾燥後の含水率:41ppm)のPETペレットを用意した。
 カルボジイミド系末端封止剤Aとして、STABILIZER9000(分子量:約20000、Rhein Chemie社製)を用意した。
 リサイクル材料Aとして、ポリエステル樹脂Aを100質量部と末端封止剤Aを1質量部含むリサイクルチップを用意した。
 このリサイクル材料Aを露点-30℃、イソシアネート濃度が0.02ppmである除湿エアーと接触させて160℃で7時間乾燥を行った。これにより、極限粘度(IV):0.62dl/g、末端カルボキシル基量(AV):13eq/t、乾燥後の含水率:45ppmであるリサイクル材料を得た。
Raw material Polyester terephthalate produced using Ti-citric acid complex as catalyst as polyester resin A (Intrinsic viscosity (IV): 0.78 dl / g, terminal carboxyl group content (AV): 15 eq / ton, moisture content after drying) : 41 ppm) PET pellets were prepared.
As the carbodiimide-based end-capping agent A, STABILIZER 9000 (molecular weight: about 20000, manufactured by Rhein Chemie) was prepared.
As recycled material A, a recycled chip containing 100 parts by mass of polyester resin A and 1 part by mass of end-capping agent A was prepared.
The recycled material A was contacted with dehumidified air having a dew point of −30 ° C. and an isocyanate concentration of 0.02 ppm, and dried at 160 ° C. for 7 hours. As a result, a recycled material having an intrinsic viscosity (IV): 0.62 dl / g, a terminal carboxyl group amount (AV): 13 eq / t, and a moisture content after drying: 45 ppm was obtained.
溶融押出し
 二軸押出機のバレル温度を290℃に、スクリュの回転数を40rpmにそれぞれ設定した。ポリエステル樹脂Aを90質量部、上記乾燥させたリサイクル材料Aを10質量部、末端封止剤Aを0.56質量部で混合した原料を供給口から供給して加熱溶融し溶融押出を行った。
Melt extrusion The barrel temperature of the twin screw extruder was set to 290 ° C., and the screw rotation speed was set to 40 rpm. 90 parts by mass of polyester resin A, 10 parts by mass of the dried recycled material A, and 0.56 parts by mass of end-capping agent A were supplied from the supply port, heated, melted, and melt extruded. .
 押出機出口から押出された溶融体(メルト)をギアポンプ、金属繊維フィルタ(孔径20μm)を通した後、ダイから冷却(チル)ロールに押出した。押出されたメルトは、静電印加法を用いて冷却ロールに密着させた。冷却ロールは、中空のキャストロールを用い、この中に熱媒として水を通して温調できるようになっている。
 なお、ダイ出口から冷却ロールまでの搬送域(エアギャップ)は、この搬送域を囲い、この中に調湿空気を導入することにより、湿度を30%RHに調節してある。押出機の押出量及びダイのスリット幅の調整により、メルト厚みを平均で約3300μmとした。
The melt (melt) extruded from the extruder outlet was passed through a gear pump and a metal fiber filter (pore diameter 20 μm), and then extruded from a die to a cooling (chill) roll. The extruded melt was brought into close contact with the cooling roll using an electrostatic application method. As the cooling roll, a hollow cast roll is used, and the temperature can be adjusted by passing water as a heating medium.
The conveyance area (air gap) from the die exit to the cooling roll surrounds this conveyance area, and humidity is adjusted to 30% RH by introducing humidity-conditioned air therein. By adjusting the extrusion amount of the extruder and the slit width of the die, the melt thickness was about 3300 μm on average.
二軸延伸
 次いで、得られた未延伸フィルムの二軸延伸を行った。延伸倍率は、縦延伸:3.4倍、横延伸:4.3倍とした。これにより、厚さ250μmのPETフィルムを得た。
Biaxial stretching Next, the obtained unstretched film was biaxially stretched. The draw ratio was longitudinal stretch: 3.4 times and transverse stretch: 4.3 times. As a result, a PET film having a thickness of 250 μm was obtained.
評価
 原料及び製造したPETフィルムについて以下の方法により評価を行い、結果を表1に示した。
Evaluation The raw material and the produced PET film were evaluated by the following methods, and the results are shown in Table 1.
末端カルボキシル基量(AV)
 0.1gの試料をベンジルアルコール10mlに溶解後、さらにクロロホルムを加えて混合溶液を得、これにフェノールレッド指示薬を滴下した。この溶液を、基準液(0.01N KOH-ベンジルアルコール混合溶液)で滴定し、フェノールレッド指示薬の色が黄色から赤色に変わる直前の基準液の滴下量から末端カルボキシル基量(AV)を求めた。
Terminal carboxyl group content (AV)
A 0.1 g sample was dissolved in 10 ml of benzyl alcohol, and further chloroform was added to obtain a mixed solution, to which was added a phenol red indicator. This solution was titrated with a reference solution (0.01N KOH-benzyl alcohol mixed solution), and the amount of terminal carboxyl groups (AV) was determined from the amount of the reference solution added just before the color of the phenol red indicator changed from yellow to red. .
極限粘度(IV)
 極限粘度(IV)は、溶液粘度(η)と溶媒粘度(η0)の比ηr(=η/η0;相対粘度)から1を引いた比粘度(ηsp=ηr-1)濃度で割った値を濃度がゼロの状態に外挿した値である。極限粘度(IV)は、ウベローデ型粘度計を用い、ポリエステル樹脂を1,1,2,2-テトラクロルエタン/フェノール(=2/3[質量比])混合溶媒に溶解させ、25℃の溶液粘度から求めた。
Intrinsic viscosity (IV)
The intrinsic viscosity (IV) is a specific viscosity (η sp = η r −1) concentration obtained by subtracting 1 from the ratio η r (= η / η 0 ; relative viscosity) of the solution viscosity (η) and the solvent viscosity (η 0 ). It is a value obtained by extrapolating a value obtained by dividing by a state where the density is zero. The intrinsic viscosity (IV) is obtained by dissolving a polyester resin in a 1,1,2,2-tetrachloroethane / phenol (= 2/3 [mass ratio]) mixed solvent using an Ubbelohde viscometer, and a solution at 25 ° C. It was determined from the viscosity.
イソシアネートガス濃度
 リサイクル材の乾燥工程におけるイソシアネートガス濃度は以下の方法によって測定した。
 乾燥機内のガスを捕集し、ガスクロマトグラフィーを使ってガス中の存在量を定量し、濃度を計算した。
Isocyanate gas concentration The isocyanate gas concentration in the drying process of the recycled material was measured by the following method.
The gas in the dryer was collected, the amount in the gas was quantified using gas chromatography, and the concentration was calculated.
イソシアネート/カルボジイミド濃度比
 リサイクル材の乾燥工程におけるイソシアネート/カルボジイミド濃度比は以下の方法によって求めた。
 乾燥前のリサイクル材内のカルボジイミド濃度を赤外吸収により測定した。異なるカルボジイミド濃度を有するサンプルを用いて、2300cm-1のピーク強度との関係から検量線を作り、この検量線に基づいてリサイクル材の測定ピーク強度を濃度に換算した。イソシアネート濃度についても同様に赤外吸収により測定した。2150cm-1のピーク強度から検量線を作っておき、この検量線に基づいてリサイクル材の測定ピーク強度をイソシアネート濃度に換算した。
 このように得られたイソシアネートとカルボジイミドの濃度からこれらの濃度比を算出した。
Isocyanate / carbodiimide concentration ratio The isocyanate / carbodiimide concentration ratio in the drying step of the recycled material was determined by the following method.
The carbodiimide concentration in the recycled material before drying was measured by infrared absorption. Using samples having different carbodiimide concentrations, a calibration curve was created from the relationship with the peak intensity of 2300 cm −1 , and the measured peak intensity of the recycled material was converted to a concentration based on this calibration curve. The isocyanate concentration was similarly measured by infrared absorption. A calibration curve was prepared from the peak intensity of 2150 cm −1 , and the measured peak intensity of the recycled material was converted to the isocyanate concentration based on this calibration curve.
These concentration ratios were calculated from the concentrations of isocyanate and carbodiimide thus obtained.
カルボジイミド化合物含有量
 リサイクル材料及び製造したポリエステルフィルムにそれぞれ含まれるカルボジイミド化合物(未反応成分)については、以下の方法によって測定した。
 各材料およびポリエステルフィルムのカルボジイミド濃度を赤外吸収により測定した。異なるカルボジイミド濃度を有するサンプルを用いて、2300cm-1のピーク強度との関係から検量線を作り、この検量線に基づいて各材料およびポリエステルフィルムの測定ピーク強度を濃度に換算した。
Carbodiimide compound content The carbodiimide compound (unreacted component) contained in the recycled material and the produced polyester film was measured by the following method.
The carbodiimide concentration of each material and polyester film was measured by infrared absorption. Using samples having different carbodiimide concentrations, a calibration curve was created from the relationship with the peak intensity of 2300 cm −1 , and the measured peak intensity of each material and polyester film was converted to a concentration based on this calibration curve.
ゲル化物の発生確認
 製造したポリエステルフィルム中のゲル化物は、以下の方法によって確認した。
 フィルムを10cm×5cmに切り出し、ガラス板に貼り付ける。光学顕微鏡(×20)を使って、クロスニコル状態で異物周辺を偏光させて、5mm×5mm角を50視野確認し、ゲル化物(透明で核が視認できない)を確認した。
Confirmation of generation of gelled product The gelled product in the produced polyester film was confirmed by the following method.
The film is cut into 10 cm × 5 cm and attached to a glass plate. Using an optical microscope (× 20), the periphery of the foreign material was polarized in a crossed Nicol state, 50 fields of 5 mm × 5 mm square were confirmed, and a gelled product (transparent and nucleus could not be visually confirmed) was confirmed.
耐加水分解性
 製造したポリエステルフィルムを125℃×100%RH条件で湿熱処理(熱処理)をした際、処理前後での引張破断伸度保持率が50%となった時間が150時間以上の場合をA、150時間が未満の場合をBとした。引張試験はJIS K 7127に則った。
 破断伸度保持率[%]=(熱処理後の破断伸度)/(熱処理前の破断伸度)×100
Hydrolysis resistance When the produced polyester film is subjected to wet heat treatment (heat treatment) under the conditions of 125 ° C. × 100% RH, the tensile fracture elongation retention before and after the treatment is 50%. A, where B was less than 150 hours. The tensile test was in accordance with JIS K 7127.
Breaking elongation retention [%] = (breaking elongation after heat treatment) / (breaking elongation before heat treatment) × 100
着色
 製造したポリエステルフィルムについて、厚み200μmのサンプルをカラーメーター(ND-101D(日本電色工業(株)製))で測定し、フィルムの透過b値が2未満であればA、2以上であればBとした。
Coloring For a produced polyester film, a sample having a thickness of 200 μm is measured with a color meter (ND-101D (manufactured by Nippon Denshoku Industries Co., Ltd.)). If the transmission b value of the film is less than 2, A or 2 or more B.
参考例1、2及び実施例2~19
 原料及び押出し条件を表2、表3に示すように変更したこと以外は実施例1と同様にしてポリエステルフィルムを製造して評価を行った。
Reference Examples 1 and 2 and Examples 2 to 19
A polyester film was produced and evaluated in the same manner as in Example 1 except that the raw materials and extrusion conditions were changed as shown in Tables 2 and 3.
比較例1~10
 原料及び押出し条件を表4に示すように変更したこと以外は実施例1と同様にしてポリエステルフィルムを製造して評価を行った。
Comparative Examples 1-10
A polyester film was produced and evaluated in the same manner as in Example 1 except that the raw materials and extrusion conditions were changed as shown in Table 4.
 なお、実施例及び比較例で用いた各材料については表1の通りである。 In addition, it is as Table 1 about each material used by the Example and the comparative example.
カルボジイミド化合物
 スタバクゾールP200(ラインケミージャパン(株)製)は、分子量約2,000のカルボジイミド系封止剤である。
環状カルボジイミド
 環状カルボジイミドとしては、以下の化合物を用いた。
 環状カルボジイミド(1)は特開2011-258641号公報の実施例に記載の分子量516の化合物であり、特開2011-258641号公報の参考例1に記載の合成方法を参考に合成した。
 環状カルボジイミド(2)は特開2010-285554号公報の実施例に記載の分子量252の化合物であり、特開2010-285554号公報の製造例1に記載の合成方法を参考に合成した。
 これらの環状カルボジイミド末端封止剤の構造を以下に示す。
Carbodiimide compound Starvacol P200 (Rhein Chemie Japan Co., Ltd.) is a carbodiimide sealant having a molecular weight of about 2,000.
Cyclic carbodiimide The following compounds were used as the cyclic carbodiimide.
The cyclic carbodiimide (1) is a compound having a molecular weight of 516 described in Examples of JP 2011-258541 A, and was synthesized with reference to the synthesis method described in Reference Example 1 of JP 2011-258641 A.
Cyclic carbodiimide (2) is a compound having a molecular weight of 252 described in Examples of JP 2010-285554 A, and was synthesized with reference to the synthesis method described in Production Example 1 of JP 2010-285554 A.
The structures of these cyclic carbodiimide terminal blockers are shown below.
Figure JPOXMLDOC01-appb-C000018

 
Figure JPOXMLDOC01-appb-C000018

 
CHDM系ポリエステル樹脂の作製
 CHDM系ポリエステル樹脂(ポリエステル樹脂C~L)は以下のように作製した。
 第1工程:ジカルボン酸成分としてイソフタル酸(IPA)とテレフタル酸(TPA)、ジオール成分としてシクロヘキサンジメタノール(CHDM)、エチレングリコール(EG)を用い、触媒として酢酸マグネシウム、三酸化アンチモンを用いて150℃、窒素雰囲気下で溶融後、攪拌しながら230~250℃まで3時間かけて昇温し、メタノールを留出させ、エステル交換反応を終了した。この際、IPA、TPA、CHDM、EGの添加量を変えることで各CHDM系ポリエステル樹脂を得た。
 第2工程:エステル交換反応終了後、リン酸をエチレングリコールに溶解したエチレングリコール溶液を添加した。
 第3工程:重合反応を最終到達温度285~310℃、真空度0.1Torrで行い、ポリエステルを得て、これをペレット化した。
 第4工程:一部の水準は、上記で得られたポリエステルペレットを、160℃で6時間乾燥、結晶化した。
Production of CHDM polyester resin CHDM polyester resins (polyester resins C to L) were produced as follows.
First step: Isophthalic acid (IPA) and terephthalic acid (TPA) as dicarboxylic acid components, cyclohexanedimethanol (CHDM) and ethylene glycol (EG) as diol components, magnesium acetate and antimony trioxide as catalysts. After melting in a nitrogen atmosphere at 30 ° C., the temperature was raised to 230-250 ° C. over 3 hours with stirring, and methanol was distilled off to complete the transesterification reaction. At this time, each CHDM polyester resin was obtained by changing the addition amount of IPA, TPA, CHDM, and EG.
Second step: After completion of the transesterification reaction, an ethylene glycol solution in which phosphoric acid was dissolved in ethylene glycol was added.
Third step: The polymerization reaction was performed at a final temperature of 285 to 310 ° C. and a degree of vacuum of 0.1 Torr to obtain a polyester, which was pelletized.
Step 4: For some levels, the polyester pellets obtained above were dried and crystallized at 160 ° C. for 6 hours.
 上記にて得られたCHDM系ポリエステル樹脂について、ジオール成分中のシクロヘキサンジメタノール含率およびジカルボン酸成分中のイソフタル酸含率を以下の方法で測定した。 For the CHDM polyester resin obtained above, the cyclohexanedimethanol content in the diol component and the isophthalic acid content in the dicarboxylic acid component were measured by the following methods.
組成測定法
 得られたCHDM系ポリエステルペレットをヘキサフルオロイソプロパノール(HFIP)に溶解した後、1H-NMRにより定量した。標品(CHDM、テレフタル酸、EG、イソフタル酸)を予め測定し、これを用いシグナルを同定した。
 得られたイソフタル酸残基の量およびCHDM残基の量を表1に記載した。なお、100モル%-イソフタル酸含率(モル%)がテレフタル酸含率(モル%)であり、100(モル%)-CHDM率(モル%)がEG含率(モル%)である。
 この一部の水準は乾燥した後、窒素気流中200~240℃で24時間、固相重合した。
 なお、これらのCHDM系ポリエステル樹脂のIV、AVは上記の方法で測定した。結果を表1に記載した。
Composition Measurement Method The obtained CHDM polyester pellets were dissolved in hexafluoroisopropanol (HFIP) and then quantified by 1 H-NMR. Standard samples (CHDM, terephthalic acid, EG, isophthalic acid) were measured in advance, and signals were identified using this.
The amount of the isophthalic acid residue obtained and the amount of the CHDM residue are shown in Table 1. The 100 mol% -isophthalic acid content (mol%) is the terephthalic acid content (mol%), and the 100 (mol%)-CHDM ratio (mol%) is the EG content (mol%).
Some of these levels were dried and then subjected to solid state polymerization in a nitrogen stream at 200 to 240 ° C. for 24 hours.
The IV and AV of these CHDM polyester resins were measured by the above method. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
 実施例1~19では、ゲル化物、耐加水分解性、着色に関して、リサイクル材を用いない参考例1、2と同等のポリエステルフィルムを低コストで製造することができた。 In Examples 1 to 19, a polyester film equivalent to Reference Examples 1 and 2 in which no recycled material was used with respect to gelation, hydrolysis resistance, and coloring could be produced at low cost.
 比較例1では、リサイクル材の乾燥温度(190℃)が高く、リサイクル材に含まれるカルボジイミド化合物が分解してイソシアネートガスの濃度が上昇し、リサイクル材料内のカルボジイミド化合物が失活してしまい、製造されたポリエステルフィルムの耐加水分解性能が低下する。そればかりでなく、比較例1のポリエステルフィルムでは、着色し、カルボジイミド化合物同士の反応によりゲル化物が発生したと考えられる。 In Comparative Example 1, the drying temperature (190 ° C.) of the recycled material is high, the carbodiimide compound contained in the recycled material is decomposed to increase the concentration of the isocyanate gas, and the carbodiimide compound in the recycled material is deactivated. The hydrolysis resistance of the finished polyester film is reduced. In addition, it is considered that the polyester film of Comparative Example 1 was colored and a gelled product was generated by the reaction between the carbodiimide compounds.
 比較例2では、リサイクル材の乾燥に用いたイソシアネートガス濃度が高すぎて、配合した第2のカルボジイミド化合物を失活させてしまった結果、フィルム内に存在するカルボジイミド化合物が減少し、製造されたポリエステルフィルムでは、耐加水分解性能が低下し、且つ、ゲル化物が発生するとともに、着色が大きくなったと考えられる。 In Comparative Example 2, the concentration of isocyanate gas used for drying the recycled material was too high, and the resulting second carbodiimide compound was deactivated. As a result, the carbodiimide compound present in the film was reduced and produced. In the polyester film, it is considered that the hydrolysis resistance decreased, the gelled product was generated, and the coloring was increased.
 比較例3では、リサイクル材の乾燥に用いたイソシアネート濃度が低過ぎて、リサイクル材料内の残存カルボジイミド量が多くなり、押出工程でゲル化物が発生し、ポリエステルフィルムの着色が大きくなったと考えられる。 In Comparative Example 3, it is considered that the isocyanate concentration used for drying the recycled material was too low, the amount of residual carbodiimide in the recycled material was increased, gelled products were generated in the extrusion process, and the coloring of the polyester film was increased.
 比較例4では、リサイクル材料を乾燥させる雰囲気中の水分量(露点:-10℃)が多く成り過ぎてイソシアネートガス及びカルボジイミドの双方が失活し、リサイクル材料に含まれる末端封止剤の残存量が低下したことにより、ポリエステルフィルムの耐加水分解性能が低下したと考えられる。 In Comparative Example 4, the amount of moisture in the atmosphere for drying the recycled material (dew point: −10 ° C.) becomes too great, and both the isocyanate gas and carbodiimide are deactivated, and the remaining amount of the end-capping agent contained in the recycled material It is considered that the hydrolysis resistance performance of the polyester film was lowered due to the decrease in the thickness.
 比較例5では、リサイクル材の乾燥温度(120℃)が低過ぎて、リサイクル材料中に存在する水分量が上昇し、イソシアネートやカルボジイミド化合物が失活し、その末端封止効果が低下したと考えられる。 In Comparative Example 5, it is considered that the drying temperature (120 ° C.) of the recycled material is too low, the amount of water present in the recycled material is increased, the isocyanate or carbodiimide compound is deactivated, and the end-capping effect is decreased. It is done.
 比較例6では、末端封止剤の量が多過ぎてゲル化物が発生し、製造されたポリエステルフィルムの着色が大きくなったと考えられる。 In Comparative Example 6, it is considered that the amount of the end-capping agent was too much to generate a gelled product, and coloring of the produced polyester film was increased.
 比較例7では、リサイクル材料の量が多過ぎて製造されたポリエステルフィルムの着色が大きくなったと考えられる。 In Comparative Example 7, it is considered that the coloring of the polyester film produced due to the excessive amount of the recycled material was increased.
 比較例8では、ポリエステル樹脂の粘度を低くしたため、末端カルボキシル基量が上昇し、その結果、末端封止剤の添加量が増大した。しかし、ベースの粘度も落ちてしまうため、製造されたポリエステルフィルムの物性が低下し、耐加水分解性も落ちたと考えられる。 In Comparative Example 8, since the viscosity of the polyester resin was lowered, the amount of terminal carboxyl groups increased, and as a result, the amount of added end-capping agent increased. However, since the viscosity of the base is also lowered, it is considered that the physical properties of the produced polyester film are lowered and the hydrolysis resistance is also lowered.
 比較例9、10では、ポリエステル樹脂の共重合比率が高いため、結晶性を失い、通常の乾燥ができなくなり製膜できなかったと考えられる。 In Comparative Examples 9 and 10, since the copolymerization ratio of the polyester resin is high, it is considered that the crystallinity was lost and the film could not be formed because it could not be normally dried.
 日本国特許出願2012-170023号の開示は、その全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
The disclosure of Japanese Patent Application No. 2012-170023 is incorporated herein by reference in its entirety.
All documents, patent applications, and technical standards mentioned in this specification are to the same extent as if each individual document, patent application, and technical standard were specifically and individually described to be incorporated by reference, Incorporated herein by reference.

Claims (9)

  1.  第1のカルボジイミド化合物を含むリサイクルポリエステル材料に、露点が-25℃以下であり、且つ、イソシアネート濃度が0.01ppm~100ppmである空気又は不活性ガスを接触させて乾燥させることにより前記第1のカルボジイミド化合物を失活させるリサイクル材料乾燥工程と、
     ポリエステル樹脂を50~95質量部、前記乾燥させたリサイクルポリエステル材料を5~50質量部、及び第2のカルボジイミド化合物を含む原料を押出機により溶融混練して溶融樹脂を押出す溶融押出工程と、
     前記押出機から押出した溶融樹脂をフィルム状に成形してカルボジイミド化合物の合計含有量が0.1~2.0質量%であるポリエステルフィルムを成形するフィルム成形工程と、
     を有するポリエステルフィルムの製造方法。
    The recycled polyester material containing the first carbodiimide compound is dried by contacting with an air or an inert gas having a dew point of −25 ° C. or less and an isocyanate concentration of 0.01 ppm to 100 ppm to dry the first polyester. A recycling material drying step for deactivating the carbodiimide compound;
    A melt extrusion process in which 50 to 95 parts by mass of a polyester resin, 5 to 50 parts by mass of the dried recycled polyester material, and a raw material containing a second carbodiimide compound are melt-kneaded by an extruder to extrude the molten resin;
    A film forming step of forming a polyester film having a total content of carbodiimide compounds of 0.1 to 2.0% by mass by molding the molten resin extruded from the extruder into a film;
    The manufacturing method of the polyester film which has this.
  2.  前記リサイクル材料乾燥工程において前記リサイクルポリエステル材料を135~180℃で乾燥させる請求項1に記載のポリエステルフィルムの製造方法。 The method for producing a polyester film according to claim 1, wherein the recycled polyester material is dried at 135 to 180 ° C in the recycling material drying step.
  3.  前記リサイクルポリエステル材料の末端カルボキシル基量(AV)が3~20当量/トンであり、前記ポリエステル樹脂の末端カルボキシル基量(AV)が3~55当量/トンである請求項1または2に記載のポリエステルフィルムの製造方法。 The terminal carboxyl group amount (AV) of the recycled polyester material is 3 to 20 equivalent / ton, and the terminal carboxyl group amount (AV) of the polyester resin is 3 to 55 equivalent / ton. A method for producing a polyester film.
  4.  前記ポリエステル樹脂及び前記リサイクルポリエステル材料の少なくとも一方が、1,4-シクロヘキサンジメタノール由来の構造を、ジオール成分由来の構造全量に対して、0.1~20モル%または80~100モル%含む1,4-シクロヘキサンジメタノール系ポリエステルを含む請求項1~請求項3のいずれか一項に記載のポリエステルフィルムの製造方法。 At least one of the polyester resin and the recycled polyester material includes a structure derived from 1,4-cyclohexanedimethanol in an amount of 0.1 to 20 mol% or 80 to 100 mol% based on the total structure derived from the diol component. The method for producing a polyester film according to any one of claims 1 to 3, comprising 1,4-cyclohexanedimethanol-based polyester.
  5.  前記リサイクルポリエステル材料に含まれる前記第1のカルボジイミド化合物及び前記原料含まれる前記第2のカルボジイミド化合物の少なくとも一方が、カルボジイミド基を1個有し、その第一窒素と第二窒素とが結合基により結合されている環状構造を含む環状カルボジイミド化合物である請求項1~請求項4のいずれか一項に記載のポリエステルフィルムの製造方法。 At least one of the first carbodiimide compound contained in the recycled polyester material and the second carbodiimide compound contained in the raw material has one carbodiimide group, and the first nitrogen and the second nitrogen are bound by a bonding group. The method for producing a polyester film according to any one of claims 1 to 4, which is a cyclic carbodiimide compound containing a bonded cyclic structure.
  6.  前記環状カルボジイミド化合物が、下記式(2)~(4)で表される化合物から選択される少なくとも1種である請求項5に記載のポリエステルフィルムの製造方法。
    Figure JPOXMLDOC01-appb-C000001

     式(2)中、Qは、脂肪族基、脂環族基、芳香族基またはこれらの組み合わせである2価の結合基を表し、ヘテロ原子を含有していてもよい。
    Figure JPOXMLDOC01-appb-C000002

     式(3)中、Qは、脂肪族基、脂環族基、芳香族基、またはこれらの組み合わせである3価の結合基を表し、ヘテロ原子を含有していてもよい。Yは、環状構造を担持する担体を表す。
    Figure JPOXMLDOC01-appb-C000003

     式(4)中、Qは、脂肪族基、脂環族基、および芳香族基からなる群から選択されるいずれか1つの4価の結合基、又は脂肪族基、脂環族基、および芳香族基からなる群から選択される2つ以上の基の組み合わせである4価の結合基を表し、さらにヘテロ原子を保有していてもよい。Z及びZは、それぞれ独立に環状構造を担持する担体を表し、互いに結合して環状構造を形成していてもよい。
    The method for producing a polyester film according to claim 5, wherein the cyclic carbodiimide compound is at least one selected from compounds represented by the following formulas (2) to (4).
    Figure JPOXMLDOC01-appb-C000001

    Wherein (2), Q a is an aliphatic group, an alicyclic group, an aromatic group or a divalent linking group which is a combination of these, it may contain a heteroatom.
    Figure JPOXMLDOC01-appb-C000002

    Wherein (3), Q b is an aliphatic group, an alicyclic group, an aromatic group or a trivalent linking group combinations thereof, and may contain a hetero atom. Y represents a carrier supporting a cyclic structure.
    Figure JPOXMLDOC01-appb-C000003

    In formula (4), Q c is any one tetravalent linking group selected from the group consisting of an aliphatic group, an alicyclic group, and an aromatic group, or an aliphatic group, an alicyclic group, And a tetravalent linking group that is a combination of two or more groups selected from the group consisting of aromatic groups, and may further have a heteroatom. Z 1 and Z 2 each independently represent a carrier carrying a cyclic structure, and may be bonded to each other to form a cyclic structure.
  7.  請求項1~請求項6のいずれか一項に記載のポリエステルフィルムの製造方法により作製されたポリエステルフィルム。 A polyester film produced by the method for producing a polyester film according to any one of claims 1 to 6.
  8.  請求項7に記載のポリエステルフィルムを含む太陽電池用保護シート。 A solar cell protective sheet comprising the polyester film according to claim 7.
  9.  請求項8に記載の太陽電池用保護シートを備えた太陽電池モジュール。 A solar cell module comprising the solar cell protective sheet according to claim 8.
PCT/JP2013/070616 2012-07-31 2013-07-30 Manufacturing method for polyester film, polyester film, protective sheet for solar cell, and solar cell module WO2014021323A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-170023 2012-07-31
JP2012170023A JP5770693B2 (en) 2012-07-31 2012-07-31 Method for producing polyester film, polyester film, protective sheet for solar cell, and solar cell module

Publications (1)

Publication Number Publication Date
WO2014021323A1 true WO2014021323A1 (en) 2014-02-06

Family

ID=50027996

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/070616 WO2014021323A1 (en) 2012-07-31 2013-07-30 Manufacturing method for polyester film, polyester film, protective sheet for solar cell, and solar cell module

Country Status (2)

Country Link
JP (1) JP5770693B2 (en)
WO (1) WO2014021323A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015203091A (en) * 2014-04-16 2015-11-16 三菱樹脂株式会社 biaxially oriented polyester film

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010235824A (en) * 2009-03-31 2010-10-21 Toray Ind Inc Biaxially oriented polyester film
WO2013015041A1 (en) * 2011-07-25 2013-01-31 富士フイルム株式会社 Method for producing polyester film, polyester film, back sheet for solar cell, and solar cell module

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010235824A (en) * 2009-03-31 2010-10-21 Toray Ind Inc Biaxially oriented polyester film
WO2013015041A1 (en) * 2011-07-25 2013-01-31 富士フイルム株式会社 Method for producing polyester film, polyester film, back sheet for solar cell, and solar cell module

Also Published As

Publication number Publication date
JP5770693B2 (en) 2015-08-26
JP2014028898A (en) 2014-02-13

Similar Documents

Publication Publication Date Title
JP5676533B2 (en) Biaxially stretched polyester film, method for producing the same, and solar cell module
JP5905353B2 (en) Polyester film and method for producing the same, solar cell backsheet, and solar cell module
US20130319525A1 (en) Biaxially stretched polyester film, method for producing the same, back sheet for solar cell, and solar cell module
JP5575671B2 (en) Polyester resin polymerization method, polyester resin composition and polyester film
JP5738792B2 (en) Method for producing polyester film, polyester film, protective sheet for solar cell, and solar cell module
JP5512749B2 (en) Production method of polyester film
JP5797535B2 (en) Method for producing polyester resin and method for producing polyester film
JP5893277B2 (en) Production method of polyester film
JP5847629B2 (en) Production method of polyester film
JP5547142B2 (en) Production method of polyester film
CN107406603B (en) White polyester film, method for producing same, back sheet for solar cell, and solar cell module
JP5770693B2 (en) Method for producing polyester film, polyester film, protective sheet for solar cell, and solar cell module
JP2012227359A (en) Polyester film for solar cell backside protective material
KR102124240B1 (en) Stretched white polyester film and manufacturing method thereof, back sheet for solar cell, and solar cell module
JP5676526B2 (en) Method for producing polyester resin, protective sheet for solar cell, and solar cell module
JP2014185244A (en) Ultraviolet-resistant polyester film
JP5738539B2 (en) Production method of polyester resin
JP6341998B2 (en) Polyester resin composition, master pellet, polyester film, solar cell module back sheet and solar cell module
JP2016117862A (en) Ultraviolet-resistant polyester resin composition, polyester film, and back sheet for solar cell
JP6317523B2 (en) White polyester film and method for producing the same, solar cell backsheet and solar cell module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13824942

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13824942

Country of ref document: EP

Kind code of ref document: A1