JP2011202000A - Method for hydrorefining kerosene fraction - Google Patents

Method for hydrorefining kerosene fraction Download PDF

Info

Publication number
JP2011202000A
JP2011202000A JP2010069905A JP2010069905A JP2011202000A JP 2011202000 A JP2011202000 A JP 2011202000A JP 2010069905 A JP2010069905 A JP 2010069905A JP 2010069905 A JP2010069905 A JP 2010069905A JP 2011202000 A JP2011202000 A JP 2011202000A
Authority
JP
Japan
Prior art keywords
kerosene fraction
mass
hydrorefining
zeolite
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010069905A
Other languages
Japanese (ja)
Other versions
JP5465055B2 (en
Inventor
Hiroyuki Seki
浩幸 関
Yoshiaki Fukui
義明 福井
Masanori Yoshida
正典 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Petroleum Energy Center JPEC
Eneos Corp
Original Assignee
Japan Petroleum Energy Center JPEC
JX Nippon Oil and Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Petroleum Energy Center JPEC, JX Nippon Oil and Energy Corp filed Critical Japan Petroleum Energy Center JPEC
Priority to JP2010069905A priority Critical patent/JP5465055B2/en
Publication of JP2011202000A publication Critical patent/JP2011202000A/en
Application granted granted Critical
Publication of JP5465055B2 publication Critical patent/JP5465055B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a kerosene base material having a high smoke point in a good yield from a kerosene fraction having a low smoke point by hydrorefining.SOLUTION: This method for hydrorefining the kerosene fraction is provided by using the kerosene fraction containing ≥90 mass% fraction of a 140 to 280°C boiling point range, a ≥8 mass% naphthene-based hydrocarbon having ≥2 rings and a ≥18 mass% aromatic hydrocarbon, and hydrorefining at a fixed bed reaction device filled with a solid acid catalyst without containing a zeolite loaded with a metal of the group 6 of the periodic table and a catalyst containing a USY zeolite loaded with the metal of the group 6 of the periodic table and having a ≤0.5 μm mean particle diameter.

Description

本発明は水素の存在下で灯油留分中の硫黄を除去しながら、生成油の煙点を向上させると共に、収率良く灯油基材を得る水素化精製方法に関する。   The present invention relates to a hydrorefining method for improving the smoke point of a produced oil while removing sulfur in a kerosene fraction in the presence of hydrogen and obtaining a kerosene base material with high yield.

近年、環境に優しいクリーンな液体燃料への要求が急速に高まってきている。例えば、灯油の品質に着目した場合、硫黄分を80ppm以下(JIS1号灯油)にし、かつ煙点を23mm以上にする必要がある。そのため石油会社は触媒の改良や設備の増設によりクリーン燃料を製造する体制をとってきた。   In recent years, the demand for environmentally friendly clean liquid fuels has increased rapidly. For example, when focusing on the quality of kerosene, it is necessary to make the sulfur content 80 ppm or less (JIS No. 1 kerosene) and the smoke point 23 mm or more. For this reason, oil companies have taken a system to produce clean fuel by improving the catalyst and adding equipment.

消費者に供給される灯油燃料は、水素化脱硫された直留灯油を主基材としている。
一般に、灯油や軽油の水素化精製は固定床反応塔に脱硫触媒を充填し、水素気流中、高温高圧の反応条件下で行なわれる。脱硫触媒としてはアルミナを担体として、そこに活性金属であるモリブテンやコバルトが担持されたものがよく用いられる。この時の脱硫活性は担体の種類または調製方法、活性金属の種類や担持量に大きく影響され、例えば非特許文献1にアルミナ以外の担体の脱硫活性に及ぼす影響について開示されている。また、担体にアモルファス固体酸を用いることで、水素化活性が大きく向上するといった報告もある(非特許文献2)。
Kerosene fuel supplied to consumers is mainly made of hydrodesulfurized straight-run kerosene.
In general, the hydrorefining of kerosene and light oil is carried out under high-temperature and high-pressure reaction conditions in a hydrogen stream by filling a fixed-bed reaction tower with a desulfurization catalyst. As the desulfurization catalyst, a catalyst in which alumina is used as a carrier and active metals such as molybdenum and cobalt are supported thereon is often used. The desulfurization activity at this time is greatly influenced by the type or preparation method of the support, the type of active metal, and the amount supported. For example, Non-Patent Document 1 discloses the effect on the desulfurization activity of a support other than alumina. There is also a report that hydrogenation activity is greatly improved by using an amorphous solid acid as a carrier (Non-patent Document 2).

上述の水素化精製は、石油から分留して得られた中間留分を中心とした処理方法であるが、将来の石油枯渇を考えると、オイルサンド由来のビチュメン改質油や合成原油などの処理に対応した灯油留分の水素化精製は重要となる。
石油からの灯油留分と比較して、オイルサンド由来の灯油留分は2環以上のナフテン系炭化水素や芳香族炭化水素が多いために煙点が非常に低い。従って、オイルサンド由来の灯油留分の水素化精製では、単に脱硫するだけではなく、煙点を向上することも必要となる。
The above-mentioned hydrorefining is a treatment method centering on middle distillate obtained by fractionating from petroleum, but considering future oil depletion, bitumen reformed oil derived from oil sands, synthetic crude oil, etc. Hydrorefining of the kerosene fraction corresponding to the treatment is important.
Compared with the kerosene fraction from petroleum, the kerosene fraction derived from oil sand has a very low smoke point due to the presence of two or more naphthenic hydrocarbons and aromatic hydrocarbons. Therefore, in the hydrorefining of the kerosene fraction derived from the oil sand, it is necessary not only to desulfurize but also to improve the smoke point.

Applied Catalysis A: General 257 (2004) 157-164 (Elsevier)Applied Catalysis A: General 257 (2004) 157-164 (Elsevier) Journal of Catalysis 252 (2007) 321-334 (Elsevier)Journal of Catalysis 252 (2007) 321-334 (Elsevier)

これまでの灯油の水素化精製触媒は、原油から分留された灯油留分を処理する為に開発されてきたため、オイルサンド由来の合成原油などから分留された2環以上ナフテン系炭化水素や芳香族炭化水素を多く含む煙点の低い灯油留分に対応することが出来ない。
このような灯油留分の煙点を向上させる為にはナフテン開環が不可欠であり、そのためには触媒として酸性質を有するアモルファス固体酸やゼオライトを活用することが出来る。
しかしながら、ゼオライト触媒はナフテンを開環するものの、分解活性が高い為に灯油留分が軽質化しナフサ留分を生成するため、その結果得られる灯油基材の収率が低下するので、その使用が避けられてきた。
本発明の目的は、原油に限らず、オイルサンド由来の合成原油のような2環以上のナフテン系炭化水素や芳香族炭化水素を多く含む煙点の低い灯油留分に対して、煙点が向上した灯油基材を収率良く得る為の水素化精製方法を提供することにある。
Conventional kerosene hydrorefining catalysts have been developed to treat kerosene fractions fractionated from crude oil, so two or more naphthenic hydrocarbons fractionated from synthetic oils derived from oil sands, etc. It cannot cope with a kerosene fraction with a low smoke point that contains a large amount of aromatic hydrocarbons.
In order to improve the smoke point of such a kerosene fraction, naphthene ring opening is indispensable. For this purpose, an amorphous solid acid or zeolite having acid properties can be used as a catalyst.
However, although the zeolite catalyst opens naphthene, the kerosene fraction is lightened to produce a naphtha fraction because of its high cracking activity, resulting in a decrease in the yield of the resulting kerosene base material. It has been avoided.
The object of the present invention is not limited to crude oil, but has a low smoke point for kerosene fractions having a low smoke point containing a large amount of two or more naphthenic hydrocarbons and aromatic hydrocarbons, such as synthetic crude oil derived from oil sands. An object of the present invention is to provide a hydrorefining method for obtaining an improved kerosene base material with high yield.

本発明者らは鋭意検討した結果、2環以上のナフテン系炭化水素および芳香族炭化水素を多く含む煙点の低い原料灯油留分に対し、ゼオライトを含まない触媒と平均粒子径が0.5μm以下の微結晶USYゼオライトを含む触媒とを組み合わせて水素化精製することにより、軽質化を抑制できると共に、生成油の煙点を向上させることができることを見出し、本発明を完成するに至った。
すなわち、本発明は、沸点範囲140〜280℃の留分を90質量%以上含み、2環以上のナフテン系炭化水素を8質量%以上および芳香族炭化水素を18質量%以上含有する灯油留分を原料とし、周期表第6族の金属が担持されたゼオライトを含まない固体酸触媒と周期表第6族の金属が担持された平均粒子径が0.5μm以下のUSYゼオライトを含む触媒とを充填した固定床反応装置にて水素化精製処理することを特徴とする灯油留分の水素化精製方法に関する。
As a result of intensive studies, the inventors of the present invention have a zeolite-free catalyst and an average particle size of 0.5 μm for a raw kerosene fraction having a low smoke point and containing a large amount of two or more naphthenic hydrocarbons and aromatic hydrocarbons. It has been found that lightening can be suppressed and the smoke point of the product oil can be improved by hydrorefining in combination with a catalyst containing the following microcrystalline USY zeolite, and the present invention has been completed.
That is, the present invention is a kerosene fraction containing 90% by mass or more of a fraction having a boiling range of 140 to 280 ° C., containing 8% by mass or more of bicyclic or more naphthenic hydrocarbons and 18% by mass or more of aromatic hydrocarbons. And a solid acid catalyst containing no zeolite carrying a metal of group 6 of the periodic table and a catalyst containing USY zeolite having an average particle diameter of 0.5 μm or less and carrying a metal of group 6 of the periodic table The present invention relates to a hydrorefining method for a kerosene fraction, characterized by hydrotreating in a packed fixed bed reactor.

本発明の水素化精製方法により、オイルサンド由来の合成原油のような2環以上のナフテン系炭化水素や芳香族炭化水素を多く含む煙点の低い灯油留分に対して、煙点が向上した灯油基材を収率良く得ることができる。   By the hydrorefining method of the present invention, the smoke point is improved with respect to a kerosene fraction having a low smoke point containing a large amount of two or more naphthenic hydrocarbons and aromatic hydrocarbons such as synthetic crude oil derived from oil sand. A kerosene base material can be obtained with good yield.

以下に本発明を詳述する。
本発明において原料として用いられる灯油留分は、2環以上のナフテン系炭化水素を8質量%以上および芳香族炭化水素を18質量%以上含み、かつ沸点140〜280℃の範囲にある留分を90質量%以上含んだ留分である。この灯油留分の由来は特に限定されないが、石油系の原油、オイルサンド由来の合成原油、ビチュメン改質油、石炭液化油などを挙げることができる。またこれらの2種以上を混合して用いることもできる。
The present invention is described in detail below.
The kerosene fraction used as a raw material in the present invention includes a fraction having a boiling point of 140 to 280 ° C. containing 8% by mass or more of two or more naphthene hydrocarbons and 18% by mass or more of aromatic hydrocarbons. A fraction containing 90% by mass or more. The origin of this kerosene fraction is not particularly limited, and examples thereof include petroleum-based crude oil, synthetic crude oil derived from oil sand, bitumen reformed oil, and coal liquefied oil. Moreover, these 2 types or more can also be mixed and used.

灯油留分の2環以上のナフテン系炭化水素の割合が8質量%未満および芳香族炭化水素の割合が18質量%未満の場合、また沸点140〜280℃の範囲にある留分が90質量%未満の場合、反応による軽質化が起こりやすく、灯油基材の収率が著しく低下するので好ましくない。かかる理由により、灯油留分は沸点140〜280℃の範囲にある留分を90質量%以上含むことが好ましく、95質量%以上含むことがより好ましい。
なお、沸点はJIS K 2254に規定する「石油製品―蒸留試験方法−常圧法蒸留試験方法」に準拠して測定されたものを意味する。
When the proportion of naphthenic hydrocarbons of two or more rings in the kerosene fraction is less than 8% by mass and the proportion of aromatic hydrocarbons is less than 18% by mass, the fraction having a boiling point in the range of 140 to 280 ° C. is 90% by mass. If it is less than 1, lightening due to the reaction is likely to occur, and the yield of the kerosene base material is remarkably lowered. For this reason, the kerosene fraction preferably contains 90% by mass or more, more preferably 95% by mass or more of a fraction having a boiling point in the range of 140 to 280 ° C.
The boiling point means that measured in accordance with “Petroleum products—distillation test method—atmospheric pressure distillation test method” defined in JIS K 2254.

また、2環以上のナフテン系炭化水素を12質量%以上含有する灯油留分は煙点を大きく向上することが出来るので好ましく、15質量%以上含有する灯油留分がより好ましい。一方、灯油留分の2環以上のナフテン系炭化水素の含有量の上限は水素化精製装置における水素消費量の増大を防止する観点で、40質量%以下が好ましく、35質量%以下がより好ましく、30質量%以下がさらに好ましい。
さらに、灯油留分の芳香族炭化水素の含有量の下限は、灯油基材の収率低下抑止の観点から18質量%以上が必要であり、20質量%以上がより好ましく、22質量%以上がさらに好ましい。一方、灯油留分の芳香族炭化水素の含有量の上限は、水素化精製装置における水素消費量の増大を防止する観点から30質量%以下が好ましく、27質量%以下がより好ましく、25質量%以下がさらに好ましい。
A kerosene fraction containing 12% by mass or more of naphthenic hydrocarbons having two or more rings is preferable because it can greatly improve the smoke point, and a kerosene fraction containing 15% by mass or more is more preferred. On the other hand, the upper limit of the content of two or more naphthenic hydrocarbons in the kerosene fraction is preferably 40% by mass or less, more preferably 35% by mass or less from the viewpoint of preventing an increase in hydrogen consumption in the hydrotreating apparatus. 30% by mass or less is more preferable.
Furthermore, the lower limit of the content of aromatic hydrocarbons in the kerosene fraction needs to be 18% by mass or more, more preferably 20% by mass or more, and more preferably 22% by mass or more from the viewpoint of suppressing the yield reduction of the kerosene base material. Further preferred. On the other hand, the upper limit of the content of aromatic hydrocarbons in the kerosene fraction is preferably 30% by mass or less, more preferably 27% by mass or less, and more preferably 25% by mass from the viewpoint of preventing an increase in hydrogen consumption in the hydrotreating apparatus. The following is more preferable.

なお、沸点はJIS K 2254に規定する「石油製品―蒸留試験方法−常圧法蒸留試験方法」に準拠して測定されたものを意味する。
また、芳香族炭化水素および2環以上のナフテン系炭化水素の含有量の求め方を以下に示す。まず芳香族炭化水素と飽和炭化水素を、ASTM D 2549“Standard Test Method for Separation of Representative Aromatics and Nonaromatics Fractions of High-Boiling Oils by Elution Chromatography”に準じた方法により分取し、各々の含有量を決定する。さらに飽和炭化水素をGC−TOFMSにより分析し、2環以上のナフテン系炭化水素の含有量を求める。
The boiling point means that measured in accordance with “Petroleum products—distillation test method—atmospheric pressure distillation test method” defined in JIS K 2254.
Moreover, the method of calculating | requiring content of an aromatic hydrocarbon and a 2 or more ring naphthenic hydrocarbon is shown below. First, aromatic hydrocarbons and saturated hydrocarbons are fractionated by a method according to ASTM D 2549 “Standard Test Method for Separation of Representative Aromatics and Nonaromatics Fractions of High-Boiling Oils by Elution Chromatography”, and the contents of each are determined. To do. Further, the saturated hydrocarbon is analyzed by GC-TOFMS, and the content of two or more naphthenic hydrocarbons is determined.

本発明における灯油留分の水素化精製は、固定床反応装置に触媒を充填して水素雰囲気下、高温高圧条件で行なわれる。
反応圧力(水素分圧)は2〜6MPaが好ましく、より好ましくは3〜5MPaである。反応圧力が2MPa未満では脱硫活性が低下する傾向にあり、また、6MPaを超えると水素消費が大きくなり運転コストが増加すると共に、ナフサの生成が増加するので好ましくない。
反応温度は260〜340℃の範囲が好ましく、より好ましくは300〜330℃である。反応温度が260℃未満では脱硫活性および煙点向上が減少する傾向にあり実用的でない。また、340℃を超えるとナフサの生成が顕著になるとともに、色相が悪化するので好ましくない。
液空間速度は特に制限されないが、0.5〜5h−1が好ましい。液空間速度が0.5h−1未満では処理量が低いので生産性が低くなり実用的ではない。また、5h−1を超えると反応温度が高くなり、軽質化および色相の悪化が見られる傾向にあるので好ましくない。
水素/油比は20〜150Nm/klの範囲が好ましく、より好ましくは50〜120Nm/klである。水素/油比が20Nm/kl未満では脱硫活性が大きく低下する傾向にあるので好ましくない。また、150Nm/klを超えても煙点向上に大きな変化がなく、運転コストが増加するだけなので好ましくない。
The hydrorefining of the kerosene fraction in the present invention is carried out under a high-temperature and high-pressure condition in a hydrogen atmosphere by charging a catalyst in a fixed bed reactor.
The reaction pressure (hydrogen partial pressure) is preferably 2 to 6 MPa, more preferably 3 to 5 MPa. If the reaction pressure is less than 2 MPa, the desulfurization activity tends to decrease, and if it exceeds 6 MPa, the hydrogen consumption increases, the operating cost increases, and the production of naphtha increases.
The reaction temperature is preferably in the range of 260 to 340 ° C, more preferably 300 to 330 ° C. If the reaction temperature is less than 260 ° C., desulfurization activity and smoke point improvement tend to decrease, which is not practical. Moreover, when it exceeds 340 degreeC, since the production | generation of naphtha will become remarkable and a hue will deteriorate, it is unpreferable.
The liquid space velocity is not particularly limited, but is preferably 0.5 to 5 h −1 . If the liquid space velocity is less than 0.5 h −1 , the throughput is low and the productivity is low, which is not practical. On the other hand, if it exceeds 5 h −1 , the reaction temperature tends to be high, and lightening and hue deterioration tend to be observed.
The hydrogen / oil ratio is preferably in the range of 20 to 150 Nm 3 / kl, more preferably 50 to 120 Nm 3 / kl. A hydrogen / oil ratio of less than 20 Nm 3 / kl is not preferable because the desulfurization activity tends to be greatly reduced. Moreover, even if it exceeds 150 Nm 3 / kl, there is no significant change in the smoke point improvement, which is not preferable because it only increases the operating cost.

本発明における水素化精製は固定床反応装置を用いて行われ、この反応塔にはゼオライトを含まない触媒およびUSYゼオライトを含む触媒が充填される。
ゼオライトを含まない触媒の担体は特に限定されず、脱硫触媒でよく使用されるアルミナ、シリカ、チタニアなどの金属酸化物を使用することができる。
また、ゼオライトを含まない触媒は、上記担体に周期表第6族から選ばれる少なくとも1種類以上の金属が担持されて用いられる。特に好ましくはモリブテンおよびタングステンである。触媒全体に対するこの金属担持量は5〜30質量%が好ましい。5質量%未満および30質量%を超えた場合、脱硫活性が大きく減少するので好ましくない。担持方法に特に制限はないが、容易でかつ経済的なIncipientWetness法が最も良い。
また、助触媒としてコバルト、ニッケルまたは両者を周期表第6族金属と共に担持することは煙点が向上するので好ましい。触媒全体に対する助触媒の担持量に特に制限はないが、通常0.2〜8質量%の範囲で担持して使用することが出来る。
The hydrorefining in the present invention is performed using a fixed bed reactor, and this reaction tower is filled with a catalyst containing no zeolite and a catalyst containing USY zeolite.
The support of the catalyst not containing zeolite is not particularly limited, and metal oxides such as alumina, silica, titania and the like often used in desulfurization catalysts can be used.
In addition, the catalyst containing no zeolite is used with at least one metal selected from Group 6 of the periodic table supported on the carrier. Particularly preferred are molybdenum and tungsten. The amount of the metal supported on the entire catalyst is preferably 5 to 30% by mass. If it is less than 5% by mass or more than 30% by mass, the desulfurization activity is greatly reduced, which is not preferable. There are no particular restrictions on the loading method, but the easy and economical Incipient Wetness method is the best.
Further, it is preferable to support cobalt, nickel, or both together with a Group 6 metal of the periodic table as a co-catalyst because the smoke point is improved. There is no particular limitation on the amount of the cocatalyst supported with respect to the entire catalyst, but it can be supported and used usually in the range of 0.2 to 8% by mass.

USYゼオライトを含む触媒の担体は、USYゼオライトおよびバインダーから成る。ここで使用されるUSYゼオライトは平均粒子径が0.5μm以下であり、より好ましくは0.3μm以下である。この平均粒子径が0.5μmを超えると灯油の煙点が低下し、ナフサが生成する傾向にあるので好ましくない。
USYゼオライトのケイバン比(シリカ/アルミナのモル比)に特に制限はないが、30〜100が好ましく、より好ましくは40〜70である。ケイバン比が30未満の場合、軽質化が進行しやすく、結果としてセタン価が低下する傾向にあるので好ましくない。また、ケイバン比が100を超えるとナフテンの開環が起こりにくくなり、結果として煙点向上が見られなくなる傾向にあるので好ましくない。担体に対するUSYゼオライトの質量割合に制限はないが、通常5〜70質量%の範囲で使用することが出来る。5質量%未満ではナフテンの開環が不十分となる傾向にあり、また70質量%を超えると触媒強度が弱くなる傾向にあるので好ましくない。
バインダーについては特に制限がなく、アルミナ、シリカ、チタニア、シリカアルミナ、シリカジルコニア、シリカチタニア、アルミナボリアなどを用いることが出来る。
The support of the catalyst containing USY zeolite consists of USY zeolite and a binder. The USY zeolite used here has an average particle size of 0.5 μm or less, more preferably 0.3 μm or less. When this average particle diameter exceeds 0.5 μm, the smoke point of kerosene is lowered and naphtha tends to be generated, which is not preferable.
Although there is no restriction | limiting in particular in the cayban ratio (silica / alumina molar ratio) of USY zeolite, 30-100 are preferable, More preferably, it is 40-70. When the Keiban ratio is less than 30, lightening is likely to proceed, and as a result, the cetane number tends to decrease, such being undesirable. On the other hand, if the Kayban ratio exceeds 100, it is difficult to cause ring opening of naphthene, and as a result, there is a tendency that improvement in smoke point is not observed. Although there is no restriction | limiting in the mass ratio of the USY zeolite with respect to a support | carrier, Usually, it can use in 5-70 mass%. If it is less than 5% by mass, ring opening of naphthene tends to be insufficient, and if it exceeds 70% by mass, the catalyst strength tends to be weak, which is not preferable.
The binder is not particularly limited, and alumina, silica, titania, silica alumina, silica zirconia, silica titania, alumina boria and the like can be used.

USYゼオライトを含む触媒は、上記担体に周期表第6族から選ばれる少なくとも1種類以上の金属が担持されて用いられる。担持金属として特に好ましくはモリブテンおよびタングステンである。触媒全体に対するこの金属担持量は5〜25質量%が好ましい。5質量%未満および25質量%を超えた場合、脱硫活性が大きく減少するので好ましくない。担持方法に特に制限はないが、容易でかつ経済的なIncipient Wetness法が最も良い。
また、助触媒としてコバルト、ニッケルまたは両者を周期表第6族金属と共に担持することは脱硫活性および煙点が向上するので好ましい。触媒全体に対する助触媒の担持量に特に制限はないが、通常0.2〜8質量%の範囲で担持して使用することが出来る。
The catalyst containing USY zeolite is used by supporting at least one metal selected from Group 6 of the periodic table on the carrier. Particularly preferred as supported metals are molybdenum and tungsten. The amount of the metal supported on the whole catalyst is preferably 5 to 25% by mass. If it is less than 5% by mass or more than 25% by mass, the desulfurization activity is greatly reduced, which is not preferable. The supporting method is not particularly limited, but the easy and economical Incipient Wetness method is the best.
In addition, it is preferable to support cobalt, nickel, or both together with a Group 6 metal of the periodic table as a cocatalyst because desulfurization activity and smoke point are improved. There is no particular limitation on the amount of the cocatalyst supported with respect to the entire catalyst, but it can be supported and used usually in the range of 0.2 to 8% by mass.

ゼオライトを含まない触媒とUSYゼオライトを含む触媒の充填割合は特に制限はないが、全触媒量に対する後者の割合が5〜50容量%が好ましい。5容量%未満ではナフテンの開環が起こりにくく、煙点向上が減少する傾向にあるので好ましくない。また、50容量%を超えるとナフサが生成し、灯油収率が減少する傾向にあるので好ましくない。   The filling ratio of the catalyst not containing zeolite and the catalyst containing USY zeolite is not particularly limited, but the latter ratio to the total catalyst amount is preferably 5 to 50% by volume. If it is less than 5% by volume, ring opening of naphthene does not occur easily, and the improvement in smoke point tends to decrease, such being undesirable. On the other hand, if it exceeds 50% by volume, naphtha is produced and the kerosene yield tends to decrease, which is not preferable.

ゼオライトを含まない触媒とUSYゼオライトを含む触媒の充填方法は特に制限はないが、両者を均一に物理混合して充填する方法および触媒層が固定床反応装置の入り口からゼオライトを含まない触媒、USYゼオライトを含む触媒、ゼオライトを含まない触媒の順に積層充填する方法とが煙点向上には有効なので好ましい。   There are no particular restrictions on the method of filling the catalyst containing no zeolite and the catalyst containing USY zeolite, but a method of filling both the materials by uniformly physically mixing them and a catalyst whose catalyst layer does not contain zeolite from the inlet of the fixed bed reactor, USY A method of laminating and filling a catalyst containing zeolite and a catalyst not containing zeolite is preferable because they are effective in improving the smoke point.

以下に実施例及び比較例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES The present invention will be specifically described below with reference to examples and comparative examples, but the present invention is not limited to these.

(実施例1)
中東系原油から蒸留により得られた灯油留分(沸点範囲:160〜260℃、2環以上のナフテン分:3.3質量%、芳香族分:18.6質量%、煙点:24.0mm)とシンクルード社(カナダ)製造のオイルサンド合成原油から蒸留により得られた灯油留分(沸点範囲:171〜267℃、2環以上のナフテン分:28.6質量%、芳香族分:21.5質量%、煙点:16.5mm)を50:50(質量比)の割合で混合して、水素化精製の原料灯油留分(沸点範囲:160〜267℃、2環以上のナフテン分:16.0質量%、芳香族分:20.1質量%、煙点:20.0mm)を得た。
Example 1
Kerosene fraction obtained by distillation from Middle Eastern crude oil (boiling point range: 160 to 260 ° C., bicyclic or higher naphthene content: 3.3% by mass, aromatic content: 18.6% by mass, smoke point: 24.0 mm ) And kerosene fraction obtained by distillation from oil sand synthetic crude oil produced by Sinclude (Canada) (boiling point range: 171 to 267 ° C., naphthene content of 2 or more rings: 28.6% by mass, aromatic content: 21.%). 5 mass%, smoke point: 16.5 mm) are mixed at a ratio of 50:50 (mass ratio), and the raw kerosene fraction for hydrorefining (boiling point range: 160 to 267 ° C., naphthene content of 2 or more rings: 16.0% by mass, aromatic content: 20.1% by mass, smoke point: 20.0 mm).

ゼオライトを含まない固体酸触媒は、アルミナを担体にIncipient Wetness法でコバルトとモリブテンを担持し、550℃で3時間焼成して調製した。この時、触媒に対するコバルトとモリブテンの割合は、酸化物換算でそれぞれ4.6質量%、19.8質量%であった。
USYゼオライトを含む触媒は、アルミナ50質量%と平均粒子径0.3μmでケイバン比30のUSYゼオライト50質量%から成る担体に、Incipient Wetness法でニッケルとタングステンを担持し、550℃で3時間焼成して調製した。この時、触媒に対するニッケルとタングステンの割合は、酸化物換算でそれぞれ3.2質量%、18.7質量%であった。
The solid acid catalyst containing no zeolite was prepared by supporting cobalt and molybdenum by the Incipient Wetness method on alumina as a support and calcining at 550 ° C. for 3 hours. At this time, the ratios of cobalt and molybdenum to the catalyst were 4.6% by mass and 19.8% by mass, respectively, in terms of oxide.
The catalyst containing USY zeolite carries nickel and tungsten on a carrier consisting of 50% by mass of alumina and 50% by mass of USY zeolite having an average particle size of 0.3 μm and a cayvan ratio of 30 by the Incipient Wetness method and calcining at 550 ° C. for 3 hours Prepared. At this time, the ratio of nickel and tungsten to the catalyst was 3.2% by mass and 18.7% by mass, respectively, in terms of oxide.

固定床反応装置に、反応塔入り口から出口に対してゼオライトを含まない固体酸触媒、USYゼオライトを含む触媒、ゼオライトを含まない固体酸触媒の3層充填を行った。このときのそれぞれの触媒割合は、70:10:20(容量比)である。
水素化精製を行う前に、水素(95容量%)と硫化水素(5容量%)の混合ガスを用いて350℃で24時間、充填した触媒の硫化処理を行い、活性化した。
水素化精製は、反応温度315℃、圧力3.5MPa、水素油比85Nm/kl、液空間速度2.0h−1の条件で実施した。
生成油のナフサ(沸点40〜145℃)収率および煙点を表1に示す。
The fixed bed reactor was filled with three layers of a solid acid catalyst containing no zeolite, a catalyst containing USY zeolite, and a solid acid catalyst containing no zeolite from the inlet to the outlet of the reaction tower. Each catalyst ratio at this time is 70:10:20 (volume ratio).
Prior to hydrorefining, the charged catalyst was subjected to sulfidation treatment at 350 ° C. for 24 hours using a mixed gas of hydrogen (95% by volume) and hydrogen sulfide (5% by volume) and activated.
The hydrorefining was carried out under the conditions of a reaction temperature of 315 ° C., a pressure of 3.5 MPa, a hydrogen oil ratio of 85 Nm 3 / kl, and a liquid space velocity of 2.0 h −1 .
Table 1 shows the naphtha (boiling point: 40 to 145 ° C.) yield and smoke point of the product oil.

なお、灯油留分、原料灯油留分、生成油およびナフサについて、沸点はJIS K 2254に規定する「石油製品―蒸留試験方法−常圧法蒸留試験方法」に準拠して測定されるものを意味し、芳香族炭化水素および2環以上のナフテン系炭化水素の含有量は、まず芳香族炭化水素と飽和炭化水素をASTM D 2549“Standard Test Method for Separation of Representative Aromatics and Nonaromatics Fractions of High-Boiling Oils by Elution Chromatography”に準じた方法により分取し、各々の含有量を決定し、さらに飽和炭化水素をGC−TOFMSにより分析し、2環以上のナフテン系炭化水素の含有量を求めたものであり、煙点はJIS K 2537に規定する「石油製品―灯油および航空タービン燃料油−煙点試験方法」に準拠して測定されたものである。
また、生成油のナフサ収率は、JIS K 2254に規定する「石油製品−蒸留試験方法−ガスクロマトグラフ法蒸留試験方法」に準拠した40℃〜145℃の留出量より求めたものである。
For kerosene fraction, raw kerosene fraction, product oil and naphtha, boiling point means that measured according to “Petroleum products-Distillation test method-Atmospheric pressure distillation test method” prescribed in JIS K 2254. The content of aromatic hydrocarbons and naphthenic hydrocarbons having two or more rings is first determined by ASTM D 2549 “Standard Test Method for Separation of Representative Aromatics and Nonaromatics Fractions of High-Boiling Oils by Elution Chromatography "is fractionated by the method, each content is determined, further saturated hydrocarbons are analyzed by GC-TOFMS, the content of naphthenic hydrocarbons of two or more rings is obtained, The smoke point was measured in accordance with “Petroleum products—kerosene and aviation turbine fuel oil—smoke point test method” defined in JIS K2537.
The naphtha yield of the product oil is determined from the amount of distillate from 40 ° C. to 145 ° C. in accordance with “Petroleum products—distillation test method—gas chromatographic method distillation test method” defined in JIS K 2254.

(実施例2)
USYゼオライトのケイバン比が50であること以外は、実施例1と同様の触媒、充填方法を使用して、水素化精製を行った。生成油のナフサ(沸点40〜145℃)収率および煙点を表1に示す。
(Example 2)
Hydrorefining was carried out using the same catalyst and packing method as in Example 1 except that the USY zeolite had a cayban ratio of 50. Table 1 shows the naphtha (boiling point: 40 to 145 ° C.) yield and smoke point of the product oil.

(実施例3)
触媒の積層比率を50:30:20(容量比)にしたこと以外は、実施例2と同様の触媒を使用して、水素化精製を行った。生成油のナフサ(沸点40〜145℃)収率および煙点を表1に示す。
(Example 3)
Hydrorefining was carried out using the same catalyst as in Example 2 except that the catalyst lamination ratio was 50:30:20 (volume ratio). Table 1 shows the naphtha (boiling point: 40 to 145 ° C.) yield and smoke point of the product oil.

(実施例4)
USYゼオライトのケイバン比が30である担体にコバルトおよびモリブテン(触媒全体に対して酸化物換算で、それぞれ3.9質量%、20.1質量%)を担持したこと以外は、実施例3と同様の充填方法を使用して、水素化精製を行った。生成油のナフサ(沸点40〜145℃)収率および煙点を表1に示す。
Example 4
Example 3 except that cobalt and molybdenum (supported in terms of oxides, 3.9% by mass and 20.1% by mass, respectively) were supported on a support having a cayban ratio of USY zeolite of 30. Hydrogenation purification was performed using Table 1 shows the naphtha (boiling point: 40 to 145 ° C.) yield and smoke point of the product oil.

(実施例5)
ゼオライトを含まない固体酸触媒およびUSYゼオライトを含む触媒を均一に物理混合して充填したこと以外は、実施例2と同様の触媒を使用して、水素化精製を行った。生成油のナフサ(沸点40〜145℃)収率および煙点を表1に示す。
(Example 5)
Hydrogenation purification was performed using the same catalyst as in Example 2 except that the solid acid catalyst not containing zeolite and the catalyst containing USY zeolite were uniformly physically mixed and packed. Table 1 shows the naphtha (boiling point: 40 to 145 ° C.) yield and smoke point of the product oil.

(実施例6)
圧力を5.0MPa、水素油比を120Nm/kl、液空間速度を3.0h−1にしたこと以外は、実施例2と同様の触媒、充填方法を使用して、水素化精製を行った。生成油のナフサ(沸点40〜145℃)収率および煙点を表1に示す。
(Example 6)
Hydrorefining was performed using the same catalyst and filling method as in Example 2 except that the pressure was 5.0 MPa, the hydrogen oil ratio was 120 Nm 3 / kl, and the liquid space velocity was 3.0 h −1. It was. Table 1 shows the naphtha (boiling point: 40 to 145 ° C.) yield and smoke point of the product oil.

(実施例7)
前記中東系灯油留分と前記オイルサンド合成原油系灯油留分の混合割合を30:70(質量比)にした混合灯油留分(沸点範囲:160〜267℃、2環以上のナフテン分:21.0質量%、芳香族分:20.6質量%、煙点:18.5mm)を原料としたこと以外は、実施例1と同様の触媒、充填方法を使用して、水素化精製を行った。生成油のナフサ(沸点40〜145℃)収率および煙点を表1に示す。
(Example 7)
Mixed kerosene fraction (boiling point range: 160 to 267 ° C., bicyclic or higher naphthene fraction: 21) in which the mixing ratio of the Middle East kerosene fraction and the oil sand synthetic crude oil kerosene fraction was 30:70 (mass ratio) 0.0 wt%, aromatic content: 20.6 wt%, smoke point: 18.5 mm), and hydrorefining was performed using the same catalyst and packing method as in Example 1. It was. Table 1 shows the naphtha (boiling point: 40 to 145 ° C.) yield and smoke point of the product oil.

(比較例1)
平均粒子径1.1μmのUSYゼオライト(ケイバン比30)を使用したこと以外は、実施例1と同様の充填方法を使用して、水素化精製を行った。生成油のナフサ(沸点40〜145℃)収率および煙点を表1に示す。
(Comparative Example 1)
Hydrorefining was performed using the same packing method as in Example 1 except that USY zeolite having an average particle size of 1.1 μm (Kayban ratio 30) was used. Table 1 shows the naphtha (boiling point: 40 to 145 ° C.) yield and smoke point of the product oil.

(比較例2)
平均粒子径1.1μmのUSYゼオライト(ケイバン比50)を使用したこと以外は、実施例2と同様の充填方法を使用して、水素化精製を行った。生成油のナフサ(沸点40〜145℃)収率および煙点を表1に示す。
(Comparative Example 2)
Hydrorefining was performed using the same packing method as in Example 2 except that USY zeolite having an average particle size of 1.1 μm (Kayban ratio 50) was used. Table 1 shows the naphtha (boiling point: 40 to 145 ° C.) yield and smoke point of the product oil.

(比較例3)
USYゼオライトの代わりに平均粒子径0.3μmのY型ゼオライト(ケイバン比7)を使用したこと以外は、実施例1と同様の触媒、充填方法を使用して、水素化精製を行った。生成油のナフサ(沸点40〜145℃)収率および煙点を表1に示す。
(Comparative Example 3)
Hydrorefining was carried out using the same catalyst and filling method as in Example 1 except that Y-type zeolite having an average particle size of 0.3 μm (Kayban ratio 7) was used instead of USY zeolite. Table 1 shows the naphtha (boiling point: 40 to 145 ° C.) yield and smoke point of the product oil.

(比較例4)
前記中東系灯油留分と前記オイルサンド合成原油系灯油留分の混合割合を95:5(質量比)にした混合灯油留分(沸点範囲:160〜267℃、2環以上のナフテン分:4.5質量%、芳香族分:18.7質量%、煙点:23.5mm)を原料としたこと以外は、実施例1と同様の触媒、充填方法を使用して、水素化精製を行った。生成油のナフサ(沸点40〜145℃)収率および煙点を表1に示す。
(Comparative Example 4)
Mixed kerosene fraction (boiling point range: 160-267 ° C., bicyclic or higher naphthene fraction: 4) in which the mixing ratio of the Middle East kerosene fraction and the oil sand synthetic crude oil kerosene fraction was 95: 5 (mass ratio) .5 mass%, aromatic content: 18.7 mass%, smoke point: 23.5 mm), and hydrorefining was performed using the same catalyst and filling method as in Example 1. It was. Table 1 shows the naphtha (boiling point: 40 to 145 ° C.) yield and smoke point of the product oil.

(比較例5)
中東系原油から蒸留により得られた留分(沸点範囲:190〜295℃、2環以上のナフテン分:8.2質量%、芳香族分:22.5質量%、煙点:19.5mm)とシンクルード社(カナダ)製造のオイルサンド合成原油から蒸留により得られた留分(沸点範囲:200〜300℃、2環以上ナフテン分:39.1質量%、芳香族分:23.6質量%、煙点:14.0mm)を50:50(質量比)の割合で混合して、水素化精製の原料軽油留分(沸点範囲:190〜300℃(沸点280℃+留分:25質量%)、2環以上のナフテン分:23.7質量%、芳香族分:23.1質量%、煙点:16.5mm)を得たこと以外は、実施例1と同様の触媒、充填方法を使用して、水素化精製を行った。生成油のナフサ(沸点40〜145℃)収率および煙点を表1に示す。
(Comparative Example 5)
A fraction obtained by distillation from Middle Eastern crude oil (boiling point range: 190 to 295 ° C., bicyclic or higher naphthene content: 8.2 mass%, aromatic content: 22.5 mass%, smoke point: 19.5 mm) And a fraction obtained by distillation from oil sand synthetic crude oil produced by Cincrude (Canada) (boiling range: 200 to 300 ° C., bicyclic or higher naphthene content: 39.1% by mass, aromatic content: 23.6% by mass) , Smoke point: 14.0 mm) are mixed at a ratio of 50:50 (mass ratio), and hydrorefining raw material gas oil fraction (boiling range: 190 to 300 ° C. (boiling point 280 ° C. + fraction: 25 mass%) 2) or more naphthene content: 23.7% by mass, aromatic content: 23.1% by mass, smoke point: 16.5 mm) Used for hydrorefining. Table 1 shows the naphtha (boiling point: 40 to 145 ° C.) yield and smoke point of the product oil.

Figure 2011202000
Figure 2011202000

以上のように、2環以上のナフテン系炭化水素を8質量%以上および芳香族炭化水素を18質量%以上含み、かつ沸点範囲が140〜280℃の留分を90質量%以上含む灯油留分を原料とし、周期表第6族の金属が担持されたゼオライトを含まない固体酸触媒と周期表第6族の金属が担持された平均粒子径が0.5μm以下のUSYゼオライトを含む触媒とを固定床反応装置に充填して水素化精製を行うことで、原料灯油留分の煙点を向上させると共に、収率良く灯油基材を製造することが出来る。   As described above, a kerosene fraction containing 8% by mass or more of two or more naphthenic hydrocarbons and 18% by mass or more of aromatic hydrocarbons and 90% by mass or more of a fraction having a boiling range of 140 to 280 ° C. And a solid acid catalyst containing no zeolite carrying a metal of group 6 of the periodic table and a catalyst containing USY zeolite having an average particle diameter of 0.5 μm or less and carrying a metal of group 6 of the periodic table By filling the fixed bed reactor and carrying out hydrorefining, the smoke point of the raw kerosene fraction can be improved and the kerosene substrate can be produced with good yield.

本発明の方法により、煙点が向上した灯油基材を収率良く得ることができるため産業上の価値は大きい。   By the method of the present invention, a kerosene base material having an improved smoke point can be obtained with a high yield, and thus the industrial value is great.

Claims (8)

沸点範囲140〜280℃の留分を90質量%以上含み、2環以上のナフテン系炭化水素を8質量%以上および芳香族炭化水素を18質量%以上含有する灯油留分を原料とし、周期表第6族の金属が担持されたゼオライトを含まない固体酸触媒と周期表第6族の金属が担持された平均粒子径が0.5μm以下のUSYゼオライトを含む触媒とを充填した固定床反応装置にて水素化精製処理することを特徴とする灯油留分の水素化精製方法。   A kerosene fraction containing 90% by mass or more of a fraction having a boiling range of 140 to 280 ° C., containing 8% by mass or more of naphthenic hydrocarbons of 2 or more rings and 18% by mass or more of aromatic hydrocarbons as a raw material, A fixed bed reactor packed with a solid acid catalyst containing no zeolite carrying a Group 6 metal and a catalyst containing USY zeolite with a mean particle size of 0.5 μm or less carrying a Group 6 metal of the periodic table The hydrorefining method of a kerosene fraction characterized by carrying out the hydrorefining process in the. 前記灯油留分の2環以上のナフテン系炭化水素の割合が12質量%以上であることを特徴とする請求項1に記載の灯油留分の水素化精製方法。   The method for hydrorefining a kerosene fraction according to claim 1, wherein a ratio of two or more naphthenic hydrocarbons in the kerosene fraction is 12% by mass or more. 触媒が固定床反応装置の入り口からゼオライトを含まない固体酸触媒、USYゼオライトを含む触媒、ゼオライトを含まない固体酸触媒の順に積層して充填されていることを特徴とする請求項1または請求項2に記載の灯油留分の水素化精製方法。   The catalyst is stacked and packed in the order of a solid acid catalyst containing no zeolite, a catalyst containing USY zeolite, and a solid acid catalyst containing no zeolite from the inlet of the fixed bed reactor. 3. A method for hydrorefining a kerosene fraction according to 2. ゼオライトを含まない固体酸触媒とUSYゼオライトを含む触媒とが均一に物理混合されて固定床反応装置に充填されていることを特徴とする請求項1〜3のいずれかに記載の灯油留分の水素化精製方法。   The kerosene fraction according to any one of claims 1 to 3, wherein a solid acid catalyst not containing zeolite and a catalyst containing USY zeolite are uniformly physically mixed and packed in a fixed bed reactor. Hydrorefining method. 固定床反応装置に充填する全触媒容量に対するUSYゼオライトを含む触媒の割合が、5〜50容量%であることを特徴とする、請求項1〜4のいずれかに記載の灯油留分の水素化精製方法。   Hydrogenation of kerosene fraction according to any one of claims 1 to 4, characterized in that the proportion of the catalyst comprising USY zeolite relative to the total catalyst capacity charged in the fixed bed reactor is 5 to 50% by volume. Purification method. USYゼオライトのシリカ/アルミナ比が30〜100(モル/モル)であることを特徴とする請求項1〜5のいずれかに記載の灯油留分の水素化精製方法。   The method for hydrotreating kerosene fraction according to any one of claims 1 to 5, wherein the silica / alumina ratio of USY zeolite is 30 to 100 (mol / mol). 反応温度が260〜340℃、圧力が2〜6MPa、水素油比が20〜150Nm/kl、液空間速度が0.5〜5.0h−1であることを特徴とする請求項1〜6のいずれかに記載の灯油留分の水素化精製方法。 The reaction temperature is 260 to 340 ° C, the pressure is 2 to 6 MPa, the hydrogen oil ratio is 20 to 150 Nm 3 / kl, and the liquid space velocity is 0.5 to 5.0 h -1. The method for hydrorefining a kerosene fraction according to any one of the above. 前記灯油留分がオイルサンド由来の灯油留分を含有することを特徴とする請求項1〜7のいずれかに記載の灯油留分の水素化精製方法。   The method for hydrorefining a kerosene fraction according to any one of claims 1 to 7, wherein the kerosene fraction contains a kerosene fraction derived from an oil sand.
JP2010069905A 2010-03-25 2010-03-25 Hydrorefining method for kerosene fraction Active JP5465055B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010069905A JP5465055B2 (en) 2010-03-25 2010-03-25 Hydrorefining method for kerosene fraction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010069905A JP5465055B2 (en) 2010-03-25 2010-03-25 Hydrorefining method for kerosene fraction

Publications (2)

Publication Number Publication Date
JP2011202000A true JP2011202000A (en) 2011-10-13
JP5465055B2 JP5465055B2 (en) 2014-04-09

Family

ID=44878991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010069905A Active JP5465055B2 (en) 2010-03-25 2010-03-25 Hydrorefining method for kerosene fraction

Country Status (1)

Country Link
JP (1) JP5465055B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015193770A (en) * 2014-03-31 2015-11-05 出光興産株式会社 Kerosene composition, and preparation method thereof
CN110903668A (en) * 2019-12-19 2020-03-24 中化泉州能源科技有限责任公司 High-temperature-resistant modified asphalt composition and preparation method thereof
CN112973718A (en) * 2021-02-22 2021-06-18 安徽工业大学 Kerosene co-hydrogenation catalyst and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03281596A (en) * 1990-03-28 1991-12-12 Cosmo Sogo Kenkyusho:Kk Hydrogenation treatment of hydrocarbon oil
JPH0959649A (en) * 1995-08-25 1997-03-04 Idemitsu Kosan Co Ltd Method for desulfurizing hydrocarbon oil
JP2000212579A (en) * 1999-01-21 2000-08-02 Idemitsu Kosan Co Ltd Production of lamp oil
JP2000265175A (en) * 1999-03-18 2000-09-26 Idemitsu Kosan Co Ltd Hydrodesulfurization of light oil fraction
JP2008260966A (en) * 2008-08-08 2008-10-30 Nippon Oil Corp Kerosene composition and its manufacturing method
JP2009040952A (en) * 2007-08-10 2009-02-26 Japan Energy Corp High-performance fuel composition

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03281596A (en) * 1990-03-28 1991-12-12 Cosmo Sogo Kenkyusho:Kk Hydrogenation treatment of hydrocarbon oil
JPH0959649A (en) * 1995-08-25 1997-03-04 Idemitsu Kosan Co Ltd Method for desulfurizing hydrocarbon oil
JP2000212579A (en) * 1999-01-21 2000-08-02 Idemitsu Kosan Co Ltd Production of lamp oil
JP2000265175A (en) * 1999-03-18 2000-09-26 Idemitsu Kosan Co Ltd Hydrodesulfurization of light oil fraction
JP2009040952A (en) * 2007-08-10 2009-02-26 Japan Energy Corp High-performance fuel composition
JP2008260966A (en) * 2008-08-08 2008-10-30 Nippon Oil Corp Kerosene composition and its manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015193770A (en) * 2014-03-31 2015-11-05 出光興産株式会社 Kerosene composition, and preparation method thereof
CN110903668A (en) * 2019-12-19 2020-03-24 中化泉州能源科技有限责任公司 High-temperature-resistant modified asphalt composition and preparation method thereof
CN112973718A (en) * 2021-02-22 2021-06-18 安徽工业大学 Kerosene co-hydrogenation catalyst and preparation method thereof

Also Published As

Publication number Publication date
JP5465055B2 (en) 2014-04-09

Similar Documents

Publication Publication Date Title
JP5838209B2 (en) Jet fuel with excellent thermal stability
US9803147B2 (en) Method for making middle distillates and a heavy vacuum gas oil FCC feedstock
WO2019050725A1 (en) Hydroprocessing of high density cracked fractions
CN105623725B (en) A kind of group technology of heavy/Residual cracking
JP5465055B2 (en) Hydrorefining method for kerosene fraction
US20090159490A1 (en) Method of hydrogenolysis of wax and process for producing fuel base
JP5406629B2 (en) Method for producing highly aromatic hydrocarbon oil
CN103102982A (en) Combined process for conversion of residual oil
JPWO2016194686A1 (en) Method for producing hydrotreated oil and method for producing catalytic cracking oil
JP5419672B2 (en) Hydrorefining method of hydrocarbon oil
JP5563491B2 (en) Method for hydrotreating heavy hydrocarbon oil
AU2007231962B2 (en) Process for producing liquid fuel base
CN111117703A (en) Hydrocracking method for maximum production of heavy naphtha and jet fuel components
AU2007213211B2 (en) Process for hydrogenation of wax and process for production of fuel base
JP5291940B2 (en) Hydrorefining method for naphtha fraction
JP5419671B2 (en) Hydrorefining method of hydrocarbon oil
CN104593061B (en) A kind of residual hydrocracking and catalytic cracking combined processing method
AU2007232010B2 (en) Method of hydrotreating wax and process for producing fuel base
JP6812265B2 (en) How to treat pyrolyzed heavy light oil
JP6548223B2 (en) Method of producing fuel oil base material
JP6258756B2 (en) Method for producing fuel oil base material
JP6346837B2 (en) Method for desulfurizing hydrocarbon oil, method for producing desulfurized oil, and method for suppressing decrease in catalyst activity
JP7299074B2 (en) Direct desulfurization method for heavy oil and heavy oil direct desulfurization apparatus
JP5794936B2 (en) Process for hydrorefining cracked gasoline
CN114437814A (en) Hydrogenation method and hydrogenation purification system for bottom oil of catalytic cracking tower and method for producing low-sulfur marine fuel oil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121011

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140121

R150 Certificate of patent or registration of utility model

Ref document number: 5465055

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250