JP5641187B2 - Sound processor - Google Patents

Sound processor Download PDF

Info

Publication number
JP5641187B2
JP5641187B2 JP2010006433A JP2010006433A JP5641187B2 JP 5641187 B2 JP5641187 B2 JP 5641187B2 JP 2010006433 A JP2010006433 A JP 2010006433A JP 2010006433 A JP2010006433 A JP 2010006433A JP 5641187 B2 JP5641187 B2 JP 5641187B2
Authority
JP
Japan
Prior art keywords
component
coefficient
acoustic signal
processing
localization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010006433A
Other languages
Japanese (ja)
Other versions
JP2011146947A (en
Inventor
近藤 多伸
多伸 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Corp
Original Assignee
Yamaha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Corp filed Critical Yamaha Corp
Priority to JP2010006433A priority Critical patent/JP5641187B2/en
Publication of JP2011146947A publication Critical patent/JP2011146947A/en
Application granted granted Critical
Publication of JP5641187B2 publication Critical patent/JP5641187B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Stereophonic System (AREA)

Description

本発明は、ステレオ形式の音響信号のうち目的の位置(方向)に音像が定位する成分(例えば、右チャネルおよび左チャネルの各々の信号に含まれる成分である。以下では「定位成分」という)を強調または抑圧する技術に関する。   The present invention is a component in which a sound image is localized at a target position (direction) in a stereo format acoustic signal (for example, a component included in each signal of a right channel and a left channel. Hereinafter, referred to as a “localization component”). It is related with the technology which emphasizes or suppresses.

CD等の記録媒体に収録された音響信号から所定の定位成分を抑圧する技術が従来から提案されている。例えば特許文献1には、ステレオ形式の音響信号の一方から他方を減算(逆相加算)することで、音像が中央方向に定位する成分(典型的には歌唱音)を抑圧する技術が開示されている。   Conventionally, a technique for suppressing a predetermined localization component from an acoustic signal recorded on a recording medium such as a CD has been proposed. For example, Patent Document 1 discloses a technique for suppressing a component (typically a singing sound) in which a sound image is localized in the center direction by subtracting one of stereo audio signals from the other (reverse phase addition). ing.

特開2007−079413号公報JP 2007-079413 A

しかし、特許文献1の技術では、所定の成分の抑圧後の音響信号がモノラル形式になるという問題がある。同様の問題は、定位成分を強調する場合にも発生し得る。以上の事情を考慮して、本発明は、定位成分を強調または抑圧したステレオ形式の音響信号を生成することを目的とする。   However, the technique of Patent Document 1 has a problem that the acoustic signal after suppression of a predetermined component is in a monaural format. Similar problems can occur when emphasizing the localization component. In view of the above circumstances, an object of the present invention is to generate a stereo-type acoustic signal in which a localization component is emphasized or suppressed.

以上の課題を解決するために、本発明の音響処理装置は、ステレオ形式の第1音響信号と第2音響信号との加算で和成分を生成する和成分生成手段と、特定位置の定位成分を抑圧した差成分を第1音響信号と第2音響信号との間の減算で生成する差成分生成手段と、周波数毎の係数値で構成されて定位成分を強調または抑圧する処理係数列を和成分および差成分から生成する係数列生成手段と、第1音響信号および第2音響信号の各々の各周波数成分に処理係数列の各係数値を作用させる信号処理手段とを具備する。以上の構成においては、第1音響信号と第2音響信号との和成分および差成分から生成された処理係数列を第1音響信号および第2音響信号の各々の各周波数成分に作用させるから、定位成分が強調または抑圧されたステレオ形式の音響信号を生成することが可能である。   In order to solve the above-described problems, an acoustic processing device according to the present invention includes a sum component generating unit that generates a sum component by adding a stereo first acoustic signal and a second acoustic signal, and a localization component at a specific position. Sum component of difference component generating means for generating a suppressed difference component by subtraction between the first acoustic signal and the second acoustic signal, and a processing coefficient sequence that is composed of coefficient values for each frequency and emphasizes or suppresses the localization component And coefficient sequence generation means for generating the difference component, and signal processing means for causing each coefficient value of the processing coefficient sequence to act on each frequency component of the first acoustic signal and the second acoustic signal. In the above configuration, since the processing coefficient sequence generated from the sum component and difference component of the first acoustic signal and the second acoustic signal is applied to each frequency component of the first acoustic signal and the second acoustic signal, It is possible to generate a stereo-type acoustic signal in which the localization component is emphasized or suppressed.

本発明の好適な態様において、係数列生成手段は、和成分および差成分の一方のスペクトルから他方のスペクトルを減算した結果に応じて処理係数列を生成する。以上の態様においては、和成分および差成分の一方のスペクトルから他方のスペクトルを減算することで定位成分を高精度に強調または抑圧したスペクトルが生成されるから、定位成分を有効に強調または抑圧し得る処理係数列を生成できるという利点がある。   In a preferred aspect of the present invention, the coefficient sequence generation means generates a processing coefficient sequence according to a result of subtracting the other spectrum from one spectrum of the sum component and the difference component. In the above aspect, a spectrum in which the localization component is emphasized or suppressed with high accuracy is generated by subtracting the other spectrum from one spectrum of the sum component and difference component, so that the localization component is effectively emphasized or suppressed. There is an advantage that the obtained processing coefficient sequence can be generated.

本発明の好適な態様に係る音響処理装置は、特定位置を示す定位変数を可変に設定する変数設定手段を具備し、差成分生成手段は、変数設定手段が設定した定位変数に応じた比率で第1音響信号および第2音響信号の一方から他方を減算する。以上の態様においては、差成分生成手段による減算時の第1音響信号および第2音響信号の比率が定位変数に応じて可変に設定される。したがって、強調または抑圧の対象となる定位成分の位置(方向)を可変に制御できる(中央方向に限定されない)という利点がある。   The sound processing apparatus according to a preferred aspect of the present invention includes a variable setting unit that variably sets a localization variable indicating a specific position, and the difference component generation unit has a ratio according to the localization variable set by the variable setting unit. The other is subtracted from one of the first acoustic signal and the second acoustic signal. In the above aspect, the ratio of the first acoustic signal and the second acoustic signal at the time of subtraction by the difference component generation means is variably set according to the localization variable. Therefore, there is an advantage that the position (direction) of the localization component to be emphasized or suppressed can be variably controlled (not limited to the central direction).

本発明の好適な態様において、係数列生成手段は、定位成分の強調および抑圧の一方に対応する第1処理係数列を和成分および差成分から生成する第1生成手段と、定位成分の強調および抑圧の他方に対応する第2処理係数列を、第1処理係数列の各係数値を所定値から減算することで生成する第2生成手段とを含む。以上の態様においては、定位成分の強調用および抑圧用の処理係数列を生成することが可能である。また、和成分および差成分を利用して生成された第1処理係数列の各係数値を所定値から減算することで第2処理係数列が生成されるから、第1処理係数列および第2処理係数列の双方を和成分および差成分から直接的に生成する場合と比較して、係数列生成手段による処理の負荷が軽減されるという利点がある。   In a preferred aspect of the present invention, the coefficient sequence generation means includes first generation means for generating a first processing coefficient sequence corresponding to one of localization component enhancement and suppression from a sum component and a difference component, localization component enhancement and Second generation means for generating a second processing coefficient sequence corresponding to the other of the suppressions by subtracting each coefficient value of the first processing coefficient sequence from a predetermined value. In the above aspect, it is possible to generate processing coefficient sequences for emphasizing and suppressing localization components. Further, since the second processing coefficient sequence is generated by subtracting each coefficient value of the first processing coefficient sequence generated using the sum component and the difference component from the predetermined value, the first processing coefficient sequence and the second processing coefficient sequence Compared with the case where both of the processing coefficient sequences are generated directly from the sum component and the difference component, there is an advantage that the processing load by the coefficient sequence generation means is reduced.

本発明の好適な態様において、係数列生成手段は、処理係数列の各係数値を、当該係数値が閾値を上回るか否かに応じて第1値および第2値の何れかに変更する係数調整手段を含む。以上の態様においては、処理係数列の各係数値が閾値との関係に応じて調整されるから、処理係数列の特性(例えば、目的の方向に対して音響の強調または抑圧の対象となる範囲)を閾値に応じて適宜に設定できるという利点がある。   In a preferred aspect of the present invention, the coefficient sequence generation means changes the coefficient values of the processing coefficient sequence to either the first value or the second value depending on whether the coefficient value exceeds a threshold value. Including adjustment means. In the above aspect, since each coefficient value of the processing coefficient sequence is adjusted according to the relationship with the threshold value, the characteristics of the processing coefficient sequence (for example, a range to be emphasized or suppressed with respect to the target direction) ) Can be appropriately set according to the threshold value.

以上の各態様に係る音響処理装置は、音響信号の処理に専用されるDSP(Digital Signal Processor)などのハードウェア(電子回路)によって実現されるほか、CPU(Central Processing Unit)などの汎用の演算処理装置とプログラム(ソフトウェア)との協働によっても実現される。本発明のプログラムは、ステレオ形式の第1音響信号と第2音響信号との加算で和成分を生成する和成分生成処理と、特定位置の定位成分を抑圧した差成分を第1音響信号と第2音響信号との間の減算で生成する差成分生成処理と、周波数毎の係数値で構成されて定位成分を強調または抑圧する処理係数列を和成分および差成分から生成する係数列生成処理と、第1音響信号および第2音響信号の各々の各周波数成分に処理係数列の各係数値を作用させる信号処理とをコンピュータに実行させる。以上のプログラムによれば、本発明の音響処理装置と同様の作用および効果が実現される。本発明のプログラムは、コンピュータが読取可能な記録媒体に格納された形態で利用者に提供されてコンピュータにインストールされるほか、通信網を介した配信の形態でサーバ装置から提供されてコンピュータにインストールされる。   The acoustic processing device according to each of the above aspects is realized by hardware (electronic circuit) such as a DSP (Digital Signal Processor) dedicated to processing of an acoustic signal, or a general-purpose calculation such as a CPU (Central Processing Unit). It is also realized by cooperation between the processing device and a program (software). The program of the present invention includes a sum component generation process for generating a sum component by adding a stereo-type first acoustic signal and a second acoustic signal, and a difference component obtained by suppressing a localization component at a specific position as a first acoustic signal and a first acoustic signal. Difference component generation processing generated by subtraction between two acoustic signals, and coefficient sequence generation processing for generating a processing coefficient sequence composed of coefficient values for each frequency and emphasizing or suppressing a localization component from a sum component and a difference component And causing the computer to execute signal processing in which each coefficient value of the processing coefficient sequence is applied to each frequency component of each of the first acoustic signal and the second acoustic signal. According to the above program, the same operation and effect as the sound processing apparatus of the present invention are realized. The program of the present invention is provided to a user in a form stored in a computer-readable recording medium and installed in the computer, or provided from a server device in a form of distribution via a communication network and installed in the computer. Is done.

第1実施形態に係る音響処理装置のブロック図である。1 is a block diagram of a sound processing apparatus according to a first embodiment. 係数設定部のブロック図である。It is a block diagram of a coefficient setting part. 第2実施形態における係数列生成部のブロック図である。It is a block diagram of the coefficient sequence production | generation part in 2nd Embodiment. 係数調整部の動作の説明図である。It is explanatory drawing of operation | movement of a coefficient adjustment part. 係数調整部の動作の説明図である。It is explanatory drawing of operation | movement of a coefficient adjustment part.

<A:第1実施形態>
図1は、本発明の第1実施形態に係る音響処理装置100のブロック図である。音響処理装置100には信号供給装置12と放音装置14と入力装置16とが接続される。信号供給装置12は、音響(音声や楽音)の波形を表す時間領域の音響信号SIN(SIN_L,SIN_R)を音響処理装置100に供給する。左チャネルの音響信号SIN_Lおよび右チャネルの音響信号SIN_Rは、音響を発生する複数の音源の音像が相異なる位置に定位する(すなわち、音響の振幅や位相が各音源の位置に応じて相違する)ように収音または加工されたステレオ形式の信号である。周囲の音響を収音して音響信号SINを生成する収音機器(ステレオマイク)や、可搬型または内蔵型の記録媒体から音響信号SINを取得して音響処理装置100に出力する再生装置や、通信網から音響信号SINを受信して音響処理装置100に出力する通信装置が信号供給装置12として採用され得る。
<A: First Embodiment>
FIG. 1 is a block diagram of a sound processing apparatus 100 according to the first embodiment of the present invention. A signal supply device 12, a sound emission device 14, and an input device 16 are connected to the sound processing device 100. The signal supply device 12 supplies the sound processing device 100 with time-domain sound signals SIN (SIN_L, SIN_R) representing the waveform of sound (speech and music). The sound signal SIN_L of the left channel and the sound signal SIN_R of the right channel are localized at positions where the sound images of a plurality of sound sources generating sound are different (that is, the sound amplitude and phase differ depending on the position of each sound source). In this way, a stereo signal is collected or processed. A sound collection device (stereo microphone) that collects ambient sound to generate an acoustic signal SIN, a playback device that acquires the acoustic signal SIN from a portable or built-in recording medium, and outputs it to the acoustic processing device 100; A communication device that receives the acoustic signal SIN from the communication network and outputs the acoustic signal SIN to the acoustic processing device 100 may be employed as the signal supply device 12.

音響処理装置100は、信号供給装置12が供給する音響信号SINから音響信号SOUT(SOUT_L,SOUT_R)を生成する。左チャネルの音響信号SOUT_Lおよび右チャネルの音響信号SOUT_Rは、音響信号SINが表す音響のうち目的の位置に音像が定位する定位成分を強調または抑圧したステレオ形式の信号である。放音装置14(例えばステレオスピーカやステレオヘッドホン)は、音響処理装置100が生成した音響信号SOUT(SOUT_L,SOUT_R)に応じた音波を放射する。   The acoustic processing device 100 generates an acoustic signal SOUT (SOUT_L, SOUT_R) from the acoustic signal SIN supplied by the signal supply device 12. The left-channel acoustic signal SOUT_L and the right-channel acoustic signal SOUT_R are stereo signals in which a localization component in which a sound image is localized at a target position is emphasized or suppressed among the sounds represented by the acoustic signal SIN. The sound emitting device 14 (for example, a stereo speaker or a stereo headphone) emits a sound wave corresponding to the acoustic signal SOUT (SOUT_L, SOUT_R) generated by the acoustic processing device 100.

入力装置16は、音響処理装置100に対する指示を利用者が入力するための機器(例えばマウスやキーボード)である。利用者は、入力装置16を適宜に操作することで、定位成分の位置(方向)と定位成分の強調/抑圧の何れかの処理とを音響処理装置100に対して任意に指示することが可能である。   The input device 16 is a device (for example, a mouse or a keyboard) for a user to input an instruction to the sound processing device 100. By appropriately operating the input device 16, the user can arbitrarily instruct the acoustic processing device 100 to perform either the localization component position (direction) or the localization component enhancement / suppression processing. It is.

図1に示すように、音響処理装置100は、演算処理装置22と記憶装置24とを具備するコンピュータシステムで実現される。記憶装置24は、演算処理装置22が実行するプログラムPGや演算処理装置22が使用するデータを記憶する。半導体記録媒体や磁気記録媒体などの公知の記録媒体や複数種の記録媒体の組合せが記憶装置24として任意に採用される。音響信号SIN(SIN_L,SIN_R)を記憶装置24に記憶した構成(したがって信号供給装置12は省略され得る)も好適である。   As shown in FIG. 1, the sound processing device 100 is realized by a computer system including an arithmetic processing device 22 and a storage device 24. The storage device 24 stores a program PG executed by the arithmetic processing device 22 and data used by the arithmetic processing device 22. A known recording medium such as a semiconductor recording medium or a magnetic recording medium or a combination of a plurality of types of recording media is arbitrarily adopted as the storage device 24. A configuration in which the acoustic signal SIN (SIN_L, SIN_R) is stored in the storage device 24 (therefore, the signal supply device 12 can be omitted) is also suitable.

演算処理装置22は、記憶装置24に格納されたプログラムPGを実行することで、音響信号SINから音響信号SOUTを生成するための複数の機能(変数設定部32,周波数分析部34,係数設定部36,信号処理部38,波形合成部40)を実現する。なお、演算処理装置22の各機能を複数の集積回路に分散した構成や、専用の電子回路(DSP)が各機能を実現する構成も採用され得る。   The arithmetic processing unit 22 executes a program PG stored in the storage device 24 to thereby generate a plurality of functions (variable setting unit 32, frequency analysis unit 34, coefficient setting unit) for generating the acoustic signal SOUT from the acoustic signal SIN. 36, a signal processing unit 38, and a waveform synthesis unit 40). A configuration in which each function of the arithmetic processing unit 22 is distributed over a plurality of integrated circuits, or a configuration in which a dedicated electronic circuit (DSP) realizes each function may be employed.

変数設定部32は、定位変数αを可変に設定する。定位変数αは、定位成分の音像の位置(方向)を指定する変数である。本形態の変数設定部32は、入力装置16に対する利用者からの指示に応じて定位変数α(0≦α≦1)を可変に設定する。例えば、定位変数αが0.5(中央値)である場合には中央(正面)方向が指示される。また、定位変数αが1に近いほど右寄りの方向が指示され、定位変数αが0に近いほど左寄りの方向が指示される。利用者は、放音装置14からの再生音を聴取しながら随時に入力装置16の操作で定位変数αを変更することが可能である。   The variable setting unit 32 sets the localization variable α to be variable. The localization variable α is a variable that designates the position (direction) of the sound image of the localization component. The variable setting unit 32 of the present embodiment variably sets the localization variable α (0 ≦ α ≦ 1) in accordance with an instruction from the user to the input device 16. For example, when the localization variable α is 0.5 (median value), the center (front) direction is indicated. Further, as the localization variable α is closer to 1, a rightward direction is indicated, and as the localization variable α is closer to 0, a leftward direction is indicated. The user can change the localization variable α by operating the input device 16 at any time while listening to the reproduced sound from the sound emitting device 14.

周波数分析部34は、音響信号SIN_Lの周波数スペクトル(複素スペクトル)LAと音響信号SIN_Rの周波数スペクトル(複素スペクトル)RAとを時間軸上の単位区間(フレーム)毎に順次に生成する。周波数スペクトルLAは、K個の周波数(周波数帯域)f1〜fKの各々に対応する周波数成分LAk(e)の系列(LA1(e)〜LAK(e))である(k=1〜K)。記号jは虚数単位を意味する。同様に、周波数スペクトルRAは、周波数f1〜fKの各々に対応する周波数成分RAk(e)の系列(RA1(e)〜RAK(e))である。周波数スペクトルLAおよび周波数スペクトルRAの生成には、短時間フーリエ変換などの公知の周波数分析が任意に採用され得る。なお、通過帯域が相異なるK個の帯域通過フィルタで構成されるフィルタバンクも周波数分析部34として採用され得る。 The frequency analysis unit 34 sequentially generates a frequency spectrum (complex spectrum) LA of the acoustic signal SIN_L and a frequency spectrum (complex spectrum) RA of the acoustic signal SIN_R for each unit section (frame) on the time axis. The frequency spectrum LA is a series of frequency components LAk (e ) (LA1 (e ) to LAK (e )) corresponding to each of K frequencies (frequency bands) f1 to fK (k = 1 to 1). K). The symbol j means an imaginary unit. Similarly, the frequency spectrum RA is a series of frequency components RAk (e ) (RA1 (e ) to RAK (e )) corresponding to each of the frequencies f1 to fK. For the generation of the frequency spectrum LA and the frequency spectrum RA, a known frequency analysis such as a short-time Fourier transform may be arbitrarily employed. A filter bank composed of K band pass filters having different pass bands can also be adopted as the frequency analysis unit 34.

図1の係数設定部36は、音響信号SIN(SIN_L,SIN_R)の定位成分を強調(enhance)するための処理係数列Geと音響信号SINの定位成分を抑圧(suppress)するための処理係数列Gsとを生成する。処理係数列Geおよび処理係数列Gsは、周波数スペクトルLAと周波数スペクトルRAとを利用して単位区間毎に順次に生成される。処理係数列Geは、周波数f1〜fKの各々に対応する係数値Ge[k]の系列(Ge[1]〜Ge[K])であり、処理係数列Gsは、周波数f1〜fKの各々に対応する係数値Gs[k]の系列(Gs[1]〜Gs[K])である。   The coefficient setting unit 36 in FIG. 1 includes a processing coefficient sequence Ge for enhancing the localization component of the acoustic signal SIN (SIN_L, SIN_R) and a processing coefficient sequence for suppressing the localization component of the acoustic signal SIN. Gs. The processing coefficient sequence Ge and the processing coefficient sequence Gs are sequentially generated for each unit section using the frequency spectrum LA and the frequency spectrum RA. The processing coefficient sequence Ge is a series of coefficient values Ge [k] (Ge [1] to Ge [K]) corresponding to each of the frequencies f1 to fK, and the processing coefficient sequence Gs is assigned to each of the frequencies f1 to fK. This is a series of corresponding coefficient values Gs [k] (Gs [1] to Gs [K]).

係数値Ge[k]および係数値Gs[k]は、音響信号SIN_Lの周波数成分LAk(e)や音響信号SIN_Rの周波数成分RAk(e)に対するゲイン(スペクトルゲイン)に相当し、音響信号SIN(SIN_L,SIN_R)の特性に応じて0以上かつ1以下の範囲内で可変に設定される(0≦Ge[k]≦1,0≦Gs[k]≦1)。具体的には、定位成分の強調用の処理係数列Geの係数値Ge[1]〜Ge[K]は、定位成分のパワー(振幅)が大きい周波数fkの係数値Ge[k]ほど1に近い数値に設定される。他方、定位成分の抑圧用の処理係数列Gsの係数値Gs[1]〜Gs[K]は、定位成分のパワーが大きい周波数fkの係数値Gs[k]ほど0に近い数値に設定される。 The coefficient value Ge [k] and the coefficient value Gs [k] correspond to a gain (spectral gain) with respect to the frequency component LAk (e ) of the acoustic signal SIN_L and the frequency component RAk (e ) of the acoustic signal SIN_R. It is variably set within the range of 0 or more and 1 or less according to the characteristics of SIN (SIN_L, SIN_R) (0 ≦ Ge [k] ≦ 1, 0 ≦ Gs [k] ≦ 1). Specifically, the coefficient values Ge [1] to Ge [K] of the processing coefficient sequence Ge for emphasizing the localization component are set to 1 as the coefficient value Ge [k] of the frequency fk having a large localization component power (amplitude). Set to a close number. On the other hand, the coefficient values Gs [1] to Gs [K] of the processing coefficient sequence Gs for suppressing the localization component are set to values closer to 0 as the coefficient value Gs [k] of the frequency fk having a larger localization component power. .

図1の信号処理部38は、係数設定部36が生成した処理係数列Geまたは処理係数列Gsを周波数スペクトルLAおよび周波数スペクトルRAの各々に個別に作用させる(典型的には乗算する)ことで周波数スペクトルLBと周波数スペクトルRBとを単位区間毎に順次に生成する。周波数スペクトルLBは、周波数f1〜fKの各々に対応する周波数成分LBk(e)の系列(LB1(e)〜LBK(e))であり、周波数スペクトルRBは、周波数f1〜fKの各々に対応する周波数成分RBk(e)の系列(RB1(e)〜RBK(e))である。各単位区間の周波数スペクトルLAおよび周波数スペクトルRAには、その単位区間について係数設定部36が生成した処理係数列Geまたは処理係数列Gsが乗算される。 The signal processing unit 38 of FIG. 1 causes the processing coefficient sequence Ge or the processing coefficient sequence Gs generated by the coefficient setting unit 36 to individually act (typically multiply) each of the frequency spectrum LA and the frequency spectrum RA. The frequency spectrum LB and the frequency spectrum RB are sequentially generated for each unit section. The frequency spectrum LB is a series of frequency components LBk (e ) (LB1 (e ) to LBK (e )) corresponding to each of the frequencies f1 to fK, and the frequency spectrum RB is each of the frequencies f1 to fK. Is a series of frequency components RBk (e ) corresponding to (RB1 (e ) to RBK (e )). The frequency spectrum LA and the frequency spectrum RA of each unit section are multiplied by the processing coefficient sequence Ge or the processing coefficient sequence Gs generated by the coefficient setting unit 36 for the unit section.

入力装置16に対して利用者から定位成分の強調が指示された場合、信号処理部38は、以下の数式(1a)および数式(1b)に示すように、周波数スペクトルLAおよび周波数スペクトルRAに対する処理係数列Geの乗算で周波数スペクトルLBおよび周波数スペクトルRBを生成する。すなわち、周波数スペクトルLBの各周波数fkの周波数成分LBk(e)は、その周波数fkの周波数成分LAk(e)と係数値Ge[k]との乗算値に設定され(数式(1a))、周波数スペクトルRBの各周波数fkの周波数成分RBk(e)は、その周波数fkの周波数成分RAk(e)と係数値Ge[k]との乗算値に設定される(数式(1b))。したがって、音響信号SIN(SIN_L,SIN_R)の定位成分を強調した周波数スペクトルLBおよび周波数スペクトルRBが生成される。

Figure 0005641187
When the user instructs the input device 16 to emphasize the localization component, the signal processing unit 38 processes the frequency spectrum LA and the frequency spectrum RA as shown in the following formulas (1a) and (1b). A frequency spectrum LB and a frequency spectrum RB are generated by multiplication of the coefficient sequence Ge. That is, the frequency components LBk of each frequency fk in the frequency spectrum LB (e jω) is set to the multiplication value between the frequency component of the frequency fk LAk (e jω) and the coefficient value Ge [k] (Formula (1a)) , the frequency components RBk of each frequency fk in the frequency spectrum RB (e jω) is set to the multiplication value between the frequency component of the frequency fk RAk (e jω) and the coefficient value Ge [k] (equation (1b)) . Therefore, the frequency spectrum LB and the frequency spectrum RB in which the localization component of the acoustic signal SIN (SIN_L, SIN_R) is emphasized are generated.
Figure 0005641187

他方、入力装置16に対して利用者から定位成分の抑圧が指示された場合、信号処理部38は、以下の数式(2a)および数式(2b)に示すように、周波数スペクトルLBおよび周波数スペクトルRBの生成に定位成分の抑圧用の処理係数列Gsを適用する。すなわち、周波数スペクトルLAの各周波数成分LAk(e)と処理係数列Gsの各係数値Gs[k]との乗算で周波数スペクトルLBの各周波数成分LBk(e)を算定し(数式(2a))、周波数スペクトルRAの各周波数成分RAk(e)と各係数値Gs[k]との乗算で周波数スペクトルRBの各周波数成分RBk(e)を算定する(数式(2b))。したがって、音響信号SIN(SIN_L,SIN_R)の定位成分を抑圧した周波数スペクトルLBおよび周波数スペクトルRBが生成される。

Figure 0005641187
On the other hand, when the user instructs the input device 16 to suppress the localization component, the signal processing unit 38, as shown in the following equations (2a) and (2b), the frequency spectrum LB and the frequency spectrum RB The processing coefficient sequence Gs for suppressing the localization component is applied to the generation of. That is, each frequency component LBk (e ) of the frequency spectrum LB is calculated by multiplying each frequency component LAk (e ) of the frequency spectrum LA by each coefficient value Gs [k] of the processing coefficient sequence Gs (formula (2a )), calculates the respective frequency components of the frequency spectrum RB RBk (e jω) by multiplying the each frequency component RAk of the frequency spectrum RA (e j [omega]) and the coefficient value Gs [k] (formula (2b)). Therefore, the frequency spectrum LB and the frequency spectrum RB in which the localization component of the acoustic signal SIN (SIN_L, SIN_R) is suppressed are generated.
Figure 0005641187

図1の波形合成部40は、信号処理部38による処理後の周波数スペクトルLBおよび周波数スペクトルRBからステレオ形式の音響信号SOUT_Lおよび音響信号SOUT_Rを生成する。具体的には、波形合成部40は、単位区間毎の周波数スペクトルLBを逆フーリエ変換で時間領域の信号に変換するとともに前後の単位区間について相互に連結することで音響信号SOUT_Lを生成する。同様に、波形合成部40は、各周波数スペクトルRBから音響信号SOUT_Rを生成する。波形合成部40が生成した音響信号SOUT(SOUT_L,SOUT_R)が放音装置14に供給されて音波として再生される。   The waveform synthesizer 40 in FIG. 1 generates a stereo acoustic signal SOUT_L and an acoustic signal SOUT_R from the frequency spectrum LB and the frequency spectrum RB processed by the signal processor 38. Specifically, the waveform synthesizer 40 generates the acoustic signal SOUT_L by converting the frequency spectrum LB for each unit section into a time domain signal by inverse Fourier transform and connecting the preceding and following unit sections to each other. Similarly, the waveform synthesizer 40 generates an acoustic signal SOUT_R from each frequency spectrum RB. The acoustic signals SOUT (SOUT_L, SOUT_R) generated by the waveform synthesis unit 40 are supplied to the sound emitting device 14 and reproduced as sound waves.

次に、係数設定部36の詳細を説明する。図2は、係数設定部36のブロック図である。図2に示すように、係数設定部36は、和成分生成部52と差成分生成部54と係数列生成部60とを含んで構成される。和成分生成部52は、音響信号SIN_Lの周波数成分LA1(e)〜LAK(e)と音響信号SIN_Rの周波数成分RA1(e)〜RAK(e)との加算で単位区間毎に順次に和成分(複素スペクトル)Mを生成する。和成分Mは、周波数f1〜fKの各々に対応する周波数成分Mk(e)の系列(M1(e)〜MK(e))である。数式(3)に示すように、和成分Mの周波数fkの周波数成分Mk(e)は、その周波数fkの周波数成分LAk(e)と周波数成分RAk(e)との加算(複素数)に相当する。したがって、和成分Mは、全部の音源からの音響を混合したモノラル形式の信号に相当する。なお、周波数成分LAk(e)と周波数成分RAk(e)との加重和や平均を和成分Mとして算定する構成も採用され得る。

Figure 0005641187
Next, details of the coefficient setting unit 36 will be described. FIG. 2 is a block diagram of the coefficient setting unit 36. As shown in FIG. 2, the coefficient setting unit 36 includes a sum component generation unit 52, a difference component generation unit 54, and a coefficient sequence generation unit 60. The sum component generation unit 52 adds the frequency components LA1 (e ) to LAK (e ) of the acoustic signal SIN_L and the frequency components RA1 (e ) to RAK (e ) of the acoustic signal SIN_R for each unit interval. A sum component (complex spectrum) M is sequentially generated. The sum component M is a series of frequency components Mk (e ) (M1 (e ) to MK (e )) corresponding to each of the frequencies f1 to fK. As shown in Equation (3), the frequency component Mk (e ) of the frequency fk of the sum component M is the addition (complex number) of the frequency component LAk (e ) and the frequency component RAk (e ) of the frequency fk. It corresponds to. Therefore, the sum component M corresponds to a monaural signal in which sounds from all sound sources are mixed. A configuration in which a weighted sum or average of the frequency component LAk (e ) and the frequency component RAk (e ) is calculated as the sum component M may be employed.
Figure 0005641187

図2の差成分生成部54は、音響信号SIN_Lの周波数成分LA1(e)〜LAK(e)と音響信号SIN_Rの周波数成分RA1(e)〜RAK(e)との間の減算で単位区間毎に順次に差成分(複素スペクトル)Sを生成する。差成分Sは、周波数f1〜fKの各々に対応する周波数成分Sk(e)の系列(S1(e)〜SK(e))である。差成分生成部54は、変数設定部32が設定した定位変数αを利用した数式(4)の演算(加重減算)で周波数成分S1(e)〜SK(e)を算定する。

Figure 0005641187
2 performs subtraction between the frequency components LA1 (e ) to LAK (e ) of the acoustic signal SIN_L and the frequency components RA1 (e ) to RAK (e ) of the acoustic signal SIN_R. Thus, a difference component (complex spectrum) S is sequentially generated for each unit interval. The difference component S is a series of frequency components Sk (e ) (S1 (e ) to SK (e )) corresponding to each of the frequencies f1 to fK. The difference component generator 54 calculates the frequency components S1 (e ) to SK (e ) by the calculation (weighted subtraction) of Expression (4) using the localization variable α set by the variable setting unit 32.
Figure 0005641187

数式(4)から理解されるように、定位変数αに応じた可変の比率(重み値)にて周波数成分LAk(e)から周波数成分RAk(e)を減算(逆相加算)することで差成分Sの各周波数成分Sk(e)が生成される。したがって、差成分Sは、音響信号SIN(SIN_L,SIN_R)のうち定位変数αに応じた位置(方向)の定位成分を他の成分に対して相対的に抑圧した信号(すなわち、定位成分以外の成分を相対的に強調した信号)となる。例えば、定位変数αが0.5(中央値)である場合には、中央方向の定位成分(すなわち、振幅および位相が略同等の成分)を抑圧した差成分Sが生成される。また、定位変数αが0.5を上回るほど、中央方向に対して右寄りの定位成分が差成分Sでは抑圧され、定位変数αが0.5を下回るほど、中央方向に対して左寄りの定位成分が差成分Sでは抑圧される。 As it is understood from the formula (4), varying proportions frequency components at (weight value) LAk (e j [omega]) from a frequency component RAk (e j [omega]) subtraction (reverse phase addition) according to the localization variable α Thus, each frequency component Sk (e ) of the difference component S is generated. Therefore, the difference component S is a signal in which the localization component in the position (direction) corresponding to the localization variable α in the acoustic signal SIN (SIN_L, SIN_R) is relatively suppressed with respect to other components (that is, other than the localization component). Signal with relatively emphasized components). For example, when the localization variable α is 0.5 (median value), a difference component S in which a localization component in the center direction (that is, a component having substantially the same amplitude and phase) is suppressed is generated. Further, as the localization variable α exceeds 0.5, the localization component closer to the center direction is suppressed by the difference component S, and as the localization variable α is less than 0.5, the localization component toward the left side relative to the center direction is suppressed. However, the difference component S is suppressed.

数式(4)の記号max(α,1−α)は、定位変数αまたは変数(1−α)のうちの最大値を意味する。定位変数αは1以下の数値に設定されるから、数式(4)の分子の演算のみでは周波数成分Sk(e)のパワー(振幅)が不足する可能性がある。数式(4)のように最大値max(α,1−α)で除算するのは、周波数成分Sk(e)のパワーを周波数成分LAk(e)や周波数成分RAk(e)と同等に維持するためである。 The symbol max (α, 1-α) in Equation (4) means the maximum value of the localization variable α or the variable (1-α). Since the localization variable α is set to a numerical value of 1 or less, there is a possibility that the power (amplitude) of the frequency component Sk (e ) is insufficient only by the calculation of the numerator of Equation (4). Dividing by the maximum value max (α, 1-α) as in Equation (4) is equivalent to the power of the frequency component Sk (e ) and the frequency component LAk (e ) or frequency component RAk (e ). It is for maintaining.

図2の係数列生成部60は、和成分生成部52が生成した和成分Mと差成分生成部54が生成した差成分Sとを利用して定位成分の強調用の処理係数列Ge(Ge[1]〜Ge[K])と定位成分の抑圧用の処理係数列Gs(Gs[1]〜Gs[K])とを生成する。図2に示すように、係数列生成部60は、処理係数列Geを生成する第1生成部62と、処理係数列Gsを生成する第2生成部64とを含んで構成される。   2 uses the sum component M generated by the sum component generation unit 52 and the difference component S generated by the difference component generation unit 54 to process the localization component enhancement processing coefficient sequence Ge (Ge [1] to Ge [K]) and a processing coefficient sequence Gs (Gs [1] to Gs [K]) for suppressing the localization component are generated. As shown in FIG. 2, the coefficient sequence generation unit 60 includes a first generation unit 62 that generates a processing coefficient sequence Ge and a second generation unit 64 that generates a processing coefficient sequence Gs.

第1生成部62は、以下の数式(5)の演算で処理係数列Geの各係数値Ge[k]を算定する。

Figure 0005641187
The first generation unit 62 calculates each coefficient value Ge [k] of the processing coefficient sequence Ge by the calculation of the following formula (5).
Figure 0005641187

数式(5)の記号P[k]は、定位成分を強調したパワースペクトルPのうち周波数fkでのパワーを意味する。パワーP[k]は、例えば以下の数式(6a)および数式(6b)で算定される。

Figure 0005641187
The symbol P [k] in Equation (5) means the power at the frequency fk in the power spectrum P in which the localization component is emphasized. The power P [k] is calculated by, for example, the following formula (6a) and formula (6b).
Figure 0005641187

数式(6a)から理解されるように、周波数成分Mk(e)のパワー|Mk(e)|が周波数成分Sk(e)のパワー|Sk(e)|を上回る周波数fkでのパワーP[k]は、和成分Mのパワー|Mk(e)|から差成分Sのパワー|Sk(e)|を減算した数値に設定される。すなわち、パワースペクトルPは、和成分Mのパワースペクトルと差成分Sのパワースペクトルとの間の減算(スペクトル減算)で生成される。他方、パワー|Mk(e)|がパワー|Sk(e)|以下となる周波数fkでのパワーP[k]は、和成分Mのパワー|Mk(e)|と所定の係数(フロアリング係数)βとの乗算値に設定される。以上の説明から理解されるように、数式(6a)および数式(6b)の演算は、和成分Mを信号成分(目的音)と仮定するとともに差成分Sを雑音成分と仮定した場合に雑音成分を抑圧するためのスペクトル減算(SS:Spectral Subtraction)に相当する。 As is understood from the formula (6a), the power of the frequency component Mk (e jω) | Mk ( e jω) | 2 is the power of the frequency component Sk (e jω) | Sk ( e jω) | 2 over the frequency fk The power P [k] is set to a value obtained by subtracting the power | Sk (e ) | 2 of the difference component S from the power | Mk (e ) | 2 of the sum component M. That is, the power spectrum P is generated by subtraction (spectrum subtraction) between the power spectrum of the sum component M and the power spectrum of the difference component S. On the other hand, the power | Mk (e jω) | 2 is the power | Sk (e jω) | Power P [k] of 2 or less and comprising a frequency fk, the power of the sum component M | Mk (e jω) | 2 a predetermined Is set to a multiplication value of the coefficient (flooring coefficient) β. As can be understood from the above description, the calculations of Equation (6a) and Equation (6b) are performed when the sum component M is assumed to be a signal component (target sound) and the difference component S is assumed to be a noise component. This corresponds to spectral subtraction (SS).

周波数成分Sk(e)は定位成分を抑圧した成分であるから、数式(6a)および数式(6b)で算定されるパワーP[1]〜P[K]の系列は、音響信号SIN(SIN_L,SIN_R)の定位成分を強調した成分のパワースペクトルPとなる。したがって、数式(5)の分子は、定位成分を強調した成分の振幅に相当する。なお、数式(5)にて振幅(P[k])1/2を周波数成分Mk(e)の振幅|Mk(e)|で除算するのは、係数値Ge[k]を1以下の数値(0≦Ge[k]≦1)に正規化するためである。
Since the frequency component Sk (e ) is a component in which the localization component is suppressed, the series of powers P [1] to P [K] calculated by the equations (6a) and (6b) is the acoustic signal SIN (SIN_L , SIN_R), the power spectrum P of the component emphasizing the localization component. Therefore, the numerator of Expression (5) corresponds to the amplitude of the component in which the localization component is emphasized. Note that dividing the amplitude (P [k]) 1/2 by the amplitude | Mk (e ) | of the frequency component Mk (e ) | in the equation (5) reduces the coefficient value Ge [k] to 1 or less. This is for normalization to the numerical value of (0 ≦ Ge [k] ≦ 1).

以上の説明から理解されるように、第1生成部62が生成する処理係数列Geの係数値Ge[1]〜Ge[K]は、定位変数αに応じた位置の定位成分のパワー(振幅)が大きい周波数fkの係数値Ge[k]ほど1に近い数値となり、定位成分のパワーが小さい周波数fkの係数値Ge[k]ほど0に近い数値となる。したがって、周波数スペクトルLAおよび周波数スペクトルRAの各々に信号処理部38が処理係数列Geを乗算することで、前述の通り、定位成分を強調したステレオ形式の音響信号SOUT(SOUT_L,SOUT_R)が生成される。   As understood from the above description, the coefficient values Ge [1] to Ge [K] of the processing coefficient sequence Ge generated by the first generation unit 62 are the power (amplitude) of the localization component at the position corresponding to the localization variable α. ) Is a value closer to 1 as the coefficient value Ge [k] of the frequency fk is larger, and is closer to 0 as the coefficient value Ge [k] of the frequency fk whose power of the localization component is smaller. Therefore, the signal processing unit 38 multiplies each of the frequency spectrum LA and the frequency spectrum RA by the processing coefficient sequence Ge to generate the stereo-type acoustic signal SOUT (SOUT_L, SOUT_R) with the localization component emphasized as described above. The

第2生成部64は、第1生成部62が生成した処理係数列Geを利用して定位成分の抑圧用の処理係数列Gs(係数値Gs[1]〜Gs[K])を生成する。具体的には、第2生成部64は、数式(7)に示すように、処理係数列Geの各係数値Ge[k]を所定値(本形態では1)から減算することで処理係数列Gsの各係数値Gs[k]を算定する。

Figure 0005641187
The second generation unit 64 generates a processing coefficient sequence Gs (coefficient values Gs [1] to Gs [K]) for suppressing the localization component using the processing coefficient sequence Ge generated by the first generation unit 62. Specifically, as shown in Equation (7), the second generation unit 64 subtracts each coefficient value Ge [k] of the processing coefficient sequence Ge from a predetermined value (1 in the present embodiment) to thereby process the processing coefficient sequence. Each coefficient value Gs [k] of Gs is calculated.
Figure 0005641187

数式(7)から理解されるように、第2生成部64が生成する処理係数列Gsの係数値Gs[1]〜Gs[K]は、定位変数αに応じた位置の定位成分のパワー(振幅)が大きい周波数fkの係数値Gs[k]ほど0に近い数値となり、定位成分のパワーが小さい周波数fkの係数値Gs[k]ほど1に近い数値となる。したがって、周波数スペクトルLAおよび周波数スペクトルRAの各々に信号処理部38が処理係数列Gsを乗算することで、前述の通り、定位成分を抑圧したステレオ形式の音響信号SOUT(SOUT_L,SOUT_R)が生成される。   As understood from the equation (7), the coefficient values Gs [1] to Gs [K] of the processing coefficient sequence Gs generated by the second generation unit 64 are the power of the localization component at the position according to the localization variable α ( The coefficient value Gs [k] of the frequency fk having a larger amplitude) is closer to 0, and the coefficient value Gs [k] of the frequency fk having a smaller localization component power is closer to 1. Accordingly, the signal processing unit 38 multiplies each of the frequency spectrum LA and the frequency spectrum RA by the processing coefficient sequence Gs, thereby generating the stereo-type acoustic signal SOUT (SOUT_L, SOUT_R) in which the localization component is suppressed as described above. The

以上に説明したように、第1実施形態では、音響信号SIN_L(周波数スペクトルLA)および音響信号SIN_R(周波数スペクトルRA)の各々に対して個別に処理係数列Gsまたは処理係数列Geが乗算されるから、定位成分を強調または抑圧した音響信号SOUT(SOUT_L,SOUT_R)をステレオ形式のまま生成することが可能である。   As described above, in the first embodiment, each of the acoustic signal SIN_L (frequency spectrum LA) and the acoustic signal SIN_R (frequency spectrum RA) is individually multiplied by the processing coefficient sequence Gs or the processing coefficient sequence Ge. Therefore, the acoustic signal SOUT (SOUT_L, SOUT_R) in which the localization component is emphasized or suppressed can be generated in the stereo format.

ところで、特許第3670562号公報には、ステレオ信号のチャネル間の振幅比に応じた減衰係数gi(k)と位相差に応じた減衰係数gp(k)との何れかを選択して各チャネルの音響信号に乗算する構成が開示されている。しかし、以上の技術では、振幅比に応じた減衰係数gi(k)と位相差に応じた減衰係数gp(k)とが択一的に適用されるから、振幅および位相の双方がチャネル間で相違する場合には、定位成分の適切な強調または抑圧が困難であるという問題がある。他方、第1実施形態においては、音響信号SIN_L(周波数スペクトルLA)および音響信号SIN_R(周波数スペクトルRA)から複素スペクトルとして算定された和成分Mおよび差成分Sが処理係数列Geおよび処理係数列Gsの生成に利用されるから、音響信号SIN_Lと音響信号SIN_Rとの間の振幅差および位相差の双方を反映した処理係数列Geおよび処理係数列Gsが生成される。したがって、音響信号SIN_Lと音響信号SIN_Rとの間で振幅および位相の一方のみが相違する場合に加えて、振幅および位相の双方が相違する場合にも、定位成分を有効に強調または抑圧できるという格別の効果が実現される。   By the way, in Japanese Patent No. 3670562, either an attenuation coefficient gi (k) corresponding to the amplitude ratio between channels of a stereo signal or an attenuation coefficient gp (k) corresponding to a phase difference is selected and each channel is selected. A configuration for multiplying an acoustic signal is disclosed. However, in the above technique, the attenuation coefficient gi (k) according to the amplitude ratio and the attenuation coefficient gp (k) according to the phase difference are alternatively applied. If they are different, there is a problem that it is difficult to properly emphasize or suppress the localization component. On the other hand, in the first embodiment, the sum component M and the difference component S calculated as a complex spectrum from the acoustic signal SIN_L (frequency spectrum LA) and the acoustic signal SIN_R (frequency spectrum RA) are processed coefficient sequence Ge and processing coefficient sequence Gs. Therefore, the processing coefficient sequence Ge and the processing coefficient sequence Gs reflecting both the amplitude difference and the phase difference between the acoustic signal SIN_L and the acoustic signal SIN_R are generated. Therefore, in addition to the case where only one of the amplitude and the phase is different between the acoustic signal SIN_L and the acoustic signal SIN_R, the localization component can be effectively enhanced or suppressed when both the amplitude and the phase are different. The effect of is realized.

<B:第2実施形態>
本発明の第2実施形態を説明する。なお、以下の各例示において作用や機能が第1実施形態と同等である要素については、第1実施形態と同様の符号を付して各々の詳細な説明を適宜に省略する。
<B: Second Embodiment>
A second embodiment of the present invention will be described. In the following examples, elements having the same functions and functions as those of the first embodiment are denoted by the same reference numerals as those of the first embodiment, and detailed descriptions thereof are appropriately omitted.

図3は、第2実施形態の係数列生成部60のブロック図である。図3に示すように、第2実施形態の係数列生成部60は、第1実施形態と同様の第1生成部62および第2生成部64に加えて係数調整部66を含んで構成される。係数調整部66は、第1生成部62が生成した処理係数列Geの各係数値Ge[k]の調整で処理係数列GeA(係数値GeA[1]〜GeA[K])を生成し、第2生成部64が生成した処理係数列Gsの各係数値Gs[k]の調整で処理係数列GsA(係数値GsA[1]〜GsA[K])を生成する。   FIG. 3 is a block diagram of the coefficient string generation unit 60 of the second embodiment. As shown in FIG. 3, the coefficient sequence generation unit 60 of the second embodiment includes a coefficient adjustment unit 66 in addition to the first generation unit 62 and the second generation unit 64 similar to those of the first embodiment. . The coefficient adjustment unit 66 generates a processing coefficient sequence GeA (coefficient values GeA [1] to GeA [K]) by adjusting each coefficient value Ge [k] of the processing coefficient sequence Ge generated by the first generation unit 62, A processing coefficient sequence GsA (coefficient values GsA [1] to GsA [K]) is generated by adjusting each coefficient value Gs [k] of the processing coefficient sequence Gs generated by the second generation unit 64.

図4の部分(A)は、第2生成部64が生成する処理係数列Gsのうち中央方向(α=0.5)に音像が定位する成分の周波数fkに対応する係数値Gs[k](縦軸)と定位変数α(横軸)との関係を示すグラフである。図4の部分(A)から理解されるように、定位変数αが0.5(中央方向)に近いほど係数値Gs[k]が0に近い数値となるように、処理係数列Gsの係数値Gs[k]は定位変数αに応じて線形に変化する。   Part (A) of FIG. 4 is a coefficient value Gs [k] corresponding to the frequency fk of the component in which the sound image is localized in the central direction (α = 0.5) in the processing coefficient sequence Gs generated by the second generation unit 64. It is a graph which shows the relationship between (vertical axis) and localization variable (alpha) (horizontal axis). As understood from part (A) of FIG. 4, the relationship of the processing coefficient sequence Gs is such that the coefficient value Gs [k] becomes a value closer to 0 as the localization variable α is closer to 0.5 (center direction). The numerical value Gs [k] changes linearly according to the localization variable α.

図4の部分(B)は、係数調整部66による調整後の処理係数列GsAの係数値GsA[k](縦軸)と定位変数α(横軸)との関係を示すグラフである。図4の部分(B)に示すように、係数調整部66は、処理係数列Gsの係数値Gs[k]が閾値Gs_THを上回る場合には、調整後の係数値GsA[k]を所定値Gs_maxに設定し、係数値Gs[k]が閾値Gs_THを下回る場合には、係数値GsA[k]を所定値Gs_minに設定する。   Part (B) of FIG. 4 is a graph showing the relationship between the coefficient value GsA [k] (vertical axis) and the localization variable α (horizontal axis) of the processing coefficient sequence GsA after adjustment by the coefficient adjustment unit 66. As shown in part (B) of FIG. 4, when the coefficient value Gs [k] of the processing coefficient sequence Gs exceeds the threshold value Gs_TH, the coefficient adjustment unit 66 sets the adjusted coefficient value GsA [k] to a predetermined value. When the coefficient value Gs [k] is lower than the threshold value Gs_TH, the coefficient value GsA [k] is set to a predetermined value Gs_min.

所定値Gs_maxは例えば1に設定され、所定値Gs_minは例えば0に設定される。したがって、中央方向に相当する数値(0.5)を含む所定の範囲A内に定位変数αが設定された場合には、所定値Gs_min(GsA[k]=0)の乗算で周波数成分LAk(e)および周波数成分RAk(e)が抑圧(除去)され、定位変数αが範囲Aの外側の数値に設定された場合には、所定値Gs_max(GsA[k]=1)の乗算で周波数成分LAk(e)および周波数成分RAk(e)が維持される。 The predetermined value Gs_max is set to 1, for example, and the predetermined value Gs_min is set to 0, for example. Therefore, when the localization variable α is set within a predetermined range A including a numerical value (0.5) corresponding to the center direction, the frequency component LAk (is multiplied by the predetermined value Gs_min (GsA [k] = 0). e ) and frequency component RAk (e ) are suppressed (removed), and when the localization variable α is set to a value outside the range A, multiplication by a predetermined value Gs_max (GsA [k] = 1) The frequency component LAk (e ) and the frequency component RAk (e ) are maintained.

以上では処理係数列Gsの調整を例示したが、強調用の処理係数列Geも同様の方法で調整される。すなわち、図5の部分(A)および部分(B)に示すように、係数調整部66は、処理係数列Geの係数値Ge[k]が閾値Ge_THを上回る場合には、調整後の係数値GeA[k]を所定値Ge_max(例えば1)に設定し、係数値Ge[k]が閾値Ge_THを下回る場合には、係数値GeA[k]を所定値Ge_min(例えば0)に設定する。信号処理部38は、係数調整部66による処理後の処理係数列GeAまたは処理係数列GsAを周波数スペクトルLAおよび周波数スペクトルRAに作用させることで周波数スペクトルLBおよび周波数スペクトルRBを生成する。   Although the adjustment of the processing coefficient sequence Gs has been exemplified above, the enhancement processing coefficient sequence Ge is also adjusted by the same method. That is, as shown in part (A) and part (B) of FIG. 5, the coefficient adjustment unit 66 adjusts the coefficient value after adjustment when the coefficient value Ge [k] of the processing coefficient sequence Ge exceeds the threshold value Ge_TH. GeA [k] is set to a predetermined value Ge_max (for example, 1), and when the coefficient value Ge [k] is lower than the threshold value Ge_TH, the coefficient value GeA [k] is set to a predetermined value Ge_min (for example, 0). The signal processing unit 38 generates the frequency spectrum LB and the frequency spectrum RB by applying the processing coefficient sequence GeA or the processing coefficient sequence GsA processed by the coefficient adjusting unit 66 to the frequency spectrum LA and the frequency spectrum RA.

閾値Ge_THや閾値Gs_THは、例えば入力装置16に対する利用者からの指示に応じて可変に設定される。定位成分が強調/抑圧される定位変数αの範囲は閾値Ge_THや閾値Gs_THに応じて変化する。すなわち、閾値Ge_THが大きいほど、定位成分が強調される定位変数αの範囲は狭くなり、閾値Gs_THが大きいほど、定位成分が強調される定位変数αの範囲は広くなる。   The threshold value Ge_TH and the threshold value Gs_TH are variably set according to an instruction from the user to the input device 16, for example. The range of the localization variable α in which the localization component is emphasized / suppressed changes according to the threshold value Ge_TH and the threshold value Gs_TH. That is, the larger the threshold value Ge_TH, the narrower the range of the localization variable α in which the localization component is emphasized, and the larger the threshold value Gs_TH, the wider the range of the localization variable α in which the localization component is emphasized.

第2実施形態においても第1実施形態と同様の効果が実現される。また、第2実施形態においては、係数値Gs[k]が係数値GsA[k](Gs_max,Gs_min)に調整され、係数値Ge[k]が係数値GeA[k](Ge_max,Ge_min)に調整されるから、定位成分が除去される定位変数αの範囲を明確に画定することが可能である。   In the second embodiment, the same effect as in the first embodiment is realized. In the second embodiment, the coefficient value Gs [k] is adjusted to the coefficient value GsA [k] (Gs_max, Gs_min), and the coefficient value Ge [k] is changed to the coefficient value GeA [k] (Ge_max, Ge_min). Since it is adjusted, it is possible to clearly define the range of the localization variable α from which the localization component is removed.

<C:変形例>
以上の各形態は多様に変形され得る。具体的な変形の態様を以下に例示する。以下の例示から任意に選択された2以上の態様は適宜に併合され得る。
<C: Modification>
Each of the above forms can be variously modified. Specific modifications are exemplified below. Two or more aspects arbitrarily selected from the following examples can be appropriately combined.

(1)変形例1
以上の各形態では、数式(4)から理解されるように、音響信号SIN_L(周波数成分LAk(e))と音響信号SIN_R(周波数成分RAk(e))との振幅の比率が定位変数αに応じて線形に変化するように差成分Sを算定したが、以下の各態様にて例示するように、和成分Mおよび差成分Sの算定の方法や定位変数αとの関係は適宜に変更される。
(1) Modification 1
In each of the above embodiments, as understood from the equation (4), the ratio of the amplitude of the acoustic signal SIN_L (frequency component LAk (e )) and the acoustic signal SIN_R (frequency component RAk (e )) is a localization variable. Although the difference component S is calculated so as to change linearly according to α, as illustrated in the following embodiments, the calculation method of the sum component M and the difference component S and the relationship with the localization variable α are appropriately determined. Be changed.

<第1態様>
音響信号SIN_Lのパワー|LAk(e)|および音響信号SIN_Rのパワー|RAk(e)|から和成分Mおよび差成分Sを算定する構成が採用され得る。具体的には、和成分生成部52は、以下の数式(8a)の演算で和成分M(周波数成分M1(e)〜MK(e)で構成される複素スペクトル)を生成し、差成分生成部54は、以下の数式(8b)の演算で差成分S(周波数成分S1(e)〜SK(e)で構成される複素スペクトル)を生成する。したがって、差成分Sにおいては、音響信号SIN_Lおよび音響信号SIN_Rの各々のパワーの比率が定位変数αに応じて線形に変化する。なお、数式(8a)および数式(8b)における記号ejLは周波数スペクトルLAの位相を意味し、記号ejRは周波数スペクトルRAの位相を意味する。

Figure 0005641187
<First aspect>
LAk (e jω) | | 2 and the power of the acoustic signal SIN_R | RAk (e jω) | power of the acoustic signal SIN_L configured to calculate the 2 from the sum component M and the difference component S may be employed. Specifically, the sum component generation unit 52 generates the sum component M (complex spectrum composed of frequency components M1 (e ) to MK (e )) by the calculation of the following formula (8a), and the difference The component generation unit 54 generates a difference component S (a complex spectrum composed of frequency components S1 (e ) to SK (e )) by calculation of the following formula (8b). Therefore, in the difference component S, the power ratio between the acoustic signal SIN_L and the acoustic signal SIN_R changes linearly according to the localization variable α. Symbols e jL in equation (8a) and Equation (8b) denotes the phase of the frequency spectrum LA, symbol e jR means the phase of the frequency spectrum RA.
Figure 0005641187

以上の方法で和成分Mおよび差成分Sが生成されると、係数列生成部60の第1生成部62は、定位成分を強調したパワースペクトルP(パワーP[k])を以下の数式(9a)および数式(9b)の演算で生成し、パワースペクトルPを利用した数式(10)の演算で処理係数列Geの各係数値Ge[k]を算定する。第2生成部64が処理係数列Geから処理係数列Gsを生成する方法は第1実施形態(数式(7))と同様である。以上の構成でも第1実施形態と同様の効果が実現される。

Figure 0005641187
When the sum component M and the difference component S are generated by the above method, the first generation unit 62 of the coefficient sequence generation unit 60 generates a power spectrum P (power P [k]) in which the localization component is emphasized by the following formula ( The coefficient values Ge [k] of the processing coefficient sequence Ge are calculated by the calculation of the formula (10) using the power spectrum P, which is generated by the calculations of 9a) and (9b). The method by which the second generation unit 64 generates the processing coefficient sequence Gs from the processing coefficient sequence Ge is the same as in the first embodiment (Formula (7)). With the above configuration, the same effect as that of the first embodiment is realized.
Figure 0005641187

<第2態様>
定位成分の位置(方向)を定位変数αの関数f(α)に応じて制御する構成が採用され得る。具体的には、和成分生成部52は、以下の数式(11a)の演算で和成分M(周波数成分M1(e)〜MK(e))を生成し、差成分生成部54は、以下の数式(11b)の演算で差成分S(周波数成分S1(e)〜SK(e))を生成する。したがって、差成分Sにおける音響信号SIN_Lおよび音響信号SIN_Rの各々の振幅の比率が定位変数αの関数f(α)に応じて変化する。係数列生成部60は、第1実施形態と同様の方法(数式(5),数式(6a),数式(6b),数式(7))で、数式(11a)の和成分Mと数式(11b)の差成分Sとから処理係数列Geおよび処理係数列Gsを算定する。

Figure 0005641187
<Second aspect>
A configuration in which the position (direction) of the localization component is controlled according to the function f (α) of the localization variable α can be adopted. Specifically, the sum component generation unit 52 generates the sum component M (frequency components M1 (e ) to MK (e )) by the calculation of the following formula (11a), and the difference component generation unit 54 The difference component S (frequency components S1 (e ) to SK (e )) is generated by the calculation of the following formula (11b). Therefore, the ratio of the amplitudes of the acoustic signal SIN_L and the acoustic signal SIN_R in the difference component S changes according to the function f (α) of the localization variable α. The coefficient sequence generation unit 60 uses the same method as in the first embodiment (Formula (5), Formula (6a), Formula (6b), Formula (7)), and the sum component M of Formula (11a) and Formula (11b) The processing coefficient sequence Ge and the processing coefficient sequence Gs are calculated from the difference component S).
Figure 0005641187

なお、数式(6a)では和成分Mのパワー|Mk(e)|と差成分Sのパワー|Sk(e)|との差分をパワーP[k]として算定したが、以下の数式(6c)に示すように、和成分Mの振幅|Mk(e)|と差成分Sの振幅|Sk(e)|との差分を振幅P[k]として算定する構成も採用され得る。数式(6c)で振幅P[k]を算定する構成では、第1生成部62が数式(5a)の演算で処理係数列Geの係数値Ge[k]を算定する。

Figure 0005641187
In Equation (6a), the difference between the power of the sum component M | Mk (e ) | 2 and the power of the difference component S | Sk (e ) | 2 is calculated as the power P [k]. As shown in the equation (6c), a configuration is also employed in which the difference between the amplitude | Mk (e ) | of the sum component M and the amplitude | Sk (e ) | of the difference component S is calculated as the amplitude P [k]. obtain. In the configuration in which the amplitude P [k] is calculated using the equation (6c), the first generation unit 62 calculates the coefficient value Ge [k] of the processing coefficient sequence Ge by the calculation of the equation (5a).
Figure 0005641187

(2)変形例2
以上の各形態では、パワースペクトルの減算(数式(6a),数式(9a))や振幅スペクトルの減算(数式(6c))で処理係数列Geを算定したが、処理係数列Geを算定する方法は任意である。例えば、和成分Mに含まれる定位成分を信号成分と仮定するとともに差成分Sを雑音成分と仮定すると、和成分Mおよび差成分Sを利用した処理係数列Geの生成には、雑音成分(差成分S)を抑圧して信号成分(定位成分)を強調するための数値列(処理係数列Ge)を生成する公知の音声強調の技術を同様に適用することが可能である。
(2) Modification 2
In each of the above embodiments, the processing coefficient sequence Ge is calculated by subtraction of the power spectrum (Formula (6a), Formula (9a)) or subtraction of the amplitude spectrum (Formula (6c)). Is optional. For example, if the localization component included in the sum component M is assumed to be a signal component and the difference component S is assumed to be a noise component, the generation of the processing coefficient sequence Ge using the sum component M and the difference component S may include a noise component (difference). A known speech enhancement technique for generating a numerical sequence (processing coefficient sequence Ge) for emphasizing a signal component (localization component) by suppressing the component S) can be similarly applied.

処理係数列Geの生成に適用され得る技術としては、ウィナーフィルタ(Wiener filter)を利用した音声強調や、MMSE-STSA法またはMAP(maximum a posteriori estimation)推定法を利用した音声強調の技術が例示され得る。MMSE-STSA法については、Y. Ephraim and D. Malah, "Speech enhancement using a minimum mean-square error short-time spectral amplitude estimator", IEEE ASSP, vol.ASSP-32, no.6, p.1109-1121, Dec. 1984に開示され、MAP推定法については、T. Lotter and P. Vary, "Speech enhancement by MAP spectral amplitude estimation using a Super-Gaussian speech model", EURASIP Journal on Applied Signal Processing, vol.2005, no,7, p.1110-1126, July 2005に開示されている。   Examples of technologies that can be applied to the generation of the processing coefficient sequence Ge include speech enhancement using a Wiener filter and speech enhancement using an MMSE-STSA method or a MAP (maximum a posteriori estimation) estimation method. Can be done. For the MMSE-STSA method, see Y. Ephraim and D. Malah, "Speech enhancement using a minimum mean-square error short-time spectral amplitude estimator", IEEE ASSP, vol.ASSP-32, no.6, p.1109- 1121, Dec. 1984, MAP estimation method is described in T. Lotter and P. Vary, "Speech enhancement by MAP spectral amplitude estimation using a Super-Gaussian speech model", EURASIP Journal on Applied Signal Processing, vol.2005 , no, 7, p.1110-1126, July 2005.

(3)変形例3
以上の各形態では、処理係数列Geを利用した演算(数式(7))で処理係数列Gsを生成したが、係数列生成部60が処理係数列Geの生成と同様の方法で和成分Mおよび差成分Sから直接的に処理係数列Gsを生成する構成も採用され得る。具体的には、処理係数列Geの生成について以上の例示した各数式における和成分Mと差成分Sとを相互に置換すれば、定位成分の抑圧用の処理係数列Gsを生成することが可能である。
(3) Modification 3
In each of the above embodiments, the processing coefficient sequence Gs is generated by the calculation (Formula (7)) using the processing coefficient sequence Ge. However, the coefficient sequence generation unit 60 performs the sum component M in the same manner as the generation of the processing coefficient sequence Ge. A configuration in which the processing coefficient sequence Gs is directly generated from the difference component S can also be adopted. Specifically, when the sum component M and the difference component S in each of the above-exemplified formulas are replaced with each other to generate the processing coefficient sequence Ge, the processing coefficient sequence Gs for suppressing the localization component can be generated. It is.

ただし、処理係数列Geを利用して処理係数列Gsを算定する第1実施形態の構成によれば、和成分Mや差成分Sから直接的に処理係数列Gsを算定する処理が不要である。したがって、係数列生成部60による処理の負荷が軽減されるという利点がある。なお、和成分Mおよび差成分Sから直接的に処理係数列Gsを生成し、処理係数列Gsの各係数値Gs[k]を数式(7)と同様に所定値(例えば1)から減算することで処理係数列Ge(係数値Ge[k])を生成する構成も採用され得る。   However, according to the configuration of the first embodiment in which the processing coefficient sequence Gs is calculated using the processing coefficient sequence Ge, processing for directly calculating the processing coefficient sequence Gs from the sum component M and the difference component S is not necessary. . Therefore, there is an advantage that the processing load by the coefficient sequence generator 60 is reduced. A processing coefficient sequence Gs is directly generated from the sum component M and the difference component S, and each coefficient value Gs [k] of the processing coefficient sequence Gs is subtracted from a predetermined value (for example, 1) in the same manner as the equation (7). Thus, a configuration for generating the processing coefficient sequence Ge (coefficient value Ge [k]) may be employed.

(4)変形例4
以上の各形態では、処理係数列G(Ge,Gs)を単位区間毎に生成したが、処理係数列Gの生成の周期は任意である。例えば、所定個の単位区間の集合を周期として係数列生成部60が順次に生成した処理係数列Gを、信号処理部38が当該周期内の複数の単位区間について適用する構成も採用され得る。また、以上の各形態では、各単位区間について生成された処理係数列Gをその単位区間の周波数スペクトル(LA,RA)の処理に適用したが、各単位区間の処理係数列Gをその単位区間の経過後の各単位区間の周波数スペクトル(LA,RA)の処理に適用する構成も採用され得る。
(4) Modification 4
In each of the above embodiments, the processing coefficient sequence G (Ge, Gs) is generated for each unit section, but the generation cycle of the processing coefficient sequence G is arbitrary. For example, a configuration in which the signal processing unit 38 applies the processing coefficient sequence G sequentially generated by the coefficient sequence generation unit 60 with a set of a predetermined number of unit intervals as a cycle may be adopted for a plurality of unit intervals in the cycle. In each of the above embodiments, the processing coefficient sequence G generated for each unit section is applied to the processing of the frequency spectrum (LA, RA) of the unit section. However, the processing coefficient sequence G of each unit section is used as the unit section. A configuration applied to the processing of the frequency spectrum (LA, RA) of each unit section after elapse of time can also be adopted.

(5)変形例5
以上の各形態では、処理係数列G(Ge,Gs)を音響信号SINの周波数スペクトル(LA,RA)に乗算したが、信号処理部38による処理の内容は適宜に変更される。例えば周波数成分LAk(e)および周波数成分RAk(e)から処理係数列G(Ge,Gs)を減算することで音響信号SOUT(SOUT_L,SOUT_R)を生成する構成が採用され得る。以上の構成における強調用の処理係数列Geは、第1実施形態の処理係数列Geとは逆に、定位成分のパワーが大きい周波数fkの係数値Ge[k]ほど0に近い数値に設定される。抑圧用の処理係数列Gsについても同様であり、第1実施形態の処理係数列Gsとは逆に、定位成分のパワーが大きい周波数fkの係数値Gs[k]ほど1に近い数値に設定される。
(5) Modification 5
In each of the above embodiments, the processing coefficient sequence G (Ge, Gs) is multiplied by the frequency spectrum (LA, RA) of the acoustic signal SIN, but the content of processing by the signal processing unit 38 is appropriately changed. For example, a configuration in which the acoustic signal SOUT (SOUT_L, SOUT_R) is generated by subtracting the processing coefficient sequence G (Ge, Gs) from the frequency component LAk (e ) and the frequency component RAk (e ) may be employed. In contrast to the processing coefficient sequence Ge of the first embodiment, the processing coefficient sequence Ge for emphasis in the above configuration is set to a value closer to 0 as the coefficient value Ge [k] of the frequency fk where the power of the localization component is large. The The same applies to the processing coefficient sequence Gs for suppression. Contrary to the processing coefficient sequence Gs of the first embodiment, the coefficient value Gs [k] of the frequency fk having a large localization component power is set to a value closer to 1. The

(6)変形例6
所定の周波数帯域内の成分に限定して定位成分の強調/抑圧を実行する構成も好適である。例えば、音響信号SINのうち人間の音声のパワーが集中する周波数帯域(例えば100kHz〜8kHz)についてのみ以上の各形態の処理が実行される(他の帯域については処理せずに再生する)。
(6) Modification 6
A configuration in which the localization component is emphasized / suppressed by limiting to components within a predetermined frequency band is also preferable. For example, the processing in each of the above modes is executed only for the frequency band (for example, 100 kHz to 8 kHz) in which the power of human voice is concentrated in the acoustic signal SIN (reproduction is performed without processing for other bands).

(7)変形例7
以上の各形態においては定位成分の強調用の処理係数列Geおよび抑圧用の処理係数列Gsの双方を係数列生成部60が生成したが、係数列生成部60が処理係数列Geおよび処理係数列Gsの一方のみを生成する構成も採用され得る。したがって、例えば、以上の各形態の第2生成部64は省略され得る。
(7) Modification 7
In each of the above embodiments, the coefficient sequence generation unit 60 generates both the processing coefficient sequence Ge for emphasizing the localization component and the processing coefficient sequence Gs for suppression, but the coefficient sequence generation unit 60 generates the processing coefficient sequence Ge and the processing coefficient. A configuration that generates only one of the columns Gs may also be employed. Therefore, for example, the second generation unit 64 in each of the above forms can be omitted.

(8)変形例8
以上の各形態における係数β(数式(6b),数式(9b))を、例えば入力装置16に対する利用者からの指示に応じて可変に設定する構成も好適である。係数βが小さい(0に近い)ほど定位成分の抑圧の度合が強化されるとともに定位成分の強調の度合が低下する。なお、係数βが大きい場合には、抑圧用の処理係数列Gsのうち定位成分以外の大部分の周波数fkの係数値Gs[k]が充分に小さい数値となるから、音響信号SOUT(SOUT_L,SOUT_R)の音量が不足する可能性がある。そこで、係数βを大きい数値に設定して定位成分の抑圧を実行する場合、音響信号SOUTの音量を増加させる構成が好適である。同様に、係数βが小さい場合には、強調用の処理係数列Geの大部分の周波数fkの係数値Ge[k]が充分に小さい数値となり得るから、係数βを小さい数値に設定して定位成分の強調を実行する場合、音響信号SOUTの音量を増加させる構成が好適に採用される。
(8) Modification 8
A configuration in which the coefficient β (Equation (6b), Equation (9b)) in each of the above embodiments is variably set according to an instruction from the user to the input device 16, for example, is also suitable. As the coefficient β is smaller (closer to 0), the degree of suppression of the localization component is strengthened and the degree of enhancement of the localization component is reduced. When the coefficient β is large, the coefficient value Gs [k] of most of the frequencies fk other than the localization component in the processing coefficient sequence Gs for suppression becomes a sufficiently small value, so that the acoustic signal SOUT (SOUT_L, SOUT_R) may be insufficient. Therefore, when the localization component is suppressed by setting the coefficient β to a large numerical value, a configuration in which the volume of the acoustic signal SOUT is increased is preferable. Similarly, when the coefficient β is small, the coefficient value Ge [k] of most of the frequencies fk in the emphasis processing coefficient string Ge can be a sufficiently small numerical value. When emphasizing the component, a configuration that increases the volume of the acoustic signal SOUT is preferably employed.

100……音響処理装置、12……信号供給装置、14……放音装置、16……入力装置、22……演算処理装置、24……記憶装置、32……変数設定部、34……周波数分析部、36……係数設定部、38……信号処理部、40……波形合成部、52……和成分生成部、54……差成分生成部、60……係数列生成部、62……第1生成部、64……第2生成部、66……係数調整部。
DESCRIPTION OF SYMBOLS 100 ... Sound processing device, 12 ... Signal supply device, 14 ... Sound emission device, 16 ... Input device, 22 ... Arithmetic processing device, 24 ... Memory | storage device, 32 ... Variable setting part, 34 ... Frequency analysis unit 36... Coefficient setting unit 38... Signal processing unit 40... Waveform synthesis unit 52 52 Sum component generation unit 54. Difference component generation unit 60 60 Coefficient sequence generation unit 62 ... First generation unit, 64... Second generation unit, 66.

Claims (6)

ステレオ形式の第1音響信号と第2音響信号との加算で和成分を生成する和成分生成手段と、
特定位置の定位成分を抑圧した差成分を前記第1音響信号と前記第2音響信号との間の減算で生成する差成分生成手段と、
周波数毎の係数値で構成されて前記定位成分を強調または抑圧する処理係数列を前記和成分および前記差成分から生成する係数列生成手段と、
前記第1音響信号および前記第2音響信号の各々の各周波数成分に前記処理係数列の各係数値を作用させる信号処理手段とを具備し、
前記係数列生成手段は、
前記定位成分の強調および抑圧の一方に対応する第1処理係数列を前記和成分および前記差成分から生成する第1生成手段と、
前記定位成分の強調および抑圧の他方に対応する第2処理係数列を、前記第1処理係数列の各係数値を所定値から減算することで生成する第2生成手段とを含む
音響処理装置。
Sum component generating means for generating a sum component by adding the first acoustic signal and the second acoustic signal in stereo format;
Difference component generation means for generating a difference component in which a localization component at a specific position is suppressed by subtraction between the first acoustic signal and the second acoustic signal;
A coefficient sequence generation means configured to generate a processing coefficient sequence composed of coefficient values for each frequency and emphasizing or suppressing the localization component from the sum component and the difference component;
Signal processing means for causing each coefficient value of the processing coefficient sequence to act on each frequency component of each of the first acoustic signal and the second acoustic signal ;
The coefficient sequence generation means includes
First generation means for generating a first processing coefficient sequence corresponding to one of emphasis and suppression of the localization component from the sum component and the difference component;
And a second generation unit that generates a second processing coefficient sequence corresponding to the other of the localization component enhancement and suppression by subtracting each coefficient value of the first processing coefficient sequence from a predetermined value .
前記係数列生成手段は、前記処理係数列の各係数値を、当該係数値が閾値を上回るか否かに応じて第1値および第2値の何れかに変更する係数調整手段を含む
請求項1の音響処理装置。
The coefficient sequence generation means includes coefficient adjustment means for changing each coefficient value of the processing coefficient sequence to a first value or a second value depending on whether the coefficient value exceeds a threshold value.
The sound processing apparatus according to claim 1 .
ステレオ形式の第1音響信号と第2音響信号との加算で和成分を生成する和成分生成手段と、
特定位置の定位成分を抑圧した差成分を前記第1音響信号と前記第2音響信号との間の減算で生成する差成分生成手段と、
周波数毎の係数値で構成されて前記定位成分を強調または抑圧する処理係数列を前記和成分および前記差成分から生成する係数列生成手段と、
前記第1音響信号および前記第2音響信号の各々の各周波数成分に前記処理係数列の各係数値を作用させる信号処理手段とを具備し、
前記係数列生成手段は、前記処理係数列の各係数値を、当該係数値が閾値を上回るか否かに応じて第1値および第2値の何れかに変更する係数調整手段を含む
音響処理装置。
Sum component generating means for generating a sum component by adding the first acoustic signal and the second acoustic signal in stereo format;
Difference component generation means for generating a difference component in which a localization component at a specific position is suppressed by subtraction between the first acoustic signal and the second acoustic signal;
A coefficient sequence generation means configured to generate a processing coefficient sequence composed of coefficient values for each frequency and emphasizing or suppressing the localization component from the sum component and the difference component;
Signal processing means for causing each coefficient value of the processing coefficient sequence to act on each frequency component of each of the first acoustic signal and the second acoustic signal ;
The coefficient sequence generation means includes acoustic coefficient processing that includes coefficient adjustment means for changing each coefficient value of the processing coefficient sequence to either the first value or the second value depending on whether the coefficient value exceeds a threshold value. apparatus.
前記係数列生成手段は、利用者からの指示に応じて前記閾値を可変に設定する  The coefficient sequence generation means variably sets the threshold value according to an instruction from a user.
請求項2または請求項3の何れかの音響処理装置。  The sound processing apparatus according to claim 2 or 3.
前記特定位置を示す定位変数を可変に設定する変数設定手段を具備し、
前記差成分生成手段は、前記変数設定手段が設定した定位変数に応じた比率で前記第1音響信号および前記第2音響信号の一方から他方を減算する
請求項1から請求項4の何れかの音響処理装置。
Comprising variable setting means for variably setting a localization variable indicating the specific position;
The difference component generation means subtracts the other from one of the first acoustic signal and the second acoustic signal at a ratio according to the localization variable set by the variable setting means.
The sound processing apparatus according to claim 1 .
前記差成分生成手段は、前記定位変数に応じた比率で前記第1音響信号および前記第2音響信号の一方から他方を減算した結果を、前記定位変数と当該定位変数を所定値から減算した数値とのうちの最大値で除算する  The difference component generation means subtracts the other from one of the first acoustic signal and the second acoustic signal at a ratio according to the localization variable, and a numerical value obtained by subtracting the localization variable and the localization variable from a predetermined value. Divide by the maximum of and
請求項5の音響処理装置。  The sound processing apparatus according to claim 5.
JP2010006433A 2010-01-15 2010-01-15 Sound processor Expired - Fee Related JP5641187B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010006433A JP5641187B2 (en) 2010-01-15 2010-01-15 Sound processor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010006433A JP5641187B2 (en) 2010-01-15 2010-01-15 Sound processor

Publications (2)

Publication Number Publication Date
JP2011146947A JP2011146947A (en) 2011-07-28
JP5641187B2 true JP5641187B2 (en) 2014-12-17

Family

ID=44461406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010006433A Expired - Fee Related JP5641187B2 (en) 2010-01-15 2010-01-15 Sound processor

Country Status (1)

Country Link
JP (1) JP5641187B2 (en)

Also Published As

Publication number Publication date
JP2011146947A (en) 2011-07-28

Similar Documents

Publication Publication Date Title
JP3670562B2 (en) Stereo sound signal processing method and apparatus, and recording medium on which stereo sound signal processing program is recorded
AU2015295518B2 (en) Apparatus and method for enhancing an audio signal, sound enhancing system
JP6019969B2 (en) Sound processor
JP2008257049A (en) Noise suppressing device and program
JP2008517317A (en) Audio data processing system, method, program element, and computer readable medium
JP2003274492A (en) Stereo acoustic signal processing method, stereo acoustic signal processor, and stereo acoustic signal processing program
JP5034734B2 (en) Sound processing apparatus and program
JP5034735B2 (en) Sound processing apparatus and program
JP3755739B2 (en) Stereo sound signal processing method and apparatus, program, and recording medium
WO2018193162A2 (en) Audio signal generation for spatial audio mixing
JP2008072600A (en) Acoustic signal processing apparatus, acoustic signal processing program, and acoustic signal processing method
JP5463924B2 (en) Sound processor
JP5641187B2 (en) Sound processor
JP2011180219A (en) Factor setting device and noise reduction apparatus
JP5454157B2 (en) Sound processor
JP2004343590A (en) Stereophonic signal processing method, device, program, and storage medium
JP5316127B2 (en) Sound processing apparatus and program
JP5494085B2 (en) Sound processor
JP5321171B2 (en) Sound processing apparatus and program
JP2014102318A (en) Noise elimination device, noise elimination method, and program
JP2015169901A (en) Acoustic processing device
JP2007189530A (en) Noise canceling headphone, and noise canceling method in headphone
JP2019016871A (en) Sound image generating apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141014

R150 Certificate of patent or registration of utility model

Ref document number: 5641187

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees