JP2011199534A - Driving method of ccd solid-state imaging element, and image-pickup device - Google Patents

Driving method of ccd solid-state imaging element, and image-pickup device Download PDF

Info

Publication number
JP2011199534A
JP2011199534A JP2010063363A JP2010063363A JP2011199534A JP 2011199534 A JP2011199534 A JP 2011199534A JP 2010063363 A JP2010063363 A JP 2010063363A JP 2010063363 A JP2010063363 A JP 2010063363A JP 2011199534 A JP2011199534 A JP 2011199534A
Authority
JP
Japan
Prior art keywords
potential well
electron multiplication
potential
driving
imaging device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010063363A
Other languages
Japanese (ja)
Inventor
Makoto Kobayashi
誠 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2010063363A priority Critical patent/JP2011199534A/en
Publication of JP2011199534A publication Critical patent/JP2011199534A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an imaged picture signal having high S/N by shortening an electron multiplication drive time.SOLUTION: The signal charges corresponding to the amount of received light are read in a charge transfer path. A potential well 3, which is deeper than a potential well 1 on the charge transfer path where signal charges are accumulated, is formed on the charge transfer path via a potential barrier wall 4. The signal charge in the potential well 1 is dropped into the potential well 3 by making the potential barrier wall 4 disappear. At the same time, at least one continuous electron multiplying potential well 5 whose depth is identical to that of the potential well 3, is formed on the charge transfer path via a potential barrier wall 6, before the completion of driving of electron multiplication. The depth of the potential well 3 is restored to the depth of the potential well 1, after completion of driving of the electron multiplication, and then the potential barrier wall 6 is caused to continuously disappear so that the signal charge in the potential well 3 is dropped into the continuous electron multiplying potential well 5 for electron multiplication.

Description

本発明は、電荷転送路上で電子増倍駆動を行うCCD(電荷結合素子:Charge Coupled Device)型固体撮像素子の駆動方法及び撮像装置に関する。   The present invention relates to a CCD (Charge Coupled Device) type solid-state imaging device driving method and imaging apparatus that perform electron multiplication driving on a charge transfer path.

近年のCCD型固体撮像素子は、搭載する画素数が1000万画素を超えるのが普通となり、1画素1画素が微細化され、1画素で検出できる信号電荷量が少なくなっている。   In recent CCD type solid-state imaging devices, the number of mounted pixels usually exceeds 10 million pixels, and each pixel is miniaturized, and the amount of signal charge that can be detected by one pixel is reduced.

信号電荷量が少なければ、撮像素子後段のアンプで信号増幅すれば良いが、アンプによる増幅ではノイズ成分も一緒に増幅されてしまうため、S/Nを高めることができない。そこで、下記の特許文献1,2に記載されている様に、信号電荷を電荷転送路上で電子増倍させ、信号電荷量だけ増幅することが行われる。   If the amount of signal charge is small, the signal may be amplified by an amplifier at the latter stage of the image sensor. However, the amplification by the amplifier also amplifies the noise component, so the S / N cannot be increased. Therefore, as described in Patent Documents 1 and 2 below, signal charges are multiplied by electrons on the charge transfer path, and amplified by the amount of signal charges.

図10は、従来の電子増倍駆動の説明図である。図10(a)に示すような垂直転送パルスを垂直電荷転送路の転送電極に印加することで、図10(b)に示す様な電位井戸が形成される。   FIG. 10 is an explanatory diagram of conventional electron multiplication driving. By applying a vertical transfer pulse as shown in FIG. 10A to the transfer electrode of the vertical charge transfer path, a potential well as shown in FIG. 10B is formed.

図10において、時刻t0では、電極V2,V3下の電位井戸1内に増幅対象の信号電荷2が蓄積されている。時刻t1で2電極先の電極V5に高電圧を印加すると、電極V5下に深い電位井戸3が形成される。そこで、時刻t4で電極V4下の電位障壁4を消失させると、電位井戸1内の信号電荷2が深い電位井戸3内に落ち込み、電子増倍現象が起きる。   In FIG. 10, the signal charge 2 to be amplified is accumulated in the potential well 1 below the electrodes V2 and V3 at time t0. When a high voltage is applied to the electrode V5 that is two electrodes ahead at time t1, a deep potential well 3 is formed under the electrode V5. Therefore, when the potential barrier 4 under the electrode V4 disappears at time t4, the signal charge 2 in the potential well 1 falls into the deep potential well 3, and an electron multiplication phenomenon occurs.

1回の電子増倍駆動で増幅する電子増倍率は、例えば“1.01”程度と小さいため、50回,100回と電子増倍駆動を繰り返すことになる。1回の電子像倍率が1.01倍であっても、100回繰り返すと、2.7倍になる。図10(b)は、電子増倍駆動を連続して2回行う例を示しており、この動作を50回繰り返すことになる。   Since the electron multiplication factor amplified by one electron multiplication drive is as small as, for example, “1.01”, the electron multiplication drive is repeated 50 times and 100 times. Even if the electronic image magnification of one time is 1.01, it is 2.7 times if it is repeated 100 times. FIG. 10B shows an example in which the electron multiplication drive is continuously performed twice, and this operation is repeated 50 times.

電荷転送路上で電子増倍駆動を行うには、それだけ長い時間に渡って信号電荷を電荷転送路上に置いておく必要が生じる。しかし、電位井戸内に蓄積された信号電荷を電荷転送路上に長く存在させると、それだけ暗電流(ノイズ成分)が多くなってS/Nが劣化するため、電子増倍駆動を行う時間をなるべく短くしたいという要請がある。   In order to perform the electron multiplication drive on the charge transfer path, it is necessary to leave the signal charge on the charge transfer path for such a long time. However, if the signal charge accumulated in the potential well is kept on the charge transfer path for a long time, the dark current (noise component) increases and the S / N deteriorates. Therefore, the time for performing the electron multiplication drive is made as short as possible. There is a request to do.

図10(b)に示す深い電位井戸3は、電極V5に高電圧を印加した瞬間に形成される訳ではなく、図11に示す様に、高電圧を時刻t1に電極V5に印加しても、時刻t2,t3と或る程度の時間が経過しないと深い電位井戸3は形成されない。これが、図10(a)の最下段に記載した「増倍前待機期間」となり、深い電位井戸形成のために必要な時間となり、電子増倍駆動時間の短時間化の障害となっている。   The deep potential well 3 shown in FIG. 10B is not formed at the moment when a high voltage is applied to the electrode V5. As shown in FIG. 11, even if a high voltage is applied to the electrode V5 at time t1, the deep potential well 3 shown in FIG. The deep potential well 3 is not formed unless a certain amount of time elapses from time t2 to t3. This is the “waiting period before multiplication” described at the bottom of FIG. 10A, which is a time required for forming a deep potential well, and is an obstacle to shortening the electron multiplication driving time.

特開平7―176721号公報Japanese Patent Laid-Open No. 7-176721 特開2007―325181号公報JP 2007-325181 A

本発明の目的は、電子増倍駆動時間の短時間化を図り高S/Nの撮像画像信号を得ることができるCCD型固体撮像素子の駆動方法及び撮像装置を提供することにある。   An object of the present invention is to provide a driving method and an imaging apparatus for a CCD solid-state imaging device capable of shortening the electron multiplication driving time and obtaining a high S / N captured image signal.

本発明のCCD型固体撮像素子の駆動方法は、受光量に応じた信号電荷を電荷転送路に読み出し、該信号電荷を蓄積した前記電荷転送路上の第1の電位井戸より深い第2の電位井戸を電位障壁を介して前記電荷転送路上に形成し、前記第1の電位井戸内の前記信号電荷を前記電位障壁を消失させて前記第2の電位井戸内に落とし込んで電子増倍を行うと共に該電子増倍の駆動終了前に前記第2の電位井戸と同じ深さの少なくとも1つの連続電子増倍用電位井戸を電位障壁を介して前記電荷転送路上に形成し、前記電子増倍の駆動終了後に前記第2の電位井戸の深さを前記第1の電位井戸の深さに戻してから連続して前記第2の電位井戸と前記連続電子増倍用電位井戸との間の前記電位障壁を消失させ該第2の電位井戸内の前記信号電荷を前記連続電子増倍用電位井戸内に落とし込んで電子増倍を行うことを特徴とする。   According to the driving method of the CCD solid-state imaging device of the present invention, the signal charge corresponding to the amount of received light is read out to the charge transfer path, and the second potential well deeper than the first potential well on the charge transfer path where the signal charge is accumulated. Is formed on the charge transfer path through a potential barrier, the signal charge in the first potential well is dropped into the second potential well by eliminating the potential barrier, and electron multiplication is performed. Before the completion of the electron multiplication driving, at least one continuous electron multiplication potential well having the same depth as the second potential well is formed on the charge transfer path through the potential barrier, and the electron multiplication driving is finished. After the depth of the second potential well is returned to the depth of the first potential well later, the potential barrier between the second potential well and the potential well for continuous electron multiplication is continuously formed. The signal charge in the second potential well is eliminated and the signal charge is And performing electron multiplication plunge to continue photomultiplier for potential in the well.

本発明の撮像装置は、CCD型固体撮像素子と、該CCD型固体撮像素子に上記記載の駆動方法でパルス電圧を印加し前記電位井戸の形成と前記電位障壁の消失を行う制御手段とを備えることを特徴とする。   An image pickup apparatus according to the present invention includes a CCD solid-state image pickup device, and a control unit that applies a pulse voltage to the CCD solid-state image pickup device by the driving method described above to form the potential well and eliminate the potential barrier. It is characterized by that.

本発明によれば、電子増倍駆動時間の短時間化を図ることができるため、高S/Nの撮像画像信号を得ることが可能となる。   According to the present invention, since the electron multiplication drive time can be shortened, a high S / N captured image signal can be obtained.

本発明の第1実施形態に係るデジタルカメラ(撮像装置)の機能ブロック図である。1 is a functional block diagram of a digital camera (imaging device) according to a first embodiment of the present invention. 図1に示すCCD型の固体撮像素子の表面模式図である。It is a surface schematic diagram of the CCD type solid-state imaging device shown in FIG. 本発明の第1実施形態に係る電子増倍駆動方法の説明図である。It is explanatory drawing of the electron multiplication drive method which concerns on 1st Embodiment of this invention. 図3に示す原理説明図である。It is a principle explanatory view shown in FIG. 本発明の第2実施形態に係る電子増倍駆動方法の説明図である。It is explanatory drawing of the electron multiplication drive method which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る電子増倍駆動方法の説明図である。It is explanatory drawing of the electron multiplication drive method which concerns on 3rd Embodiment of this invention. 本発明の第4実施形態に係る電子増倍駆動方法の説明図である。It is explanatory drawing of the electron multiplication drive method which concerns on 4th Embodiment of this invention. 本発明の第5実施形態に係る電子増倍駆動方法の説明図である。It is explanatory drawing of the electron multiplication drive method which concerns on 5th Embodiment of this invention. 本発明の第6実施形態に係る電子増倍駆動方法の説明図である。It is explanatory drawing of the electron multiplication drive method which concerns on 6th Embodiment of this invention. 従来の電子増倍駆動方法の説明図である。It is explanatory drawing of the conventional electron multiplication drive method. 図10の電子増倍用の電位井戸の形成過程の説明図である。FIG. 11 is an explanatory diagram of a process of forming a potential well for electron multiplication in FIG. 10.

以下、本発明の一実施形態について、図面を参照して説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

図1は、本発明の第1の実施形態に係る撮像装置(デジタルカメラ)の機能ブロック図である。この撮像装置20は、被写体光像を電気信号の撮像画像データに変換するCCD型の固体撮像素子21と、固体撮像素子21から出力されるアナログの画像データを自動利得調整(AGC)や相関二重サンプリング処理等のアナログ処理するアナログ信号処理部22と、アナログ信号処理部22から出力されるアナログ画像データをデジタル画像データに変換するアナログデジタル変換部(A/D)23と、後述のシステム制御部(CPU)29からの指示によってA/D23,アナログ信号処理部22,固体撮像素子21の駆動制御を行う駆動制御部(タイミングジェネレータを含む)24と、CPU29からの指示によって発光するフラッシュ25とを備える。   FIG. 1 is a functional block diagram of an imaging apparatus (digital camera) according to the first embodiment of the present invention. The imaging device 20 includes a CCD solid-state imaging device 21 that converts a subject light image into captured image data of an electrical signal, and analog image data output from the solid-state imaging device 21 for automatic gain adjustment (AGC) or correlation. An analog signal processing unit 22 that performs analog processing such as multiple sampling processing, an analog / digital conversion unit (A / D) 23 that converts analog image data output from the analog signal processing unit 22 into digital image data, and system control described later A drive control unit (including a timing generator) 24 that controls the drive of the A / D 23, the analog signal processing unit 22, and the solid-state imaging device 21 according to an instruction from the unit (CPU) 29; Is provided.

本実施形態のデジタルカメラは更に、A/D23から出力されるデジタル画像データを取り込み補間処理やホワイトバランス補正,RGB/YC変換処理等を行うデジタル信号処理部26と、画像データをJPEG形式などの画像データに圧縮したり逆に伸長したりする圧縮/伸長処理部27と、メニューなどを表示したりスルー画像や撮像画像を表示する表示部28と、デジタルカメラ全体を統括制御するシステム制御部(CPU)29と、フレームメモリ等の内部メモリ30と、JPEG画像データ等を格納する記録メディア32との間のインタフェース処理を行うメディアインタフェース(I/F)部31と、これらを相互に接続するバス40とを備え、また、システム制御部29には、ユーザからの指示入力を行う操作部33が接続されている。   The digital camera according to the present embodiment further includes a digital signal processing unit 26 that takes in digital image data output from the A / D 23 and performs interpolation processing, white balance correction, RGB / YC conversion processing, and the like. A compression / expansion processing unit 27 that compresses or reversely compresses image data, a display unit 28 that displays menus, displays through images and captured images, and a system control unit that controls the entire digital camera ( CPU) 29, an internal memory 30 such as a frame memory, and a media interface (I / F) unit 31 that performs interface processing between a recording medium 32 that stores JPEG image data and the like, and a bus that interconnects them 40, and an operation unit 33 for inputting an instruction from the user is connected to the system control unit 29. It has been.

図2は、図1に示すCCD型の固体撮像素子21の表面模式図である。半導体基板(のpウェル層)に形成される固体撮像素子21は、複数のフォトダイオード(画素)22が二次元アレイ状に配列形成される。本実施形態では、奇数行の画素行が偶数行の画素行に対して1/2画素ピッチづつずらして形成される所謂ハニカム画素配列となっている。そして、各画素列に沿って各画素を避けるように垂直電荷転送路(VCCD)23が蛇行して形成されている。   FIG. 2 is a schematic view of the surface of the CCD type solid-state imaging device 21 shown in FIG. A solid-state imaging device 21 formed on a semiconductor substrate (a p-well layer thereof) has a plurality of photodiodes (pixels) 22 arranged in a two-dimensional array. In the present embodiment, a so-called honeycomb pixel array is formed in which the odd-numbered pixel rows are formed with a shift of 1/2 pixel pitch with respect to the even-numbered pixel rows. A vertical charge transfer path (VCCD) 23 is formed in a meandering manner so as to avoid each pixel along each pixel column.

垂直電荷転送路23は、各画素列に沿って半導体基板に形成された埋め込みチャネルと、その上に図示しないゲート酸化膜を介して形成された転送電極膜23aとによって形成される。各垂直電荷転送路23の同一垂直段位置の転送電極膜23aは同一転送パルス電圧Vi(i=1〜16)が印加される様に水平方向に電気的に接続されている。図示する例では、16段毎に同じ転送パルスが印加される構成となっており、この実施形態の固体撮像素子21は16相駆動される。
各垂直電荷転送路23の転送方向端部に沿って水平電荷転送路(HCCD)24が形成され、各垂直電荷転送路23に沿って転送されてきた信号電荷は水平電荷転送路24に転送される。水平電荷転送路24の転送方向端部には、水平方向に転送されてきた信号電荷の電荷量に応じた電圧値信号を撮像画像信号として出力するンプ25が形成されている。
The vertical charge transfer path 23 is formed by a buried channel formed in the semiconductor substrate along each pixel column and a transfer electrode film 23a formed thereon via a gate oxide film (not shown). The transfer electrode films 23a at the same vertical stage position of each vertical charge transfer path 23 are electrically connected in the horizontal direction so that the same transfer pulse voltage Vi (i = 1 to 16) is applied. In the illustrated example, the same transfer pulse is applied every 16 stages, and the solid-state imaging device 21 of this embodiment is driven in 16 phases.
A horizontal charge transfer path (HCCD) 24 is formed along the transfer direction end of each vertical charge transfer path 23, and the signal charge transferred along each vertical charge transfer path 23 is transferred to the horizontal charge transfer path 24. The At the end of the horizontal charge transfer path 24 in the transfer direction, there is formed an amplifier 25 that outputs a voltage value signal corresponding to the charge amount of the signal charge transferred in the horizontal direction as a captured image signal.

本実施形態の固体撮像素子21では、各画素が受光量に応じて蓄積した信号電荷をマルチフィールド読み出しするが、その最中に、垂直電荷転送路に読み出された信号電荷を電子増倍駆動する。この駆動は、図1のCPU29が、駆動制御部24を介して、垂直電荷転送路に所要の電子増倍駆動パルスを印加することで行う。   In the solid-state imaging device 21 of the present embodiment, the signal charge accumulated in each pixel according to the amount of received light is read out in a multi-field manner. During this time, the signal charge read out to the vertical charge transfer path is driven by electron multiplication. To do. This drive is performed by the CPU 29 in FIG. 1 applying a required electron multiplication drive pulse to the vertical charge transfer path via the drive control unit 24.

なお、図2の各画素22の上に記載されているR,G,Bはカラーフィルタの色(R=赤、G=緑、B=青)を表しており、各画素から右下方向に延びる矢印はそれぞれ信号電荷を読み出す方向(読出電極の方向)を示している。   Note that R, G, and B described above each pixel 22 in FIG. 2 indicate the color of the color filter (R = red, G = green, B = blue). Each extending arrow indicates a direction in which the signal charge is read (direction of the reading electrode).

また、上述した実施形態では、所謂ハニカム画素配列を持つ固体撮像素子21を説明したが、勿論、各画素が正方格子配列された固体撮像素子にも本発明を適用可能である。更に、「垂直」「水平」という用語を用いて説明したが、これは、半導体基板表面に沿う「1方向」「この1方向に対して略直角の方向」という意味に過ぎない。   In the above-described embodiment, the solid-state image sensor 21 having a so-called honeycomb pixel array has been described. Of course, the present invention can also be applied to a solid-state image sensor in which each pixel is arranged in a square lattice. Further, although the terms “vertical” and “horizontal” have been described, this means only “one direction” along the surface of the semiconductor substrate and “a direction substantially perpendicular to the one direction”.

図3は、本実施形態に係る電子増倍駆動を説明する図であり、図3(a)は垂直転送電極23aに印加される垂直転送パルス(この例では垂直方向への転送とは別に電子増倍を行うため、電子増倍パルスという。)を示し、図3(b)は電子増倍駆動パルスにより形成される電位井戸の変化と蓄積電荷の移動の様子を示した図である。   FIG. 3 is a diagram for explaining electron multiplication driving according to the present embodiment. FIG. 3A shows a vertical transfer pulse applied to the vertical transfer electrode 23a (in this example, an electron separate from the transfer in the vertical direction). FIG. 3B is a diagram showing the change of the potential well formed by the electron multiplication drive pulse and the movement of the accumulated charge.

本実施形態では、電極V2,V3下の電位井戸1内に信号電荷が蓄積されている状態で、2電極先の電極V5と4電極先の電極V7に時刻t1に高電圧を印加して2つの深い電位井戸3,5を形成する。そして、時刻t4で電極V4下の電位障壁4を消失させて電位井戸1内の信号電荷を電位井戸3内に落として電子増倍を行い、時刻t8で信号電荷を入れた電位井戸3を浅い電位井戸に戻す。   In this embodiment, in a state where signal charges are accumulated in the potential well 1 below the electrodes V2 and V3, a high voltage is applied to the electrode V5 that is two electrodes ahead and the electrode V7 that is four electrodes ahead at time t1. Two deep potential wells 3 and 5 are formed. Then, at time t4, the potential barrier 4 below the electrode V4 disappears, the signal charge in the potential well 1 is dropped into the potential well 3, and electron multiplication is performed. At time t8, the potential well 3 into which the signal charge is put is shallow. Return to potential well.

次の時刻t9で電位井戸3と電位井戸5との間の電極V6下の電位障壁6を消失させると、電位井戸3内の信号電荷が電位井戸(連続電子増倍用電位井戸)5内に落ち込み、2回目の電子増倍が行われる。   When the potential barrier 6 below the electrode V6 between the potential well 3 and the potential well 5 disappears at the next time t9, the signal charge in the potential well 3 is transferred into the potential well (continuous electron multiplication potential well) 5. The second electron multiplication is performed.

電極V5に高電圧を印加して深い電位井戸3を形成し、この電位井戸3内に電位井戸1内の信号電荷を落とし込んで電子増倍するまでの図3の実施形態の増倍前待機期間は、図10で説明した従来技術と同じである。しかし、本実施形態では、電位井戸3と同時に電位井戸5も形成してしまうため、電位井戸5内に信号電荷を落として2回目の電子増倍を行うまでの待機期間が省略でき、全体として短時間に電子増倍駆動を行うことが可能となる。   A waiting period before multiplication in the embodiment of FIG. 3 until a deep voltage well 3 is formed by applying a high voltage to the electrode V5, and the signal charge in the potential well 1 is dropped into the potential well 3 to perform electron multiplication. Is the same as the prior art described in FIG. However, in this embodiment, since the potential well 5 is formed simultaneously with the potential well 3, the waiting period until the signal charge is dropped in the potential well 5 and the second electron multiplication is performed can be omitted. Electron multiplication drive can be performed in a short time.

図10で説明した従来の電子増倍駆動と、図3の実施形態の電子増倍駆動について更に詳述する。   The conventional electron multiplication drive described in FIG. 10 and the electron multiplication drive of the embodiment of FIG. 3 will be described in further detail.

電子増倍駆動は、図10(a)の最下段に記載している通り、増倍前待機期間と増倍期間の2つの期間からなる。時刻t1において電極に高電圧を印加することにより、基板側のGNDにあたるpウェル層の電位が過渡的に上昇する。そして時間の経過により、元の電位に収束する。   The electron multiplication drive is composed of two periods, a standby period before multiplication and a multiplication period, as described at the bottom of FIG. By applying a high voltage to the electrode at time t1, the potential of the p-well layer corresponding to GND on the substrate side rises transiently. Then, with time, it converges to the original potential.

垂直電荷転送路の電位はpウェル層電位を基準として決まるため、このpウェル層電位の変動に伴い、垂直電荷転送路の電位も変動してしまう。そのため、pウェル層電位が変動している期間中に電子増倍を行ってしまうと、所望の増倍率を得られない不具合が発生する。これは、図11を用いて説明した通りである。   Since the potential of the vertical charge transfer path is determined on the basis of the p well layer potential, the potential of the vertical charge transfer path also varies with the variation of the p well layer potential. For this reason, if electron multiplication is performed during the period in which the p-well layer potential is fluctuating, there arises a problem that a desired multiplication factor cannot be obtained. This is as described with reference to FIG.

これを防ぐために増倍前待機期間を設け、電位井戸が所要深さになるまで待機する。図10は、2回の増倍動作を行う例であり、2回の高電圧印加(時刻t1,時刻t9)を行っている。そのためpウェル層電位の変動は2回発生し、それぞれの変動を抑えるための待機期間を合計2回設けている。しかしこの待機期間を設ける副作用として、電子増倍動作が完了するまでに必要な時間が伸び、垂直電荷転送路で発生する暗電流が増加し、信号のS/Nが劣化してしまう。   In order to prevent this, a standby period before multiplication is provided, and the system waits until the potential well reaches the required depth. FIG. 10 is an example in which the multiplication operation is performed twice, and two high voltage applications (time t1, time t9) are performed. Therefore, the fluctuation of the p-well layer potential occurs twice, and the standby period for suppressing each fluctuation is provided twice in total. However, as a side effect of providing this standby period, the time required to complete the electron multiplication operation is extended, the dark current generated in the vertical charge transfer path is increased, and the signal S / N is deteriorated.

これに対し、本実施形態(図3)では、電子増倍を行う2つの電極への高電圧の印加を、時刻tlにおいて同時に開始する。これによりpウェル層電位の変動を1回のみとすることができ、待機期間は1回のみとなり、電子増倍動作が完了するまでの時間(前述したように、全体で50回とか100回の電子増倍回数が必要となる)を短くすることができる。   In contrast, in the present embodiment (FIG. 3), application of a high voltage to the two electrodes that perform electron multiplication is started simultaneously at time tl. As a result, the potential of the p-well layer potential can be changed only once, the standby period is only once, and the time until the electron multiplication operation is completed (as described above, the total time is 50 times or 100 times. The number of times of electron multiplication is required) can be shortened.

この結果、垂直電荷転送路で発生する暗電流を従来例よりも減少させることができ、出力信号のS/Nを改善することが可能となる。   As a result, the dark current generated in the vertical charge transfer path can be reduced as compared with the conventional example, and the S / N of the output signal can be improved.

pウェル層電位の変動が収まるのに要する時間について検討する。pウェル層電位の変動が収まる様子を検討する簡易モデルとして、図4のようなRC回路を考える。   Consider the time required for the fluctuation of the p-well layer potential to settle. An RC circuit as shown in FIG. 4 is considered as a simple model for examining how the fluctuation of the p-well layer potential is reduced.

「C」はpウェル層のキャパシタンス、「R」はpウェル層の抵抗を表す。pウェル層は基板(OFD端子:オーバーフロードレイン端子)と容量結合している。深い電位井戸を形成するために高電圧パルスが印加されることで、pウェル層には電荷Qがチャージされる。これにより、点Aに電圧V0が発生する。   “C” represents the capacitance of the p-well layer, and “R” represents the resistance of the p-well layer. The p-well layer is capacitively coupled to the substrate (OFD terminal: overflow drain terminal). When a high voltage pulse is applied to form a deep potential well, the charge Q is charged in the p-well layer. As a result, a voltage V0 is generated at the point A.

点Aの電圧の時間依存は、
V_A=V0*exp(-R*C*t)
で表される。増倍率に影響を与えないためには、点Aの電位がVs以下(ここでVs<V0)になる必要があると仮定する。この状態に到達するまでに要する時間=収束時間Tは、
T=1/(R*C)*ln(V0/Vs)
で表される。
The time dependence of the voltage at point A is
V_A = V0 * exp (-R * C * t)
It is represented by In order not to affect the multiplication factor, it is assumed that the potential at the point A needs to be equal to or lower than Vs (here, Vs <V0). Time required to reach this state = convergence time T is
T = 1 / (R * C) * ln (V0 / Vs)
It is represented by

一方、本実施形態の様に、複数の電極に高電圧パルスを印加した場合は、電荷Q’(Q’>Q)がチャージされ、点Aには電圧V0’(V0’>V0)が発生する。この場合の点Aの電圧の時間依存は、
V_A’=V0’*exp(-R*C*t)
で表される。先の計算と同様に収束時間T’を計算すると、
T’=1/(R*C)*ln(V0’/Vs)
となるため、
T’/T=ln(V0’/Vs)/ln(V0/Vs)
となる。
On the other hand, when a high voltage pulse is applied to a plurality of electrodes as in this embodiment, a charge Q ′ (Q ′> Q) is charged, and a voltage V0 ′ (V0 ′> V0) is generated at point A. To do. The time dependence of the voltage at point A in this case is
V_A '= V0' * exp (-R * C * t)
It is represented by When the convergence time T ′ is calculated in the same manner as the previous calculation,
T ′ = 1 / (R * C) * ln (V0 ′ / Vs)
So that
T '/ T = ln (V0' / Vs) / ln (V0 / Vs)
It becomes.

例えば、V0’=2*V0の場合(2電極に高電圧パルスを印加した場合,Q’=2Q)を考えると、
T’/T=1+ln(2)/ln(V0/Vs)
となる。これが2より小さくなる範囲を求めると、
Vs<V0/2
となる。
For example, considering the case of V0 ′ = 2 * V0 (when a high voltage pulse is applied to two electrodes, Q ′ = 2Q),
T '/ T = 1 + ln (2) / ln (V0 / Vs)
It becomes. When a range where this is smaller than 2 is obtained,
Vs <V0 / 2
It becomes.

言い換えると、増倍率に影響を与えない電圧Vsは、1電極に高電圧パルスを印加した場合の初期pウェル層電位の半分以下である。例えば、増倍パルス印加回数を増やしたり、増倍パルス電圧を上げたりする方法により、増倍率を高めようとする場合、増倍率に影響を与えない電圧Vsは、より低いものが求められる。そのため、本実施形態の様な増倍駆動方法は、効果的である。   In other words, the voltage Vs that does not affect the multiplication factor is not more than half of the initial p-well layer potential when a high voltage pulse is applied to one electrode. For example, when increasing the multiplication factor by increasing the number of multiplication pulse applications or increasing the multiplication pulse voltage, a lower voltage Vs that does not affect the multiplication factor is required. Therefore, the multiplication driving method as in the present embodiment is effective.

この様に、本実施形態によれば、pウェル層電位を変動させる回数を減らすことで、電子増倍動作が完了するまでの時間を短縮することができ、垂直電荷転送路で発生する暗電流を従来よりも減少させることができ、出力信号のS/Nを向上させることが可能となる。   As described above, according to the present embodiment, by reducing the number of times the p-well layer potential is changed, the time until the electron multiplication operation is completed can be shortened, and the dark current generated in the vertical charge transfer path is reduced. Can be reduced as compared with the prior art, and the S / N of the output signal can be improved.

図5は、本発明の第2の実施形態の説明図であり、図5(a)は電子増倍パルスのタイミングチャート、図5(b)は電位井戸形成及び電子増倍の様子を示す図である。   FIG. 5 is an explanatory diagram of a second embodiment of the present invention, FIG. 5 (a) is a timing chart of an electron multiplication pulse, and FIG. 5 (b) is a diagram showing the state of potential well formation and electron multiplication. It is.

図3の実施形態との違いは電子増倍の回数であり、本実施形態では、時刻t1で電極V5,V7,V9に高電圧を印加して深い電位井戸3,5,7を形成し、電子増倍を3回連続して行っている。本実施形態では、電位井戸5と電位井戸7とが連続電子増倍用電位井戸となる。このため、図3の実施形態よりも高い増倍率とS/Nを得ることができる。   The difference from the embodiment of FIG. 3 is the number of times of electron multiplication. In this embodiment, a high voltage is applied to the electrodes V5, V7, and V9 at time t1 to form deep potential wells 3, 5, and 7, Electron multiplication is performed three times in succession. In the present embodiment, the potential well 5 and the potential well 7 serve as a potential well for continuous electron multiplication. For this reason, a multiplication factor and S / N higher than the embodiment of FIG. 3 can be obtained.

ただし増倍率が高いために、垂直電荷転送路の取り扱い可能最大電荷量を超えないように、初期の入力電荷量を図3の実施形態よりも少なく設定する必要がある。   However, since the multiplication factor is high, it is necessary to set the initial input charge amount smaller than that in the embodiment of FIG. 3 so as not to exceed the maximum charge amount that can be handled in the vertical charge transfer path.

そのため、カメラ(撮像装置20)のISO感度設定に応じて増倍回数を切り替えることで、S/Nとダイナミックレンジを最適化することができる。例えば、図3の実施形態を比較的に低ISO感度に設定された場合における電子増倍駆動とし、図5の実施形態を、比較的に高ISO感度に設定された場合における電子増倍駆動とするのが良い。   Therefore, the S / N and dynamic range can be optimized by switching the number of times of multiplication according to the ISO sensitivity setting of the camera (imaging device 20). For example, the embodiment of FIG. 3 is an electron multiplying drive when the relatively low ISO sensitivity is set, and the embodiment of FIG. 5 is an electron multiplying drive when the relatively high ISO sensitivity is set. Good to do.

この様に、カメラのISO感度設定に応じて、連続して行う増倍回数を切り替えることで、S/Nとダイナミックレンジを最適化することができる。なお、図5の実施形態では、連続する3つの深い電位井戸を用いて電子増倍を3回連続して行ったが、電荷転送上に空きがあれば、4回連続しても5回連続しても良い。   In this way, the S / N and dynamic range can be optimized by switching the number of times of multiplication performed continuously in accordance with the ISO sensitivity setting of the camera. In the embodiment of FIG. 5, electron multiplication is performed three times using three consecutive deep potential wells. However, if there is a vacancy on the charge transfer, it is continuous even five times. You may do it.

図6は、本発明の第3の実施形態の説明図であり、図6(a)は電子増倍パルスのタイミングチャート、図6(b)は電位井戸形成及び電子増倍の様子を示す図である。   6A and 6B are explanatory diagrams of a third embodiment of the present invention, in which FIG. 6A is a timing chart of an electron multiplication pulse, and FIG. 6B is a diagram showing states of potential well formation and electron multiplication. It is.

図3の実施形態との違いは、時刻t1に高電圧(例えば+15V)を電極V5,V7に印加して深い電位井戸3,5を形成すると同時に、電極V9に高電圧と逆極性の電圧(例えば−8V)を印加する点にある。   A difference from the embodiment of FIG. 3 is that a high voltage (for example, +15 V) is applied to the electrodes V5 and V7 at time t1 to form deep potential wells 3 and 5, and at the same time, a voltage ( For example, -8V) is applied.

これにより、プラス側へ変極する増倍パルスがpウェル層に与える影響を、一部でもキャンセルすることができる。そのため、pウェル層電位の変動をより短い時間で抑えることができ、これにより電子増倍駆動全体に必要な時間を短くすることができ、S/Nをより改善することができる。   As a result, it is possible to cancel even a part of the influence of the multiplication pulse changing to the positive side on the p-well layer. Therefore, the fluctuation of the p-well layer potential can be suppressed in a shorter time, thereby shortening the time required for the entire electron multiplication drive and further improving the S / N.

図7は、本発明の第4の実施形態の説明図であり、図7(a)は電子増倍パルスのタイミングチャート、図7(b)は電位井戸形成及び電子増倍の様子を示す図である。   7A and 7B are explanatory diagrams of a fourth embodiment of the present invention, FIG. 7A is a timing chart of an electron multiplication pulse, and FIG. 7B is a diagram showing states of potential well formation and electron multiplication. It is.

本実施形態では、図3の実施形態と異なり、8相駆動の固体撮像素子における電子増倍駆動の一例を挙げている。この実施形態の狙いは、垂直電荷転送路の繰り返し周期以上の範囲において電子増倍を(時間的な観点から)効率的に行うことにある。   In the present embodiment, unlike the embodiment of FIG. 3, an example of electron multiplication drive in an 8-phase drive solid-state imaging device is given. The aim of this embodiment is to efficiently perform electron multiplication (in terms of time) within a range equal to or longer than the repetition period of the vertical charge transfer path.

本実施形態では、時刻t12において、2回目の電子増倍パルスの立ち下げを電極V7に印加すると同時に、後続の電極V1,V3に印加する電子増倍パルスを立ち上げている。これにより、電子増倍パルスの立ち上がりがpウェル層に与える影響を一部キャンセルすることができ、pウェル層電位の変動をより短い時間で抑えることができ、これにより電子増倍駆動全体に必要な時間を短くすることが可能となる。   In the present embodiment, at time t12, the second electron multiplication pulse falling is applied to the electrode V7, and at the same time, the electron multiplication pulse applied to the subsequent electrodes V1 and V3 is raised. As a result, the influence of the rise of the electron multiplication pulse on the p-well layer can be partially canceled, and the fluctuation of the p-well layer potential can be suppressed in a shorter time, which is necessary for the entire electron multiplication drive. It is possible to shorten the time required.

しかも、時刻t9で電子増倍した信号電荷を、増倍前待機時間無しに次の深い電位井戸9内に落とし込んで電子増倍することが可能となり、垂直電荷転送路の繰り返し周期(この例では8相駆動であるため、8枚の転送電極毎の周期)以上の範囲で電子増倍を効率的に行うことが可能となる。   Moreover, the signal charge that has been multiplied by the electron at time t9 can be dropped into the next deep potential well 9 without any waiting time before multiplication, and the electron multiplication can be performed. In this example, the repetition period of the vertical charge transfer path (in this example, Since 8-phase driving is used, it is possible to efficiently perform electron multiplication within a range of at least the cycle of each of the eight transfer electrodes.

本実施形態によれば、垂直電荷転送路の繰り返し周期以上の範囲においても、pウェル層電位の変動をより短い時間で効率的に抑えながら電子増倍の回数を増やすことができ、S/Nをより改善することが可能となる。   According to this embodiment, the number of times of electron multiplication can be increased while efficiently suppressing fluctuations in the potential of the p-well layer in a shorter time even in a range longer than the repetition period of the vertical charge transfer path. Can be further improved.

図8は、本発明の第5の実施形態の説明図であり、図8(a)は電子増倍パルスのタイミングチャート、図8(b)は電位井戸形成及び電子増倍の様子を示す図である。   FIG. 8 is an explanatory diagram of a fifth embodiment of the present invention, FIG. 8 (a) is a timing chart of electron multiplication pulses, and FIG. 8 (b) is a diagram showing states of potential well formation and electron multiplication. It is.

本実施形態の特徴は、時刻t11にある。本実施形態では、電極V7に印加する2回目の電子増倍パルスの立ち下げと同時に、後続の電極V9,V11の電子増倍パルスを立ち上げており、更に電極V4の電子増倍パルスも立ち下げている。   The feature of this embodiment is at time t11. In this embodiment, simultaneously with the fall of the second electron multiplication pulse applied to the electrode V7, the electron multiplication pulse of the subsequent electrodes V9 and V11 is raised, and the electron multiplication pulse of the electrode V4 is also raised. It is lowered.

本実施形態では、図6の実施形態と同様に、電子増倍パルスの立ち上がりがpウェル層に与える影響をキャンセルすることができる。そのためpウェル層電位の変動をより短い時間で抑えることができ、これにより、電子増倍駆動全体に必要な時間を短くすることができ、S/Nをより改善することができる。   In the present embodiment, as in the embodiment of FIG. 6, the influence of the rising of the electron multiplication pulse on the p-well layer can be canceled. Therefore, the fluctuation of the p-well layer potential can be suppressed in a shorter time, thereby shortening the time required for the entire electron multiplication drive and further improving the S / N.

図9は、本発明の第6の実施形態の説明図であり、図9(a)は電子増倍パルスのタイミングチャート、図9(b)は電位井戸形成及び電子増倍の様子を示す図である。   FIG. 9 is an explanatory diagram of a sixth embodiment of the present invention. FIG. 9A is a timing chart of an electron multiplication pulse, and FIG. 9B is a diagram showing states of potential well formation and electron multiplication. It is.

本実施形態は、図7の実施形態と同様に、8相駆動の実施形態である。この実施形態の狙いも、垂直電荷転送路の繰り返し周期以上の範囲において電子増倍を(時間的な観点から)効率的に行うことにある。   This embodiment is an eight-phase drive embodiment, similar to the embodiment of FIG. The aim of this embodiment is also to efficiently perform electron multiplication (in terms of time) within a range equal to or longer than the repetition period of the vertical charge transfer path.

今までの実施形態では、電子増倍用の連続する深い電位井戸を少なくとも2つ同時に形成したが、本実施形態では、少なくとも2つの電子増倍用の連続する深い電位井戸を、時間差を持って形成している点が異なる。   In the embodiments so far, at least two continuous deep potential wells for electron multiplication are formed simultaneously. However, in this embodiment, at least two continuous deep potential wells for electron multiplication are formed with a time difference. It differs in the formation point.

即ち、時刻t1における電子増倍パルスの印加はV5電極のみに行い、そして時刻t6において、1回目の電子増倍パルスの印加中に2回目の電子増倍パルスの印加を電極V7に行った。つまり、電子増倍期間と増倍前待機期間をオーバーラップさせる構成としている。これにより、電子増倍駆動全体に必要な電子増倍前待機期間を短縮することができる。   That is, the application of the electron multiplication pulse at time t1 was performed only on the V5 electrode, and the application of the second electron multiplication pulse was performed on the electrode V7 during the application of the first electron multiplication pulse at time t6. That is, the electron multiplication period and the standby period before multiplication are overlapped. Thereby, the standby period before electron multiplication required for the whole electron multiplication drive can be shortened.

図5の実施形態と同様に連続する3つの深い電位井戸を用いて電子増倍を行う場合に本実施形態を適用するには、2回目の電子増倍パルスを印加中に3回目の電子増倍パルスを印加して電子増倍期間と増倍前待機期間とをオーバーラップさせれば良い。   To apply this embodiment when performing electron multiplication using three continuous deep potential wells as in the embodiment of FIG. 5, the third electron multiplication is applied during the second electron multiplication pulse application. What is necessary is just to apply the double pulse and overlap the electron multiplication period and the waiting period before multiplication.

本実施形態によれば、垂直電荷転送路の繰り返し周期以上の範囲においても、電子増倍駆動全体に必要な電子増倍前待機期間を効率よく短縮することができる。   According to the present embodiment, the standby period before electron multiplication required for the entire electron multiplication drive can be efficiently shortened even in a range longer than the repetition period of the vertical charge transfer path.

以上述べた様に、本発明実施形態のCCD型固体撮像素子の駆動方法は、受光量に応じた信号電荷を電荷転送路に読み出し、該信号電荷を蓄積した前記電荷転送路上の第1の電位井戸より深い第2の電位井戸を電位障壁を介して前記電荷転送路上に形成し、前記第1の電位井戸内の前記信号電荷を前記電位障壁を消失させて前記第2の電位井戸内に落とし込んで電子増倍を行うと共に該電子増倍の駆動終了前に前記第2の電位井戸と同じ深さの少なくとも1つの連続電子増倍用電位井戸を電位障壁を介して前記電荷転送路上に形成し、前記電子増倍の駆動終了後に前記第2の電位井戸の深さを前記第1の電位井戸の深さに戻してから連続して前記第2の電位井戸と前記連続電子増倍用電位井戸との間の前記電位障壁を消失させ該第2の電位井戸内の前記信号電荷を前記連続電子増倍用電位井戸内に落とし込んで電子増倍を行うことを特徴とする。   As described above, the driving method of the CCD solid-state imaging device according to the embodiment of the present invention reads the signal charge corresponding to the amount of received light to the charge transfer path and stores the first potential on the charge transfer path in which the signal charge is accumulated. A second potential well deeper than the well is formed on the charge transfer path through a potential barrier, and the signal charge in the first potential well is dropped into the second potential well by eliminating the potential barrier. And at least one continuous electron multiplication potential well having the same depth as that of the second potential well is formed on the charge transfer path through a potential barrier before the end of the electron multiplication driving. After the completion of the electron multiplication drive, the second potential well and the continuous electron multiplication potential well are successively returned after returning the depth of the second potential well to the depth of the first potential well. The potential barrier between the second potential well and the second potential well Characterized in that the signal charges of the inner performing electron multiplication plunge into the continuous electron multiplying a potential in the well.

また、実施形態のCCD型固体撮像素子の駆動方法は、前記第2の電位井戸と少なくとも1つの前記連続電子増倍用電位井戸とを同時に形成することを特徴とする。   The CCD solid-state imaging device driving method of the embodiment is characterized in that the second potential well and at least one continuous electron multiplication potential well are formed simultaneously.

また、実施形態のCCD型固体撮像素子の駆動方法は、前記第2の電位井戸と前記連続電子増倍用電位井戸とを時間差を持って形成し、該第2の電位井戸を用いた電子増倍駆動中に前記連続電子増倍用電位井戸を形成することを特徴とする。   Further, in the driving method of the CCD solid-state imaging device of the embodiment, the second potential well and the continuous electron multiplication potential well are formed with a time difference, and the electron multiplication using the second potential well is performed. The potential well for continuous electron multiplication is formed during double driving.

また、実施形態のCCD型固体撮像素子の駆動方法は、前記第2の電位井戸及び前記連続電子増倍用電位井戸を用いて電子増倍を行うときに少なくとも該連続電子増倍用電位井戸に電位障壁を介して次の連続電子増倍用電位井戸を形成し該連続電子増倍用電位井戸も用いて少なくとも3回連続して電子増倍を行うことを特徴とする。   In addition, the CCD solid-state imaging device driving method according to the embodiment includes at least the continuous electron multiplication potential well when performing electron multiplication using the second potential well and the continuous electron multiplication potential well. A subsequent potential well for continuous electron multiplication is formed through a potential barrier, and electron multiplication is continuously performed at least three times using the potential well for continuous electron multiplication.

また、実施形態のCCD型固体撮像素子の駆動方法は、上記記載の駆動方法により連続して少なくとも2回の電子増倍を行う駆動方法と、上記記載の駆動方法により連続して少なくとも3回の電子増倍を行う駆動方法とを、撮像装置のISO感度に応じて切り換えることを特徴とする。   The CCD solid-state imaging device according to the embodiment includes a driving method in which electron multiplication is continuously performed at least twice by the driving method described above, and at least three times in succession by the driving method described above. The driving method for performing electron multiplication is switched according to the ISO sensitivity of the imaging apparatus.

また、実施形態のCCD型固体撮像素子の駆動方法は、前記深い電位井戸を形成するために該電位井戸に対応する電極に高電圧パルスを印加する時、該高電圧パルス印加と同タイミングで前記電極と異なる別電極に前記高電圧パルスと逆極性の電圧パルスを印加することを特徴とする。   Further, in the driving method of the CCD solid-state imaging device of the embodiment, when a high voltage pulse is applied to the electrode corresponding to the potential well in order to form the deep potential well, the timing is the same as the application of the high voltage pulse. A voltage pulse having a polarity opposite to that of the high voltage pulse is applied to another electrode different from the electrode.

また、実施形態のCCD型固体撮像素子の駆動方法は、前記深い電位井戸を形成するために該電位井戸に対応する電極に高電圧パルスを印加した時、該高電圧パルス印加終了と同タイミングで前記電極と異なる別電極に次の電子増倍を行う深い電位井戸を形成する高電圧パルスを印加することを特徴とする。   In the driving method of the CCD solid-state imaging device of the embodiment, when a high voltage pulse is applied to the electrode corresponding to the potential well in order to form the deep potential well, at the same timing as the end of the application of the high voltage pulse. A high voltage pulse for forming a deep potential well for performing next electron multiplication is applied to another electrode different from the electrode.

また、実施形態のCCD型固体撮像素子の駆動方法は、前記深い電位井戸を形成するために該電位井戸に対応する電極に高電圧パルスを印加する時、該高電圧パルス印加と同タイミングで前記電極と異なる別電極に前記高電圧パルスと逆極性の電圧パルスを印加し、更に、該高電圧パルス印加終了と同タイミングで前記電極,前記別電極と異なる他の電極に次の電子増倍を行う深い電位井戸を形成する高電圧パルスを印加することを特徴とする。   Further, in the driving method of the CCD solid-state imaging device of the embodiment, when a high voltage pulse is applied to the electrode corresponding to the potential well in order to form the deep potential well, the timing is the same as the application of the high voltage pulse. A voltage pulse having a polarity opposite to that of the high voltage pulse is applied to another electrode different from the electrode, and the next electron multiplication is applied to the electrode and another electrode different from the other electrode at the same timing as the application of the high voltage pulse. A high voltage pulse for forming a deep potential well to be applied is applied.

また、実施形態の撮像装置は、CCD型固体撮像素子と、該CCD型固体撮像素子に上記のいずれかに記載の駆動方法でパルス電圧を印加し前記電位井戸の形成と前記電位障壁の消失を行う制御手段とを備えることを特徴とする。   In addition, the imaging apparatus according to the embodiment applies a pulse voltage to the CCD solid-state imaging device and the CCD solid-state imaging device according to any of the above-described driving methods to form the potential well and eliminate the potential barrier. And a control means for performing.

以上述べた実施形態によれば、電子増倍駆動時間の短時間化を図ることができ、高S/Nの撮像画像信号を得ることが可能となる。   According to the embodiment described above, the electron multiplication drive time can be shortened, and a high S / N captured image signal can be obtained.

本発明に係るCCD型固体撮像素子の駆動方法は、短時間に所要回数の電子増倍を行うことができ、高S/Nの画像信号を得ることができるため、デジタルスチルカメラやデジタルビデオカメラ、カメラ付携帯電話機、PDAやノートパソコン等のカメラ付電子装置、内視鏡等の撮像装置一般に適用すると有用である。   The method for driving a CCD type solid-state imaging device according to the present invention can perform a required number of times of electron multiplication in a short time and can obtain a high S / N image signal, so that a digital still camera or a digital video camera can be obtained. It is useful when applied to general imaging devices such as camera-equipped mobile phones, electronic devices with cameras such as PDAs and notebook computers, and endoscopes.

3,5,7,9 電子増倍用の深い電位井戸
2 信号電荷
4,6 電位障壁
20 撮像装置
21 CCD型の固体撮像素子
22 画素(光電変換素子:フォトダイオード)
23 垂直電荷転送路(VCCD)
23a 垂直転送電極
24 水平電荷転送路(HCCD)
26 デジタル信号処理部
29 システム制御部(CPU)
3, 5, 7, 9 Deep potential well 2 for electron multiplication Signal charge 4, 6 Potential barrier 20 Imaging device 21 CCD type solid-state imaging device 22 Pixel (photoelectric conversion device: photodiode)
23 Vertical charge transfer path (VCCD)
23a Vertical transfer electrode 24 Horizontal charge transfer path (HCCD)
26 Digital Signal Processing Unit 29 System Control Unit (CPU)

Claims (9)

受光量に応じた信号電荷を電荷転送路に読み出し、該信号電荷を蓄積した前記電荷転送路上の第1の電位井戸より深い第2の電位井戸を電位障壁を介して前記電荷転送路上に形成し、前記第1の電位井戸内の前記信号電荷を前記電位障壁を消失させて前記第2の電位井戸内に落とし込んで電子増倍を行うと共に該電子増倍の駆動終了前に前記第2の電位井戸と同じ深さの少なくとも1つの連続電子増倍用電位井戸を電位障壁を介して前記電荷転送路上に形成し、前記電子増倍の駆動終了後に前記第2の電位井戸の深さを前記第1の電位井戸の深さに戻してから連続して前記第2の電位井戸と前記連続電子増倍用電位井戸との間の前記電位障壁を消失させ該第2の電位井戸内の前記信号電荷を前記連続電子増倍用電位井戸内に落とし込んで電子増倍を行うCCD型固体撮像素子の駆動方法。   A signal charge corresponding to the amount of received light is read out to the charge transfer path, and a second potential well deeper than the first potential well on the charge transfer path in which the signal charge is accumulated is formed on the charge transfer path through a potential barrier. The signal charge in the first potential well is dropped into the second potential well while eliminating the potential barrier, and electron multiplication is performed, and the second potential before the end of driving of the electron multiplication is completed. At least one continuous electron multiplication potential well having the same depth as the well is formed on the charge transfer path through a potential barrier, and after the electron multiplication driving is finished, the depth of the second potential well is increased. The signal charge in the second potential well is eliminated by continuously removing the potential barrier between the second potential well and the continuous electron multiplication potential well after returning to the depth of one potential well. Into the potential well for continuous electron multiplication The driving method of the CCD solid-state imaging device performing multiplication. 請求項1に記載のCCD型固体撮像素子の駆動方法であって、前記第2の電位井戸と少なくとも1つの前記連続電子増倍用電位井戸とを同時に形成するCCD型固体撮像素子の駆動方法。   2. The method for driving a CCD solid-state imaging device according to claim 1, wherein the second potential well and at least one continuous electron multiplication potential well are simultaneously formed. 請求項1に記載のCCD型固体撮像素子の駆動方法であって、前記第2の電位井戸と前記連続電子増倍用電位井戸とを時間差を持って形成し、該第2の電位井戸を用いた電子増倍駆動中に前記連続電子増倍用電位井戸を形成するCCD型固体撮像素子の駆動方法。   2. The method of driving a CCD solid-state imaging device according to claim 1, wherein the second potential well and the potential well for continuous electron multiplication are formed with a time difference, and the second potential well is used. A method for driving a CCD solid-state imaging device, wherein the potential well for continuous electron multiplication is formed during electron multiplication driving. 請求項1乃至請求項3のいずれか1項に記載のCCD型固体撮像素子の駆動方法であって、前記第2の電位井戸及び前記連続電子増倍用電位井戸を用いて電子増倍を行うときに少なくとも該連続電子増倍用電位井戸に電位障壁を介して次の連続電子増倍用電位井戸を形成し該連続電子増倍用電位井戸も用いて少なくとも3回連続して電子増倍を行うCCD型固体撮像素子の駆動方法。   4. The method of driving a CCD solid-state imaging device according to claim 1, wherein electron multiplication is performed using the second potential well and the potential well for continuous electron multiplication. Sometimes, at least the successive electron multiplication potential well is formed with a potential barrier for the next successive electron multiplication through a potential barrier, and the electron multiplication potential well is also used at least three times in succession. A method for driving a CCD solid-state imaging device. 請求項1乃至請求項3のいずれか1項に記載のCCD型固体撮像素子の駆動方法により連続して少なくとも2回の電子増倍を行う駆動方法と、請求項4に記載の駆動方法により連続して少なくとも3回の電子増倍を行う駆動方法とを、撮像装置のISO感度に応じて切り換えるCCD型固体撮像素子の駆動方法。   A driving method for performing electron multiplication at least twice in succession by the driving method for a CCD type solid-state imaging device according to any one of claims 1 to 3, and a driving method for continuously driving by a driving method according to claim 4. A method for driving a CCD solid-state imaging device that switches between a driving method for performing electron multiplication at least three times in accordance with the ISO sensitivity of the imaging device. 請求項1乃至請求項5のいずれか1項に記載のCCD型固体撮像素子の駆動方法であって、前記深い電位井戸を形成するために該電位井戸に対応する電極に高電圧パルスを印加する時、該高電圧パルス印加と同タイミングで前記電極と異なる別電極に前記高電圧パルスと逆極性の電圧パルスを印加するCCD型固体撮像素子の駆動方法。   6. The method for driving a CCD type solid-state imaging device according to claim 1, wherein a high voltage pulse is applied to an electrode corresponding to the potential well in order to form the deep potential well. A method of driving a CCD solid-state imaging device, wherein a voltage pulse having a polarity opposite to that of the high voltage pulse is applied to another electrode different from the electrode at the same timing as the application of the high voltage pulse. 請求項1乃至請求項5のいずれか1項に記載のCCD型固体撮像素子の駆動方法であって、前記深い電位井戸を形成するために該電位井戸に対応する電極に高電圧パルスを印加した時、該高電圧パルス印加終了と同タイミングで前記電極と異なる別電極に次の電子増倍を行う深い電位井戸を形成する高電圧パルスを印加するCCD型固体撮像素子の駆動方法。   6. The method for driving a CCD type solid-state imaging device according to claim 1, wherein a high voltage pulse is applied to an electrode corresponding to the potential well in order to form the deep potential well. A method for driving a CCD solid-state imaging device, wherein a high voltage pulse is applied to form a deep potential well for performing next electron multiplication on another electrode different from the electrode at the same timing as the end of the application of the high voltage pulse. 請求項1乃至請求項5のいずれか1項に記載のCCD型固体撮像素子の駆動方法であって、前記深い電位井戸を形成するために該電位井戸に対応する電極に高電圧パルスを印加する時、該高電圧パルス印加と同タイミングで前記電極と異なる別電極に前記高電圧パルスと逆極性の電圧パルスを印加し、更に、該高電圧パルス印加終了と同タイミングで前記電極,前記別電極と異なる他の電極に次の電子増倍を行う深い電位井戸を形成する高電圧パルスを印加するCCD型固体撮像素子の駆動方法。   6. The method for driving a CCD type solid-state imaging device according to claim 1, wherein a high voltage pulse is applied to an electrode corresponding to the potential well in order to form the deep potential well. A voltage pulse having a polarity opposite to that of the high voltage pulse is applied to another electrode different from the electrode at the same timing as the application of the high voltage pulse, and the electrode and the separate electrode are applied at the same timing as the application of the high voltage pulse. Drive method for a CCD type solid-state imaging device, in which a high voltage pulse for forming a deep potential well for performing next electron multiplication is applied to another electrode different from the above. CCD型固体撮像素子と、該CCD型固体撮像素子に請求項1乃至請求項8のいずれか1項に記載の駆動方法でパルス電圧を印加し前記電位井戸の形成と前記電位障壁の消失を行う制御手段とを備える撮像装置。   A pulse voltage is applied to the CCD solid-state imaging device and the driving method according to any one of claims 1 to 8 to form the potential well and eliminate the potential barrier. An imaging device comprising control means.
JP2010063363A 2010-03-18 2010-03-18 Driving method of ccd solid-state imaging element, and image-pickup device Pending JP2011199534A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010063363A JP2011199534A (en) 2010-03-18 2010-03-18 Driving method of ccd solid-state imaging element, and image-pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010063363A JP2011199534A (en) 2010-03-18 2010-03-18 Driving method of ccd solid-state imaging element, and image-pickup device

Publications (1)

Publication Number Publication Date
JP2011199534A true JP2011199534A (en) 2011-10-06

Family

ID=44877188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010063363A Pending JP2011199534A (en) 2010-03-18 2010-03-18 Driving method of ccd solid-state imaging element, and image-pickup device

Country Status (1)

Country Link
JP (1) JP2011199534A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111405208A (en) * 2020-03-20 2020-07-10 中国电子科技集团公司第四十四研究所 Internally frame transferred CCD

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111405208A (en) * 2020-03-20 2020-07-10 中国电子科技集团公司第四十四研究所 Internally frame transferred CCD

Similar Documents

Publication Publication Date Title
JP4416753B2 (en) Solid-state imaging device
JP5458582B2 (en) Solid-state imaging device, driving method of solid-state imaging device, and electronic apparatus
US8300131B2 (en) Image pickup device for wide dynamic range at a high frame rate
JP5552858B2 (en) Solid-state imaging device, driving method of solid-state imaging device, and electronic apparatus
JP5891451B2 (en) Imaging device
WO2013176007A1 (en) Image sensor, drive method, and electronic device
JP2008167004A (en) Solid state imaging apparatus, method for driving the same, and imaging apparatus
JP2012119349A (en) Solid state imaging device and driving method therefor, and electronic apparatus
US9794497B2 (en) Solid-state imaging device controlling read-out of signals from pixels in first and second areas
JP2012129799A (en) Solid state image sensor, driving method and electronic apparatus
JP2008228265A (en) Imaging apparatus
JP2006262387A (en) Solid-state imaging apparatus and camera
US20110037882A1 (en) Solid-state imaging device, method of driving solid-state imaging device, and electronic apparatus
JP2005348040A (en) Amplification type imaging apparatus and imaging system
JPWO2012137445A1 (en) Driving method of solid-state imaging device
JP5906596B2 (en) Imaging device
JP5028371B2 (en) Imaging device
JP2006108889A (en) Solid-state image pickup device
JP2011199534A (en) Driving method of ccd solid-state imaging element, and image-pickup device
JP2007143067A (en) Image sensing device and image sensing system
JP2009089026A (en) Method of driving ccd solid-state image pickup device, and image pickup apparatus
JP2013168713A (en) Driving method of solid-state imaging apparatus, and camera system
JP5672363B2 (en) Solid-state imaging device and camera system
JP2011176761A (en) Solid-state imaging apparatus and camera system
JP6213596B2 (en) Imaging device

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20111216