JP2011199811A - Acoustic processing apparatus - Google Patents

Acoustic processing apparatus Download PDF

Info

Publication number
JP2011199811A
JP2011199811A JP2010067407A JP2010067407A JP2011199811A JP 2011199811 A JP2011199811 A JP 2011199811A JP 2010067407 A JP2010067407 A JP 2010067407A JP 2010067407 A JP2010067407 A JP 2010067407A JP 2011199811 A JP2011199811 A JP 2011199811A
Authority
JP
Japan
Prior art keywords
component
processing
localization
coefficient sequence
acoustic signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010067407A
Other languages
Japanese (ja)
Other versions
JP5494085B2 (en
Inventor
Kenichi Yamauchi
健一 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Corp
Original Assignee
Yamaha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Corp filed Critical Yamaha Corp
Priority to JP2010067407A priority Critical patent/JP5494085B2/en
Publication of JP2011199811A publication Critical patent/JP2011199811A/en
Application granted granted Critical
Publication of JP5494085B2 publication Critical patent/JP5494085B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To generate a stereo acoustic signal with an emphasized localization component.SOLUTION: A sum component generating unit 52 generates a sum component M by adding a stereo acoustic signal SIN_L and acoustic signal SIN_R. A difference component generating unit 54 generates a difference component S with a localization component reduced at a specific position, by subtraction between the acoustic signal SIN_L and the acoustic signal SIN_R. A determination unit 42 determines presence of the localization component. A first generation unit 62 generates a processing coefficient sequence GA in which a coefficient value g[k] for each frequency is set so as to emphasize the localization component through subtraction processing including subtraction between the sum component M and the difference component S. A second generation unit 64 generates a processing coefficient sequence GB in which the distribution of coefficient values g[k] is leveled as compared with the processing coefficient sequence GA when no localization component exists. A signal processing unit 38 applies, on each of the acoustic signal SIN_L and the acoustic signal SIN_R, the processing coefficient sequence GA when it is determined that the localization component exist, and applies the processing coefficient sequence GB when it is determined that no localization component exists.

Description

本発明は、ステレオ形式の右チャネルおよび左チャネルの各々の音響信号のうち目的の位置(方向)に音像が定位する成分(以下「定位成分」という)を強調する技術に関する。   The present invention relates to a technique for emphasizing a component (hereinafter referred to as a “localization component”) in which a sound image is localized at a target position (direction) among acoustic signals of stereo right and left channels.

CD等の記録媒体に収録された音響信号から所定の定位成分を抑圧する技術が従来から提案されている。例えば特許文献1には、ステレオ形式の音響信号の一方から他方を減算(逆相加算)することで、音像が中央方向に定位する成分(典型的には歌唱音)を抑圧する技術が開示されている。   Conventionally, a technique for suppressing a predetermined localization component from an acoustic signal recorded on a recording medium such as a CD has been proposed. For example, Patent Document 1 discloses a technique for suppressing a component (typically a singing sound) in which a sound image is localized in the center direction by subtracting one of stereo audio signals from the other (reverse phase addition). ing.

特開2007−079413号公報JP 2007-079413 A

特許文献1の技術で定位成分を抑圧した音響信号を当初の音響信号から減算すれば、定位成分を強調した音響信号を生成することも可能である。しかし、特許文献1の技術のもとでは、処理後の音響信号がモノラル形式になるという問題がある。以上の事情を考慮して、本発明は、定位成分を強調したステレオ形式の音響信号を生成することを目的とする。   If the acoustic signal in which the localization component is suppressed by the technique of Patent Document 1 is subtracted from the original acoustic signal, an acoustic signal in which the localization component is emphasized can be generated. However, under the technique of Patent Document 1, there is a problem that the processed acoustic signal is in a monaural format. In view of the above circumstances, an object of the present invention is to generate a stereo-type acoustic signal in which a localization component is emphasized.

以上の課題を解決するために、本発明の音響処理装置は、ステレオ形式の第1音響信号と第2音響信号との和成分を生成する和成分生成手段と、特定方向の定位成分を抑圧した差成分を第1音響信号と第2音響信号との間の減算で生成する差成分生成手段と、定位成分の有無を判定する判定手段と、定位成分が強調されるように周波数毎の係数値が設定された第1処理係数列(例えば処理係数列GA)を、和成分と差成分との間の減算(例えば後述の数式(5A),数式(7A),数式(5C)の演算)を含む減算処理で生成する第1生成手段と、定位成分が存在しない場合に減算処理で生成される第1処理係数列と比較して各周波数の係数値の分布が平準な第2処理係数列(例えば処理係数列GB)を生成する第2生成手段と、第1音響信号および第2音響信号の各々の各周波数成分に対し、定位成分が存在すると判定手段が判定した場合に第1処理係数列の各係数値を作用させ、定位成分が存在しないと判定手段が判定した場合に第2処理係数列の各係数値を作用させる信号処理手段とを具備する。   In order to solve the above problems, an acoustic processing device of the present invention suppresses a localization component in a specific direction and sum component generation means for generating a sum component of a stereo first audio signal and a second audio signal. Difference component generation means for generating a difference component by subtraction between the first acoustic signal and the second acoustic signal, determination means for determining the presence / absence of a localization component, and a coefficient value for each frequency so that the localization component is emphasized Is subtracted between the sum component and the difference component (for example, calculation of Equation (5A), Equation (7A), Equation (5C) described later) A first generation means generated by the subtraction processing including the second processing coefficient sequence (the distribution of coefficient values at each frequency is level compared to the first processing coefficient sequence generated by the subtraction processing when no localization component is present ( For example, the second generation means for generating the processing coefficient sequence GB), the first acoustic signal and the second acoustic signal Each coefficient value of the first processing coefficient sequence is applied when the determination unit determines that a localization component is present for each frequency component of the second component, and the second process is performed when the determination unit determines that no localization component exists. Signal processing means for operating each coefficient value of the coefficient sequence.

以上の構成においては、第1音響信号および第2音響信号の各々に処理係数列を作用させるから、定位成分が強調されたステレオ形式の音響信号を生成することが可能である。また、定位成分が存在しない場合には、第1処理係数列と比較して各係数値の分布が平準な第2処理係数列が信号処理手段での処理に適用される。したがって、定位成分の有無に関わらず第1処理係数列を適用する構成と比較すると、定位成分が存在しないにも関わらず第1処理係数列を適用することに起因した雑音(ミュージカルノイズ)を低減することが可能である。   In the above configuration, since the processing coefficient sequence is applied to each of the first acoustic signal and the second acoustic signal, it is possible to generate a stereo acoustic signal in which the localization component is emphasized. When the localization component does not exist, the second processing coefficient sequence in which the distribution of the coefficient values is leveled compared to the first processing coefficient sequence is applied to the processing in the signal processing means. Therefore, compared to a configuration in which the first processing coefficient sequence is applied regardless of the presence or absence of the localization component, noise (musical noise) due to the application of the first processing coefficient sequence even when the localization component does not exist is reduced. Is possible.

定位成分が存在する場合に第1処理係数列の各係数値は広範囲に分散し、定位成分が存在しない場合に第1処理係数列の各係数値は所定値の近傍に偏在するという傾向がある。そこで、本発明の好適な態様の判定手段は、第1生成手段が生成した第1処理係数列の複数の係数値の平均値または散らばりの度合(例えば分散や標準偏差)が閾値を上回る場合には定位成分が存在すると判定し、閾値を下回る場合には定位成分が存在しないと判定する。以上の態様では、信号処理手段での処理に適用され得る第1処理係数列が定位成分の有無の判定に流用されるから、定位成分の有無を判定する独立の要素を設置した構成と比較して音響処理装置の構成や動作が簡素化されるという利点がある。ただし、定位成分の有無の判定に第1処理係数列を利用する構成は本発明において必須ではない。   When the localization component is present, the coefficient values of the first processing coefficient sequence are distributed over a wide range, and when the localization component is not present, the coefficient values of the first processing coefficient sequence tend to be unevenly distributed in the vicinity of the predetermined value. . Therefore, the determination unit according to a preferred aspect of the present invention is configured when the average value or the degree of dispersion (for example, variance or standard deviation) of the plurality of coefficient values of the first processing coefficient sequence generated by the first generation unit exceeds a threshold value. Determines that the localization component is present, and determines that the localization component does not exist if the localization component is below the threshold. In the above aspect, since the first processing coefficient sequence that can be applied to the processing in the signal processing means is used for the determination of the presence / absence of the localization component, it is compared with the configuration in which the independent element for determining the presence / absence of the localization component is installed. Therefore, there is an advantage that the configuration and operation of the sound processing apparatus are simplified. However, the configuration using the first processing coefficient sequence for the determination of the presence or absence of the localization component is not essential in the present invention.

第2生成手段が第2処理係数列を生成する方法は任意であるが、例えば、各係数値を所定値に設定した第2処理係数列を生成する(例えば事前に用意された第2処理係数列を記憶手段から取得する)方法や、第1生成手段が生成した第1処理係数列の各係数値の分布を平滑化することで第2処理係数列を生成する方法が採用され得る。前者の構成によれば、第2処理係数列を生成するための処理や構成が簡素化されるという効果が実現され、後者の構成によれば、第1音響信号や第2音響信号の特性が第2処理係数列に反映されることで聴覚的に自然な音響信号を生成できるという効果が実現される。   The method of generating the second processing coefficient sequence by the second generation means is arbitrary. For example, a second processing coefficient sequence in which each coefficient value is set to a predetermined value is generated (for example, a second processing coefficient prepared in advance). A method of acquiring a sequence from a storage unit) and a method of generating a second processing coefficient sequence by smoothing the distribution of coefficient values of the first processing coefficient sequence generated by the first generation unit. According to the former configuration, an effect that the processing and configuration for generating the second processing coefficient sequence is simplified is realized, and according to the latter configuration, the characteristics of the first acoustic signal and the second acoustic signal are improved. The effect of being able to generate an acoustically natural acoustic signal is realized by being reflected in the second processing coefficient sequence.

本発明の好適な態様において、判定手段は、定位成分の有無を単位期間毎に判定し、信号処理手段は、定位成分の存在が所定個の単位期間にわたって連続して否定された場合に第2処理係数列の適用を開始する。以上の態様においては、定位成分の存在が所定個の単位期間にわたって連続して否定された場合に第2処理係数列の適用が開始されるから、信号処理手段での処理に適用される処理係数列が第1処理係数列および第2処理係数列の一方から他方に変更される頻度が減少する。したがって、聴覚的に自然な印象の音響信号を生成できるという利点がある。   In a preferred aspect of the present invention, the determination means determines the presence / absence of a localization component for each unit period, and the signal processing means performs the second operation when the presence of the localization component is continuously denied over a predetermined number of unit periods. Start applying the processing coefficient sequence. In the above aspect, since the application of the second processing coefficient sequence is started when the presence of the localization component is continuously denied over a predetermined number of unit periods, the processing coefficient applied to the processing in the signal processing means The frequency with which the column is changed from one of the first processing coefficient column and the second processing coefficient column to the other decreases. Therefore, there is an advantage that an acoustic signal with an acoustically natural impression can be generated.

本発明の好適な態様に係る音響処理装置は、特定位置(方向)を示す定位変数を可変に設定する変数設定手段を具備し、差成分生成手段は、変数設定手段が設定した定位変数に応じた比率で第1音響信号および第2音響信号の一方から他方を減算する。以上の態様においては、差成分生成手段による減算時の第1音響信号および第2音響信号の比率が定位変数に応じて可変に設定される。したがって、強調の対象となる定位成分の位置(方向)を可変に制御できる(中央方向に限定されない)という利点がある。   The sound processing apparatus according to a preferred aspect of the present invention includes variable setting means for variably setting a localization variable indicating a specific position (direction), and the difference component generation means is responsive to the localization variable set by the variable setting means. The other is subtracted from one of the first acoustic signal and the second acoustic signal at a predetermined ratio. In the above aspect, the ratio of the first acoustic signal and the second acoustic signal at the time of subtraction by the difference component generation means is variably set according to the localization variable. Therefore, there is an advantage that the position (direction) of the localization component to be emphasized can be variably controlled (not limited to the central direction).

以上の各態様に係る音響処理装置は、音響信号の処理に専用されるDSP(Digital Signal Processor)などのハードウェア(電子回路)によって実現されるほか、CPU(Central Processing Unit)などの汎用の演算処理装置とプログラム(ソフトウェア)との協働によっても実現される。本発明のプログラムは、ステレオ形式の第1音響信号と第2音響信号との和成分を生成する和成分生成処理と、特定方向の定位成分を抑圧した差成分を第1音響信号と第2音響信号との間の減算で生成する差成分生成処理と、定位成分の有無を判定する判定処理と、定位成分が強調されるように周波数毎の係数値が設定された第1処理係数列を、和成分と差成分との間の減算を含む減算処理で生成する第1生成処理と、定位成分が存在しない場合に減算処理で生成される第1処理係数列と比較して各周波数の係数値の分布が平準な第2処理係数列を生成する第2生成処理と、第1音響信号および第2音響信号の各々の各周波数成分に対し、定位成分が存在すると判定処理で判定した場合に第1処理係数列の各係数値を作用させ、定位成分が存在しないと判定処理で判定した場合に第2処理係数列の各係数値を作用させる信号処理とをコンピュータに実行させる。以上のプログラムによれば、本発明の音響処理装置と同様の作用および効果が実現される。本発明のプログラムは、コンピュータが読取可能な記録媒体に格納された形態で利用者に提供されてコンピュータにインストールされるほか、通信網を介した配信の形態でサーバ装置から提供されてコンピュータにインストールされる。   The acoustic processing device according to each of the above aspects is realized by hardware (electronic circuit) such as a DSP (Digital Signal Processor) dedicated to processing of an acoustic signal, or a general-purpose calculation such as a CPU (Central Processing Unit). It is also realized by cooperation between the processing device and a program (software). The program of the present invention includes a sum component generation process for generating a sum component of a stereo first sound signal and a second sound signal, and a difference component obtained by suppressing a localization component in a specific direction as a first sound signal and a second sound. A difference component generation process generated by subtraction with a signal, a determination process for determining the presence or absence of a localization component, and a first processing coefficient sequence in which a coefficient value for each frequency is set so that the localization component is emphasized, The coefficient value of each frequency compared with the first generation process generated by the subtraction process including subtraction between the sum component and the difference component and the first process coefficient sequence generated by the subtraction process when no localization component exists Second generation processing for generating a second processing coefficient sequence with a uniform distribution of the first and second frequency components when the determination component determines that a localization component exists for each frequency component of the first acoustic signal and the second acoustic signal. Each coefficient value of one processing coefficient sequence is applied, and the localization component exists. Not the determination process when it is determined the signal processing and the action of each coefficient value of the second processing coefficient sequence to be executed by a computer in. According to the above program, the same operation and effect as the sound processing apparatus of the present invention are realized. The program of the present invention is provided to a user in a form stored in a computer-readable recording medium and installed in the computer, or provided from a server device in a form of distribution via a communication network and installed in the computer. Is done.

第1実施形態に係る音響処理装置のブロック図である。1 is a block diagram of a sound processing apparatus according to a first embodiment. 係数設定部のブロック図である。It is a block diagram of a coefficient setting part. 係数設定部の動作の説明図である。It is explanatory drawing of operation | movement of a coefficient setting part. 第2実施形態における第2生成部の動作の説明図である。It is explanatory drawing of operation | movement of the 2nd production | generation part in 2nd Embodiment.

<A:第1実施形態>
図1は、本発明の第1実施形態に係る音響処理装置100のブロック図である。音響処理装置100には信号供給装置12と放音装置14と入力装置16とが接続される。信号供給装置12は、音響(音声や楽音)の波形を表す時間領域の音響信号SIN(SIN_L,SIN_R)を音響処理装置100に供給する。
<A: First Embodiment>
FIG. 1 is a block diagram of a sound processing apparatus 100 according to the first embodiment of the present invention. A signal supply device 12, a sound emission device 14, and an input device 16 are connected to the sound processing device 100. The signal supply device 12 supplies the sound processing device 100 with time-domain sound signals SIN (SIN_L, SIN_R) representing the waveform of sound (speech and music).

左チャネルの音響信号SIN_Lおよび右チャネルの音響信号SIN_Rは、音響を発生する複数の音源の音像が相異なる位置に定位する(すなわち、音響の振幅や位相が各音源の位置に応じて相違する)ように収音または加工されたステレオ形式の信号である。周囲の音響を収音して音響信号SINを生成する収音機器(ステレオマイク)や、可搬型または内蔵型の記録媒体から音響信号SINを取得して音響処理装置100に出力する再生装置や、通信網から音響信号SINを受信して音響処理装置100に出力する通信装置が信号供給装置12として採用され得る。   The sound signal SIN_L of the left channel and the sound signal SIN_R of the right channel are localized at positions where the sound images of a plurality of sound sources generating sound are different (that is, the sound amplitude and phase differ depending on the position of each sound source). In this way, a stereo signal is collected or processed. A sound collection device (stereo microphone) that collects ambient sound to generate an acoustic signal SIN, a playback device that acquires the acoustic signal SIN from a portable or built-in recording medium, and outputs it to the acoustic processing device 100; A communication device that receives the acoustic signal SIN from the communication network and outputs the acoustic signal SIN to the acoustic processing device 100 may be employed as the signal supply device 12.

音響処理装置100は、信号供給装置12が供給する音響信号SINから音響信号SOUT(SOUT_L,SOUT_R)を生成する。左チャネルの音響信号SOUT_Lおよび右チャネルの音響信号SOUT_Rは、音響信号SINが表す音響のうち目的の位置(方向)に音像が定位する定位成分を強調したステレオ形式の信号である。放音装置14(例えばステレオスピーカやステレオヘッドホン)は、音響処理装置100が生成した音響信号SOUT(SOUT_L,SOUT_R)に応じた音波を放射する。   The acoustic processing device 100 generates an acoustic signal SOUT (SOUT_L, SOUT_R) from the acoustic signal SIN supplied by the signal supply device 12. The left-channel acoustic signal SOUT_L and the right-channel acoustic signal SOUT_R are stereo signals in which a localization component in which a sound image is localized at a target position (direction) in the sound represented by the acoustic signal SIN is emphasized. The sound emitting device 14 (for example, a stereo speaker or a stereo headphone) emits a sound wave corresponding to the acoustic signal SOUT (SOUT_L, SOUT_R) generated by the acoustic processing device 100.

入力装置16は、音響処理装置100に対する指示を利用者が入力するための機器(例えばマウスやキーボード)である。利用者は、入力装置16を適宜に操作することで、定位成分の位置(方向)を音響処理装置100に対して任意に指示することが可能である。   The input device 16 is a device (for example, a mouse or a keyboard) for a user to input an instruction to the sound processing device 100. The user can arbitrarily instruct the position (direction) of the localization component to the sound processing device 100 by appropriately operating the input device 16.

図1に示すように、音響処理装置100は、演算処理装置22と記憶装置24とを具備するコンピュータシステムで実現される。記憶装置24は、演算処理装置22が実行するプログラムPGや演算処理装置22が使用するデータを記憶する。半導体記録媒体や磁気記録媒体などの公知の記録媒体や複数種の記録媒体の組合せが記憶装置24として任意に採用される。音響信号SIN(SIN_L,SIN_R)を記憶装置24に記憶した構成(したがって信号供給装置12は省略され得る)も好適である。   As shown in FIG. 1, the sound processing device 100 is realized by a computer system including an arithmetic processing device 22 and a storage device 24. The storage device 24 stores a program PG executed by the arithmetic processing device 22 and data used by the arithmetic processing device 22. A known recording medium such as a semiconductor recording medium or a magnetic recording medium or a combination of a plurality of types of recording media is arbitrarily adopted as the storage device 24. A configuration in which the acoustic signal SIN (SIN_L, SIN_R) is stored in the storage device 24 (therefore, the signal supply device 12 can be omitted) is also suitable.

演算処理装置22は、記憶装置24に格納されたプログラムPGを実行することで、音響信号SINから音響信号SOUTを生成するための複数の機能(変数設定部32,周波数分析部34,係数設定部36,信号処理部38,波形合成部40,判定部42)を実現する。なお、演算処理装置22の各機能を複数の集積回路に分散した構成や、専用の電子回路(DSP)が各機能を実現する構成も採用され得る。   The arithmetic processing unit 22 executes a program PG stored in the storage device 24 to thereby generate a plurality of functions (variable setting unit 32, frequency analysis unit 34, coefficient setting unit) for generating the acoustic signal SOUT from the acoustic signal SIN. 36, a signal processing unit 38, a waveform synthesis unit 40, and a determination unit 42). A configuration in which each function of the arithmetic processing unit 22 is distributed over a plurality of integrated circuits, or a configuration in which a dedicated electronic circuit (DSP) realizes each function may be employed.

変数設定部32は、定位変数αを可変に設定する。定位変数αは、定位成分の音像の位置(方向)を指定する変数である。本形態の変数設定部32は、入力装置16に対する利用者からの指示に応じて定位変数α(0≦α≦1)を可変に設定する。例えば、定位変数αが0.5(中央値)である場合には中央(正面)方向が指示される。また、定位変数αが1に近いほど右寄りの方向が指示され、定位変数αが0に近いほど左寄りの方向が指示される。利用者は、放音装置14からの再生音を聴取しながら随時に入力装置16の操作で定位変数αを変更することが可能である。   The variable setting unit 32 sets the localization variable α to be variable. The localization variable α is a variable that designates the position (direction) of the sound image of the localization component. The variable setting unit 32 of the present embodiment variably sets the localization variable α (0 ≦ α ≦ 1) in accordance with an instruction from the user to the input device 16. For example, when the localization variable α is 0.5 (median value), the center (front) direction is indicated. Further, as the localization variable α is closer to 1, a rightward direction is indicated, and as the localization variable α is closer to 0, a leftward direction is indicated. The user can change the localization variable α by operating the input device 16 at any time while listening to the reproduced sound from the sound emitting device 14.

周波数分析部34は、音響信号SIN_Lの周波数スペクトル(複素スペクトル)LAと音響信号SIN_Rの周波数スペクトル(複素スペクトル)RAとを時間軸上の単位期間(フレーム)毎に順次に生成する。周波数スペクトルLAは、K個の周波数(周波数帯域)f1〜fKの各々に対応する周波数成分LA[k]の系列(LA[1]〜LA[K])である(k=1〜K)。同様に、周波数スペクトルRAは、周波数f1〜fKの各々に対応する周波数成分RA[k]の系列(RA[1]〜RA[K])である。周波数スペクトルLAおよび周波数スペクトルRAの生成には、短時間フーリエ変換などの公知の周波数分析が任意に採用され得る。なお、通過帯域が相異なるK個の帯域通過フィルタで構成されるフィルタバンクも周波数分析部34として採用され得る。   The frequency analysis unit 34 sequentially generates a frequency spectrum (complex spectrum) LA of the acoustic signal SIN_L and a frequency spectrum (complex spectrum) RA of the acoustic signal SIN_R for each unit period (frame) on the time axis. The frequency spectrum LA is a series (LA [1] to LA [K]) of frequency components LA [k] corresponding to each of K frequencies (frequency bands) f1 to fK (k = 1 to K). Similarly, the frequency spectrum RA is a series of frequency components RA [k] (RA [1] to RA [K]) corresponding to each of the frequencies f1 to fK. For the generation of the frequency spectrum LA and the frequency spectrum RA, a known frequency analysis such as a short-time Fourier transform may be arbitrarily employed. A filter bank composed of K band pass filters having different pass bands can also be adopted as the frequency analysis unit 34.

図1の係数設定部36は、音響信号SIN(SIN_L,SIN_R)の定位成分の強調に使用される処理係数列G(GA,GB)を生成する。処理係数列Gは、周波数f1〜fKの各々に対応するg[k]の系列(g[1]〜g[K])であり、周波数スペクトルLAと周波数スペクトルRAとを利用して単位期間毎に順次に生成される。係数値g[k]は、音響信号SIN_Lの周波数成分LA[k]や音響信号SIN_Rの周波数成分RA[k]に対するゲイン(スペクトルゲイン)に相当し、0以上かつ1以下の範囲内で設定される(0≦g[k]≦1)。なお、処理係数列GAと処理係数列GBとの区別については後述する。   The coefficient setting unit 36 in FIG. 1 generates a processing coefficient sequence G (GA, GB) used for emphasizing the localization component of the acoustic signal SIN (SIN_L, SIN_R). The processing coefficient sequence G is a series of g [k] (g [1] to g [K]) corresponding to each of the frequencies f1 to fK, and uses the frequency spectrum LA and the frequency spectrum RA for each unit period. Are generated sequentially. The coefficient value g [k] corresponds to a gain (spectral gain) for the frequency component LA [k] of the acoustic signal SIN_L and the frequency component RA [k] of the acoustic signal SIN_R, and is set within a range of 0 or more and 1 or less. (0 ≦ g [k] ≦ 1). The distinction between the processing coefficient sequence GA and the processing coefficient sequence GB will be described later.

図1の信号処理部38は、係数設定部36が生成した処理係数列G(GA,GB)を周波数スペクトルLAおよび周波数スペクトルRAの各々に個別に作用させることで周波数スペクトルLBと周波数スペクトルRBとを単位期間毎に順次に生成する。周波数スペクトルLBは、各周波数fkに対応する周波数成分LB[k]の系列(LB[1]〜LB[K])であり、周波数スペクトルRBは、各周波数fkに対応する周波数成分RB[k]の系列(RB[1]〜RB[K])である。   The signal processing unit 38 in FIG. 1 applies the processing coefficient sequence G (GA, GB) generated by the coefficient setting unit 36 to each of the frequency spectrum LA and the frequency spectrum RA, so that the frequency spectrum LB and the frequency spectrum RB Are sequentially generated for each unit period. The frequency spectrum LB is a series of frequency components LB [k] corresponding to each frequency fk (LB [1] to LB [K]), and the frequency spectrum RB is a frequency component RB [k] corresponding to each frequency fk. (RB [1] to RB [K]).

具体的には、信号処理部38は、以下の数式(1A)および数式(1B)に示すように、各単位期間の周波数スペクトルLAおよび周波数スペクトルRAの各々に対し、当該単位期間について係数設定部36が生成した共通の処理係数列G(GA,GB)を乗算する。すなわち、周波数スペクトルLBの各周波数fkの周波数成分LB[k]は、その周波数fkの周波数成分LA[k]と係数値g[k]との乗算値に設定され(数式(1A))、周波数スペクトルRBの各周波数成分RB[k]は、周波数成分RA[k]と係数値g[k]との乗算値に設定される(数式(1B))。

Figure 2011199811
Specifically, as shown in the following formulas (1A) and (1B), the signal processing unit 38 applies a coefficient setting unit for each unit period to the frequency spectrum LA and the frequency spectrum RA of each unit period. The common processing coefficient sequence G (GA, GB) generated by 36 is multiplied. That is, the frequency component LB [k] of each frequency fk of the frequency spectrum LB is set to the product of the frequency component LA [k] of the frequency fk and the coefficient value g [k] (formula (1A)), and the frequency Each frequency component RB [k] of the spectrum RB is set to a product of the frequency component RA [k] and the coefficient value g [k] (formula (1B)).
Figure 2011199811

図1の波形合成部40は、信号処理部38による処理後の周波数スペクトルLBおよび周波数スペクトルRBからステレオ形式の音響信号SOUT_Lおよび音響信号SOUT_Rを生成する。具体的には、波形合成部40は、単位期間毎の周波数スペクトルLBを逆フーリエ変換で時間領域の信号に変換するとともに前後の単位期間について相互に連結することで音響信号SOUT_Lを生成する。同様に、波形合成部40は、各周波数スペクトルRBから音響信号SOUT_Rを生成する。波形合成部40が生成した音響信号SOUT(SOUT_L,SOUT_R)が放音装置14に供給されて音波として再生される。   The waveform synthesizer 40 in FIG. 1 generates a stereo acoustic signal SOUT_L and an acoustic signal SOUT_R from the frequency spectrum LB and the frequency spectrum RB processed by the signal processor 38. Specifically, the waveform synthesizer 40 generates the acoustic signal SOUT_L by converting the frequency spectrum LB for each unit period into a time domain signal by inverse Fourier transform and connecting the unit periods before and after. Similarly, the waveform synthesizer 40 generates an acoustic signal SOUT_R from each frequency spectrum RB. The acoustic signals SOUT (SOUT_L, SOUT_R) generated by the waveform synthesis unit 40 are supplied to the sound emitting device 14 and reproduced as sound waves.

以上に説明したように、第1実施形態では、音響信号SIN_L(周波数スペクトルLA)および音響信号SIN_R(周波数スペクトルRA)の各々に対して個別に処理係数列Gを作用させるから、定位成分を強調した音響信号SOUT(SOUT_L,SOUT_R)をステレオ形式のまま生成することが可能である。   As described above, in the first embodiment, since the processing coefficient sequence G is individually applied to each of the acoustic signal SIN_L (frequency spectrum LA) and the acoustic signal SIN_R (frequency spectrum RA), the localization component is emphasized. The generated acoustic signal SOUT (SOUT_L, SOUT_R) can be generated in a stereo format.

次に、図2を参照して係数設定部36の詳細を説明する。図2に示すように、係数設定部36は、和成分生成部52と差成分生成部54と係数列生成部60とを含んで構成される。和成分生成部52は、音響信号SIN_Lの周波数成分LA[1]〜LA[K]と音響信号SIN_Rの周波数成分RA[1]〜RA[K]との加算で単位期間毎に順次に和成分(複素スペクトル)Mを生成する。和成分Mは、周波数f1〜fKの各々に対応する周波数成分M[k]の系列(M[1]〜M[K])である。数式(2)に示すように、和成分Mの周波数fkの周波数成分M[k]は、その周波数fkの周波数成分LA[k]と周波数成分RA[k]との加算に相当する。したがって、和成分Mは、全部の音源からの音響を混合したモノラル形式の信号に相当する。なお、周波数成分LA[k]と周波数成分RA[k]との加重和や相加平均を和成分Mとして算定する構成も採用され得る。

Figure 2011199811
Next, the details of the coefficient setting unit 36 will be described with reference to FIG. As shown in FIG. 2, the coefficient setting unit 36 includes a sum component generation unit 52, a difference component generation unit 54, and a coefficient sequence generation unit 60. The sum component generation unit 52 adds the frequency components LA [1] to LA [K] of the acoustic signal SIN_L and the frequency components RA [1] to RA [K] of the acoustic signal SIN_R sequentially for each unit period. (Complex spectrum) M is generated. The sum component M is a sequence (M [1] to M [K]) of frequency components M [k] corresponding to the frequencies f1 to fK. As shown in Equation (2), the frequency component M [k] of the frequency fk of the sum component M corresponds to the addition of the frequency component LA [k] and the frequency component RA [k] of the frequency fk. Therefore, the sum component M corresponds to a monaural signal in which sounds from all sound sources are mixed. Note that a configuration in which a weighted sum or arithmetic average of the frequency component LA [k] and the frequency component RA [k] is calculated as the sum component M may be employed.
Figure 2011199811

図2の差成分生成部54は、音響信号SIN_Lの周波数成分LA[1]〜LA[K]と音響信号SIN_Rの周波数成分RA[1]〜RA[K]との間の減算で単位期間毎に順次に差成分(複素スペクトル)Sを生成する。差成分Sは、周波数f1〜fKの各々に対応する周波数成分S[k]の系列(S[1]〜S[K])である。差成分生成部54は、変数設定部32が設定した定位変数αを利用した数式(3)の演算(加重減算)で周波数成分S[1]〜S[K]を算定する。

Figure 2011199811
The difference component generator 54 in FIG. 2 performs subtraction between the frequency components LA [1] to LA [K] of the acoustic signal SIN_L and the frequency components RA [1] to RA [K] of the acoustic signal SIN_R for each unit period. The difference component (complex spectrum) S is generated sequentially. The difference component S is a series (S [1] to S [K]) of frequency components S [k] corresponding to the frequencies f1 to fK. The difference component generator 54 calculates the frequency components S [1] to S [K] by the calculation (weighted subtraction) of Expression (3) using the localization variable α set by the variable setting unit 32.
Figure 2011199811

数式(3)から理解されるように、定位変数αに応じた可変の比率(重み値)で周波数成分LA[k]から周波数成分RA[k]を減算(逆相加算)することで差成分Sの各周波数成分S[k]が生成される。したがって、差成分Sは、音響信号SIN(SIN_L,SIN_R)のうち定位変数αに応じた位置(方向)の定位成分を他の成分に対して相対的に抑圧した信号(すなわち、定位成分以外を相対的に強調した信号)となる。例えば、定位変数αが0.5(中央値)である場合には、中央方向の定位成分を抑圧した差成分Sが生成される。また、定位変数αが0.5を上回るほど、中央方向に対して右寄りの定位成分が差成分Sでは抑圧され、定位変数αが0.5を下回るほど、中央方向に対して左寄りの定位成分が差成分Sでは抑圧される。   As understood from Equation (3), the difference component is obtained by subtracting the frequency component RA [k] from the frequency component LA [k] by a variable ratio (weight value) corresponding to the localization variable α (reverse phase addition). Each frequency component S [k] of S is generated. Therefore, the difference component S is a signal in which the localization component in the position (direction) corresponding to the localization variable α in the acoustic signal SIN (SIN_L, SIN_R) is relatively suppressed with respect to other components (that is, other than the localization component). Relatively emphasized signal). For example, when the localization variable α is 0.5 (median value), a difference component S in which the localization component in the central direction is suppressed is generated. Further, as the localization variable α exceeds 0.5, the localization component closer to the center direction is suppressed by the difference component S, and as the localization variable α is less than 0.5, the localization component toward the left side relative to the center direction is suppressed. However, the difference component S is suppressed.

数式(3)の記号max(α,1−α)は、定位変数αまたは変数(1−α)のうちの最大値を意味する。定位変数αは1以下の数値に設定されるから、数式(3)の分子の演算のみでは周波数成分S[k]のパワー(振幅)が不足する可能性がある。数式(3)のように最大値max(α,1−α)で除算するのは、周波数成分S[k]のパワーを周波数成分LA[k]や周波数成分RA[k]と同等に維持するためである。   The symbol max (α, 1-α) in Equation (3) means the maximum value of the localization variable α or the variable (1-α). Since the localization variable α is set to a numerical value of 1 or less, there is a possibility that the power (amplitude) of the frequency component S [k] is insufficient only by the calculation of the numerator of Equation (3). Dividing by the maximum value max (α, 1−α) as in Equation (3) maintains the power of the frequency component S [k] equal to the frequency component LA [k] and the frequency component RA [k]. Because.

図2の係数列生成部60は、和成分生成部52が生成した和成分Mと差成分生成部54が生成した差成分Sとを利用して処理係数列G(GA,GB)を単位期間毎に生成する。図2に示すように、係数列生成部60は、処理係数列GAを生成する第1生成部62と、処理係数列GBを生成する第2生成部64とを含んで構成される。   The coefficient sequence generation unit 60 in FIG. 2 uses the sum component M generated by the sum component generation unit 52 and the difference component S generated by the difference component generation unit 54 to generate the processing coefficient sequence G (GA, GB) as a unit period. Generate every time. As shown in FIG. 2, the coefficient sequence generation unit 60 includes a first generation unit 62 that generates a processing coefficient sequence GA and a second generation unit 64 that generates a processing coefficient sequence GB.

処理係数列GAは、音響信号SIN(SIN_L,SIN_R)の定位成分を強調するための数値列である。第1生成部62は、以下の数式(4)の演算で処理係数列GAの各係数値g[k]を算定する。なお、数式(4)において振幅P[k]1/2を周波数成分M[k]の振幅|M[k]|で除算するのは、処理係数列GAの各係数値g[k]を1以下の数値(0≦g[k]≦1)に正規化するためである。

Figure 2011199811
The processing coefficient sequence GA is a numerical sequence for emphasizing the localization component of the acoustic signal SIN (SIN_L, SIN_R). The first generation unit 62 calculates each coefficient value g [k] of the processing coefficient sequence GA by the calculation of the following formula (4). Note that in equation (4), the amplitude P [k] 1/2 is divided by the amplitude | M [k] | of the frequency component M [k] to make each coefficient value g [k] of the processing coefficient sequence GA 1 This is for normalization to the following numerical values (0 ≦ g [k] ≦ 1).
Figure 2011199811

数式(4)の記号P[k]は、定位成分を強調したパワースペクトルPのうち周波数fkでのパワーを意味する。第1生成部62は、以下の数式(5A)および数式(5B)で表現される演算(以下「減算処理」という)で数式(4)のパワーP[k]を算定する。

Figure 2011199811
数式(5A)から理解されるように、周波数成分M[k]のパワー|M[k]|が周波数成分S[k]のパワー|S[k]|を上回る周波数fkでのパワーP[k]は、和成分Mのパワー|M[k]|から差成分Sのパワー|S[k]|を減算した数値に設定される。すなわち、パワースペクトルPは、和成分Mと差成分Sとの間のパワースペクトルの減算(スペクトル減算)で生成される。他方、パワー|M[k]|がパワー|S[k]|を下回る周波数fkでのパワーP[k]は、和成分Mのパワー|M[k]|と所定の係数(フロアリング係数)βとの乗算値に設定される。 The symbol P [k] in Equation (4) means the power at the frequency fk in the power spectrum P in which the localization component is emphasized. The first generation unit 62 calculates the power P [k] of the equation (4) by an operation expressed by the following equations (5A) and (5B) (hereinafter referred to as “subtraction process”).
Figure 2011199811
As understood from the equation (5A), the power P at the frequency fk in which the power | M [k] | 2 of the frequency component M [k] exceeds the power | S [k] | 2 of the frequency component S [k]. [k] is set to a value obtained by subtracting the power | S [k] | 2 of the difference component S from the power | M [k] | 2 of the sum component M. That is, the power spectrum P is generated by subtraction (spectrum subtraction) of the power spectrum between the sum component M and the difference component S. On the other hand, the power | M [k] | 2 is the power | S [k] | Power P [k] of 2 at below frequencies fk, the power of the sum component M | M [k] | 2 and a predetermined coefficient (Floor It is set to the product of the ring coefficient (β).

以上の説明から理解されるように、数式(5A)および数式(5B)で表現される減算処理は、和成分Mを信号成分(目的音)と仮定するとともに差成分Sを雑音成分と仮定した場合に雑音成分を抑圧するためのスペクトル減算(SS:Spectral Subtraction)に相当する。なお、数式(5B)の係数βを可変に制御する構成や、数式(5B)のパワー|M[k]|を差成分Sのパワー|S[k]|2に置換した構成も採用され得る。 As can be understood from the above description, the subtraction processing expressed by the equations (5A) and (5B) assumes that the sum component M is a signal component (target sound) and the difference component S is a noise component. This corresponds to spectral subtraction (SS) for suppressing noise components. Note that the configuration and to control the coefficient β in Equation (5B) variable, the power of the equation (5B) | is also employed 2 was replaced by construction | M [k] | 2 the difference component S of the power | S [k] obtain.

ところで、音響信号SIN(SIN_L,SIN_R)のなかには、定位成分が存在する区間と定位成分が存在しない区間(定位成分の発音が停止する区間)とが存在する。図3の部分(A)は、定位成分が存在する単位期間について第1生成部62が生成する処理係数列GAの模式図であり、図3の部分(B)は、定位成分が存在しない単位期間について第1生成部62が生成する処理係数列GAの模式図である。図3の部分(A)および部分(B)の所定値bは、数式(5B)の係数βに応じた所定の数値(例えばb=β1/2,0≦b≦1)である。 By the way, in the acoustic signal SIN (SIN_L, SIN_R), there are a section where the localization component exists and a section where the localization component does not exist (section where the sound generation of the localization component stops). Part (A) of FIG. 3 is a schematic diagram of the processing coefficient sequence GA generated by the first generation unit 62 for the unit period in which the localization component exists, and part (B) of FIG. 3 is a unit in which the localization component does not exist. It is a mimetic diagram of processing coefficient sequence GA which the 1st generating part 62 generates about a period. The predetermined value b of the part (A) and the part (B) in FIG. 3 is a predetermined numerical value (for example, b = β 1/2 , 0 ≦ b ≦ 1) corresponding to the coefficient β of the equation (5B).

定位成分が有意なパワーで存在する周波数fkについては、和成分Mのパワー|M[k]|2が差成分Sのパワー|S[k]|2を上回ることで数式(5A)の演算が実行される可能性が高い。数式(5A)に適用される差成分Sは、定位成分を相対的に抑圧した成分(定位成分以外を定位成分に対して強調した成分)であるから、数式(5A)で算定されるパワーP[k]の系列は、音響信号SIN(SIN_L,SIN_R)の定位成分を他の成分に対して相対的に強調したパワースペクトルに相当する。したがって、図3の部分(A)に示すように、定位成分が存在する場合に数式(4)で算定される処理係数列GAの各係数値g[k]は、定位成分のパワーが大きい周波数fkの係数値g[k]ほど1に近い数値となり、定位成分のパワーが小さい周波数fkの係数値g[k]ほど所定値bに近い数値(ゼロに近い数値)となるように周波数軸上で分布する。したがって、周波数スペクトルLAおよび周波数スペクトルRAの各々に信号処理部38が処理係数列GAを乗算することで、定位成分を強調したステレオ形式の音響信号SOUT(SOUT_L,SOUT_R)が生成される。 For frequencies fk that localization component is present in a significant power, the power of the sum component M | arithmetic operation formula with 2 to exceed (5A) | S [k] | M [k] | power of 2 is the difference component S Likely to be executed. The difference component S applied to the equation (5A) is a component in which the localization component is relatively suppressed (a component in which other than the localization component is emphasized with respect to the localization component), and thus the power P calculated by the equation (5A) The series [k] corresponds to a power spectrum in which the localization component of the acoustic signal SIN (SIN_L, SIN_R) is emphasized relative to other components. Therefore, as shown in part (A) of FIG. 3, when there is a localization component, each coefficient value g [k] of the processing coefficient sequence GA calculated by equation (4) is a frequency at which the localization component power is large. On the frequency axis, the coefficient value g [k] of fk is closer to 1, and the coefficient value g [k] of the frequency fk having a smaller localization component power is closer to a predetermined value b (a value closer to zero). Distributed by. Accordingly, the signal processing unit 38 multiplies each of the frequency spectrum LA and the frequency spectrum RA by the processing coefficient sequence GA, thereby generating a stereo-type acoustic signal SOUT (SOUT_L, SOUT_R) in which the localization component is emphasized.

他方、定位成分が存在しない単位期間では、数式(3)の差成分Sの演算での抑圧量が少ないから、和成分Mのパワー|M[k]|2が差成分Sのパワー|S[k]|2を上回る周波数fkの個数は、定位成分が存在する場合と比較して減少する。すなわち、数式(5A)に代えて数式(5B)でパワーP[k]が設定される周波数fkが増加する。したがって、図3の部分(B)に示すように、定位成分が存在しない場合に算定される処理係数列GAの各係数値g[k]は、周波数軸の全範囲にわたって所定値bに近い数値(ゼロに近い数値)となるように平坦に分布する。 On the other hand, in the unit period in which the localization component does not exist, the amount of suppression in the calculation of the difference component S in Equation (3) is small, so the power | M [k] | 2 of the sum component M is the power | S [ The number of frequencies fk exceeding k] | 2 decreases compared to the case where the localization component is present. That is, the frequency fk at which the power P [k] is set in Expression (5B) instead of Expression (5A) increases. Therefore, as shown in part (B) of FIG. 3, each coefficient value g [k] of the processing coefficient sequence GA calculated when no localization component is present is a numerical value close to the predetermined value b over the entire range of the frequency axis. The distribution is flat so that (a value close to zero).

ただし、定位成分が存在しない場合でも、和成分Mのパワー|M[k]|2が差成分Sのパワー|S[k]|2を上回る周波数fk(すなわち数式(5A)が適用される周波数fk)は存在し得るから、定位成分が存在しない場合の処理係数列GAの分布には、係数値g[k]が高い数値(数式(5A)で算定される数値)となる局所的なピークpが周波数軸上に点在する。したがって、定位成分が存在しない場合にも処理係数列GAを音響信号SIN(SIN_L,SIN_R)に作用させるとすれば、処理係数列GAのピークpに対応した高強度の成分が音響信号SOUT(SOUT_L,SOUT_R)の時間軸上および周波数軸上に点在して発生し、人工的で耳障りなミュージカルノイズ(ヒュルヒュルという雑音成分)として受聴者に知覚され得るという問題が発生する。なお、定位成分が存在する場合の処理係数列GAにも係数値g[k]の局所的なピークpは発生し得るが、音響信号SOUT(SOUT_L,SOUT_R)に含まれる強調後の定位成分によってマスクされるから(聴覚マスキング効果)、音響信号SOUTの再生音にミュージカルノイズは殆ど知覚されない。 However, even when there is no localization component, the frequency fk in which the power | M [k] | 2 of the sum component M exceeds the power | S [k] | 2 of the difference component S (that is, the frequency to which the formula (5A) is applied). fk) may exist, and therefore the local peak where the coefficient value g [k] is a high numerical value (the numerical value calculated by Equation (5A)) is present in the distribution of the processing coefficient sequence GA when no localization component is present. p is scattered on the frequency axis. Therefore, if the processing coefficient sequence GA is applied to the acoustic signal SIN (SIN_L, SIN_R) even when the localization component does not exist, a high-intensity component corresponding to the peak p of the processing coefficient sequence GA is detected as the acoustic signal SOUT (SOUT_L). , SOUT_R) are scattered on the time axis and the frequency axis, and a problem arises that the listener can perceive them as artificial and annoying musical noise (a noise component called Hulu Hulu). Note that a local peak p of the coefficient value g [k] may also occur in the processing coefficient sequence GA when the localization component is present, but depending on the localization component after enhancement included in the acoustic signal SOUT (SOUT_L, SOUT_R). Since it is masked (auditory masking effect), almost no musical noise is perceived in the reproduced sound of the acoustic signal SOUT.

以上の傾向を考慮して、第1実施形態では、音響信号SIN(SIN_L,SIN_R)に定位成分が存在する場合には処理係数列GA(図3の部分(A))を信号処理部38での処理に適用する一方、音響信号SINに定位成分が存在しない場合には、図3の部分(C)に示すように、各係数値g[k]の変動(特に局所的なピークp)を抑制した処理係数列GBを信号処理部38での処理に適用する。すなわち、処理係数列GBは、定位成分が存在しない場合に数式(5A)および数式(5B)の減算処理で生成される処理係数列GA(図3の部分(B))と比較して各係数値g[k]の分布が平準な(すなわち変動が抑制された)数値列である。   In consideration of the above tendency, in the first embodiment, when the localization component is present in the acoustic signal SIN (SIN_L, SIN_R), the processing coefficient sequence GA (part (A) in FIG. 3) is processed by the signal processing unit 38. On the other hand, when the localization component does not exist in the acoustic signal SIN, as shown in the part (C) of FIG. 3, the variation (especially the local peak p) of each coefficient value g [k] The suppressed processing coefficient sequence GB is applied to the processing in the signal processing unit 38. That is, the processing coefficient sequence GB is compared with the processing coefficient sequence GA (part (B) in FIG. 3) generated by the subtraction processing of the equations (5A) and (5B) when no localization component is present. This is a numerical sequence in which the distribution of numerical values g [k] is level (that is, fluctuations are suppressed).

図1の判定部42は、音響信号SIN(SIN_L,SIN_R)における定位成分の有無を判定する。図3の部分(A)と部分(B)とを参照して前述したように、処理係数列GAの係数値g[1]〜g[K]の分布の態様は、定位成分が存在する場合と存在しない場合とで相違する。そこで、判定部42は、以下に例示するように、第1生成部62が生成する処理係数列GAを利用して定位成分の有無を判定する。   The determination unit 42 in FIG. 1 determines the presence or absence of a localization component in the acoustic signal SIN (SIN_L, SIN_R). As described above with reference to part (A) and part (B) in FIG. 3, the distribution mode of the coefficient values g [1] to g [K] of the processing coefficient sequence GA is such that a localization component is present. And the case where it does not exist. Therefore, the determination unit 42 determines the presence / absence of a localization component using the processing coefficient sequence GA generated by the first generation unit 62 as illustrated below.

具体的には、定位成分が存在しない場合(図3の部分(B))には処理係数列GAの多くの係数値g[k]が所定値bの近傍の数値となるのに対し、定位成分が存在する場合(図3の部分(A))には、定位成分に対応する係数値g[k]が所定値bを上回る。したがって、処理係数列GAの係数値g[1]〜g[K]の平均値μは、定位成分が存在する場合のほうが、定位成分が存在しない場合と比較して大きい数値になるという傾向がある。以上の傾向を考慮して、第1実施形態の判定部42は、第1生成部62が生成した処理係数列GAの係数値g[1]〜g[K]の平均値μが所定の閾値μTHを上回る場合には音響信号SINに定位成分が存在すると判定し、平均値μが閾値μTHを下回る場合には音響信号SINに定位成分が存在しないと判定する。定位成分の有無の判定は、例えば単位期間毎に順次に実行される。   Specifically, when there is no localization component (part (B) in FIG. 3), many coefficient values g [k] of the processing coefficient sequence GA are numerical values in the vicinity of the predetermined value b, whereas localization is performed. When the component exists (part (A) in FIG. 3), the coefficient value g [k] corresponding to the localization component exceeds the predetermined value b. Therefore, the average value μ of the coefficient values g [1] to g [K] of the processing coefficient sequence GA tends to be larger when the localization component is present than when the localization component is not present. is there. Considering the above tendency, the determination unit 42 of the first embodiment determines that the average value μ of the coefficient values g [1] to g [K] of the processing coefficient sequence GA generated by the first generation unit 62 is a predetermined threshold value. If it exceeds μTH, it is determined that the localization component is present in the acoustic signal SIN, and if the average value μ is less than the threshold value μTH, it is determined that there is no localization component in the acoustic signal SIN. The determination of the presence / absence of a localization component is executed sequentially for each unit period, for example.

音響信号SINに定位成分が存在しないと判定部42が判定した場合、第2生成部64は、図3の部分(C)に示すように、K個の係数値g[1]〜g[K]を同一値γに設定した処理係数列GB(すなわち、各係数値g[k]が平準に分布する数値列)を生成する。所定値γは、0以上かつ1以下の範囲内で設定される(0≦γ≦1)。例えば、所定値γは、数式(5B)の係数βに応じた所定値b(例えばγ=b=0.1)に設定される。   When the determination unit 42 determines that the localization component is not present in the acoustic signal SIN, the second generation unit 64 performs K coefficient values g [1] to g [K as illustrated in a part (C) of FIG. ] Is set to the same value γ (that is, a numerical sequence in which the coefficient values g [k] are evenly distributed). The predetermined value γ is set within a range of 0 or more and 1 or less (0 ≦ γ ≦ 1). For example, the predetermined value γ is set to a predetermined value b (for example, γ = b = 0.1) corresponding to the coefficient β in the equation (5B).

定位成分が存在すると判定部42が判定した単位期間の周波数スペクトルLAおよび周波数スペクトルRAの各々に対し、信号処理部38は、第1生成部62が生成した処理係数列GAの各係数値g[k]を作用させる。他方、定位成分が存在しないと判定部42が判定した単位期間の周波数スペクトルLAおよび周波数スペクトルRAの各々に対し、信号処理部38は、第2生成部64が生成した処理係数列GBを作用させる。すなわち、処理係数列GBの係数値g[1]〜g[K]は小さい数値に設定されるから、定位成分が存在しない単位期間については、音響信号SOUTの全帯域(f1〜fK)にわたる音量が定位成分の存在時と比較して低下する。   For each of the frequency spectrum LA and the frequency spectrum RA of the unit period determined by the determination unit 42 that the localization component is present, the signal processing unit 38 selects each coefficient value g [of the processing coefficient sequence GA generated by the first generation unit 62. k] is applied. On the other hand, the signal processing unit 38 applies the processing coefficient sequence GB generated by the second generation unit 64 to each of the frequency spectrum LA and the frequency spectrum RA of the unit period determined by the determination unit 42 that the localization component does not exist. . That is, since the coefficient values g [1] to g [K] of the processing coefficient sequence GB are set to small numerical values, the volume over the entire band (f1 to fK) of the acoustic signal SOUT for the unit period in which the localization component does not exist. Decreases compared to the presence of a stereotaxic component.

以上の形態では、定位成分が存在する場合に、当該定位成分が強調されるように各係数値g[k]を設定した処理係数列GAが信号処理部38での処理に適用され、定位成分が存在しない場合に、各係数値g[k]が平準に分布する処理係数列GBが信号処理部38での処理に適用される。したがって、音響信号SINの定位成分を有効に強調し、かつ、音響信号SOUTのうち定位成分が存在しない各単位期間でのミュージカルノイズを有効に低減することが可能である。   In the above embodiment, when a localization component exists, the processing coefficient sequence GA in which each coefficient value g [k] is set so that the localization component is emphasized is applied to the processing in the signal processing unit 38, and the localization component is Is not applied, the processing coefficient sequence GB in which the coefficient values g [k] are evenly distributed is applied to the processing in the signal processing unit 38. Therefore, it is possible to effectively emphasize the localization component of the acoustic signal SIN and effectively reduce musical noise in each unit period in which no localization component exists in the acoustic signal SOUT.

<B:第2実施形態>
本発明の第2実施形態を説明する。なお、以下に例示する各態様において作用や機能が第1実施形態と同等である要素については、以上の説明で参照した符号を流用して各々の詳細な説明を適宜に省略する。
<B: Second Embodiment>
A second embodiment of the present invention will be described. In addition, about the element which an effect | action and a function are equivalent to 1st Embodiment in each aspect illustrated below, each reference detailed in the above description is diverted and each detailed description is abbreviate | omitted suitably.

第1実施形態の第2生成部64は、係数値g[1]〜g[K]を共通の所定値γに設定した処理係数列GBを生成した。第2実施形態の第2生成部64は、図4に示すように、第1生成部62が生成した処理係数列GAの係数値g[1]〜g[K]の分布を平滑化(ローパスフィルタ処理)することで処理係数列GBを生成する。例えば、処理係数列GBの係数値g[k]は、処理係数列GAのうち係数値g[k]を含む所定個の係数値g[k1]〜g[k2]の平均値に設定される。   The second generation unit 64 of the first embodiment generates a processing coefficient sequence GB in which the coefficient values g [1] to g [K] are set to a common predetermined value γ. As shown in FIG. 4, the second generation unit 64 of the second embodiment smoothes the distribution of the coefficient values g [1] to g [K] of the processing coefficient sequence GA generated by the first generation unit 62 (low-pass). The processing coefficient sequence GB is generated by performing the filtering process. For example, the coefficient value g [k] of the processing coefficient sequence GB is set to an average value of a predetermined number of coefficient values g [k1] to g [k2] including the coefficient value g [k] in the processing coefficient sequence GA. .

以上の構成でも第1実施形態と同様の効果が実現される。また、第1実施形態では処理係数列GBの各係数値g[k]が音響信号SINとは無関係の所定値γに設定されるのに対し、第2実施形態では、処理係数列GBにも音響信号SINの特性が反映されるから、聴感的に自然な印象の音響信号SOUTを生成できるという利点もある。   With the above configuration, the same effect as that of the first embodiment is realized. In the first embodiment, each coefficient value g [k] of the processing coefficient sequence GB is set to a predetermined value γ that is not related to the acoustic signal SIN, whereas in the second embodiment, the processing coefficient sequence GB is also set to the processing coefficient sequence GB. Since the characteristics of the acoustic signal SIN are reflected, there is also an advantage that the acoustic signal SOUT having an acoustically natural impression can be generated.

<C:変形例>
以上の各形態は多様に変形され得る。具体的な変形の態様を以下に例示する。以下の例示から任意に選択された2以上の態様は適宜に併合され得る。
<C: Modification>
Each of the above forms can be variously modified. Specific modifications are exemplified below. Two or more aspects arbitrarily selected from the following examples can be appropriately combined.

(1)変形例1
判定部42が定位成分の有無を判定する方法は任意である。例えば、処理係数列GAの係数値g[1]〜g[K]の散らばりの度合(分散σ2や標準偏差σ)を定位成分の有無の判定に利用する構成が採用される。すなわち、定位成分が存在する場合(図3の部分(A))には処理係数列GAの各係数値g[k]が広範囲に分散するのに対し、定位成分が存在しない場合(図3の部分(B))には処理係数列GAの多くの係数値g[k]が所定値bの近傍に偏在する。そこで、判定部42は、処理係数列GAの係数値g[1]〜g[K]の分散σ2が閾値σTHを上回る場合には定位成分が存在すると判定し、分散σ2が閾値σTHを下回る場合には定位成分が存在しないと判定する。以上の例示における分散σ2を標準偏差σに置換することも可能である。
(1) Modification 1
The method by which the determination unit 42 determines the presence / absence of a localization component is arbitrary. For example, a configuration is used in which the degree of dispersion (variance σ 2 and standard deviation σ) of the coefficient values g [1] to g [K] of the processing coefficient sequence GA is used to determine the presence or absence of a localization component. That is, when the localization component exists (part (A) in FIG. 3), the coefficient values g [k] of the processing coefficient sequence GA are dispersed over a wide range, whereas the localization component does not exist (in FIG. 3). In part (B), many coefficient values g [k] of the processing coefficient sequence GA are unevenly distributed in the vicinity of the predetermined value b. Therefore, the determination unit 42 determines that the localization component exists when the variance σ 2 of the coefficient values g [1] to g [K] of the processing coefficient sequence GA exceeds the threshold σTH, and the variance σ 2 has the threshold σTH. If it is below, it is determined that no stereotaxic component is present. It is also possible to replace the variance σ 2 in the above example with the standard deviation σ.

なお、定位成分の有無の判定に処理係数列GAを利用する構成は必須ではない。例えば、定位成分が歌唱音等の音声である場合には、音響信号SINを音声区間(音声が存在する区間)と非音声区間(音声が存在しない区間)とに区分する音声検出技術(VAD:Voice Activity Detection)が定位成分の有無の判定に利用される。すなわち、判定部42は、音響信号SINを音声区間と非音声区間とに区分し、音声区間内の各単位期間については定位成分の存在を肯定するとともに非音声区間内の各単位期間については定位成分の存在を否定する。   Note that the configuration using the processing coefficient sequence GA for determining the presence or absence of a localization component is not essential. For example, when the localization component is a voice such as a singing sound, a voice detection technique (VAD: voice signal) that divides the acoustic signal SIN into a voice section (section in which voice is present) and a non-voice section (section in which no voice is present). Voice Activity Detection) is used to determine the presence or absence of a localization component. That is, the determination unit 42 divides the acoustic signal SIN into a voice segment and a non-speech segment, affirms the presence of a localization component for each unit period in the speech segment, and is localized for each unit period in the non-speech segment. Denies the existence of the component.

なお、第1実施形態や第2実施形態のように定位成分の有無の判定に処理係数列GAを利用する場合には、定位成分の有無に関わらず第1生成部62が処理係数列GAを生成する必要がある。他方、音声検出技術を利用した前述の例示のように定位成分の有無の判定に処理係数列GAを利用しない場合には、定位成分が存在すると判定部42が判定した単位期間についてのみ第1生成部62が処理係数列GAを生成し、定位成分が存在しないと判定部42が判定した単位期間については第1生成部62が処理係数列GAを生成しない構成が採用され得る。   In the case where the processing coefficient sequence GA is used for the determination of the presence / absence of a localization component as in the first embodiment and the second embodiment, the first generation unit 62 sets the processing coefficient sequence GA regardless of the presence / absence of the localization component. Need to be generated. On the other hand, when the processing coefficient sequence GA is not used for the determination of the presence / absence of the localization component as in the above example using the voice detection technique, the first generation is performed only for the unit period determined by the determination unit 42 that the localization component exists. A configuration may be employed in which the first generation unit 62 does not generate the processing coefficient sequence GA for the unit period in which the unit 62 generates the processing coefficient sequence GA and the determination unit 42 determines that there is no localization component.

(2)変形例2
以上の各形態では、定位成分が存在しないと判定部42が判定した場合に第2生成部64が処理係数列GBを生成したが、定位成分の有無に関わらず第2生成部64が処理係数列GBを生成する構成も採用され得る。定位成分が存在しないと判定された場合には前述の各形態と同様に処理係数列GBが信号処理部38での処理に適用され、定位成分が存在すると判定された場合、第2生成部64が生成した処理係数列GBは信号処理部38での処理に適用されずに破棄される。
(2) Modification 2
In each of the above embodiments, when the determination unit 42 determines that no localization component exists, the second generation unit 64 generates the processing coefficient sequence GB. However, regardless of the presence of the localization component, the second generation unit 64 uses the processing coefficient. A configuration for generating the column GB can also be adopted. If it is determined that the localization component does not exist, the processing coefficient sequence GB is applied to the processing in the signal processing unit 38 as in the above-described embodiments, and if it is determined that the localization component exists, the second generation unit 64. Is generated without being applied to the processing in the signal processing unit 38.

(3)変形例3
以上の各形態では、処理係数列GAおよび処理係数列GBの一方を単位期間毎に選択したが、判定部42による判定の結果が複数の単位期間にわたって維持される場合に、信号処理部38での処理に適用される処理係数列Gを処理係数列GAおよび処理係数列GBの一方から他方に変更する構成も採用され得る。
(3) Modification 3
In each of the above embodiments, one of the processing coefficient sequence GA and the processing coefficient sequence GB is selected for each unit period. However, when the determination result by the determination unit 42 is maintained over a plurality of unit periods, the signal processing unit 38 A configuration may be employed in which the processing coefficient sequence G applied to the process is changed from one of the processing coefficient sequence GA and the processing coefficient sequence GB to the other.

例えば、信号処理部38は、N個(Nは2以上の自然数)の単位期間にわたって連続して定位成分の存在が否定された場合に、数式(1A)および数式(1B)の処理に適用する処理係数列Gを処理係数列GAから処理係数列GBに変更し、N個の単位期間にわたって連続して定位成分の存在が肯定された場合に、処理に適用する処理係数列Gを処理係数列GBから処理係数列GAに変更する。以上の構成によれば、信号処理部38が処理に適用する処理係数列Gを処理係数列GAと処理係数列GBとの間で変更する頻度が減少するから、音響信号SOUTの特性の時間的な変動が緩和される。したがって、聴感的に自然な印象の音響信号SOUTを生成できるという利点がある。なお、処理係数列GBの適用の条件となる単位期間の個数Nは可変に設定され得る。例えば、定位成分が音声である場合、定位成分が存在しないと判定される頻度は音声区間内で減少するから、音声区間内の各単位期間については個数Nを増加させる構成が採用され得る。   For example, the signal processing unit 38 applies the processing of the mathematical formula (1A) and the mathematical formula (1B) when the existence of the localization component is denied continuously for N unit periods (N is a natural number of 2 or more). When the processing coefficient sequence G is changed from the processing coefficient sequence GA to the processing coefficient sequence GB, and the presence of the localization component is affirmed continuously over N unit periods, the processing coefficient sequence G applied to the processing is changed to the processing coefficient sequence G The GB is changed to the processing coefficient sequence GA. According to the above configuration, since the frequency with which the signal processing unit 38 changes the processing coefficient sequence G applied to the processing between the processing coefficient sequence GA and the processing coefficient sequence GB is reduced, the temporal characteristics of the characteristics of the acoustic signal SOUT are reduced. Fluctuations are mitigated. Therefore, there is an advantage that the acoustic signal SOUT having an acoustically natural impression can be generated. Note that the number N of unit periods, which is a condition for applying the processing coefficient sequence GB, can be variably set. For example, when the localization component is speech, the frequency at which it is determined that the localization component does not exist decreases within the speech interval. Therefore, a configuration in which the number N is increased for each unit period within the speech interval can be employed.

(4)変形例4
以上の各形態では、数式(3)から理解されるように、音響信号SIN_L(周波数成分LA[k])と音響信号SIN_R(周波数成分RA[k])との振幅の比率が定位変数αに応じて線形に変化するように差成分Sを算定したが、以下の各態様にて例示するように、和成分Mおよび差成分Sの算定の方法や定位変数αとの関係は適宜に変更される。
(4) Modification 4
In each of the above embodiments, as understood from the equation (3), the amplitude ratio between the acoustic signal SIN_L (frequency component LA [k]) and the acoustic signal SIN_R (frequency component RA [k]) is the localization variable α. The difference component S was calculated so as to change linearly accordingly, but as illustrated in the following embodiments, the calculation method of the sum component M and the difference component S and the relationship with the localization variable α are appropriately changed. The

<第1態様>
音響信号SIN_Lのパワー|LA[k]|および音響信号SIN_Rのパワー|RA[k]|から和成分Mおよび差成分Sを算定する構成が採用され得る。具体的には、和成分生成部52は、以下の数式(6A)の演算で和成分M(周波数成分M[1]〜M[K]で構成される複素スペクトル)を生成し、差成分生成部54は、以下の数式(6B)の演算で差成分S(周波数成分S[1]〜S[K]で構成される複素スペクトル)を生成する。したがって、差成分Sにおいては、音響信号SIN_Lおよび音響信号SIN_Rの各々のパワーの比率が定位変数αに応じて線形に変化する。なお、数式(6A)および数式(6B)における記号ejLは周波数スペクトルLAの位相角を意味し、記号ejRは周波数スペクトルRAの位相角を意味する。

Figure 2011199811
<First aspect>
A configuration in which the sum component M and the difference component S are calculated from the power | LA [k] | 2 of the acoustic signal SIN_L and the power | RA [k] | 2 of the acoustic signal SIN_R may be employed. Specifically, the sum component generation unit 52 generates a sum component M (complex spectrum composed of frequency components M [1] to M [K]) by calculation of the following formula (6A), and generates a difference component. The unit 54 generates a difference component S (complex spectrum composed of frequency components S [1] to S [K]) by the calculation of the following mathematical formula (6B). Therefore, in the difference component S, the power ratio between the acoustic signal SIN_L and the acoustic signal SIN_R changes linearly according to the localization variable α. Symbols e jL in equation (6A) and formula (6B) denotes the phase angle of the frequency spectrum LA, symbol e jR means the phase angle of the frequency spectrum RA.
Figure 2011199811

以上の方法で和成分Mおよび差成分Sが生成されると、係数列生成部60の第1生成部62は、定位成分を強調したパワースペクトルP(パワーP[k])を以下の数式(7A)および数式(7B)の演算で生成し、パワースペクトルPを利用した数式(8)の演算で処理係数列Gの各係数値g[k]を算定する。以上の構成でも第1実施形態と同様の効果が実現される。

Figure 2011199811
When the sum component M and the difference component S are generated by the above method, the first generation unit 62 of the coefficient sequence generation unit 60 generates a power spectrum P (power P [k]) in which the localization component is emphasized by the following formula ( The coefficient values g [k] of the processing coefficient sequence G are calculated by the calculation of the formula (8) using the power spectrum P and generated by the calculations of 7A) and (7B). With the above configuration, the same effect as that of the first embodiment is realized.
Figure 2011199811

<第2態様>
定位成分の位置(方向)を定位変数αの関数f(α)に応じて制御する構成が採用され得る。具体的には、和成分生成部52は、以下の数式(9A)の演算で和成分M(周波数成分M[1]〜M[K])を生成し、差成分生成部54は、以下の数式(9B)の演算で差成分S(周波数成分S[1]〜S[K])を生成する。したがって、差成分Sにおける音響信号SIN_Lおよび音響信号SIN_Rの各々の振幅の比率が定位変数αの関数f(α)に応じて変化する。第1生成部62は、第1実施形態と同様の方法(数式(4),数式(5A),数式(5B))で、数式(9A)の和成分Mと数式(9B)の差成分Sとから処理係数列GAを生成する。

Figure 2011199811
<Second aspect>
A configuration in which the position (direction) of the localization component is controlled according to the function f (α) of the localization variable α can be adopted. Specifically, the sum component generation unit 52 generates the sum component M (frequency components M [1] to M [K]) by the calculation of the following formula (9A), and the difference component generation unit 54 A difference component S (frequency components S [1] to S [K]) is generated by the calculation of Equation (9B). Therefore, the ratio of the amplitudes of the acoustic signal SIN_L and the acoustic signal SIN_R in the difference component S changes according to the function f (α) of the localization variable α. The first generation unit 62 uses the same method (Formula (4), Formula (5A), Formula (5B)) as in the first embodiment, and the sum component M of Formula (9A) and the difference component S of Formula (9B). A processing coefficient sequence GA is generated from the above.
Figure 2011199811

なお、数式(5A)では和成分Mのパワー|M[k]|と差成分Sのパワー|S[k]|との差分をパワーP[k]として算定したが、以下の数式(5C)に示すように、和成分Mの振幅|M[k]|と差成分Sの振幅|S[k]|との差分を振幅P[k]として算定する構成も採用され得る。数式(5C)で振幅P[k]を算定する構成では、第1生成部62が以下の数式(4C)の演算で処理係数列GAの係数値g[k]を算定する。

Figure 2011199811
In Formula (5A), the difference between the power | M [k] | 2 of the sum component M and the power | S [k] | 2 of the difference component S is calculated as the power P [k]. As shown in 5C), a configuration in which the difference between the amplitude | M [k] | of the sum component M and the amplitude | S [k] | of the difference component S is calculated as the amplitude P [k] may be employed. In the configuration in which the amplitude P [k] is calculated using the formula (5C), the first generation unit 62 calculates the coefficient value g [k] of the processing coefficient sequence GA by the calculation of the following formula (4C).
Figure 2011199811

(5)変形例5
以上の各形態では、パワースペクトルの減算(数式(5A),数式(7A))や振幅スペクトルの減算(数式(5C))で処理係数列GAの各係数値g[k]を算定したが、和成分Mと差成分Sとから処理係数列GAを生成する方法は任意である。例えば、和成分Mに含まれる定位成分を信号成分と仮定するとともに差成分Sを雑音成分と仮定すると、和成分Mおよび差成分Sを利用した処理係数列GAの生成には、雑音成分(差成分S)を抑圧して信号成分(定位成分)を強調するための数値列(処理係数列GA)を生成する公知の音声強調の技術を同様に適用することが可能である。
(5) Modification 5
In each of the above embodiments, each coefficient value g [k] of the processing coefficient sequence GA is calculated by subtraction of power spectrum (formula (5A), formula (7A)) or amplitude spectrum (formula (5C)). A method for generating the processing coefficient sequence GA from the sum component M and the difference component S is arbitrary. For example, if the localization component included in the sum component M is assumed to be a signal component and the difference component S is assumed to be a noise component, the generation of the processing coefficient sequence GA using the sum component M and the difference component S may include a noise component (difference). A known speech enhancement technique for generating a numerical sequence (processing coefficient sequence GA) for emphasizing a signal component (localization component) by suppressing the component S) can be similarly applied.

処理係数列GAの生成に適用され得る技術としては、ウィナーフィルタ(Wiener filter)を利用した音声強調や、MMSE-STSA法またはMAP(maximum a posteriori estimation)推定法を利用した音声強調の技術が例示され得る。MMSE-STSA法については、Y. Ephraim and D. Malah, "Speech enhancement using a minimum mean-square error short-time spectral amplitude estimator", IEEE ASSP, vol.ASSP-32, no.6, p.1109-1121, Dec. 1984に開示され、MAP推定法については、T. Lotter and P. Vary, "Speech enhancement by MAP spectral amplitude estimation using a Super-Gaussian speech model", EURASIP Journal on Applied Signal Processing, vol.2005, no,7, p.1110-1126, July 2005に開示されている。   Examples of technologies that can be applied to the generation of the processing coefficient sequence GA include speech enhancement using a Wiener filter and speech enhancement using an MMSE-STSA method or a MAP (maximum a posteriori estimation) estimation method. Can be done. For the MMSE-STSA method, see Y. Ephraim and D. Malah, "Speech enhancement using a minimum mean-square error short-time spectral amplitude estimator", IEEE ASSP, vol.ASSP-32, no.6, p.1109- 1121, Dec. 1984, MAP estimation method is described in T. Lotter and P. Vary, "Speech enhancement by MAP spectral amplitude estimation using a Super-Gaussian speech model", EURASIP Journal on Applied Signal Processing, vol.2005 , no, 7, p.1110-1126, July 2005.

(6)変形例6
処理係数列G(GA,GB)の生成の周期や定位成分の有無の判定の周期は任意である。例えば、単位期間の複数個を周期TAとして係数設定部36が処理係数列Gを生成(更新)する構成も採用され得る。具体的には、各周期TA内の1個以上の単位期間の音響信号SINから生成される処理係数列G(GA,GB)が当該周期TA内の各単位期間の処理に適用される。また、単位期間の複数個を周期として判定部42が定位成分の有無を判定する構成も採用され得る。
(6) Modification 6
The cycle for generating the processing coefficient sequence G (GA, GB) and the cycle for determining whether or not there is a localization component are arbitrary. For example, a configuration in which the coefficient setting unit 36 generates (updates) the processing coefficient sequence G using a plurality of unit periods as the period TA may be employed. Specifically, the processing coefficient sequence G (GA, GB) generated from the acoustic signal SIN of one or more unit periods within each period TA is applied to the processing of each unit period within the period TA. In addition, a configuration in which the determination unit 42 determines the presence / absence of a localization component using a plurality of unit periods as a cycle may be employed.

(7)変形例7
以上の各形態では、音響信号SINの周波数スペクトル(LA,RA)に処理係数列G(GA,GB)を乗算したが、信号処理部38による処理の内容は処理係数列G(GA,GB)の定義や性質に応じて適宜に変更される。例えば、定位成分のパワーが大きい周波数fkほど係数値g[k]が所定の範囲内の小さい数値に設定されるように処理係数列GAを生成し、処理係数列GBの各係数値g[k]を当該範囲内の大きい数値に設定する構成では、処理係数列G(GA,GB)の各係数値g[k]で周波数成分LA[k]や周波数成分RA[k]を除算する構成(LB[k]=LA[k]/g[k],RB[k]=RA[k]/g[k])も採用され得る。
(7) Modification 7
In each of the above embodiments, the frequency spectrum (LA, RA) of the acoustic signal SIN is multiplied by the processing coefficient sequence G (GA, GB), but the content of the processing by the signal processing unit 38 is the processing coefficient sequence G (GA, GB). It will be changed as appropriate according to the definition and nature. For example, the processing coefficient sequence GA is generated so that the coefficient value g [k] is set to a smaller numerical value within a predetermined range for the frequency fk where the power of the localization component is larger, and each coefficient value g [k] of the processing coefficient sequence GB is set. ] Is set to a large value within the range, the frequency component LA [k] and the frequency component RA [k] are divided by the coefficient values g [k] of the processing coefficient sequence G (GA, GB) ( LB [k] = LA [k] / g [k], RB [k] = RA [k] / g [k]) may also be employed.

(8)変形例8
所定の周波数帯域内の成分に限定して定位成分の強調を実行する構成も好適である。例えば、音響信号SINのうち人間の音声のパワーが集中する周波数帯域(例えば100kHz〜8kHz)についてのみ以上の各形態の処理が実行される(他の帯域については処理せずに再生する)。
(8) Modification 8
A configuration in which localization component emphasis is executed only for components within a predetermined frequency band is also suitable. For example, the processing of each of the above forms is executed only for the frequency band (for example, 100 kHz to 8 kHz) in which the power of human voice is concentrated in the acoustic signal SIN (reproduction is performed without processing for other bands).

100……音響処理装置、12……信号供給装置、14……放音装置、16……入力装置、22……演算処理装置、24……記憶装置、32……変数設定部、34……周波数分析部、36……係数設定部、38……信号処理部、40……波形合成部、42……判定部、52……和成分生成部、54……差成分生成部、60……係数列生成部、62……第1生成部、64……第2生成部。
DESCRIPTION OF SYMBOLS 100 ... Sound processing device, 12 ... Signal supply device, 14 ... Sound emission device, 16 ... Input device, 22 ... Arithmetic processing device, 24 ... Memory | storage device, 32 ... Variable setting part, 34 ... Frequency analysis unit 36... Coefficient setting unit 38... Signal processing unit 40... Waveform synthesis unit 42 .. determination unit 52... Sum component generation unit 54. Coefficient sequence generation unit, 62 ... first generation unit, 64 ... second generation unit.

Claims (5)

ステレオ形式の第1音響信号と第2音響信号との和成分を生成する和成分生成手段と、
特定方向の定位成分を抑圧した差成分を前記第1音響信号と前記第2音響信号との間の減算で生成する差成分生成手段と、
前記定位成分の有無を判定する判定手段と、
前記定位成分が強調されるように周波数毎の係数値が設定された第1処理係数列を、前記和成分と前記差成分との間の減算を含む減算処理で生成する第1生成手段と、
前記定位成分が存在しない場合に前記減算処理で生成される前記第1処理係数列と比較して各周波数の係数値の分布が平準な第2処理係数列を生成する第2生成手段と、
前記第1音響信号および前記第2音響信号の各々の各周波数成分に対し、前記定位成分が存在すると前記判定手段が判定した場合に前記第1処理係数列の各係数値を作用させ、前記定位成分が存在しないと前記判定手段が判定した場合に前記第2処理係数列の各係数値を作用させる信号処理手段と
を具備する音響処理装置。
Sum component generating means for generating a sum component of the first acoustic signal and the second acoustic signal in stereo format;
Difference component generating means for generating a difference component in which a localization component in a specific direction is suppressed by subtraction between the first acoustic signal and the second acoustic signal;
Determining means for determining the presence or absence of the localization component;
First generation means for generating a first processing coefficient sequence in which a coefficient value for each frequency is set so that the localization component is emphasized by subtraction processing including subtraction between the sum component and the difference component;
Second generation means for generating a second processing coefficient sequence in which the distribution of coefficient values of each frequency is level compared to the first processing coefficient sequence generated by the subtraction process when the localization component does not exist;
For each frequency component of the first acoustic signal and the second acoustic signal, when the determination unit determines that the localization component is present, each coefficient value of the first processing coefficient sequence is applied, and the localization is performed. A sound processing apparatus comprising: signal processing means for causing each coefficient value of the second processing coefficient sequence to act when the determination means determines that no component is present.
前記判定手段は、前記第1生成手段が生成した前記第1処理係数列の複数の係数値の平均値または散らばりの度合が閾値を上回る場合には前記定位成分が存在すると判定し、前記閾値を下回る場合には前記定位成分が存在しないと判定する
請求項1の音響処理装置。
The determination unit determines that the localization component is present when an average value or a degree of dispersion of the plurality of coefficient values of the first processing coefficient sequence generated by the first generation unit exceeds a threshold value, and determines the threshold value. The acoustic processing apparatus according to claim 1, wherein if it falls below, the localization component is determined not to exist.
前記第2生成手段は、前記各係数値を同一値に設定した前記第2処理係数列を生成する
請求項1または請求項2の音響処理装置。
The sound processing apparatus according to claim 1, wherein the second generation unit generates the second processing coefficient sequence in which the coefficient values are set to the same value.
前記第2生成手段は、前記第1生成手段が生成した前記第1処理係数列の各係数値の分布を平滑化することで前記第2処理係数列を生成する
請求項1または請求項2の音響処理装置。
The said 2nd production | generation means produces | generates a said 2nd process coefficient sequence by smoothing distribution of each coefficient value of the said 1st process coefficient sequence which the said 1st production | generation means produced | generated. Sound processing device.
前記判定手段は、前記定位成分の有無を単位期間毎に判定し、
前記信号処理手段は、前記定位成分の存在が所定個の単位期間にわたって連続して否定された場合に前記第2処理係数列の適用を開始する
請求項1から請求項4の何れかの音響処理装置。
The determination means determines the presence or absence of the localization component for each unit period,
The acoustic processing according to any one of claims 1 to 4, wherein the signal processing means starts application of the second processing coefficient sequence when the presence of the localization component is continuously denied over a predetermined number of unit periods. apparatus.
JP2010067407A 2010-03-24 2010-03-24 Sound processor Expired - Fee Related JP5494085B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010067407A JP5494085B2 (en) 2010-03-24 2010-03-24 Sound processor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010067407A JP5494085B2 (en) 2010-03-24 2010-03-24 Sound processor

Publications (2)

Publication Number Publication Date
JP2011199811A true JP2011199811A (en) 2011-10-06
JP5494085B2 JP5494085B2 (en) 2014-05-14

Family

ID=44877398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010067407A Expired - Fee Related JP5494085B2 (en) 2010-03-24 2010-03-24 Sound processor

Country Status (1)

Country Link
JP (1) JP5494085B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002044793A (en) * 2000-07-25 2002-02-08 Yamaha Corp Method and apparatus for sound signal processing
JP2004343590A (en) * 2003-05-19 2004-12-02 Nippon Telegr & Teleph Corp <Ntt> Stereophonic signal processing method, device, program, and storage medium
JP2007135046A (en) * 2005-11-11 2007-05-31 Sony Corp Sound signal processor, sound signal processing method and program
JP2008092411A (en) * 2006-10-04 2008-04-17 Victor Co Of Japan Ltd Audio signal generating device
JP2008116686A (en) * 2006-11-06 2008-05-22 Nec Engineering Ltd Noise suppression device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002044793A (en) * 2000-07-25 2002-02-08 Yamaha Corp Method and apparatus for sound signal processing
JP2004343590A (en) * 2003-05-19 2004-12-02 Nippon Telegr & Teleph Corp <Ntt> Stereophonic signal processing method, device, program, and storage medium
JP2007135046A (en) * 2005-11-11 2007-05-31 Sony Corp Sound signal processor, sound signal processing method and program
JP2008092411A (en) * 2006-10-04 2008-04-17 Victor Co Of Japan Ltd Audio signal generating device
JP2008116686A (en) * 2006-11-06 2008-05-22 Nec Engineering Ltd Noise suppression device

Also Published As

Publication number Publication date
JP5494085B2 (en) 2014-05-14

Similar Documents

Publication Publication Date Title
JP3670562B2 (en) Stereo sound signal processing method and apparatus, and recording medium on which stereo sound signal processing program is recorded
US9799318B2 (en) Methods and systems for far-field denoise and dereverberation
JP5957446B2 (en) Sound processing system and method
AU2015295518B2 (en) Apparatus and method for enhancing an audio signal, sound enhancing system
KR20170042709A (en) A signal processing apparatus for enhancing a voice component within a multi-channal audio signal
JP2013190470A (en) Acoustic signal processing device and method
JP3810004B2 (en) Stereo sound signal processing method, stereo sound signal processing apparatus, stereo sound signal processing program
JP2008257049A (en) Noise suppressing device and program
JP2013130857A (en) Sound processing device
US9418677B2 (en) Noise suppressing device, noise suppressing method, and a non-transitory computer-readable recording medium storing noise suppressing program
JP5034735B2 (en) Sound processing apparatus and program
JP5915281B2 (en) Sound processor
JP3755739B2 (en) Stereo sound signal processing method and apparatus, program, and recording medium
JP4533126B2 (en) Proximity sound separation / collection method, proximity sound separation / collection device, proximity sound separation / collection program, recording medium
JP5494085B2 (en) Sound processor
Mu Perceptual quality improvement and assessment for virtual bass system
JP5463924B2 (en) Sound processor
JP5641187B2 (en) Sound processor
JP5454157B2 (en) Sound processor
US11259117B1 (en) Dereverberation and noise reduction
JP2010217551A (en) Sound processing device and program
JP2015004959A (en) Acoustic processor
CN112511941A (en) Audio output method and system and earphone
JP2012147337A (en) Localization analyzer and acoustic treatment device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140217

R150 Certificate of patent or registration of utility model

Ref document number: 5494085

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees