JP5454157B2 - Sound processor - Google Patents

Sound processor Download PDF

Info

Publication number
JP5454157B2
JP5454157B2 JP2010006434A JP2010006434A JP5454157B2 JP 5454157 B2 JP5454157 B2 JP 5454157B2 JP 2010006434 A JP2010006434 A JP 2010006434A JP 2010006434 A JP2010006434 A JP 2010006434A JP 5454157 B2 JP5454157 B2 JP 5454157B2
Authority
JP
Japan
Prior art keywords
component
coefficient
frequency
sequence
acoustic signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010006434A
Other languages
Japanese (ja)
Other versions
JP2011146948A (en
Inventor
多伸 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Corp
Original Assignee
Yamaha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Corp filed Critical Yamaha Corp
Priority to JP2010006434A priority Critical patent/JP5454157B2/en
Publication of JP2011146948A publication Critical patent/JP2011146948A/en
Application granted granted Critical
Publication of JP5454157B2 publication Critical patent/JP5454157B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Stereophonic System (AREA)

Description

本発明は、ステレオ形式の音響信号のうち目的の位置(方向)に音像が定位する成分(例えば、右チャネルおよび左チャネルの各々の信号に含まれる成分である。以下では「定位成分」という)を強調または抑圧する技術に関する。   The present invention is a component in which a sound image is localized at a target position (direction) in a stereo format acoustic signal (for example, a component included in each signal of a right channel and a left channel. Hereinafter, referred to as a “localization component”). It relates to technology that emphasizes or suppresses.

CD等の記録媒体に収録された音響信号から所定の定位成分を抑圧する技術が従来から提案されている。例えば特許文献1には、ステレオ形式の音響信号の一方から他方を減算(逆相加算)することで、音像が中央方向に定位する成分(典型的には歌唱音)を抑圧する技術が開示されている。   Conventionally, a technique for suppressing a predetermined localization component from an acoustic signal recorded on a recording medium such as a CD has been proposed. For example, Patent Document 1 discloses a technique for suppressing a component (typically a singing sound) in which a sound image is localized in the center direction by subtracting one of stereo audio signals from the other (reverse phase addition). ing.

特開2007−079413号公報JP 2007-079413 A

しかし、特許文献1の技術では、所定の成分の抑圧後の音響信号がモノラル形式になるという問題がある。同様の問題は、定位成分を強調する場合にも発生し得る。以上の事情を考慮して、本発明は、定位成分を強調または抑圧したステレオ形式の音響信号を生成することを目的とする。   However, the technique of Patent Document 1 has a problem that the acoustic signal after suppression of a predetermined component is in a monaural format. Similar problems can occur when emphasizing the localization component. In view of the above circumstances, an object of the present invention is to generate a stereo-type acoustic signal in which a localization component is emphasized or suppressed.

以上の課題を解決するために、本発明の音響処理装置は、周波数毎の係数値で構成されてステレオ形式の第1音響信号および第2音響信号における特定位置の定位成分を強調または抑圧する第1数値列を生成する第1生成手段と、第1音響信号と第2音響信号との周波数毎の位相差に応じた係数値で構成される第2数値列を、第1音響信号の振幅と第2音響信号の振幅と両者の和成分の振幅とから生成する第2生成手段と、周波数毎の係数値で構成されて定位成分を強調または抑圧する第1処理係数列を第1数値列と第2数値列とから生成する合成手段と、第1音響信号および第2音響信号の各々の各周波数成分に第1処理係数列の各係数値を作用させる信号処理手段とを具備する。以上の構成においては、第1音響信号および第2音響信号の各々の各周波数成分に第1処理係数列を作用させるから、定位成分が強調または抑圧されたステレオ形式の音響信号を生成することが可能である。また、第1音響信号と第2音響信号との位相差が第1処理係数列に反映されるから、第1音響信号と第2音響信号との間に顕著な位相差がある場合でも、定位成分の強調または抑圧の効果を充分に維持できるという利点がある。   In order to solve the above-described problems, the sound processing apparatus according to the present invention is configured to emphasize or suppress a localization component at a specific position in the stereo first sound signal and the second sound signal, which is configured with coefficient values for each frequency. A first generating means for generating one numerical sequence, and a second numerical sequence composed of coefficient values corresponding to the phase difference for each frequency between the first acoustic signal and the second acoustic signal, and the amplitude of the first acoustic signal, Second generation means for generating from the amplitude of the second acoustic signal and the amplitude of the sum component of both, and a first processing coefficient sequence that is composed of coefficient values for each frequency and emphasizes or suppresses the localization component as a first numerical value sequence Synthesizing means generated from the second numerical sequence, and signal processing means for causing each coefficient value of the first processing coefficient sequence to act on each frequency component of the first acoustic signal and the second acoustic signal. In the above configuration, since the first processing coefficient sequence is applied to each frequency component of the first acoustic signal and the second acoustic signal, it is possible to generate a stereo format acoustic signal in which the localization component is emphasized or suppressed. Is possible. In addition, since the phase difference between the first acoustic signal and the second acoustic signal is reflected in the first processing coefficient sequence, localization is possible even when there is a significant phase difference between the first acoustic signal and the second acoustic signal. There is an advantage that the effect of emphasis or suppression of components can be sufficiently maintained.

本発明の好適な態様において、第2生成手段は、第1音響信号および第2音響信号の各々の振幅を加算した振幅和と和成分の振幅とを周波数毎に算定する振幅算定手段と、振幅和と和成分の振幅との相違に応じて第2数値列の各係数値を設定する設定手段とを含んで構成される。以上の態様においては、第1音響信号と第2音響信号との位相差に応じて第1音響信号および第2音響信号の振幅和と和成分の振幅との相違が変化するという傾向を利用して、第1音響信号と第2音響信号との位相差を高精度に反映した第2数値列を生成することが可能である。   In a preferred aspect of the present invention, the second generation means includes an amplitude calculation means for calculating, for each frequency, an amplitude sum obtained by adding the amplitudes of the first acoustic signal and the second acoustic signal, and an amplitude of the sum component. Setting means for setting each coefficient value of the second numerical sequence according to the difference between the sum and the amplitude of the sum component. In the above aspect, the tendency that the difference between the sum of the amplitudes of the first acoustic signal and the second acoustic signal and the amplitude of the sum component changes according to the phase difference between the first acoustic signal and the second acoustic signal is utilized. Thus, it is possible to generate the second numerical sequence that reflects the phase difference between the first acoustic signal and the second acoustic signal with high accuracy.

本発明の好適な態様に係る音響処理装置は、第1音響信号と第2音響信号との加算で和成分を生成する和成分生成手段と、定位成分を抑圧した差成分を第1音響信号と第2音響信号との間の減算で生成する差成分生成手段とを具備し、第1生成手段は、和成分および差成分から第1数値列を生成し、第2生成手段は、和成分生成手段が生成した和成分の振幅を第2数値列の生成に適用する。以上の態様においては、第1数値列の生成に利用される和成分が第2数値列の生成にも流用されるから、第2数値列の生成の負荷が軽減されるという利点がある。   The sound processing apparatus according to a preferred aspect of the present invention includes a sum component generating means for generating a sum component by adding the first sound signal and the second sound signal, and a difference component obtained by suppressing the localization component as the first sound signal. Difference component generating means generated by subtraction with the second acoustic signal, the first generating means generates a first numerical sequence from the sum component and the difference component, and the second generating means generates the sum component. The amplitude of the sum component generated by the means is applied to the generation of the second numerical sequence. In the above aspect, since the sum component used for generating the first numerical sequence is also used for generating the second numerical sequence, there is an advantage that the load of generating the second numerical sequence is reduced.

本発明の好適な態様において、第1生成手段は、和成分および差成分の一方のスペクトルから他方のスペクトルを減算した結果に応じて第1数値列を生成する。以上の態様においては、和成分および差成分の一方のスペクトルから他方のスペクトルを減算することで定位成分を高精度に強調または抑圧したスペクトルが生成されるから、定位成分を有効に強調または抑圧し得る第1処理係数列を生成できるという利点がある。   In a preferred aspect of the present invention, the first generation means generates a first numerical sequence according to a result of subtracting the other spectrum from one spectrum of the sum component and the difference component. In the above aspect, a spectrum in which the localization component is emphasized or suppressed with high accuracy is generated by subtracting the other spectrum from one spectrum of the sum component and difference component, so that the localization component is effectively emphasized or suppressed. There is an advantage that the obtained first processing coefficient sequence can be generated.

差成分生成手段を具備する態様の好適例に係る音響処理装置は、特定位置を示す定位変数を可変に設定する変数設定手段を具備し、差成分生成手段は、変数設定手段が設定した定位変数に応じた比率で第1音響信号および第2音響信号の一方から他方を減算する。以上の態様においては、差成分生成手段による減算時の第1音響信号および第2音響信号の比率が定位変数に応じて可変に設定される。したがって、強調または抑圧の対象となる定位成分の位置(方向)を可変に制御できる(中央方向に限定されない)という利点がある。   The sound processing apparatus according to a preferred example of the aspect including the difference component generation unit includes a variable setting unit that variably sets a localization variable indicating the specific position, and the difference component generation unit includes the localization variable set by the variable setting unit. The other is subtracted from one of the first acoustic signal and the second acoustic signal at a ratio according to. In the above aspect, the ratio of the first acoustic signal and the second acoustic signal at the time of subtraction by the difference component generation means is variably set according to the localization variable. Therefore, there is an advantage that the position (direction) of the localization component to be emphasized or suppressed can be variably controlled (not limited to the central direction).

本発明の好適な態様に係る音響処理装置は、定位成分の強調および抑圧の一方に対応する第1処理係数列の各係数値を所定値から減算することで定位成分の強調および抑圧の他方に対応する第2処理係数列を生成する第3生成手段を具備する。以上の態様においては、定位成分の強調用および抑圧用の双方の処理係数列を生成することが可能である。また、第1処理係数列の各係数値を所定値から減算することで第2処理係数列が生成されるから、第1処理係数列および第2処理係数列の各々の個別に生成する場合と比較して、第1処理係数列および第2処理係数列の生成の負荷が軽減されるという利点がある。   The acoustic processing device according to a preferred aspect of the present invention subtracts each coefficient value of the first processing coefficient sequence corresponding to one of the localization component enhancement and suppression from a predetermined value to the other of the localization component enhancement and suppression. Third generation means for generating a corresponding second processing coefficient sequence is provided. In the above aspect, it is possible to generate both processing coefficient sequences for emphasizing and suppressing localization components. In addition, since the second processing coefficient sequence is generated by subtracting each coefficient value of the first processing coefficient sequence from the predetermined value, each of the first processing coefficient sequence and the second processing coefficient sequence is generated individually. In comparison, there is an advantage that the load of generating the first processing coefficient sequence and the second processing coefficient sequence is reduced.

以上の各態様に係る音響処理装置は、音響信号の処理に専用されるDSP(Digital Signal Processor)などのハードウェア(電子回路)によって実現されるほか、CPU(Central Processing Unit)などの汎用の演算処理装置とプログラム(ソフトウェア)との協働によっても実現される。本発明のプログラムは、周波数毎の係数値で構成されてステレオ形式の第1音響信号および第2音響信号における特定位置の定位成分を強調または抑圧する第1数値列を生成する第1生成処理と、第1音響信号と第2音響信号との周波数毎の位相差に応じた係数値で構成される第2数値列を、第1音響信号の振幅と第2音響信号の振幅と両者の和成分の振幅とから生成する第2生成処理と、周波数毎の係数値で構成されて定位成分を強調または抑圧する第1処理係数列を第1数値列と第2数値列とから生成する合成処理と、第1音響信号および第2音響信号の各々の各周波数成分に第1処理係数列の各係数値を作用させる信号処理とをコンピュータに実行させる。以上のプログラムによれば、本発明の音響処理装置と同様の作用および効果が実現される。本発明のプログラムは、コンピュータが読取可能な記録媒体に格納された形態で利用者に提供されてコンピュータにインストールされるほか、通信網を介した配信の形態でサーバ装置から提供されてコンピュータにインストールされる。   The acoustic processing device according to each of the above aspects is realized by hardware (electronic circuit) such as a DSP (Digital Signal Processor) dedicated to processing of an acoustic signal, or a general-purpose calculation such as a CPU (Central Processing Unit). It is also realized by cooperation between the processing device and a program (software). The program of the present invention includes a first generation process that generates a first numerical sequence that is composed of coefficient values for each frequency and emphasizes or suppresses a localization component at a specific position in the first acoustic signal and the second acoustic signal in stereo format. The second numerical sequence composed of coefficient values corresponding to the phase difference for each frequency between the first acoustic signal and the second acoustic signal is represented by the sum component of the amplitude of the first acoustic signal and the amplitude of the second acoustic signal. A second generation process generated from the amplitude of the first, a synthesis process for generating a first processing coefficient sequence composed of coefficient values for each frequency and emphasizing or suppressing a localization component from the first numerical value sequence and the second numerical value sequence; And causing the computer to execute signal processing in which each coefficient value of the first processing coefficient sequence is applied to each frequency component of the first acoustic signal and the second acoustic signal. According to the above program, the same operation and effect as the sound processing apparatus of the present invention are realized. The program of the present invention is provided to a user in a form stored in a computer-readable recording medium and installed in the computer, or provided from a server device in a form of distribution via a communication network and installed in the computer. Is done.

第1実施形態に係る音響処理装置のブロック図である。1 is a block diagram of a sound processing apparatus according to a first embodiment. 係数設定部のブロック図である。It is a block diagram of a coefficient setting part. 各周波数成分の関係を示す模式図である。It is a schematic diagram which shows the relationship of each frequency component. 第2生成部のブロック図である。It is a block diagram of the 2nd generating part. 各周波数成分の関係を示す模式図である。It is a schematic diagram which shows the relationship of each frequency component. 変形例における第3生成部のブロック図である。It is a block diagram of the 3rd generating part in a modification. 定位変数と係数値CA[k]との関係を示す模式図である。It is a schematic diagram which shows the relationship between a localization variable and coefficient value CA [k]. 定位変数と係数値CD[k]との関係を示す模式図である。It is a schematic diagram which shows the relationship between a localization variable and coefficient value CD [k]. 定位変数と位相差との関係を示す模式図である。It is a schematic diagram which shows the relationship between a localization variable and a phase difference.

<A:第1実施形態>
図1は、本発明の第1実施形態に係る音響処理装置100のブロック図である。音響処理装置100には信号供給装置12と放音装置14と入力装置16とが接続される。信号供給装置12は、音響(音声や楽音)の波形を表す時間領域の音響信号SIN(SIN_L,SIN_R)を音響処理装置100に供給する。左チャネルの音響信号SIN_Lおよび右チャネルの音響信号SIN_Rは、音響を発生する複数の音源の音像が相異なる位置に定位する(すなわち、音響の振幅や位相が各音源の位置に応じて相違する)ように収音または加工されたステレオ形式の信号である。周囲の音響を収音して音響信号SINを生成する収音機器(ステレオマイク)や、可搬型または内蔵型の記録媒体から音響信号SINを取得して音響処理装置100に出力する再生装置や、通信網から音響信号SINを受信して音響処理装置100に出力する通信装置が信号供給装置12として採用され得る。
<A: First Embodiment>
FIG. 1 is a block diagram of a sound processing apparatus 100 according to the first embodiment of the present invention. A signal supply device 12, a sound emission device 14, and an input device 16 are connected to the sound processing device 100. The signal supply device 12 supplies the sound processing device 100 with time-domain sound signals SIN (SIN_L, SIN_R) representing the waveform of sound (speech and music). The sound signal SIN_L of the left channel and the sound signal SIN_R of the right channel are localized at positions where the sound images of a plurality of sound sources generating sound are different (that is, the sound amplitude and phase differ depending on the position of each sound source). In this way, a stereo signal is collected or processed. A sound collection device (stereo microphone) that collects ambient sound to generate an acoustic signal SIN, a playback device that acquires the acoustic signal SIN from a portable or built-in recording medium, and outputs it to the acoustic processing device 100; A communication device that receives the acoustic signal SIN from the communication network and outputs the acoustic signal SIN to the acoustic processing device 100 may be employed as the signal supply device 12.

音響処理装置100は、信号供給装置12が供給する音響信号SINから音響信号SOUT(SOUT_L,SOUT_R)を生成する。左チャネルの音響信号SOUT_Lおよび右チャネルの音響信号SOUT_Rは、音響信号SINが表す音響のうち目的の位置に音像が定位する定位成分を強調または抑圧したステレオ形式の信号である。放音装置14(例えばステレオスピーカやステレオヘッドホン)は、音響処理装置100が生成した音響信号SOUT(SOUT_L,SOUT_R)に応じた音波を放射する。   The acoustic processing device 100 generates an acoustic signal SOUT (SOUT_L, SOUT_R) from the acoustic signal SIN supplied by the signal supply device 12. The left-channel acoustic signal SOUT_L and the right-channel acoustic signal SOUT_R are stereo signals in which a localization component in which a sound image is localized at a target position is emphasized or suppressed among the sounds represented by the acoustic signal SIN. The sound emitting device 14 (for example, a stereo speaker or a stereo headphone) emits a sound wave corresponding to the acoustic signal SOUT (SOUT_L, SOUT_R) generated by the acoustic processing device 100.

入力装置16は、音響処理装置100に対する指示を利用者が入力するための機器(例えばマウスやキーボード)である。利用者は、入力装置16を適宜に操作することで、定位成分の位置(方向)と定位成分の強調/抑圧の何れかの処理とを音響処理装置100に対して任意に指示することが可能である。   The input device 16 is a device (for example, a mouse or a keyboard) for a user to input an instruction to the sound processing device 100. By appropriately operating the input device 16, the user can arbitrarily instruct the acoustic processing device 100 to perform either the localization component position (direction) or the localization component enhancement / suppression processing. It is.

図1に示すように、音響処理装置100は、演算処理装置22と記憶装置24とを具備するコンピュータシステムで実現される。記憶装置24は、演算処理装置22が実行するプログラムPGや演算処理装置22が使用するデータを記憶する。半導体記録媒体や磁気記録媒体などの公知の記録媒体や複数種の記録媒体の組合せが記憶装置24として任意に採用される。音響信号SIN(SIN_L,SIN_R)を記憶装置24に記憶した構成(したがって信号供給装置12は省略され得る)も好適である。   As shown in FIG. 1, the sound processing device 100 is realized by a computer system including an arithmetic processing device 22 and a storage device 24. The storage device 24 stores a program PG executed by the arithmetic processing device 22 and data used by the arithmetic processing device 22. A known recording medium such as a semiconductor recording medium or a magnetic recording medium or a combination of a plurality of types of recording media is arbitrarily adopted as the storage device 24. A configuration in which the acoustic signal SIN (SIN_L, SIN_R) is stored in the storage device 24 (therefore, the signal supply device 12 can be omitted) is also suitable.

演算処理装置22は、記憶装置24に格納されたプログラムPGを実行することで、音響信号SINから音響信号SOUTを生成するための複数の機能(変数設定部32,周波数分析部34,係数設定部36,信号処理部38,波形合成部40)を実現する。なお、演算処理装置22の各機能を複数の集積回路に分散した構成や、専用の電子回路(DSP)が各機能を実現する構成も採用され得る。   The arithmetic processing unit 22 executes a program PG stored in the storage device 24 to thereby generate a plurality of functions (variable setting unit 32, frequency analysis unit 34, coefficient setting unit) for generating the acoustic signal SOUT from the acoustic signal SIN. 36, a signal processing unit 38, and a waveform synthesis unit 40). A configuration in which each function of the arithmetic processing unit 22 is distributed over a plurality of integrated circuits, or a configuration in which a dedicated electronic circuit (DSP) realizes each function may be employed.

変数設定部32は、定位変数αを可変に設定する。定位変数αは、定位成分の音像の位置(方向)を指定する変数である。本形態の変数設定部32は、入力装置16に対する利用者からの指示に応じて定位変数α(0≦α≦1)を可変に設定する。例えば、定位変数αが0.5(中央値)である場合には中央(正面)方向が指示される。また、定位変数αが1に近いほど右寄りの方向が指示され、定位変数αが0に近いほど左寄りの方向が指示される。利用者は、放音装置14からの再生音を聴取しながら随時に入力装置16の操作で定位変数αを変更することが可能である。   The variable setting unit 32 sets the localization variable α to be variable. The localization variable α is a variable that designates the position (direction) of the sound image of the localization component. The variable setting unit 32 of the present embodiment variably sets the localization variable α (0 ≦ α ≦ 1) in accordance with an instruction from the user to the input device 16. For example, when the localization variable α is 0.5 (median value), the center (front) direction is indicated. Further, as the localization variable α is closer to 1, a rightward direction is indicated, and as the localization variable α is closer to 0, a leftward direction is indicated. The user can change the localization variable α by operating the input device 16 at any time while listening to the reproduced sound from the sound emitting device 14.

周波数分析部34は、音響信号SIN_Lの周波数スペクトル(複素スペクトル)LAと音響信号SIN_Rの周波数スペクトル(複素スペクトル)RAとを時間軸上の単位区間(フレーム)毎に順次に生成する。周波数スペクトルLAは、K個の周波数(周波数帯域)f1〜fKの各々に対応する周波数成分LAk(e)の系列(LA1(e)〜LAK(e))である(k=1〜K)。記号jは虚数単位を意味する。同様に、周波数スペクトルRAは、周波数f1〜fKの各々に対応する周波数成分RAk(e)の系列(RA1(e)〜RAK(e))である。周波数スペクトルLAおよび周波数スペクトルRAの生成には、短時間フーリエ変換などの公知の周波数分析が任意に採用され得る。なお、通過帯域が相異なるK個の帯域通過フィルタで構成されるフィルタバンクも周波数分析部34として採用され得る。 The frequency analysis unit 34 sequentially generates a frequency spectrum (complex spectrum) LA of the acoustic signal SIN_L and a frequency spectrum (complex spectrum) RA of the acoustic signal SIN_R for each unit section (frame) on the time axis. The frequency spectrum LA is a series of frequency components LAk (e ) (LA1 (e ) to LAK (e )) corresponding to each of K frequencies (frequency bands) f1 to fK (k = 1 to 1). K). The symbol j means an imaginary unit. Similarly, the frequency spectrum RA is a series of frequency components RAk (e ) (RA1 (e ) to RAK (e )) corresponding to each of the frequencies f1 to fK. For the generation of the frequency spectrum LA and the frequency spectrum RA, a known frequency analysis such as a short-time Fourier transform may be arbitrarily employed. A filter bank composed of K band pass filters having different pass bands can also be adopted as the frequency analysis unit 34.

図1の係数設定部36は、音響信号SIN(SIN_L,SIN_R)の定位成分を強調(enhance)するための処理係数列Geと音響信号SINの定位成分を抑圧(suppress)するための処理係数列Gsとを生成する。処理係数列Geおよび処理係数列Gsは、周波数スペクトルLAと周波数スペクトルRAとを利用して単位区間毎に順次に生成される。処理係数列Geは、周波数f1〜fKの各々に対応する係数値Ge[k]の系列(Ge[1]〜Ge[K])であり、処理係数列Gsは、周波数f1〜fKの各々に対応する係数値Gs[k]の系列(Gs[1]〜Gs[K])である。   The coefficient setting unit 36 in FIG. 1 includes a processing coefficient sequence Ge for enhancing the localization component of the acoustic signal SIN (SIN_L, SIN_R) and a processing coefficient sequence for suppressing the localization component of the acoustic signal SIN. Gs. The processing coefficient sequence Ge and the processing coefficient sequence Gs are sequentially generated for each unit section using the frequency spectrum LA and the frequency spectrum RA. The processing coefficient sequence Ge is a series of coefficient values Ge [k] (Ge [1] to Ge [K]) corresponding to each of the frequencies f1 to fK, and the processing coefficient sequence Gs is assigned to each of the frequencies f1 to fK. This is a series of corresponding coefficient values Gs [k] (Gs [1] to Gs [K]).

係数値Ge[k]および係数値Gs[k]は、音響信号SIN_Lの周波数成分LAk(e)や音響信号SIN_Rの周波数成分RAk(e)に対するゲイン(スペクトルゲイン)に相当し、音響信号SIN(SIN_L,SIN_R)の特性に応じて0以上かつ1以下の範囲内で可変に設定される(0≦Ge[k]≦1,0≦Gs[k]≦1)。具体的には、定位成分の強調用の処理係数列Geの係数値Ge[1]〜Ge[K]は、定位成分のパワー(振幅)が大きい周波数fkの係数値Ge[k]ほど1に近い数値に設定される。他方、定位成分の抑圧用の処理係数列Gsの係数値Gs[1]〜Gs[K]は、定位成分のパワーが大きい周波数fkの係数値Gs[k]ほど0に近い数値に設定される。 The coefficient value Ge [k] and the coefficient value Gs [k] correspond to a gain (spectral gain) with respect to the frequency component LAk (e ) of the acoustic signal SIN_L and the frequency component RAk (e ) of the acoustic signal SIN_R. It is variably set within the range of 0 or more and 1 or less according to the characteristics of SIN (SIN_L, SIN_R) (0 ≦ Ge [k] ≦ 1, 0 ≦ Gs [k] ≦ 1). Specifically, the coefficient values Ge [1] to Ge [K] of the processing coefficient sequence Ge for emphasizing the localization component are set to 1 as the coefficient value Ge [k] of the frequency fk having a large localization component power (amplitude). Set to a close number. On the other hand, the coefficient values Gs [1] to Gs [K] of the processing coefficient sequence Gs for suppressing the localization component are set to values closer to 0 as the coefficient value Gs [k] of the frequency fk having a larger localization component power. .

図1の信号処理部38は、係数設定部36が生成した処理係数列Geまたは処理係数列Gsを周波数スペクトルLAおよび周波数スペクトルRAの各々に個別に作用させる(典型的には乗算する)ことで周波数スペクトルLBと周波数スペクトルRBとを単位区間毎に順次に生成する。周波数スペクトルLBは、周波数f1〜fKの各々に対応する周波数成分LBk(e)の系列(LB1(e)〜LBK(e))であり、周波数スペクトルRBは、周波数f1〜fKの各々に対応する周波数成分RBk(e)の系列(RB1(e)〜RBK(e))である。各単位区間の周波数スペクトルLAおよび周波数スペクトルRAの処理には、その単位区間について係数設定部36が生成した処理係数列Geまたは処理係数列Gsが適用される。 The signal processing unit 38 of FIG. 1 causes the processing coefficient sequence Ge or the processing coefficient sequence Gs generated by the coefficient setting unit 36 to individually act (typically multiply) each of the frequency spectrum LA and the frequency spectrum RA. The frequency spectrum LB and the frequency spectrum RB are sequentially generated for each unit section. The frequency spectrum LB is a series of frequency components LBk (e ) (LB1 (e ) to LBK (e )) corresponding to each of the frequencies f1 to fK, and the frequency spectrum RB is each of the frequencies f1 to fK. Is a series of frequency components RBk (e ) corresponding to (RB1 (e ) to RBK (e )). For the processing of the frequency spectrum LA and the frequency spectrum RA of each unit section, the processing coefficient sequence Ge or the processing coefficient sequence Gs generated by the coefficient setting unit 36 for the unit section is applied.

入力装置16に対して利用者から定位成分の強調が指示された場合、信号処理部38は、以下の数式(1a)および数式(1b)に示すように、周波数スペクトルLAおよび周波数スペクトルRAに対する処理係数列Geの乗算で周波数スペクトルLBおよび周波数スペクトルRBを生成する。すなわち、周波数スペクトルLBの各周波数fkの周波数成分LBk(e)は、その周波数fkの周波数成分LAk(e)と係数値Ge[k]との乗算値に設定され(数式(1a))、周波数スペクトルRBの各周波数fkの周波数成分RBk(e)は、その周波数fkの周波数成分RAk(e)と係数値Ge[k]との乗算値に設定される(数式(1b))。したがって、音響信号SIN(SIN_L,SIN_R)の定位成分を強調した周波数スペクトルLBおよび周波数スペクトルRBが生成される。

Figure 0005454157
When the user instructs the input device 16 to emphasize the localization component, the signal processing unit 38 processes the frequency spectrum LA and the frequency spectrum RA as shown in the following formulas (1a) and (1b). A frequency spectrum LB and a frequency spectrum RB are generated by multiplication of the coefficient sequence Ge. That is, the frequency components LBk of each frequency fk in the frequency spectrum LB (e jω) is set to the multiplication value between the frequency component of the frequency fk LAk (e jω) and the coefficient value Ge [k] (Formula (1a)) , the frequency components RBk of each frequency fk in the frequency spectrum RB (e jω) is set to the multiplication value between the frequency component of the frequency fk RAk (e jω) and the coefficient value Ge [k] (equation (1b)) . Therefore, the frequency spectrum LB and the frequency spectrum RB in which the localization component of the acoustic signal SIN (SIN_L, SIN_R) is emphasized are generated.
Figure 0005454157

他方、入力装置16に対して利用者から定位成分の抑圧が指示された場合、信号処理部38は、以下の数式(2a)および数式(2b)に示すように、周波数スペクトルLBおよび周波数スペクトルRBの生成に定位成分の抑圧用の処理係数列Gsを適用する。すなわち、周波数スペクトルLAの各周波数成分LAk(e)と処理係数列Gsの各係数値Gs[k]との乗算で周波数スペクトルLBの各周波数成分LBk(e)を算定し(数式(2a))、周波数スペクトルRAの各周波数成分RAk(e)と各係数値Gs[k]との乗算で周波数スペクトルRBの各周波数成分RBk(e)を算定する(数式(2b))。したがって、音響信号SIN(SIN_L,SIN_R)の定位成分を抑圧した周波数スペクトルLBおよび周波数スペクトルRBが生成される。

Figure 0005454157
On the other hand, when the user instructs the input device 16 to suppress the localization component, the signal processing unit 38, as shown in the following equations (2a) and (2b), the frequency spectrum LB and the frequency spectrum RB The processing coefficient sequence Gs for suppressing the localization component is applied to the generation of. That is, each frequency component LBk (e ) of the frequency spectrum LB is calculated by multiplying each frequency component LAk (e ) of the frequency spectrum LA by each coefficient value Gs [k] of the processing coefficient sequence Gs (formula (2a )), calculates the respective frequency components of the frequency spectrum RB RBk (e jω) by multiplying the each frequency component RAk of the frequency spectrum RA (e j [omega]) and the coefficient value Gs [k] (formula (2b)). Therefore, the frequency spectrum LB and the frequency spectrum RB in which the localization component of the acoustic signal SIN (SIN_L, SIN_R) is suppressed are generated.
Figure 0005454157

図1の波形合成部40は、信号処理部38による処理後の周波数スペクトルLBおよび周波数スペクトルRBからステレオ形式の音響信号SOUT_Lおよび音響信号SOUT_Rを生成する。具体的には、波形合成部40は、単位区間毎の周波数スペクトルLBを逆フーリエ変換で時間領域の信号に変換するとともに前後の単位区間について相互に連結することで音響信号SOUT_Lを生成する。同様に、波形合成部40は、各周波数スペクトルRBから音響信号SOUT_Rを生成する。波形合成部40が生成した音響信号SOUT(SOUT_L,SOUT_R)が放音装置14に供給されて音波として再生される。   The waveform synthesizer 40 in FIG. 1 generates a stereo acoustic signal SOUT_L and an acoustic signal SOUT_R from the frequency spectrum LB and the frequency spectrum RB processed by the signal processor 38. Specifically, the waveform synthesizer 40 generates the acoustic signal SOUT_L by converting the frequency spectrum LB for each unit section into a signal in the time domain by inverse Fourier transform and mutually connecting the preceding and following unit sections. Similarly, the waveform synthesizer 40 generates an acoustic signal SOUT_R from each frequency spectrum RB. The acoustic signals SOUT (SOUT_L, SOUT_R) generated by the waveform synthesis unit 40 are supplied to the sound emitting device 14 and reproduced as sound waves.

以上に説明したように、第1実施形態では、音響信号SIN_L(周波数スペクトルLA)および音響信号SIN_R(周波数スペクトルRA)の各々に対して個別に処理係数列Geまたは処理係数列Gsが乗算されるから、定位成分を強調または抑圧した音響信号SOUT(SOUT_L,SOUT_R)をステレオ形式のまま生成することが可能である。   As described above, in the first embodiment, each of the acoustic signal SIN_L (frequency spectrum LA) and the acoustic signal SIN_R (frequency spectrum RA) is individually multiplied by the processing coefficient sequence Ge or the processing coefficient sequence Gs. Therefore, the acoustic signal SOUT (SOUT_L, SOUT_R) in which the localization component is emphasized or suppressed can be generated in the stereo format.

次に、係数設定部36の詳細を説明する。図2は、係数設定部36のブロック図である。図2に示すように、係数設定部36は、和成分生成部52と差成分生成部54と係数列生成部60とを含んで構成される。和成分生成部52は、音響信号SIN_Lの周波数成分LA1(e)〜LAK(e)と音響信号SIN_Rの周波数成分RA1(e)〜RAK(e)との加算で単位区間毎に順次に和成分(複素スペクトル)Mを生成する。和成分Mは、周波数f1〜fKの各々に対応する周波数成分Mk(e)の系列(M1(e)〜MK(e))である。数式(3)に示すように、和成分Mの周波数fkの周波数成分Mk(e)は、その周波数fkの周波数成分LAk(e)と周波数成分RAk(e)との加算(複素数)に相当する。したがって、和成分Mは、全部の音源からの音響を混合したモノラル形式の信号に相当する。なお、周波数成分LAk(e)と周波数成分RAk(e)との加重和や平均を和成分Mとして算定する構成も採用され得る。

Figure 0005454157
Next, details of the coefficient setting unit 36 will be described. FIG. 2 is a block diagram of the coefficient setting unit 36. As shown in FIG. 2, the coefficient setting unit 36 includes a sum component generation unit 52, a difference component generation unit 54, and a coefficient sequence generation unit 60. The sum component generation unit 52 adds the frequency components LA1 (e ) to LAK (e ) of the acoustic signal SIN_L and the frequency components RA1 (e ) to RAK (e ) of the acoustic signal SIN_R for each unit interval. A sum component (complex spectrum) M is sequentially generated. The sum component M is a series of frequency components Mk (e ) (M1 (e ) to MK (e )) corresponding to each of the frequencies f1 to fK. As shown in Equation (3), the frequency component Mk (e ) of the frequency fk of the sum component M is the addition (complex number) of the frequency component LAk (e ) and the frequency component RAk (e ) of the frequency fk. It corresponds to. Therefore, the sum component M corresponds to a monaural signal in which sounds from all sound sources are mixed. A configuration in which a weighted sum or average of the frequency component LAk (e ) and the frequency component RAk (e ) is calculated as the sum component M may be employed.
Figure 0005454157

図2の差成分生成部54は、音響信号SIN_Lの周波数成分LA1(e)〜LAK(e)と音響信号SIN_Rの周波数成分RA1(e)〜RAK(e)との間の減算で単位区間毎に順次に差成分(複素スペクトル)Sを生成する。差成分Sは、周波数f1〜fKの各々に対応する周波数成分Sk(e)の系列(S1(e)〜SK(e))である。差成分生成部54は、変数設定部32が設定した定位変数αを利用した数式(4)の演算(加重減算)で周波数成分S1(e)〜SK(e)を算定する。

Figure 0005454157
2 performs subtraction between the frequency components LA1 (e ) to LAK (e ) of the acoustic signal SIN_L and the frequency components RA1 (e ) to RAK (e ) of the acoustic signal SIN_R. Thus, a difference component (complex spectrum) S is sequentially generated for each unit interval. The difference component S is a series of frequency components Sk (e ) (S1 (e ) to SK (e )) corresponding to each of the frequencies f1 to fK. The difference component generator 54 calculates the frequency components S1 (e ) to SK (e ) by the calculation (weighted subtraction) of Expression (4) using the localization variable α set by the variable setting unit 32.
Figure 0005454157

数式(4)から理解されるように、定位変数αに応じた可変の比率(重み値)にて周波数成分LAk(e)から周波数成分RAk(e)を減算(逆相加算)することで差成分Sの各周波数成分Sk(e)が生成される。したがって、差成分Sは、音響信号SIN(SIN_L,SIN_R)のうち定位変数αに応じた位置(方向)の定位成分を他の成分に対して相対的に抑圧した信号(すなわち、定位成分以外の成分を相対的に強調した信号)となる。例えば、定位変数αが0.5(中央値)である場合には、中央方向の定位成分(すなわち、振幅および位相が略同等の成分)を抑圧した差成分Sが生成される。また、定位変数αが0.5を上回るほど、中央方向に対して右寄りの定位成分が差成分Sでは抑圧され、定位変数αが0.5を下回るほど、中央方向に対して左寄りの定位成分が差成分Sでは抑圧される。 As it is understood from the formula (4), varying proportions frequency components at (weight value) LAk (e j [omega]) from a frequency component RAk (e j [omega]) subtraction (reverse phase addition) according to the localization variable α Thus, each frequency component Sk (e ) of the difference component S is generated. Therefore, the difference component S is a signal in which the localization component in the position (direction) corresponding to the localization variable α in the acoustic signal SIN (SIN_L, SIN_R) is relatively suppressed with respect to other components (that is, other than the localization component). Signal with relatively emphasized components). For example, when the localization variable α is 0.5 (median value), a difference component S in which a localization component in the center direction (that is, a component having substantially the same amplitude and phase) is suppressed is generated. Further, as the localization variable α exceeds 0.5, the localization component closer to the center direction is suppressed by the difference component S, and as the localization variable α is less than 0.5, the localization component toward the left side relative to the center direction is suppressed. However, the difference component S is suppressed.

数式(4)の記号max(α,1−α)は、定位変数αまたは変数(1−α)のうちの最大値を意味する。定位変数αは1以下の数値に設定されるから、数式(4)の分子の演算のみでは周波数成分Sk(e)のパワー(振幅)が不足する可能性がある。数式(4)のように最大値max(α,1−α)で除算するのは、周波数成分Sk(e)のパワーを周波数成分LAk(e)や周波数成分RAk(e)と同等に維持するためである。 The symbol max (α, 1-α) in Equation (4) means the maximum value of the localization variable α or the variable (1-α). Since the localization variable α is set to a numerical value of 1 or less, there is a possibility that the power (amplitude) of the frequency component Sk (e ) is insufficient only by the calculation of the numerator of Equation (4). Dividing by the maximum value max (α, 1-α) as in Equation (4) is equivalent to the power of the frequency component Sk (e ) and the frequency component LAk (e ) or frequency component RAk (e ). It is for maintaining.

図2の係数列生成部60は、和成分生成部52が生成した和成分Mと差成分生成部54が生成した差成分Sとを利用して定位成分の強調用の処理係数列Ge(Ge[1]〜Ge[K])と定位成分の抑圧用の処理係数列Gs(Gs[1]〜Gs[K])とを生成する。図2に示すように、係数列生成部60は、第1生成部62と第2生成部64と第3生成部66と合成部68とを含んで構成される。   2 uses the sum component M generated by the sum component generation unit 52 and the difference component S generated by the difference component generation unit 54 to process the localization component enhancement processing coefficient sequence Ge (Ge [1] to Ge [K]) and a processing coefficient sequence Gs (Gs [1] to Gs [K]) for suppressing the localization component are generated. As shown in FIG. 2, the coefficient sequence generation unit 60 includes a first generation unit 62, a second generation unit 64, a third generation unit 66, and a synthesis unit 68.

第1生成部62は、定位成分の強調用の数値列CAを和成分Mと差成分Sとから生成する。数値列CAは、周波数f1〜fKの各々に対応する係数値(ゲイン)CA[k]の系列(CA[1]〜CA[K])である。具体的には、第1生成部62は、以下の数式(5)の演算で数値列CAの各係数値CA[k]を算定する。

Figure 0005454157
The first generation unit 62 generates a numerical sequence CA for emphasizing the localization component from the sum component M and the difference component S. The numerical sequence CA is a series (CA [1] to CA [K]) of coefficient values (gains) CA [k] corresponding to the frequencies f1 to fK. Specifically, the first generation unit 62 calculates each coefficient value CA [k] of the numerical sequence CA by the calculation of the following mathematical formula (5).
Figure 0005454157

数式(5)の記号P[k]は、定位成分を強調したパワースペクトルPのうち周波数fkでのパワーを意味する。パワーP[k]は、例えば以下の数式(6a)および数式(6b)で算定される。

Figure 0005454157
The symbol P [k] in Equation (5) means the power at the frequency fk in the power spectrum P in which the localization component is emphasized. The power P [k] is calculated by, for example, the following formula (6a) and formula (6b).
Figure 0005454157

数式(6a)から理解されるように、周波数成分Mk(e)のパワー|Mk(e)|が周波数成分Sk(e)のパワー|Sk(e)|を上回る周波数fkのパワーP[k]は、和成分Mのパワー|Mk(e)|から差成分Sのパワー|Sk(e)|を減算した数値に設定される。すなわち、パワースペクトルPは、和成分Mのパワースペクトルと差成分Sのパワースペクトルとの間の減算(スペクトル減算)で生成される。他方、パワー|Mk(e)|がパワー|Sk(e)|以下となる周波数fkのパワーP[k]は、和成分Mのパワー|Mk(e)|と所定の係数(フロアリング係数)βとの乗算値に設定される。以上の説明から理解されるように、数式(6a)および数式(6b)の演算は、和成分Mを信号成分(目的音)と仮定するとともに差成分Sを雑音成分と仮定した場合に雑音成分を抑圧するためのスペクトル減算(SS:Spectral Subtraction)に相当する。なお、数式(5)にて振幅P[k]1/2を周波数成分Mk(e)の振幅|Mk(e)|で除算するのは、係数値CA[k]を1以下の数値(0≦CA[k]≦1)に正規化するためである。 As is understood from the formula (6a), the power of the frequency component Mk (e jω) | Mk ( e jω) | 2 is the power of the frequency component Sk (e jω) | Sk ( e jω) | 2 over the frequency fk The power P [k] is set to a value obtained by subtracting the power | Sk (e ) | 2 of the difference component S from the power | Mk (e ) | 2 of the sum component M. That is, the power spectrum P is generated by subtraction (spectrum subtraction) between the power spectrum of the sum component M and the power spectrum of the difference component S. On the other hand, the power | Mk (e jω) | 2 is the power | Sk (e jω) | Power P [k] of 2 or less and comprising frequency fk is the sum component M Power | Mk (e jω) | 2 a predetermined It is set to the product of the coefficient (flooring coefficient) β. As can be understood from the above description, the calculations of Equation (6a) and Equation (6b) are performed when the sum component M is assumed to be a signal component (target sound) and the difference component S is assumed to be a noise component. This corresponds to spectral subtraction (SS). Note that dividing the amplitude P [k] 1/2 by the amplitude | Mk (e ) | of the frequency component Mk (e ) | in equation (5) is a numerical value of 1 or less. This is for normalization to (0 ≦ CA [k] ≦ 1).

周波数成分Sk(e)は定位成分を抑圧した成分であるから、数式(6a)および数式(6b)で算定されるパワーP[1]〜P[K]の系列は、音響信号SIN(SIN_L,SIN_R)の定位成分を強調した成分のパワースペクトルPとなる。したがって、数式(5)で算定される数値列CAの係数値CA[1]〜CA[K]は、定位変数αに応じた位置の定位成分のパワー(振幅)が大きい周波数fkの係数値CA[k]ほど1に近い数値となり、定位成分のパワーが小さい周波数fkの係数値CA[k]ほど0に近い数値となる。 Since the frequency component Sk (e ) is a component in which the localization component is suppressed, the series of powers P [1] to P [K] calculated by the equations (6a) and (6b) is the acoustic signal SIN (SIN_L , SIN_R), the power spectrum P of the component emphasizing the localization component. Therefore, the coefficient values CA [1] to CA [K] of the numerical value sequence CA calculated by the equation (5) are the coefficient values CA of the frequency fk at which the power (amplitude) of the localization component at the position corresponding to the localization variable α is large. [k] is a numerical value closer to 1, and the coefficient value CA [k] of the frequency fk having a smaller localization component power is a numerical value closer to 0.

以上の説明から理解されるように、第1生成部62が生成した数値列CAを処理係数列Geとして(係数値CA[k]を数式(1a)および数式(1b)の係数値Ge[k]として)、音響信号SIN_Lの周波数成分LAk(e)および音響信号SIN_Rの周波数成分RAk(e)の各々に乗算する構成(以下「対比例」という)でも、定位成分が強調されたステレオ形式の音響信号SOUT(SOUT_L,SOUT_R)を生成することが可能である。 As understood from the above description, the numerical value sequence CA generated by the first generation unit 62 is used as the processing coefficient sequence Ge (the coefficient value CA [k] is expressed as the coefficient value Ge [k] in the equations (1a) and (1b)). ] as), but the acoustic signal SIN_L frequency components LAk (e j [omega]) and respectively multiplying the configuration of an audio signal SIN_R frequency components RAk (e jω) (hereinafter referred to as "comparison example"), stereo localization component is emphasized It is possible to generate an acoustic signal SOUT (SOUT_L, SOUT_R) in the form.

しかし、音響信号SIN_L(周波数成分LAk(e))と音響信号SIN_R(周波数成分RAk(e))とで位相が相違する場合、数式(4)の演算では定位成分が充分に抑圧されず、差成分Sに有意なパワーで定位成分が残留する。以上のように差成分Sに残留した定位成分は数式(6a)の演算で和成分Mから減算される(すなわち、パワースペクトルPにおける定位成分のパワーが低減される)。したがって、音響信号SIN_Lの周波数成分LAk(e)と音響信号SIN_Rの周波数成分RAk(e)との位相差が大きいほど、第1生成部62が生成する数値列CAの係数値CA[k]は小さい数値になるという傾向がある。つまり、数値列CAを処理係数列Geとして利用する対比例の構成では、定位成分の強調の効果が不足する結果となる。相互に離れた位置に設置された2個の収音機器を利用した収音で音響空間内での反射後の音響(残響音)の音響信号SIN(SIN_L,SIN_R)を生成した場合や、音響信号SINに残響効果を付与した場合には、音響信号SIN_Lと音響信号SIN_Rとの位相差が顕著となるから、対比例における定位成分の強調の不足は特に顕在化する。 However, when the acoustic signal SIN_L (frequency component LAk (e )) and the acoustic signal SIN_R (frequency component RAk (e )) are different in phase, the localization component is not sufficiently suppressed in the calculation of Equation (4). The localization component remains with a significant power in the difference component S. As described above, the localization component remaining in the difference component S is subtracted from the sum component M by the calculation of Equation (6a) (that is, the power of the localization component in the power spectrum P is reduced). Thus, as the phase difference of the frequency components LAk and (e j [omega]) and the frequency component of the acoustic signal SIN_R RAk (e jω) of the acoustic signal SIN_L large coefficient values CA [k numerical sequence CA that first generation unit 62 generates ] Tends to be a small number. That is, in the comparative configuration using the numerical value sequence CA as the processing coefficient sequence Ge, the effect of enhancing the localization component is insufficient. When the sound signal SIN (SIN_L, SIN_R) of the sound after reflection in the acoustic space (reverberation sound) is generated by sound collection using two sound collection devices installed at positions separated from each other, When the reverberation effect is given to the signal SIN, the phase difference between the acoustic signal SIN_L and the acoustic signal SIN_R becomes significant, and thus the lack of emphasis on the localization component in the comparison becomes particularly obvious.

そこで、第2生成部64は、音響信号SIN_L(周波数成分LAk(e))と音響信号SIN_R(周波数成分RAk(e))との位相差に応じた数値列CBを生成する。数値列CBは、周波数f1〜fKの各々に対応する係数値CB[k]の系列(CB[1]〜CB[K])である。周波数fkの周波数成分LAk(e)と周波数成分RAk(e)との位相差が大きいほど、数値列CBのうち周波数fkの係数値CB[k]は大きい数値に設定される。 Therefore, the second generation unit 64 generates a numerical sequence CB corresponding to the phase difference between the acoustic signal SIN_L (frequency component LAk (e )) and the acoustic signal SIN_R (frequency component RAk (e )). The numerical sequence CB is a series (CB [1] to CB [K]) of coefficient values CB [k] corresponding to the frequencies f1 to fK. As the phase difference between the frequency component LAk (e ) and the frequency component RAk (e ) of the frequency fk increases, the coefficient value CB [k] of the frequency fk in the numerical sequence CB is set to a larger value.

図3は、音響信号SIN_Lの周波数成分LAk(e)と音響信号SIN_Rの周波数成分RAk(e)と和成分Mの周波数成分Mk(e)とを複素平面内のベクトル(ただし、各成分の符号はLA,RA,Mと略記されている)として表記した模式図である。周波数成分LAk(e)と周波数成分RAk(e)との角度θが両者の位相差に相当する。なお、図3では、周波数成分LAk(e)の振幅|LAk(e)|と周波数成分RAk(e)の振幅|RAk(e)|とが相等しい場合を便宜的に例示した。 3, the frequency component of the acoustic signal SIN_L LAk (e jω) and the frequency component Mk (e j [omega]) of the frequency component RAk (e j [omega]) and sum component M of the acoustic signal SIN_R and a vector in the complex plane (where each The component codes are abbreviated as LA, RA, M). The angle θ between the frequency component LAk (e ) and the frequency component RAk (e ) corresponds to the phase difference between the two. In FIG. 3, the amplitude of the frequency component LAk (e jω) | exemplifying a case and are equal conveniently | LAk (e jω) | and the amplitude of the frequency component RAk (e jω) | RAk ( e jω) .

図3の部分(A)のように周波数成分LAk(e)と周波数成分RAk(e)とが同位相である場合(θ=0)、和成分Mの振幅|Mk(e)|は、周波数成分LAk(e)の振幅|LAk(e)|と周波数成分RAk(e)の振幅|RAk(e)|との加算値(以下「振幅和」という)Akに一致する(Ak=|LAk(e)|+|RAk(e)|)。他方、図3の部分(B)および部分(C)に示すように、周波数成分LAk(e)と周波数成分RAk(e)との位相差(角度θ)が大きいほど、和成分Mの振幅|Mk(e)|は振幅和Akと比較して小さい数値となる。すなわち、振幅和Akと和成分Mの振幅|Mk(e)|との相違が大きいほど(振幅|Mk(e)|が振幅和Akと比較して小さいほど)、周波数成分LAk(e)と周波数成分RAk(e)との位相差が大きいという傾向がある。以上の傾向を利用して、第1実施形態の第2生成部64は、周波数成分LAk(e)および周波数成分RAk(e)の振幅和Akと和成分Mの振幅|Mk(e)|とを比較した結果に応じて数値列CBの各係数値CB[k](CB[1]〜CB[K])を決定する。 When the frequency component LAk (e ) and the frequency component RAk (e ) are in phase (θ = 0) as shown in part (A) of FIG. 3, the amplitude | Mk (e ) | of the sum component M the amplitude of the frequency component LAk (e jω) | matches the sum of the (hereinafter referred to as "amplitude sum") Ak | LAk (e jω) | and the amplitude of the frequency component RAk (e jω) | RAk ( e jω) (Ak = | LAk (e ) | + | RAk (e ) |). On the other hand, as shown in part (B) and part (C) of FIG. 3, the larger the phase difference (angle θ) between the frequency component LAk (e ) and the frequency component RAk (e ), The amplitude | Mk (e ) | is smaller than the amplitude sum Ak. That is, the greater the difference between the amplitude sum Ak and the amplitude | Mk (e ) | of the sum component M (the smaller the amplitude | Mk (e ) | is smaller than the amplitude sum Ak), the more the frequency component LAk (e ) and the frequency component RAk (e ) tend to be large. Using the above tendency, the second generation unit 64 of the first embodiment uses the amplitude sum Ak of the frequency component LAk (e ) and the frequency component RAk (e ) and the amplitude | Mk (e ) | Is determined according to the result of comparison with each coefficient value CB [k] (CB [1] to CB [K]) of the numerical sequence CB.

図4に示すように、第2生成部64は、振幅算定部642と設定部644とを含んで構成される。振幅算定部642は、周波数成分LA1(e)〜LAK(e)の各々の振幅|LAk(e)|と、周波数成分RA1(e)〜RAK(e)の各々の振幅|RAk(e)|と、和成分生成部52が生成した和成分Mの周波数成分M1(e)〜MK(e)の各々の振幅|Mk(e)|とを単位区間毎に順次に算定する。設定部644は、振幅算定部642が算定した各振幅を利用して数値列CBの各係数値CB[k]を1以上の範囲内で可変に設定する(CB[k]≧1)。 As shown in FIG. 4, the second generation unit 64 includes an amplitude calculation unit 642 and a setting unit 644. Amplitude calculating unit 642, each of the amplitudes of the frequency components LA1 (e jω) ~LAK (e jω) | LAk (e jω) | and, each of the amplitudes of the frequency components RA1 (e jω) ~RAK (e jω) | RAk (e ) | and the amplitude | Mk (e ) | of each frequency component M1 (e ) to MK (e ) of the sum component M generated by the sum component generation unit 52 for each unit section Calculate sequentially. The setting unit 644 uses the amplitudes calculated by the amplitude calculation unit 642 to variably set the coefficient values CB [k] of the numerical value sequence CB within a range of 1 or more (CB [k] ≧ 1).

具体的には、設定部644は、周波数f1〜fKの各々について、振幅|LAk(e)|および振幅|RAk(e)|の振幅和Akと和成分Mの振幅|Mk(e)|との差分ΔAk(ΔAk=|LAk(e)|+|RAk(e)|−|Mk(e)|)を算定し、差分ΔAkが大きいほど係数値CB[k]を大きい数値に設定する。差分ΔAkが0である場合、設定部644は係数値CB[k]を例えば1に設定する。設定部644が差分ΔAkから係数値CB[k]を決定する具体的な方法は任意であるが、例えば、差分ΔAkの各数値と係数値CB[k]の各数値とを対応させたテーブルから係数値CB[k]を検索する方法や、差分ΔAkを変数として係数値CB[k]を定義する演算式(例えば差分ΔAkに対する増加関数)の演算で係数値CB[k]を算定する方法が好適である。以上の説明のように、周波数成分LAk(e)と周波数成分RAk(e)との位相差が大きい(差分ΔAkが大きい)ほど、各数値列CBの係数値CB[k]は大きい数値に設定される。 Specifically, for each of frequencies f1 to fK, setting unit 644 sets amplitude sum Ak of amplitude | LAk (e ) | and amplitude | RAk (e ) | and amplitude | Mk (e jω of sum component M). ) | Is calculated as ΔAk (ΔAk = | LAk (e ) | + | RAk (e ) | − | Mk (e ) |), and the coefficient value CB [k] increases as the difference ΔAk increases. Set to a numeric value. When the difference ΔAk is 0, the setting unit 644 sets the coefficient value CB [k] to 1, for example. A specific method for the setting unit 644 to determine the coefficient value CB [k] from the difference ΔAk is arbitrary. For example, from the table in which each numerical value of the difference ΔAk and each numerical value of the coefficient value CB [k] are associated with each other. There are a method of searching for the coefficient value CB [k] and a method of calculating the coefficient value CB [k] by calculation of an arithmetic expression that defines the coefficient value CB [k] using the difference ΔAk as a variable (for example, an increasing function with respect to the difference ΔAk). Is preferred. As described above, as the phase difference between the frequency component LAk (e ) and the frequency component RAk (e ) increases (the difference ΔAk increases), the coefficient value CB [k] of each numerical value sequence CB increases. Set to

図2の合成部68は、第1生成部62が生成した数値列CAと第2生成部64が生成した数値列CBとから処理係数列Ge(Ge[1]〜Ge[K])を生成する。処理係数列Geの周波数fkの係数値Ge[k]は、例えば、数値列CAの周波数fkの係数値CA[k]と数値列CBの周波数fkの係数値CB[k]との乗算値(Ge[k]=CA[k]×CB[k])に設定される。ただし、係数値CA[k]と係数値CB[k]との乗算値が1を上回る場合、合成部68は係数値Ge[k]を1に設定する。   2 generates a processing coefficient sequence Ge (Ge [1] to Ge [K]) from the numerical sequence CA generated by the first generating unit 62 and the numerical sequence CB generated by the second generating unit 64. To do. The coefficient value Ge [k] of the frequency fk of the processing coefficient sequence Ge is, for example, a multiplication value of the coefficient value CA [k] of the frequency fk of the numerical sequence CA and the coefficient value CB [k] of the frequency fk of the numerical sequence CB ( Ge [k] = CA [k] × CB [k]). However, when the multiplication value of the coefficient value CA [k] and the coefficient value CB [k] exceeds 1, the synthesis unit 68 sets the coefficient value Ge [k] to 1.

以上の説明から理解されるように、定位変数αに応じた位置の定位成分において周波数fkの成分が優勢となるほど、または、周波数成分LAk(e)と周波数成分RAk(e)との位相差が大きいほど、処理係数列Geの係数値Ge[k]は大きい数値に設定される。したがって、周波数スペクトルLAおよび周波数スペクトルRAの各々に信号処理部38が処理係数列Geを乗算することで、周波数成分LAk(e)と周波数成分RAk(e)との位相差が大きい場合でも、定位成分を充分に強調したステレオ形式の音響信号SOUT(SOUT_L,SOUT_R)を生成することが可能である。 As can be understood from the above description, the position of the frequency component LAk (e ) and the frequency component RAk (e ) increases as the component of the frequency fk becomes dominant in the localization component at the position corresponding to the localization variable α. As the phase difference is larger, the coefficient value Ge [k] of the processing coefficient sequence Ge is set to a larger numerical value. Therefore, even when the phase difference between the frequency component LAk (e ) and the frequency component RAk (e ) is large, the signal processing unit 38 multiplies each of the frequency spectrum LA and the frequency spectrum RA by the processing coefficient sequence Ge. It is possible to generate stereo-type acoustic signals SOUT (SOUT_L, SOUT_R) in which the localization component is sufficiently emphasized.

図2の第3生成部66は、合成部68が生成した処理係数列Geを利用して定位成分の抑圧用の処理係数列Gs(係数値Gs[1]〜Gs[K]の系列)を生成する。具体的には、第3生成部66は、数式(7)に示すように、処理係数列Geの各係数値Ge[k]を所定値(本形態では1)から減算することで処理係数列Gsの各係数値Gs[k]を算定する。

Figure 0005454157
The third generation unit 66 in FIG. 2 uses the processing coefficient sequence Ge generated by the synthesis unit 68 to generate a processing coefficient sequence Gs (a sequence of coefficient values Gs [1] to Gs [K]) for suppressing the localization component. Generate. Specifically, as shown in Equation (7), the third generation unit 66 subtracts each coefficient value Ge [k] of the processing coefficient sequence Ge from a predetermined value (1 in this embodiment) to thereby process the processing coefficient sequence. Each coefficient value Gs [k] of Gs is calculated.
Figure 0005454157

数式(7)から理解されるように、第3生成部66が生成する処理係数列Gsの係数値Gs[1]〜Gs[K]は、定位変数αに応じた位置の定位成分のパワー(振幅)が大きい周波数fkの係数値Gs[k]ほど0に近い数値となり、定位成分のパワーが小さい周波数fkの係数値Gs[k]ほど1に近い数値となる。したがって、周波数スペクトルLAおよび周波数スペクトルRAの各々に信号処理部38が処理係数列Gsを乗算することで、前述の通り、定位成分を抑圧したステレオ形式の音響信号SOUT(SOUT_L,SOUT_R)が生成される。   As understood from the equation (7), the coefficient values Gs [1] to Gs [K] of the processing coefficient sequence Gs generated by the third generation unit 66 are the powers of the localization components at positions corresponding to the localization variable α ( The coefficient value Gs [k] of the frequency fk having a larger amplitude) is closer to 0, and the coefficient value Gs [k] of the frequency fk having a smaller localization component power is closer to 1. Accordingly, the signal processing unit 38 multiplies each of the frequency spectrum LA and the frequency spectrum RA by the processing coefficient sequence Gs, thereby generating the stereo-type acoustic signal SOUT (SOUT_L, SOUT_R) in which the localization component is suppressed as described above. The

ところで、前述の対比例では、第1生成部62が生成した数値列CAを数式(7)の処理係数列Geとして抑圧用の処理係数列Gsを生成する構成が採用され得る(Gs[k]=1−CA[k])。しかし、周波数成分LAk(e)と周波数成分RAk(e)との位相差が大きいほど数値列CAの係数値CA[k]は小さい数値になるから、対比例の構成では、周波数成分LAk(e)と周波数成分RAk(e)との位相差が大きいほど処理係数列Gsの係数値Gs[k]は大きい数値となる。したがって、定位成分の抑圧が不足するという問題が発生する。他方、第1実施形態では、周波数成分LAk(e)と周波数成分RAk(e)との位相差が大きいほど係数値Ge[k]は大きい数値となるから、周波数成分LAk(e)と周波数成分RAk(e)との位相差が大きいほど処理係数列Gsの係数値Gs[k]は小さい数値となる。したがって、周波数成分LAk(e)と周波数成分RAk(e)との位相差が大きい場合でも、定位成分を充分に抑圧したステレオ形式の音響信号SOUT(SOUT_L,SOUT_R)を生成することが可能である。 By the way, in the above-described comparison, a configuration may be adopted in which the processing coefficient sequence Gs for suppression is generated using the numerical sequence CA generated by the first generation unit 62 as the processing coefficient sequence Ge of Equation (7) (Gs [k]). = 1-CA [k]). However, the larger the phase difference between the frequency component LAk (e ) and the frequency component RAk (e ) is, the smaller the coefficient value CA [k] of the numerical sequence CA becomes. Therefore, in the proportional configuration, the frequency component LAk The larger the phase difference between (e ) and the frequency component RAk (e ), the larger the coefficient value Gs [k] of the processing coefficient sequence Gs. Therefore, there arises a problem that the localization component is not sufficiently suppressed. On the other hand, in the first embodiment, the larger the phase difference between the frequency component LAk (e ) and the frequency component RAk (e ), the larger the coefficient value Ge [k] becomes, so the frequency component LAk (e ) The coefficient value Gs [k] of the processing coefficient sequence Gs becomes a smaller numerical value as the phase difference between the frequency component RAk (e ) increases. Therefore, even when the phase difference between the frequency component LAk (e ) and the frequency component RAk (e ) is large, it is possible to generate a stereo-type acoustic signal SOUT (SOUT_L, SOUT_R) in which the localization component is sufficiently suppressed. It is.

以上に説明したように、第1実施形態においては、周波数成分LAk(e)と周波数成分RAk(e)との位相差が処理係数列Geおよび処理係数列Gsに反映されるから、周波数成分LAk(e)および周波数成分RAk(e)の間に位相差がある場合でも、定位成分の強調または抑圧の効果を充分に維持できるという利点がある。 As described above, in the first embodiment, the phase difference between the frequency component LAk (e ) and the frequency component RAk (e ) is reflected in the processing coefficient sequence Ge and the processing coefficient sequence Gs. Even when there is a phase difference between the component LAk (e ) and the frequency component RAk (e ), there is an advantage that the effect of emphasizing or suppressing the localization component can be sufficiently maintained.

ところで、特許第3670562号公報には、ステレオ信号のチャネル間の振幅比に応じた減衰係数gi(k)と位相差に応じた減衰係数gp(k)との何れかを選択して各チャネルの音響信号に乗算する構成が開示されている。しかし、以上の技術では、振幅比に応じた減衰係数gi(k)と位相差に応じた減衰係数gp(k)とが択一的に適用されるから、振幅および位相の双方がチャネル間で相違する場合には、定位成分の適切な強調または抑圧が困難であるという問題がある。他方、第1実施形態においては、音響信号SIN_L(周波数スペクトルLA)および音響信号SIN_R(周波数スペクトルRA)から複素スペクトルとして算定された和成分Mおよび差成分Sが処理係数列Geおよび処理係数列Gsの生成に利用されるから、音響信号SIN_Lと音響信号SIN_Rとの間の振幅差および位相差の双方を反映した処理係数列Geおよび処理係数列Gsが生成される。したがって、音響信号SIN_Lと音響信号SIN_Rとの間で振幅および位相の一方のみが相違する場合に加えて、振幅および位相の双方が相違する場合にも、定位成分を有効に強調または抑圧できるという格別の効果が実現される。   By the way, in Japanese Patent No. 3670562, either an attenuation coefficient gi (k) corresponding to the amplitude ratio between channels of a stereo signal or an attenuation coefficient gp (k) corresponding to a phase difference is selected and each channel is selected. A configuration for multiplying an acoustic signal is disclosed. However, in the above technique, the attenuation coefficient gi (k) according to the amplitude ratio and the attenuation coefficient gp (k) according to the phase difference are alternatively applied. If they are different, there is a problem that it is difficult to properly emphasize or suppress the localization component. On the other hand, in the first embodiment, the sum component M and the difference component S calculated as a complex spectrum from the acoustic signal SIN_L (frequency spectrum LA) and the acoustic signal SIN_R (frequency spectrum RA) are processed coefficient sequence Ge and processing coefficient sequence Gs. Therefore, the processing coefficient sequence Ge and the processing coefficient sequence Gs reflecting both the amplitude difference and the phase difference between the acoustic signal SIN_L and the acoustic signal SIN_R are generated. Therefore, in addition to the case where only one of the amplitude and the phase is different between the acoustic signal SIN_L and the acoustic signal SIN_R, the localization component can be effectively enhanced or suppressed when both the amplitude and the phase are different. The effect of is realized.

<B:第2実施形態>
本発明の第2実施形態を説明する。第1実施形態では、周波数成分LAk(e)および周波数成分RAk(e)の振幅和Akと和成分Mの周波数成分Mk(e)の振幅|Mk(e)|との比較の結果に応じて第2生成部64が数値列CBの各係数値CB[k]を設定した。第2実施形態では、周波数成分LAk(e)と周波数成分RAk(e)との角度θ(すなわち両者の位相差)を算定して係数値CB[k]を設定する。なお、以下の各例示において作用や機能が第1実施形態と同等である要素については、第1実施形態と同様の符号を付して各々の詳細な説明を適宜に省略する。
<B: Second Embodiment>
A second embodiment of the present invention will be described. In the first embodiment, the comparison between the amplitude sum Ak of the frequency component LAk (e ) and the frequency component RAk (e ) and the amplitude | Mk (e ) | of the frequency component Mk (e ) of the sum component M is performed. The second generation unit 64 sets each coefficient value CB [k] of the numerical sequence CB according to the result. In the second embodiment, the angle θ between the frequency component LAk (e ) and the frequency component RAk (e ) (that is, the phase difference between them) is calculated to set the coefficient value CB [k]. In the following examples, elements having the same functions and functions as those of the first embodiment are denoted by the same reference numerals as those of the first embodiment, and detailed descriptions thereof are appropriately omitted.

図5は、周波数成分LAk(e)と周波数成分RAk(e)と和成分Mの周波数成分Mk(e)との関係を示す模式図である。図5の三角形TMLは、周波数成分LAk(e)および周波数成分Mk(e)を2辺とする三角形であり、三角形TMRは、周波数成分RAk(e)および周波数成分Mk(e)を2辺とする三角形である。三角形TMLおよび三角形TMRの面積Sは相等しく、以下の数式(8)で表現される。数式(8)の角度θ1は、周波数成分LAk(e)と周波数成分Mk(e)との角度であり、角度θ2は、周波数成分RAk(e)と周波数成分Mk(e)との角度である。

Figure 0005454157
FIG. 5 is a schematic diagram showing the relationship among the frequency component LAk (e ), the frequency component RAk (e ), and the frequency component Mk (e ) of the sum component M. The triangle TML in FIG. 5 is a triangle having a frequency component LAk (e ) and a frequency component Mk (e ) as two sides, and the triangle TMR has a frequency component RAk (e ) and a frequency component Mk (e ). Is a triangle with two sides. The areas S of the triangle TML and the triangle TMR are equal to each other and are expressed by the following formula (8). The angle θ1 in the equation (8) is an angle between the frequency component LAk (e ) and the frequency component Mk (e ), and the angle θ2 is the frequency component RAk (e ) and the frequency component Mk (e ) Is the angle.
Figure 0005454157

数式(8)から以下の数式(9a)および数式(9b)が導出される。

Figure 0005454157
From the formula (8), the following formula (9a) and formula (9b) are derived.
Figure 0005454157

他方、周波数成分LAk(e)と周波数成分RAk(e)と周波数成分Mk(e)とを3辺とする三角形の面積Sは、三角形TMLや三角形TMRの面積と相等しく、以下の数式(10)で表現される(ヘロンの公式)。

Figure 0005454157
On the other hand, the area S of the triangle having the frequency component LAk (e ), the frequency component RAk (e ), and the frequency component Mk (e ) as three sides is equal to the areas of the triangle TML and the triangle TMR. It is expressed by formula (10) (Heron formula).
Figure 0005454157

第2生成部64は、数式(10)の演算で算定される面積Sを数式(9a)および数式(9b)に適用することで角度θ1および角度θ2を算定する。そして、第2生成部64は、角度θ1および角度θ2を利用した以下の数式(11)の演算で数値列CBの各係数値CB[k]を算定する(θ1+θ2<π/2)。

Figure 0005454157
The second generator 64 calculates the angle θ1 and the angle θ2 by applying the area S calculated by the calculation of the formula (10) to the formula (9a) and the formula (9b). Then, the second generation unit 64 calculates each coefficient value CB [k] of the numerical sequence CB by the following equation (11) using the angle θ1 and the angle θ2 (θ1 + θ2 <π / 2).
Figure 0005454157

数式(11)から理解されるように、周波数成分LAk(e)と周波数成分RAk(e)との位相差(角度(θ1+θ2)が大きいほど数値列CBの係数値CB[k]は大きい数値に設定される。なお、数値列CAおよび数値列CBを利用して処理係数列Geや処理係数列Gsを生成する方法は第1実施形態と同様である。 As understood from the equation (11), the phase difference of the frequency components LAk and (e j [omega]) and the frequency component RAk (e j [omega]) (angle (.theta.1 + .theta.2) coefficient of numerical sequence CB larger the value CB [k] is greater The method for generating the processing coefficient string Ge and the processing coefficient string Gs using the numerical value string CA and the numerical value string CB is the same as in the first embodiment.

第2実施形態でも第1実施形態と同様の作用および効果が実現される。第1実施形態や第2実施形態の例示から理解されるように、第2生成部64は、周波数成分LAk(e)の振幅|LAk(e)|と周波数成分RAk(e)の振幅|RAk(e)|と周波数成分Mk(e)の振幅|Mk(e)|とから数値列CBの各係数値CB[k]を生成する要素として包括され、各振幅から係数値CB[k]を算定する具体的な方法は本発明において任意である。 In the second embodiment, the same operation and effect as in the first embodiment are realized. As it will be understood from the example of the first embodiment and the second embodiment, the second generator 64, the frequency component LAk of (e j [omega]) the amplitude | LAk (e jω) | of the frequency component RAk (e jω) It is included as an element for generating each coefficient value CB [k] of the numerical sequence CB from the amplitude | RAk (e ) | and the amplitude | Mk (e ) | of the frequency component Mk (e ) | A specific method for calculating the numerical value CB [k] is arbitrary in the present invention.

<C:変形例>
以上の各形態は多様に変形され得る。具体的な変形の態様を以下に例示する。以下の例示から任意に選択された2以上の態様は適宜に併合され得る。
<C: Modification>
Each of the above forms can be variously modified. Specific modifications are exemplified below. Two or more aspects arbitrarily selected from the following examples can be appropriately combined.

(1)変形例1
数値列CBの各係数値CB[k]を算定する方法は以上の例示に限定されない。例えば、図3に例示した関係から理解されるように、周波数成分LAk(e)と周波数成分RAk(e)との位相差が大きいほど、和成分Mの振幅|Mk(e)|に対する振幅和Akの相対比Qk(Qk=Ak/|Mk(e)|)は大きい数値となるから、相対比Qkを数値列CBの各係数値CB[k]として算定する構成が採用され得る。また、差分ΔAk(ΔAk=Ak−|Mk(e)|)や相対比Qkを変数とする所定の関数の演算(写像)で各係数値CB[k]を算定する構成も好適である。
(1) Modification 1
The method of calculating each coefficient value CB [k] of the numerical value sequence CB is not limited to the above example. For example, as can be understood from the relationship illustrated in FIG. 3, the larger the phase difference between the frequency component LAk (e ) and the frequency component RAk (e ), the larger the amplitude | Mk (e ) | Since the relative ratio Qk (Qk = Ak / | Mk (e ) |) of the amplitude sum Ak with respect to is a large numerical value, a configuration is adopted in which the relative ratio Qk is calculated as each coefficient value CB [k] of the numerical sequence CB. obtain. A configuration in which each coefficient value CB [k] is calculated by calculation (mapping) of a predetermined function using the difference ΔAk (ΔAk = Ak− | Mk (e ) |) or the relative ratio Qk as a variable is also suitable.

(2)変形例2
以上の各形態では、数値列CAと数値列CBとを合成した強調用の処理係数列Geから第3生成部66が抑圧用の処理係数列Gsを生成したが、第3生成部66の代わりに図6の第3生成部67が処理係数列Gsを生成する構成も採用され得る。
(2) Modification 2
In each of the above embodiments, the third generation unit 66 generates the processing coefficient sequence Gs for suppression from the processing coefficient sequence Ge for emphasis obtained by synthesizing the numerical value sequence CA and the numerical value sequence CB. In addition, a configuration in which the third generation unit 67 of FIG. 6 generates the processing coefficient sequence Gs may be employed.

図6の第3生成部67は、第1演算部672と第2演算部674とを含んで構成される。第1演算部672は、第1生成部62が生成した数値列CAから定位成分の抑圧用の数値列CD(係数値CD[1]〜CD[K]の系列)を算定する。例えば、第1演算部672は、前述の数式(7)と同様に、数値列CAの係数値CA[k]を所定位置(例えば1)から減算することで数値列CDの各係数値CD[k](CD[k]=1−CA[k])を算定する。したがって、抑圧用の処理係数列Gsと同様に、定位変数αに応じた位置の定位成分のパワーが大きい周波数fkの係数値CD[k]ほど0に近い数値となる。   The third generation unit 67 of FIG. 6 includes a first calculation unit 672 and a second calculation unit 674. The first calculation unit 672 calculates a numerical sequence CD (sequence of coefficient values CD [1] to CD [K]) for suppressing the localization component from the numerical sequence CA generated by the first generation unit 62. For example, the first calculation unit 672 subtracts the coefficient value CA [k] of the numerical value sequence CA from a predetermined position (for example, 1), similarly to the above-described equation (7), to thereby obtain each coefficient value CD [ k] (CD [k] = 1-CA [k]). Accordingly, like the processing coefficient sequence Gs for suppression, the coefficient value CD [k] of the frequency fk at which the power of the localization component at the position corresponding to the localization variable α is large becomes a numerical value closer to 0.

図6の第2演算部674は、周波数成分LAk(e)および周波数成分RAk(e)の位相差に応じた数値列CB'を、第1演算部672が生成した数値列CDに作用させることで抑圧用の処理係数列Gsを生成する。数値列CB'は、以上の各形態の数値列CBとは逆に、周波数成分LAk(e)および周波数成分RAk(e)の位相差が大きいほど小さい数値となるように設定された係数値CB'[1]〜CB'[K]の系列である。例えば、振幅和Akに対する和成分Mの振幅|Mk(e)|の相対比(|Mk(e)|/Ak)が係数値CB'[k]として算定され得る。第2演算部674は、例えば、数値列CDの係数値CD[k]と数値列CB'の係数値CB'[k]との乗算値を処理係数列Gsの係数値Gs[k]として算定する.図6の構成でも第1実施形態と同様の効果が実現される。 6 operates a numerical sequence CB ′ corresponding to the phase difference between the frequency component LAk (e ) and the frequency component RAk (e ) on the numerical sequence CD generated by the first arithmetic unit 672. By doing so, a processing coefficient sequence Gs for suppression is generated. The numerical value sequence CB ′, contrary to the numerical value sequence CB in each of the above forms, is set so that the smaller the phase difference between the frequency component LAk (e ) and the frequency component RAk (e ), the smaller the value. This is a series of numerical values CB ′ [1] to CB ′ [K]. For example, the relative ratio (| Mk (e ) | / Ak) of the amplitude | Mk (e ) | of the sum component M with respect to the amplitude sum Ak can be calculated as the coefficient value CB ′ [k]. For example, the second calculation unit 674 calculates a product value of the coefficient value CD [k] of the numerical value sequence CD and the coefficient value CB '[k] of the numerical value sequence CB ′ as the coefficient value Gs [k] of the processing coefficient sequence Gs. Do it. The same effects as those of the first embodiment are realized even with the configuration of FIG.

(3)変形例3
以上の各形態では、数値列CBの全部の係数値CB[1]〜CB[K]を係数列CAの全部の係数値CA[1]〜CA[K]に作用させて処理係数列Geを生成したが、所定の周波数帯域内の成分に限定して定位成分の強調/抑圧を実行する構成も好適である。例えば、音響信号SINのうち人間の音声のパワーが集中する周波数帯域(例えば100kHz〜8kHz)についてのみ以上の各形態の処理が実行される(他の帯域については処理せずに再生する)。
(3) Modification 3
In each of the above embodiments, all the coefficient values CB [1] to CB [K] of the numerical value sequence CB are applied to all the coefficient values CA [1] to CA [K] of the coefficient sequence CA, so that the processing coefficient sequence Ge is obtained. However, a configuration in which localization component enhancement / suppression is performed only for components within a predetermined frequency band is also suitable. For example, the processing in each of the above modes is executed only for the frequency band (for example, 100 kHz to 8 kHz) in which the power of human voice is concentrated in the acoustic signal SIN (reproduction is performed without processing for other bands).

また、以下に例示するように、周波数成分LAk(e)と周波数成分RAk(e)との位相差に起因した定位成分の強調または抑圧の不足が問題となる係数値CA[k]に限定して係数値CB[k]を作用させる構成も採用され得る。 Further, as illustrated below, the coefficient value CA [k], which is a problem of insufficient emphasis or suppression of the localization component due to the phase difference between the frequency component LAk (e ) and the frequency component RAk (e ), is used. A configuration in which the coefficient value CB [k] is applied in a limited manner may be employed.

図7は、第1生成部62が生成する数値列CAのうち中央方向(α=0.5)に音像が定位する成分の周波数fkに対応する係数値CA[k](縦軸)と定位変数α(横軸)との関係を示す模式図である。図7に示すように、利用者から指示される定位変数αが0.5に近いほど数値列CAの各係数列CA[k]は1に近い数値に設定される。以上の関係から理解されるように、係数値CA[k]が所定の閾値CA_THを上回る周波数fkの成分は、強調の対象となる定位成分である可能性が高い。   FIG. 7 shows the coefficient value CA [k] (vertical axis) and localization corresponding to the frequency fk of the component in which the sound image is localized in the central direction (α = 0.5) in the numerical sequence CA generated by the first generator 62. It is a schematic diagram which shows the relationship with the variable (alpha) (horizontal axis). As shown in FIG. 7, as the localization variable α instructed by the user is closer to 0.5, each coefficient sequence CA [k] of the numerical sequence CA is set to a value closer to 1. As understood from the above relationship, the component of the frequency fk whose coefficient value CA [k] exceeds the predetermined threshold value CA_TH is highly likely to be a localization component to be emphasized.

そこで、数値列CAの係数値CA[1]〜CA[K]のうち閾値CA_THを上回る係数値CA[k]に対して限定的に合成部68が係数値CB[k]を乗算して係数値Ge[k]を算定する構成が採用され得る。閾値CA_THを下回る係数値CA[k]は、係数値CB[k]が乗算されることなく係数値Ge[k]として採択される。以上の構成によれば、K個の係数値CA[1]〜CA[K]にK個の係数値CB[1]〜CB[K]を作用させる第1実施形態の構成と比較して、合成部68による処理の負荷(乗算の回数)が軽減されるという利点がある。   Therefore, the combining unit 68 multiplies the coefficient value CA [k] exceeding the threshold value CA_TH among the coefficient values CA [1] to CA [K] of the numerical sequence CA by multiplying the coefficient value CB [k]. A configuration for calculating the numerical value Ge [k] may be employed. The coefficient value CA [k] below the threshold value CA_TH is adopted as the coefficient value Ge [k] without being multiplied by the coefficient value CB [k]. According to the above configuration, compared with the configuration of the first embodiment in which K coefficient values CB [1] to CB [K] are applied to K coefficient values CA [1] to CA [K], There is an advantage that the processing load (the number of multiplications) by the combining unit 68 is reduced.

また、係数値CD[k](CD[k]=1−CA[k])に係数値CB'[k]を作用させて抑圧用の処理係数列Gsを生成する図6の構成でも同様に、特定の係数値CD[k]に対して限定的に係数値CB'[k]を作用させる構成が採用され得る。   Similarly, in the configuration of FIG. 6 in which the coefficient value CB ′ [k] is applied to the coefficient value CD [k] (CD [k] = 1−CA [k]) to generate the processing coefficient sequence Gs for suppression. A configuration in which the coefficient value CB ′ [k] is limitedly applied to the specific coefficient value CD [k] may be employed.

図8は、図6の構成のもとで第3生成部67の第1演算部672が生成する係数列CDのうち中央方向(α=0.5)に音像が定位する成分の周波数fkに対応する係数値CD[k](縦軸)と定位変数α(横軸)との関係を示す模式図である。図8に示すように、利用者から指示される定位変数αが0.5に近いほど数値列CDの各係数値CD[k]は0に近い数値に設定される。以上の関係から理解されるように、係数値CD[k]が所定の閾値CD_THを下回る周波数fkの成分は、抑圧の対象となる定位成分である可能性が高い。   8 shows the frequency fk of the component in which the sound image is localized in the central direction (α = 0.5) in the coefficient sequence CD generated by the first calculation unit 672 of the third generation unit 67 under the configuration of FIG. It is a schematic diagram which shows the relationship between corresponding coefficient value CD [k] (vertical axis) and localization variable (alpha) (horizontal axis). As shown in FIG. 8, the coefficient value CD [k] of the numerical sequence CD is set to a value closer to 0 as the localization variable α instructed by the user is closer to 0.5. As understood from the above relationship, the component of the frequency fk whose coefficient value CD [k] is lower than the predetermined threshold value CD_TH is highly likely to be a localization component to be suppressed.

そこで、数値列CDの係数値CD[1]〜CD[K]のうち閾値CD_THを下回る係数値CD[k]に対して限定的に図6の第2演算部674が係数値CB'[k]を乗算して係数値Gs[k]を算定する構成が採用され得る。閾値CD_THを上回る係数値CD[k]は、係数値CB'[k]が乗算されることなく係数値Gs[k]として採択される。以上の構成によれば、K個の係数値CD[1]〜CD[K]にK個の係数値CB'[1]〜CB'[K]を作用させる構成と比較して、第2演算部674による処理の負荷(乗算の回数)が軽減されるという利点がある。   Therefore, the second arithmetic unit 674 in FIG. 6 restricts the coefficient value CB ′ [k] for the coefficient value CD [k] below the threshold value CD_TH among the coefficient values CD [1] to CD [K] of the numerical sequence CD. ] To calculate the coefficient value Gs [k]. The coefficient value CD [k] exceeding the threshold value CD_TH is adopted as the coefficient value Gs [k] without being multiplied by the coefficient value CB ′ [k]. According to the above configuration, the second calculation is performed as compared with the configuration in which the K coefficient values CB '[1] to CB' [K] are applied to the K coefficient values CD [1] to CD [K]. There is an advantage that the processing load (number of multiplications) by the unit 674 is reduced.

(4)変形例4
定位成分の周波数fkに対応する周波数成分LAk(e)と周波数成分RAk(e)との位相差φkは、定位変数αに応じた定位成分の方向に応じて変化する。例えば、中央方向(α=0.5)の定位成分の周波数成分LAk(e)と周波数成分RAk(e)との位相差φkは0に近い数値となり、定位成分の方向が中央方向から離れる(定位変数αが中央値(0.5)から離れる)ほど位相差φkは増加する。したがって、図9に示すように、定位変数αに対応する位相差φaを含む所定幅の範囲Aを想定すると、周波数成分LAk(e)と周波数成分RAk(e)との位相差φkが範囲A内にある周波数fkの成分は定位成分に該当する可能性が高い。
(4) Modification 4
The phase difference φk between the frequency component LAk (e ) and the frequency component RAk (e ) corresponding to the localization component frequency fk changes according to the direction of the localization component according to the localization variable α. For example, the phase difference φk between the frequency component LAk (e ) of the localization component in the central direction (α = 0.5) and the frequency component RAk (e ) is a value close to 0, and the direction of the localization component is changed from the central direction. The phase difference φk increases as the distance increases (the localization variable α increases from the median (0.5)). Therefore, as shown in FIG. 9, assuming a range A having a predetermined width including the phase difference φa corresponding to the localization variable α, the phase difference φk between the frequency component LAk (e ) and the frequency component RAk (e ) is There is a high possibility that the component of the frequency fk within the range A corresponds to the localization component.

そこで、係数列CAの係数値CA[1]〜CA[K]のうち周波数成分LAk(e)と周波数成分RAk(e)との位相差φkが範囲A内にある各周波数fk(すなわち定位成分の周波数fk)の各係数値CA[k]に限定して、合成部68が数値列CBの係数値CB[k]を作用させる構成も採用され得る。位相差φkが範囲A外にある周波数fkの各係数値CA[k]は、係数値CB[k]が乗算されることなく係数値Ge[k]として採択される。図6の構成でも同様であり、位相差φkが範囲A内にある周波数kの各係数値CD[k]に対して限定的に係数値CB'[k]を乗算する構成が採用され得る。 Therefore, among the coefficient values CA [1] to CA [K] of the coefficient sequence CA, each frequency fk (that is, the phase difference φk between the frequency component LAk (e ) and the frequency component RAk (e ) within the range A (that is, A configuration in which the synthesis unit 68 operates the coefficient value CB [k] of the numerical value sequence CB can be adopted by limiting to each coefficient value CA [k] of the frequency fk) of the localization component. Each coefficient value CA [k] of the frequency fk where the phase difference φk is outside the range A is adopted as the coefficient value Ge [k] without being multiplied by the coefficient value CB [k]. The same applies to the configuration of FIG. 6, and a configuration in which each coefficient value CD [k] of the frequency k having the phase difference φk within the range A is multiplied by the coefficient value CB ′ [k] in a limited manner can be adopted.

(5)変形例5
数値列CAと数値列CBとから処理係数列Geや処理係数列Gsを生成する方法は適宜に変更され得る。例えば、数値列CAの各係数値CA[k]と数値列CBの各係数値CB[k]との加算値を処理係数列Geの係数値Ge[k]として算定する構成が採用され得る。図6の構成でも同様に、各係数値CD[k]と各係数値CB'[k]との加算で係数値Gs[k]を算定する構成が採用され得る。
(5) Modification 5
The method of generating the processing coefficient sequence Ge and the processing coefficient sequence Gs from the numerical value sequence CA and the numerical value sequence CB can be appropriately changed. For example, a configuration may be adopted in which an addition value of each coefficient value CA [k] of the numerical value sequence CA and each coefficient value CB [k] of the numerical value sequence CB is calculated as the coefficient value Ge [k] of the processing coefficient sequence Ge. Similarly, the configuration of FIG. 6 may employ a configuration in which the coefficient value Gs [k] is calculated by adding each coefficient value CD [k] and each coefficient value CB ′ [k].

(6)変形例6
以上の各形態では、数式(4)から理解されるように、音響信号SIN_L(周波数成分LAk(e))と音響信号SIN_R(周波数成分RAk(e))との振幅の比率が定位変数αに応じて線形に変化するように差成分Sを算定したが、以下の各態様にて例示するように、和成分Mおよび差成分Sの算定の方法や定位変数αとの関係は適宜に変更される。
(6) Modification 6
In each of the above embodiments, as understood from the equation (4), the ratio of the amplitude of the acoustic signal SIN_L (frequency component LAk (e )) and the acoustic signal SIN_R (frequency component RAk (e )) is a localization variable. Although the difference component S is calculated so as to change linearly according to α, as illustrated in the following embodiments, the calculation method of the sum component M and the difference component S and the relationship with the localization variable α are appropriately determined. Be changed.

<第1態様>
音響信号SIN_Lのパワー|LAk(e)|および音響信号SIN_Rのパワー|RAk(e)|から和成分Mおよび差成分Sを算定する構成が採用され得る。具体的には、和成分生成部52は、以下の数式(12a)の演算で和成分M(周波数成分M1(e)〜MK(e)で構成される複素スペクトル)を生成し、差成分生成部54は、以下の数式(12b)の演算で差成分S(周波数成分S1(e)〜SK(e)で構成される複素スペクトル)を生成する。したがって、差成分Sにおいては、音響信号SIN_Lおよび音響信号SIN_Rの各々のパワーの比率が定位変数αに応じて線形に変化する。なお、数式(12a)および数式(12b)における記号ejLは周波数スペクトルLAの位相スペクトルを意味し、記号ejRは周波数スペクトルRAの位相スペクトルを意味する。

Figure 0005454157
<First aspect>
LAk (e jω) | | 2 and the power of the acoustic signal SIN_R | RAk (e jω) | power of the acoustic signal SIN_L configured to calculate the 2 from the sum component M and the difference component S may be employed. Specifically, the sum component generation unit 52 generates a sum component M (complex spectrum composed of frequency components M1 (e ) to MK (e )) by the calculation of the following formula (12a), and the difference The component generation unit 54 generates a difference component S (a complex spectrum composed of frequency components S1 (e ) to SK (e )) by calculation of the following formula (12b). Therefore, in the difference component S, the power ratio between the acoustic signal SIN_L and the acoustic signal SIN_R changes linearly according to the localization variable α. Symbols e jL in equation (12a) and Equation (12b) means a phase spectrum of the frequency spectrum LA, symbol e jR means the phase spectrum of the frequency spectrum RA.
Figure 0005454157

以上の方法で和成分Mおよび差成分Sが生成されると、係数列生成部60の第1生成部62は、定位成分を強調したパワースペクトルP(パワーP[k])を以下の数式(13a)および数式(13b)の演算で生成し、パワースペクトルPを利用した数式(14)の演算で処理係数列Geの各係数値Ge[k]を算定する。第3生成部66が処理係数列Geから処理係数列Gsを生成する方法は第1実施形態(数式(7))と同様である。以上の構成でも第1実施形態と同様の効果が実現される。

Figure 0005454157
When the sum component M and the difference component S are generated by the above method, the first generation unit 62 of the coefficient sequence generation unit 60 generates a power spectrum P (power P [k]) in which the localization component is emphasized by the following formula ( The coefficient values Ge [k] of the processing coefficient sequence Ge are calculated by the calculation of the formula (14) using the power spectrum P, which is generated by the calculations of 13a) and (13b). The method by which the third generation unit 66 generates the processing coefficient sequence Gs from the processing coefficient sequence Ge is the same as in the first embodiment (Formula (7)). With the above configuration, the same effect as that of the first embodiment is realized.
Figure 0005454157

<第2態様>
定位成分の位置(方向)を定位変数αの関数f(α)に応じて制御する構成が採用され得る。具体的には、和成分生成部52は、以下の数式(15a)の演算で和成分M(周波数成分M1(e)〜MK(e))を生成し、差成分生成部54は、以下の数式(15b)の演算で差成分S(周波数成分S1(e)〜SK(e))を生成する。したがって、差成分Sにおける音響信号SIN_Lおよび音響信号SIN_Rの各々の振幅の比率が定位変数αの関数f(α)に応じて変化する。係数列生成部60は、以上の各形態と同様の方法で、数式(15a)の和成分Mと数式(15b)の差成分Sとから処理係数列Geおよび処理係数列Gsを算定する。

Figure 0005454157
<Second aspect>
A configuration in which the position (direction) of the localization component is controlled according to the function f (α) of the localization variable α can be adopted. Specifically, the sum component generation unit 52 generates the sum component M (frequency components M1 (e ) to MK (e )) by the calculation of the following formula (15a), and the difference component generation unit 54 The difference component S (frequency components S1 (e ) to SK (e )) is generated by the calculation of the following formula (15b). Therefore, the ratio of the amplitudes of the acoustic signal SIN_L and the acoustic signal SIN_R in the difference component S changes according to the function f (α) of the localization variable α. The coefficient sequence generation unit 60 calculates the processing coefficient sequence Ge and the processing coefficient sequence Gs from the sum component M of the formula (15a) and the difference component S of the formula (15b) by the same method as each of the above embodiments.
Figure 0005454157

なお、数式(6a)では和成分Mのパワー|Mk(e)|と差成分Sのパワー|Sk(e)|との差分をパワーP[k]として算定したが、以下の数式(6c)に示すように、和成分Mの振幅|Mk(e)|と差成分Sの振幅|Sk(e)|との差分を振幅P[k]として算定する構成も採用され得る。数式(6c)で振幅P[k]を算定する構成では、第1生成部62が数式(5a)の演算で処理係数列Geの係数値Ge[k]を算定する。

Figure 0005454157
In Equation (6a), the difference between the power of the sum component M | Mk (e ) | 2 and the power of the difference component S | Sk (e ) | 2 is calculated as the power P [k]. As shown in the equation (6c), a configuration is also employed in which the difference between the amplitude | Mk (e ) | of the sum component M and the amplitude | Sk (e ) | of the difference component S is calculated as the amplitude P [k]. obtain. In the configuration in which the amplitude P [k] is calculated using the equation (6c), the first generation unit 62 calculates the coefficient value Ge [k] of the processing coefficient sequence Ge by the calculation of the equation (5a).
Figure 0005454157

(7)変形例7
以上の各形態では、パワースペクトルの減算(数式(6a),数式(13a))や振幅スペクトルの減算(数式(6c))で処理係数列Geを算定したが、処理係数列Geを算定する方法は任意である。例えば、和成分Mに含まれる定位成分を信号成分と仮定するとともに差成分Sを雑音成分と仮定すると、和成分Mおよび差成分Sを利用した処理係数列Geの生成には、雑音成分(差成分S)を抑圧して信号成分(定位成分)を強調するための数値列(処理係数列Ge)を生成する公知の音声強調の技術を同様に適用することが可能である。
(7) Modification 7
In each of the above embodiments, the processing coefficient sequence Ge is calculated by subtraction of the power spectrum (Formula (6a), Formula (13a)) or subtraction of the amplitude spectrum (Formula (6c)), but a method of calculating the processing coefficient sequence Ge Is optional. For example, if the localization component included in the sum component M is assumed to be a signal component and the difference component S is assumed to be a noise component, the generation of the processing coefficient sequence Ge using the sum component M and the difference component S may include a noise component (difference). A known speech enhancement technique for generating a numerical sequence (processing coefficient sequence Ge) for emphasizing a signal component (localization component) by suppressing the component S) can be similarly applied.

処理係数列Geの生成に適用され得る技術としては、ウィナーフィルタ(Wiener filter)を利用した音声強調や、MMSE-STSA法またはMAP(maximum a posteriori estimation)推定法を利用した音声強調の技術が例示され得る。MMSE-STSA法については、Y. Ephraim and D. Malah, "Speech enhancement using a minimum mean-square error short-time spectral amplitude estimator", IEEE ASSP, vol.ASSP-32, no.6, p.1109-1121, Dec. 1984に開示され、MAP推定法については、T. Lotter and P. Vary, "Speech enhancement by MAP spectral amplitude estimation using a Super-Gaussian speech model", EURASIP Journal on Applied Signal Processing, vol.2005, no,7, p.1110-1126, July 2005に開示されている。   Examples of technologies that can be applied to the generation of the processing coefficient sequence Ge include speech enhancement using a Wiener filter and speech enhancement using an MMSE-STSA method or a MAP (maximum a posteriori estimation) estimation method. Can be done. For the MMSE-STSA method, see Y. Ephraim and D. Malah, "Speech enhancement using a minimum mean-square error short-time spectral amplitude estimator", IEEE ASSP, vol.ASSP-32, no.6, p.1109- 1121, Dec. 1984, MAP estimation method is described in T. Lotter and P. Vary, "Speech enhancement by MAP spectral amplitude estimation using a Super-Gaussian speech model", EURASIP Journal on Applied Signal Processing, vol.2005 , no, 7, p.1110-1126, July 2005.

(8)変形例8
以上の各形態では、処理係数列Geを利用した演算(数式(7))で処理係数列Gsを生成したが、係数列生成部60が処理係数列Geの生成と同様の方法で和成分Mおよび差成分Sから直接的に処理係数列Gsを生成する構成も採用され得る。具体的には、処理係数列Geの生成について以上の例示した各数式における和成分Mと差成分Sとを相互に置換すれば、定位成分の抑圧用の処理係数列Gsを生成することが可能である。すなわち、以上の各態様における処理係数列Geと処理係数列Gsとは相互に置換され得る。
(8) Modification 8
In each of the above embodiments, the processing coefficient sequence Gs is generated by the calculation (Formula (7)) using the processing coefficient sequence Ge. However, the coefficient sequence generation unit 60 performs the sum component M in the same manner as the generation of the processing coefficient sequence Ge. A configuration in which the processing coefficient sequence Gs is directly generated from the difference component S can also be adopted. Specifically, when the sum component M and the difference component S in each of the above-exemplified formulas are replaced with each other to generate the processing coefficient sequence Ge, the processing coefficient sequence Gs for suppressing the localization component can be generated. It is. That is, the processing coefficient sequence Ge and the processing coefficient sequence Gs in each of the above aspects can be replaced with each other.

ただし、処理係数列Geを利用して処理係数列Gsを算定する第1実施形態の構成によれば、和成分Mや差成分Sから直接的に処理係数列Gsを算定する処理が不要である。したがって、係数列生成部60による処理の負荷が軽減されるという利点がある。なお、和成分Mおよび差成分Sから直接的に処理係数列Gsを生成し、処理係数列Gsの各係数値Gs[k]を数式(7)と同様に所定値(例えば1)から減算することで処理係数列Ge(係数値Ge[k])を生成する構成も採用され得る。   However, according to the configuration of the first embodiment in which the processing coefficient sequence Gs is calculated using the processing coefficient sequence Ge, processing for directly calculating the processing coefficient sequence Gs from the sum component M and the difference component S is not necessary. . Therefore, there is an advantage that the processing load by the coefficient sequence generator 60 is reduced. A processing coefficient sequence Gs is directly generated from the sum component M and the difference component S, and each coefficient value Gs [k] of the processing coefficient sequence Gs is subtracted from a predetermined value (for example, 1) in the same manner as the equation (7). Thus, a configuration for generating the processing coefficient sequence Ge (coefficient value Ge [k]) may be employed.

(9)変形例9
以上の各形態では、処理係数列G(Ge,Gs)を単位区間毎に生成したが、処理係数列Gの生成の周期は任意である。例えば、所定個の単位区間の集合を周期として係数列生成部60が順次に生成した処理係数列Gを、信号処理部38が当該周期内の複数の単位区間について適用する構成も採用され得る。また、以上の各形態では、各単位区間について生成された処理係数列Gをその単位区間の周波数スペクトル(LA,RA)の処理に適用したが、各単位区間の処理係数列Gをその単位区間の経過後の各単位区間の周波数スペクトル(LA,RA)の処理に適用する構成も採用され得る。
(9) Modification 9
In each of the above embodiments, the processing coefficient sequence G (Ge, Gs) is generated for each unit section, but the generation cycle of the processing coefficient sequence G is arbitrary. For example, a configuration in which the signal processing unit 38 applies the processing coefficient sequence G sequentially generated by the coefficient sequence generation unit 60 with a set of a predetermined number of unit intervals as a cycle may be adopted for a plurality of unit intervals in the cycle. In each of the above embodiments, the processing coefficient sequence G generated for each unit section is applied to the processing of the frequency spectrum (LA, RA) of the unit section. However, the processing coefficient sequence G of each unit section is used as the unit section. A configuration applied to the processing of the frequency spectrum (LA, RA) of each unit section after elapse of time can also be adopted.

(10)変形例10
以上の各形態では、処理係数列G(Ge,Gs)を音響信号SINの周波数スペクトル(LA,RA)に乗算したが、信号処理部38による処理の内容は適宜に変更される。例えば周波数成分LAk(e)および周波数成分RAk(e)から処理係数列G(Ge,Gs)を減算することで音響信号SOUT(SOUT_L,SOUT_R)を生成する構成が採用され得る。以上の構成における強調用の処理係数列Geは、第1実施形態の処理係数列Geとは逆に、定位成分のパワーが大きい周波数fkの係数値Ge[k]ほど0に近い数値に設定される。抑圧用の処理係数列Gsについても同様であり、第1実施形態の処理係数列Gsとは逆に、定位成分のパワーが大きい周波数fkの係数値Gs[k]ほど1に近い数値に設定される。
(10) Modification 10
In each of the above embodiments, the processing coefficient sequence G (Ge, Gs) is multiplied by the frequency spectrum (LA, RA) of the acoustic signal SIN, but the content of processing by the signal processing unit 38 is appropriately changed. For example, a configuration in which the acoustic signal SOUT (SOUT_L, SOUT_R) is generated by subtracting the processing coefficient sequence G (Ge, Gs) from the frequency component LAk (e ) and the frequency component RAk (e ) may be employed. In contrast to the processing coefficient sequence Ge of the first embodiment, the processing coefficient sequence Ge for emphasis in the above configuration is set to a value closer to 0 as the coefficient value Ge [k] of the frequency fk where the power of the localization component is large. The The same applies to the processing coefficient sequence Gs for suppression. Contrary to the processing coefficient sequence Gs of the first embodiment, the coefficient value Gs [k] of the frequency fk having a large localization component power is set to a value closer to 1. The

(11)変形例11
以上の各形態においては定位成分の強調用の処理係数列Geおよび抑圧用の処理係数列Gsの双方を係数列生成部60が生成したが、係数列生成部60が処理係数列Geおよび処理係数列Gsの一方のみを生成する構成も採用され得る。したがって、例えば、以上の各形態の第3生成部66は省略され得る。
(11) Modification 11
In each of the above embodiments, the coefficient sequence generation unit 60 generates both the processing coefficient sequence Ge for emphasizing the localization component and the processing coefficient sequence Gs for suppression, but the coefficient sequence generation unit 60 generates the processing coefficient sequence Ge and the processing coefficient. A configuration that generates only one of the columns Gs may also be employed. Therefore, for example, the third generation unit 66 of each of the above forms can be omitted.

(12)変形例12
以上の各形態における係数β(フロアリング係数)を、例えば入力装置16に対する利用者からの指示に応じて可変に設定する構成も好適である。係数βが小さい(0に近い)ほど定位成分の抑圧の度合が強化されるとともに定位成分の強調の度合が低下する。なお、係数βが大きい場合には、抑圧用の処理係数列Gsのうち定位成分以外の大部分の周波数fkの係数値Gs[k]が充分に小さい数値となるから、音響信号SOUT(SOUT_L,SOUT_R)の音量が不足する可能性がある。そこで、係数βを大きい数値に設定して定位成分の抑圧を実行する場合、音響信号SOUTの音量を増加させる構成が好適である。同様に、係数βが小さい場合には、強調用の処理係数列Geの大部分の周波数fkの係数値Ge[k]が充分に小さい数値となり得るから、係数βを小さい数値に設定して定位成分の強調を実行する場合、音響信号SOUTの音量を増加させる構成が好適に採用される。
(12) Modification 12
A configuration in which the coefficient β (flooring coefficient) in each of the above forms is variably set in accordance with an instruction from the user to the input device 16, for example, is also suitable. As the coefficient β is smaller (closer to 0), the degree of suppression of the localization component is strengthened and the degree of enhancement of the localization component is reduced. When the coefficient β is large, the coefficient value Gs [k] of most of the frequencies fk other than the localization component in the processing coefficient sequence Gs for suppression becomes a sufficiently small value, so that the acoustic signal SOUT (SOUT_L, SOUT_R) may be insufficient. Therefore, when the localization component is suppressed by setting the coefficient β to a large numerical value, a configuration in which the volume of the acoustic signal SOUT is increased is preferable. Similarly, when the coefficient β is small, the coefficient value Ge [k] of most of the frequencies fk in the emphasis processing coefficient string Ge can be a sufficiently small numerical value. When emphasizing the component, a configuration that increases the volume of the acoustic signal SOUT is preferably employed.

100……音響処理装置、12……信号供給装置、14……放音装置、16……入力装置、22……演算処理装置、24……記憶装置、32……変数設定部、34……周波数分析部、36……係数設定部、38……信号処理部、40……波形合成部、52……和成分生成部、54……差成分生成部、60……係数列生成部、62……第1生成部、64……第2生成部、66……第3生成部、68……合成部。
DESCRIPTION OF SYMBOLS 100 ... Sound processing device, 12 ... Signal supply device, 14 ... Sound emission device, 16 ... Input device, 22 ... Arithmetic processing device, 24 ... Memory | storage device, 32 ... Variable setting part, 34 ... Frequency analysis unit 36... Coefficient setting unit 38... Signal processing unit 40... Waveform synthesis unit 52 52 Sum component generation unit 54. Difference component generation unit 60 60 Coefficient sequence generation unit 62 ... First generation unit 64. Second generation unit 66. Third generation unit 68.

Claims (5)

周波数毎の係数値で構成されてステレオ形式の第1音響信号および第2音響信号における特定位置の定位成分を強調または抑圧する第1数値列を生成する第1生成手段と、
前記第1音響信号と前記第2音響信号との周波数毎の位相差に応じた係数値で構成される第2数値列を、前記第1音響信号の振幅と前記第2音響信号の振幅と両者の和成分の振幅とから生成する第2生成手段と、
周波数毎の係数値で構成されて前記定位成分を強調または抑圧する第1処理係数列を前記第1数値列と前記第2数値列とから生成する合成手段と、
前記第1音響信号および前記第2音響信号の各々の各周波数成分に前記第1処理係数列の各係数値を作用させる信号処理手段と
を具備する音響処理装置。
First generation means configured to generate a first numerical sequence that is composed of coefficient values for each frequency and emphasizes or suppresses a localization component at a specific position in the stereo first acoustic signal and the second acoustic signal;
A second numerical sequence composed of coefficient values corresponding to a phase difference for each frequency between the first acoustic signal and the second acoustic signal is represented by both the amplitude of the first acoustic signal and the amplitude of the second acoustic signal. Second generation means for generating from the amplitude of the sum component of
Synthesis means for generating a first processing coefficient sequence composed of coefficient values for each frequency and emphasizing or suppressing the localization component from the first numerical value sequence and the second numerical value sequence;
An acoustic processing apparatus comprising: signal processing means for causing each coefficient value of the first processing coefficient sequence to act on each frequency component of the first acoustic signal and the second acoustic signal.
前記第2生成手段は、
前記第1音響信号および前記第2音響信号の各々の振幅を加算した振幅和と前記和成分の振幅とを周波数毎に算定する振幅算定手段と、
前記振幅和と前記和成分の振幅との相違に応じて前記第2数値列の各係数値を設定する設定手段と
を含む請求項1の音響処理装置。
The second generation means includes
Amplitude calculating means for calculating, for each frequency, an amplitude sum obtained by adding the amplitudes of the first acoustic signal and the second acoustic signal and the amplitude of the sum component;
The sound processing apparatus according to claim 1, further comprising: a setting unit that sets each coefficient value of the second numerical sequence according to a difference between the amplitude sum and the amplitude of the sum component.
前記第1音響信号と前記第2音響信号との加算で和成分を生成する和成分生成手段と、
前記定位成分を抑圧した差成分を前記第1音響信号と前記第2音響信号との間の減算で生成する差成分生成手段とを具備し、
前記第1生成手段は、前記和成分および前記差成分から前記第1数値列を生成し、
前記第2生成手段は、前記和成分生成手段が生成した前記和成分の振幅を前記第2数値列の生成に適用する
請求項1または請求項2の音響処理装置。
Sum component generating means for generating a sum component by adding the first acoustic signal and the second acoustic signal;
Difference component generation means for generating a difference component in which the localization component is suppressed by subtraction between the first acoustic signal and the second acoustic signal;
The first generation means generates the first numerical sequence from the sum component and the difference component,
The sound processing apparatus according to claim 1, wherein the second generation unit applies the amplitude of the sum component generated by the sum component generation unit to generation of the second numerical value sequence.
前記第1生成手段は、前記和成分および前記差成分の一方のスペクトルから他方のスペクトルを減算した結果に応じて前記第1数値列を生成する
請求項3の音響処理装置。
The acoustic processing apparatus according to claim 3, wherein the first generation unit generates the first numerical value sequence according to a result of subtracting the other spectrum from one spectrum of the sum component and the difference component.
前記定位成分の強調および抑圧の一方に対応する前記第1処理係数列の各係数値を所定値から減算することで前記定位成分の強調および抑圧の他方に対応する第2処理係数列を生成する第3生成手段
を具備する請求項1から請求項4の何れかの音響処理装置。
A second processing coefficient sequence corresponding to the other of the localization component enhancement and suppression is generated by subtracting each coefficient value of the first processing coefficient sequence corresponding to one of the localization component enhancement and suppression from a predetermined value. The sound processing apparatus according to claim 1, further comprising third generation means.
JP2010006434A 2010-01-15 2010-01-15 Sound processor Expired - Fee Related JP5454157B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010006434A JP5454157B2 (en) 2010-01-15 2010-01-15 Sound processor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010006434A JP5454157B2 (en) 2010-01-15 2010-01-15 Sound processor

Publications (2)

Publication Number Publication Date
JP2011146948A JP2011146948A (en) 2011-07-28
JP5454157B2 true JP5454157B2 (en) 2014-03-26

Family

ID=44461407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010006434A Expired - Fee Related JP5454157B2 (en) 2010-01-15 2010-01-15 Sound processor

Country Status (1)

Country Link
JP (1) JP5454157B2 (en)

Also Published As

Publication number Publication date
JP2011146948A (en) 2011-07-28

Similar Documents

Publication Publication Date Title
JP3670562B2 (en) Stereo sound signal processing method and apparatus, and recording medium on which stereo sound signal processing program is recorded
JP6377249B2 (en) Apparatus and method for enhancing an audio signal and sound enhancement system
JP6019969B2 (en) Sound processor
JP2011145372A (en) Noise suppressing device
JP2008257049A (en) Noise suppressing device and program
JP2008517317A (en) Audio data processing system, method, program element, and computer readable medium
JP2003274492A (en) Stereo acoustic signal processing method, stereo acoustic signal processor, and stereo acoustic signal processing program
JP5034734B2 (en) Sound processing apparatus and program
JP5034735B2 (en) Sound processing apparatus and program
JP3755739B2 (en) Stereo sound signal processing method and apparatus, program, and recording medium
JP2008072600A (en) Acoustic signal processing apparatus, acoustic signal processing program, and acoustic signal processing method
JP5454157B2 (en) Sound processor
JP5463924B2 (en) Sound processor
JP5641187B2 (en) Sound processor
JP2004343590A (en) Stereophonic signal processing method, device, program, and storage medium
JP2006178333A (en) Proximity sound separation and collection method, proximity sound separation and collecting device, proximity sound separation and collection program, and recording medium
JP5316127B2 (en) Sound processing apparatus and program
JP2015169901A (en) Acoustic processing device
JP5494085B2 (en) Sound processor
JP2014102318A (en) Noise elimination device, noise elimination method, and program
JP5321171B2 (en) Sound processing apparatus and program
JP2007189530A (en) Noise canceling headphone, and noise canceling method in headphone
JP2014077916A (en) Acoustic processor
JP2012147337A (en) Localization analyzer and acoustic treatment device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131223

R150 Certificate of patent or registration of utility model

Ref document number: 5454157

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees