JP2011195909A - 高周波プラズマ発生装置およびこれを用いた薄膜製造方法 - Google Patents

高周波プラズマ発生装置およびこれを用いた薄膜製造方法 Download PDF

Info

Publication number
JP2011195909A
JP2011195909A JP2010065108A JP2010065108A JP2011195909A JP 2011195909 A JP2011195909 A JP 2011195909A JP 2010065108 A JP2010065108 A JP 2010065108A JP 2010065108 A JP2010065108 A JP 2010065108A JP 2011195909 A JP2011195909 A JP 2011195909A
Authority
JP
Japan
Prior art keywords
frequency plasma
electrode
grounded electrode
plasma generator
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010065108A
Other languages
English (en)
Other versions
JP5489803B2 (ja
Inventor
Yukihiro Tawara
志浩 田原
Toru Fukazawa
徹 深沢
Mutsumi Tsuda
睦 津田
Masakazu Taki
正和 滝
Hisafumi Yoneda
尚史 米田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2010065108A priority Critical patent/JP5489803B2/ja
Publication of JP2011195909A publication Critical patent/JP2011195909A/ja
Application granted granted Critical
Publication of JP5489803B2 publication Critical patent/JP5489803B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Plasma Technology (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

【課題】簡易な構成で電極間に一様な電界分布を発生させる高周波プラズマ発生装置を得る。
【解決手段】非接地電極と接地電極から成る一対の電極と、非接地電極に設けられた複数の給電点と、複数の給電点から非接地電極に高周波電力を供給するための電力供給手段とを備え、非接地電極と接地電極に挟まれたプラズマ生成領域でプラズマを発生させる高周波プラズマ発生装置において、非接地電極は方形の形状を有し、複数の給電点は非接地電極の対称面に対して互いに対称な位置となるような非接地電極の端部に設けられている。
【選択図】図1

Description

この発明は、電極に高周波を供給することで電極間にプラズマを発生させる高周波プラズマ発生装置およびこれを用いた薄膜製造方法に関するものである。
VHF帯ないしUHF帯の高周波を用いて電極間に均一なプラズマを生成するために、電極間の電界分布を一様にする電極給電方法として、電極の給電点と反端側の端部に位相調整回路を設け、反射波の位相を調整することで、電極間の定在波の分布を制御することが提案されている(例えば、特許文献1参照)。
また、電極間に2つの定在波分布を発生させ、かつ2つの定在波を重畳させることで一様な電界分布を得ることが提案されている(例えば、特許文献2参照)。
特許第3501668号公報 特許第4207131号公報
しかし、特許文献1に示される従来の高周波プラズマ発生装置では、電極の一方の端部から給電し、電極の給電点と反対側の端部における位相調整回路によって反射波の位相を調整するため、プラズマにおける電力の吸収が大きい場合には反射波が弱くなり、定在波の分布が得られないという問題がある。
一方、特許文献2に示される高周波プラズマ発生装置では、2つの定在波分布を発生させるために独立した2つの高周波電力供給手段を設けている。しかし、これら2つの高周波電力供給手段は、同じ周波数を用いた場合には互いに干渉するため、インピーダンス整合を得るための調整が難しいという問題がある。また、干渉を避けるためには異なる周波数で給電する必要があり、装置が複雑になるという問題がある。
この発明は上記のような問題点を解決するためになされたもので、簡易な構成で電極間に一様な電界分布を発生させる高周波プラズマ発生装置を得ることを目的とする。
この発明に係る高周波プラズマ発生装置は、互いに対向して設置された非接地電極と接地電極から成る少なくとも一対の電極と、前記非接地電極に設けられた複数の給電点から前記非接地電極に高周波電力を供給するための電力供給手段とを備え、前記非接地電極と前記接地電極に挟まれたプラズマ生成領域でプラズマを発生させる高周波プラズマ発生装置において、前記複数の給電点は、前記非接地電極の上下面における中心を通る線に対して互いに対称となるように、前記非接地電極の接地電極と対向しない面の端部もしくは前記非接地電極の側面に設けられており、前記電力供給手段は、前記非接地電極の複数の給電点の位相を揃える同相状態と、前記複数の給電点を二分したそれぞれの給電点での位相を反転させる逆相状態の少なくとも2つの状態を切り替えて高周波電力を供給することを特徴とする。
この発明によれば、方形の非接地電極の各対称面に対して互いに対称な位置に給電点を設けることで、各給電点の給電位相がすべて同じとなる同相状態と、半数の給電点の給電位相が180度異なる逆相状態とを、時間で切り替えながら高周波を供給することにより、非接地電極の一辺の長さが供給する高周波の波長の4分の1を超えるような場合においても、非接地電極と接地電極が対向する領域内に一様な高周波電界を発生させることができ、それによって均一なプラズマを発生させることができる。
この発明の実施の形態1における高周波プラズマ発生装置の構成図である。 図1におけるA−A’断面図である。 図1における整合器16の回路構成例である。 幅1.1m×長さ1.4m程度の電極に対して、60MHzの高周波信号を供給した場合の、電極ブロック1と基板ステージ2に挟まれたプラズマ生成領域における電界強度分布を電磁界解析により求めた結果であり、各給電点を同相で給電した場合を示す図である。 幅1.1m×長さ1.4m程度の電極に対して、60MHzの高周波信号を供給した場合の、電極ブロック1と基板ステージ2に挟まれたプラズマ生成領域における電界強度分布を電磁界解析により求めた結果であり、給電点11a、11bと11c、11dが逆相となるように給電した場合を示す図である。 同相状態と逆相状態の時間比が4:1となるように切り替えた場合の電界強度の平均値を示す図である。 図1に示すこの発明の実施の形態1の変形例を示し、高周波給電回路12の増幅器15の手前に可変減衰器18を設け、それぞれの給電点へ供給される高周波信号の振幅を制御する場合の構成図である。 図1に示すこの発明の実施の形態1の変形例を示し、給電点11a、11b、11c、11dを電極ブロック1の側面に設ける場合の構成図である。
実施の形態1.
図1は、この発明の実施の形態1における高周波プラズマ発生装置の構成図である。また、図2は、図1におけるA−A’断面図である。
図において、真空容器3の開口部には絶縁スペーサ4を介して非接地電極を構成する電極ブロック1が配置されると共に、真空容器3の上には電極ブロック1を覆うようにシールドボックス5が配置されている。また、真空容器3の内部には、電極ブロック1と対向するように接地電極を構成する基板ステージ2が設けられており、電極ブロック1と基板ステージ2とは一対の平行平板電極を構成している。電極ブロック1には、成膜やエッチング等の表面プロセシングを行うプロセスガスの供給口6が設けられており、図示しないプロセスガス供給源からプロセスガスが供給される。なお、供給口6はシールドボックス5からは電気的に絶縁されている。供給されたプロセスガスは電極ブロック1の下面に多数設けられたガス供給孔7から真空容器3の内部に入り、電極ブロック1と基板ステージ2との間にプロセスガスが供給されるようになっている。また、真空容器3は、排気口8から図示しない真空ポンプによって、処理室9を真空排気されるようになっており、ガスを一定流量で供給している時に、排気速度を調整することで、真空容器3内のガス圧力を所望の値に設定することができる。
基板ステージ2の上には幅1.1m×長さ1.4m程度の大きさの方形のガラス基板10が保持され、ガラス基板10と電極ブロック1の間隔が数mmから10mm程度となるように基板ステージ2の高さが調整されている。また、基板ステージ2の内部には、図示しない加熱ヒータが内蔵されており、ガラス基板10を所望の温度にまで昇温することができる。真空容器3にプロセスガスを供給している時、電極ブロック1と基板ステージ2との間に高周波電界を一様に発生させることで、ガラス基板10の大きさに相当する所定の領域にわたって均一なプラズマを生成し、このプラズマを用いてガラス基板10の表面に成膜やエッチング等のプロセスを行うことができる。
電極ブロック1には、4つの給電点11a、11b、11c、11dに高周波給電回路12の給電線路(中心導体)が接続されている。なお、給電線路(中心導体)はシールドボックス5から電気的に絶縁され、高周波給電回路12のグラウンドはシールドボックス5と接続されている。4つの給電点のうち、給電点11a、11bは電極ブロック1の上面において一方の長辺に沿った端部に設けられ、残りの給電点11c、11dは対向するもう一方の長辺に沿った端部に設けられている。これらの給電点は、電極ブロック1の2つの対称面X−X’およびY−Y’に対して互いに対称な位置に配置されている。
電力供給手段としての高周波給電回路12は、周波数30〜300MHzのVHF帯の高周波信号を供給するための回路であり、高周波信号源としての発振器13、可変移相器14、増幅器15、整合器16、整合器16を調整するための制御装置17が設けられている。また、発振器13から各給電点までの長さ(電気長)はすべて等しくなるように設定されている。
発振器13で発生した高周波信号は給電点の数(図1の場合は4つ)に分配された後、それぞれ可変移相器14で所定の位相に設定され、増幅器15で所望の電力まで増幅されて給電点に供給される。このとき、整合器16は給電点に供給された高周波信号が増幅器15側へ反射される電力が最小となるようにインピーダンス整合を行う。整合器16は、例えば図3に示すように、直列に接続されたコンデンサ21aと並列に接続されたコンデンサ21bから構成されており、制御装置17からの制御信号に従ってコンデンサ21a、21bの容量を変化させることで、増幅器15側へ反射される電力が最小となるように調整することができる。
給電点に供給された高周波信号は、電極ブロック1の周囲のシールドボックス5との間から、絶縁スペーサ4を通って真空容器3の中に入り、電極ブロック1と基板ステージ2に挟まれたプラズマ発生領域に供給される。このとき、電極ブロック1の長辺方向に対して一様に高周波信号が供給されるよう、電極ブロック1の長辺方向に対する給電点の位置が調整されている。また、基板ステージ2と真空容器3との間を流れるグラウンド電流の経路が長くならないよう、基板ステージ2の端部と真空容器3の側面との間を銅箔などの金属プレート部材22で接続することで、基板ステージ2端部での高周波信号の反射を抑え、効率よく高周波信号を供給している。なお、金属プレート部材22は、電極ブロック1の辺に沿って離散的に設けられていてもよい。その場合には、隣り合う金属プレート部材22間の隙間を、使用する高周波の波長の1/10以下にする必要がある。
ここで、可変移相器14で設定される位相をすべて同じにした同相状態の場合、電極ブロック1に対する給電点の配置の対称性から、電極ブロック1の2つの対称面X−X’およびY−Y’は磁気壁境界となり、すべての給電点から電極ブロック1側を見た入力インピーダンスは等しくなる。これは、各給電点から入力される高周波信号がすべて等振幅・同相であり、他の給電点への干渉もすべて等しくなるためである。したがって、増幅器15側へ反射される電力が最小となるような整合器16の設定も、すべての給電点で等しくなる。
一方、可変移相器14で設定される位相が給電点11a、11bと11c、11dで180度異なるような逆相状態の場合、電極ブロック1に対する給電点の配置の対称性から、電極ブロック1の対称面X−X’は電気壁境界となり、対称面Y−Y’は磁気壁境界となるため、同相状態の場合と同様、すべての給電点から電極ブロック1側を見た入力インピーダンスは等しくなる。したがって、増幅器15側へ反射される電力が最小となるような整合器16の設定も、すべての給電点で等しくなる。ただし、同相状態と逆相状態での整合器16の設定は異なるものである。
図4および図5は、幅1.1m×長さ1.4m程度の電極に対して、60MHzの高周波信号を供給した場合の、電極ブロック1と基板ステージ2に挟まれたプラズマ生成領域における電界強度分布を電磁界解析により求めた結果である。X軸とY軸にそれぞれ電極ブロック1と基板ステージ2が対向する領域内の位置をとり、Z軸にその領域内の各点における電界強度を示している。X軸は電極ブロック1の長辺方向、Y軸は電極ブロック1の短辺方向である。図4は各給電点を同相で給電した場合、図5は給電点11a、11bと11c、11dが逆相となるように給電した場合である。なお、同相、逆相のいずれの状態においても、電極ブロック1の長辺方向に対して一様な電界強度分布が得られるよう、電極ブロック1の長辺方向に対する給電点の位置が調整されている。
図4より、各給電点を同相で給電した場合には、電界強度分布は電極ブロック1の長辺方向に対してほぼ一様であり、電極ブロック1の対称面X−X’に沿って電界強度の強い部分が生じることがわかる。一方、図5より、給電点11a、11bと11c、11dが逆相となるように給電した場合には、電極ブロック1の長辺に沿った端部に電界強度の強い部分が生じ、対称面X−X’に沿った中央部は電界強度がゼロとなることがわかる。
ここで、図4に示した同相状態と図5に示した逆相状態を時間で交互に切り替えた場合について考える。領域内の電界強度の最大値と最小値の比が、同相状態に比べて逆相状態の方が大きいことから、電界強度分布の時間平均を一様に近づけるためには、逆相状態よりも同相状態の時間を長くする方が望ましい。図6に同相状態と逆相状態の時間比が4:1となるように切り替えた場合の電界強度の平均値を示す。同相状態での電界強度分布と逆相状態での電界強度分布がちょうど互いに打ち消し合う関係となっているため、両状態を時間で切り替えることで、電界強度の平均が一様に近づくことが確認できる。図6では、所定の領域内における電界強度分布のばらつきが±5%以内に抑えられている。
以上のように、本実施の形態1によれば、方形の電極ブロック1の各対称面に対して互いに対称な位置に給電点を設け、さらに各給電点の給電位相がすべて同じとなる同相状態と、半数の給電点の給電位相が180度異なる逆相状態とを、時間で切り替えながら高周波を供給するので、電極ブロック1の一辺の長さが供給する高周波の波長の4分の1を超えるような場合においても、電極ブロック1と基板ステージ2が対向する領域内に一様な高周波電界を発生させることができ、それによって均一なプラズマを発生させることができる。
また、本実施の形態1では、給電点の対称性から、すべての給電点を等振幅で同相もしくは逆相で励振した場合の給電点から電極側を見た入力インピーダンスはすべて等しくなるため、整合器16の設定もすべて同一でよく、インピーダンス整合のための整合器16の調整が容易であるという効果もある。本実施の形態1では、すべての整合器16が制御装置17からの制御信号によって同じ設定となるように制御される構成となっている。少なくとも1つの給電点における増幅器15側への反射電力をモニタしながら、その反射が小さくなるようフィードバック制御により、整合器16を構成するコンデンサ21a、21bの容量値を変化させればよい。一方、同相状態および逆相状態において必要な整合器16の条件(例えばコンデンサの容量値)が予めわかっている場合には、所望の条件をもつ2種類の整合器16を設け、同相状態と逆相状態に合わせて切り替える構成としてもよい。
さらに、本実施の形態1では、すべての給電点に供給する高周波の周波数は同一であるため、高周波給電回路の構成が簡単であるという効果もある。
なお、本実施の形態1では、逆相状態よりも同相状態の時間を長くすることで領域内の電界強度分布の時間平均を一様にしたが、同相状態の振幅を逆相状態の振幅よりも大きくすることでも電界強度分布の時間平均を一様に近づけることが可能である。この場合には、図7に示すように、高周波給電回路12において増幅器15の手前に可変減衰器18を設け、それぞれの給電点へ供給される高周波信号の振幅を制御してやればよい。
本実施の形態1では、電極ブロックのそれぞれの長辺に2ヶ所づつ給電点を配置したが、短辺において対称な位置に2ヶ所ずつ給電点を配置しても同様の効果を有する。また、給電点を電極ブロックの端部に配置したが、高周波の波長のおよそ1/50程度、端部から中央寄りの位置に給電しても電界の均一性はほとんど変化がなく、端部に限定するものではない。
また、本実施の形態1では、給電点11a,11bと11c,11dを電極ブロック1の上面における端部に設けたが、図8に示すように電極ブロック1の側面に設けてもよい。
実施の形態2.
本実施の形態では、図1に示す装置を用いてシランガス(SiH)と水素ガス(H)との混合プラズマを発生させ、ガラス基板上に微結晶シリコン膜を堆積させた例について説明する。
真空排気した真空容器3内の基板ステージ2に1400mm×1100mmのガラス基板10(厚み:4mm)を設置し、基板温度を200℃にまで昇温した。次に、電極ブロック1とガラス基板10との間隔が5mmになるように基板ステージ2を設定した。この状態で、供給口6にSiHガスとHガスをそれぞれ1slmと50slmの流量で供給し、真空容器3内のガス圧力が1000Paとなるよう、排気速度を調整した。ガス圧力が安定した後、60MHzの高周波電力を給電してSiH/H混合プラズマを発生した。高周波電力は、長辺に沿った給電点11a、11b、11c、11dの4箇所にそれぞれ5kW、計20kW給電して20分間成膜を行った。
この条件で成膜を行うと、膜厚2μm、膜厚の面内均一性±8%でシリコン薄膜が堆積され、実用的な大面積の基板サイズで均一な成膜が可能になった。また、ラマン分光法によって測定される480cm−1における非晶質シリコンのピークIに対する520cm−1における結晶シリコンのピークIの強度比I/Iの平均値は7.4、面内均一性は±10%であり、良好な微結晶シリコン薄膜を均一に得ることができた。
本実施の形態では、ガス流量、圧力、高周波電力、等のパラメータを固定しているが、これらの値に限ることはない。また、プロセスガスとしてSiHとHの混合ガスの場合について説明したが、プロセスの目的に応じて適切なガス種を選ぶとよい。さらに、プロセスガスにAr、Ne等の希ガスを添加させてもよい。
1 電極ブロック、2 基板ステージ、3 真空容器、4 絶縁スペーサ、5 シールドボックス、6 供給口、7 ガス供給孔、8 排気口、9 処理室、10 ガラス基板、11a,11b,11c,11d 給電点、12 高周波給電回路、13 発振器、14 可変移相器、15 増幅器、16 整合器、17 制御装置、18 可変減衰器、21a,21b コンデンサ、22 金属プレート部材。

Claims (9)

  1. 互いに対向して設置された非接地電極と接地電極から成る少なくとも一対の電極と、
    前記非接地電極に設けられた複数の給電点から前記非接地電極に高周波電力を供給するための電力供給手段と
    を備え、前記非接地電極と前記接地電極に挟まれたプラズマ生成領域でプラズマを発生させる高周波プラズマ発生装置において、
    前記複数の給電点は、前記非接地電極の上下面における中心を通る線に対して互いに対称となるように、前記非接地電極の接地電極と対向しない面の端部もしくは前記非接地電極の側面に設けられており、
    前記電力供給手段は、前記非接地電極の複数の給電点の位相を揃える同相状態と、前記複数の給電点を二分したそれぞれの給電点での位相を反転させる逆相状態の少なくとも2つの状態を切り替えて高周波電力を供給する
    ことを特徴とする高周波プラズマ発生装置。
  2. 請求項1に記載の高周波プラズマ発生装置において、
    前記非接地電極は方形の形状を有し、
    前記複数の給電点は、前記非接地電極の上下面における対向する2辺に平行で中心を通る線に対して互いに対称となるように、前記非接地電極の接地電極と対向しない面における対向する2辺に沿った端部もしくは前記非接地電極の対向する側面に設けられていることを特徴とする高周波プラズマ発生装置。
  3. 請求項2に記載の高周波プラズマ発生装置において、
    前記給電点は、前記非接地電極の接地電極と対向しない面における長辺に沿った端部に設けられている
    ことを特徴とする高周波プラズマ発生装置。
  4. 請求項1から3までのいずれか1項に記載の高周波プラズマ発生装置において、
    前記電力供給手段は、高周波信号を発生する高周波信号源、各給電点に応じて分配される高周波信号を前記高周波信号源側へ反射される電力が最小となるようにインピーダンス整合を行う複数の整合器、および前記複数の整合器を制御する制御装置を有し、前記制御装置によって前記複数の整合器を同じ状態に調整する
    ことを特徴とする高周波プラズマ発生装置。
  5. 請求項1から4までのいずれか1項に記載の高周波プラズマ発生装置において、
    前記電力供給手段は、それぞれの給電点に供給する高周波信号の振幅を制御する可変減衰器を有する
    ことを特徴とする高周波プラズマ発生装置。
  6. 請求項1から5までのいずれか1項に記載の高周波プラズマ発生装置において、
    前記電力供給手段は、前記同相状態と前記逆相状態の振幅もしくは時間の少なくとも一方が両状態で異なるように電力を供給する
    ことを特徴とする高周波プラズマ発生装置。
  7. 請求項1から6までのいずれか1項に記載の高周波プラズマ発生装置において、
    前記電力供給手段は、前記同相状態と前記逆相状態の振幅が等しく、前記逆相状態の時間よりも前記同相状態の時間の方が長くなるように電力を供給する
    ことを特徴とする高周波プラズマ発生装置。
  8. 請求項1から7までのいずれか1項に記載の高周波プラズマ装置において、
    前記非接地電極と前記接地電極は、真空容器内に設けられ、
    前記非接地電極には、プロセスガスを供給するための供給口が設けられ、
    前記真空容器には、プロセスガスを排気するための排気口が設けられた
    ことを特徴とする高周波プラズマ装置。
  9. 請求項8に記載の高周波プラズマ装置を用いて、前記接地電極上に載置した基板上に成膜を行う薄膜製造方法であって、
    前記接地電極上に載置した前記基板と前記非接地電極の間隔を所定の値に調整し、前記基板の温度を所定温度に昇温する工程と、
    前記供給口にプロセスガスを供給すると共に、前記真空容器内のガス圧力が所望値となるよう、前記排気口からのプロセスガスの排気速度を調整する工程と、
    前記非接地電極と前記接地電極との間に高周波電界を一様に発生させることで、均一なプラズマを生成し、前記基板の表面に成膜を行う工程と
    を備えたことを特徴とする薄膜製造方法。
JP2010065108A 2010-03-19 2010-03-19 高周波プラズマ発生装置およびこれを用いた薄膜製造方法 Expired - Fee Related JP5489803B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010065108A JP5489803B2 (ja) 2010-03-19 2010-03-19 高周波プラズマ発生装置およびこれを用いた薄膜製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010065108A JP5489803B2 (ja) 2010-03-19 2010-03-19 高周波プラズマ発生装置およびこれを用いた薄膜製造方法

Publications (2)

Publication Number Publication Date
JP2011195909A true JP2011195909A (ja) 2011-10-06
JP5489803B2 JP5489803B2 (ja) 2014-05-14

Family

ID=44874494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010065108A Expired - Fee Related JP5489803B2 (ja) 2010-03-19 2010-03-19 高周波プラズマ発生装置およびこれを用いた薄膜製造方法

Country Status (1)

Country Link
JP (1) JP5489803B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017199694A (ja) * 2011-11-16 2017-11-02 東京エレクトロン株式会社 複数の高周波(rf)電力結合素子を利用してプラズマ特性を制御するrf電力結合システム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002012977A (ja) * 2000-06-30 2002-01-15 Mitsubishi Heavy Ind Ltd 表面処理装置及び表面処理方法
JP2005285564A (ja) * 2004-03-30 2005-10-13 Mitsui Eng & Shipbuild Co Ltd プラズマ処理装置
JP2006202638A (ja) * 2005-01-21 2006-08-03 Mitsui Eng & Shipbuild Co Ltd プラズマ生成装置及びプラズマ生成方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002012977A (ja) * 2000-06-30 2002-01-15 Mitsubishi Heavy Ind Ltd 表面処理装置及び表面処理方法
JP2005285564A (ja) * 2004-03-30 2005-10-13 Mitsui Eng & Shipbuild Co Ltd プラズマ処理装置
JP2006202638A (ja) * 2005-01-21 2006-08-03 Mitsui Eng & Shipbuild Co Ltd プラズマ生成装置及びプラズマ生成方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017199694A (ja) * 2011-11-16 2017-11-02 東京エレクトロン株式会社 複数の高周波(rf)電力結合素子を利用してプラズマ特性を制御するrf電力結合システム

Also Published As

Publication number Publication date
JP5489803B2 (ja) 2014-05-14

Similar Documents

Publication Publication Date Title
KR101839776B1 (ko) 플라즈마 처리장치
TWI400997B (zh) 電漿產生裝置及電漿成膜裝置
US10580623B2 (en) Plasma processing using multiple radio frequency power feeds for improved uniformity
CN103476196B (zh) 等离子体处理装置及等离子体处理方法
KR101041252B1 (ko) 플라즈마 생성 장치 및 플라즈마 생성 방법
JP5638617B2 (ja) 高周波電力供給装置、プラズマ処理装置及び薄膜製造方法
JP2008047938A (ja) 高周波プラズマcvd装置と高周波プラズマcvd法及び半導体薄膜製造法。
TWI428062B (zh) 電漿天線以及含該天線的電漿處理裝置
KR20070033222A (ko) 플라즈마 발생용 안테나
JP2009021634A (ja) 高周波プラズマcvd装置と高周波プラズマcvd法及び半導体薄膜製造法
RU2507628C2 (ru) Устройство для плазменной обработки больших площадей
JP2006202638A (ja) プラズマ生成装置及びプラズマ生成方法
KR100864111B1 (ko) 유도 결합 플라즈마 반응기
JP5489803B2 (ja) 高周波プラズマ発生装置およびこれを用いた薄膜製造方法
JP2012174668A (ja) 高周波電力供給装置、プラズマ処理装置、及び半導体薄膜の製造方法
CN104409309B (zh) 大面积等离子体处理装置与均匀等离子体生成方法
JP5713354B2 (ja) プラズマ発生装置
KR20200135114A (ko) 플라즈마 제어 장치 및 그 제어 장치를 포함한 플라즈마 공정 시스템
US7582185B2 (en) Plasma-processing apparatus
KR102194176B1 (ko) 플라스마 처리 장치 및 플라스마 처리 장치의 제어 방법
KR100753869B1 (ko) 복합형 플라즈마 반응기
JP5090209B2 (ja) プラズマcvd装置
JP2012014991A (ja) 高周波プラズマ発生装置および高周波プラズマ発生装置を用いた薄膜製造方法
JP2007107076A (ja) 真空処理装置、真空処理装置による製膜方法
TWI605487B (zh) Inductively coupled plasma processing system and processing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131022

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140225

R150 Certificate of patent or registration of utility model

Ref document number: 5489803

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees