JP2011195373A - Lithium ion conductive oxide, method for producing the same, and electrochemical device using the same as member - Google Patents

Lithium ion conductive oxide, method for producing the same, and electrochemical device using the same as member Download PDF

Info

Publication number
JP2011195373A
JP2011195373A JP2010063407A JP2010063407A JP2011195373A JP 2011195373 A JP2011195373 A JP 2011195373A JP 2010063407 A JP2010063407 A JP 2010063407A JP 2010063407 A JP2010063407 A JP 2010063407A JP 2011195373 A JP2011195373 A JP 2011195373A
Authority
JP
Japan
Prior art keywords
lithium
lithium ion
conductive oxide
ion conductive
lanthanum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010063407A
Other languages
Japanese (ja)
Other versions
JP5649033B2 (en
Inventor
Junji Awaka
淳司 阿波加
Junji Akimoto
順二 秋本
Michihito Kijima
倫人 木嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2010063407A priority Critical patent/JP5649033B2/en
Publication of JP2011195373A publication Critical patent/JP2011195373A/en
Application granted granted Critical
Publication of JP5649033B2 publication Critical patent/JP5649033B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide cubic garnet-related type lithium ion conductive oxide having the long period property and the modulation property of a crystal structure to be suitable for the improvement of ion conductivity, and a method for producing the same and an electrochemical device using it as a member.SOLUTION: The lithium ion conductive oxide comprises lithium, lanthanum, zirconium and oxygen as a chemical composition and is expressed by a chemical composition formula: LiLaZrO(-3<x<2, x≠0). The method for producing the same and the electrochemical device containing the compound as a solid electrolyte member are provided.

Description

本発明は、リチウムイオン伝導性酸化物及びその製造方法、並びにそれを部材として使用した電気化学デバイスに関する。 The present invention relates to a lithium ion conductive oxide, a method for producing the same, and an electrochemical device using the same as a member.

現在我が国においては、携帯電話、ノートパソコンなどの携帯型電子機器に搭載されている二次電池のほとんどは、リチウム二次電池である。また、リチウム二次電池は、今後はハイブリッドカー、電力負荷平準化システム用などの大形電池としても実用化されるものと予想されており、その重要性はますます高まっている。 Currently, in Japan, most of the secondary batteries installed in portable electronic devices such as mobile phones and notebook computers are lithium secondary batteries. In addition, lithium secondary batteries are expected to be put into practical use as large batteries for hybrid cars and power load leveling systems in the future, and their importance is increasing.

このリチウム二次電池は、いずれもリチウムを可逆的に吸蔵・放出することが可能な材料を含有する正極及び負極、非水系有機溶媒にリチウムイオン伝導体を溶解させた電解液、セパレータを主要構成要素とする。 This lithium secondary battery mainly comprises a positive electrode and a negative electrode containing materials capable of reversibly occluding and releasing lithium, an electrolyte solution in which a lithium ion conductor is dissolved in a non-aqueous organic solvent, and a separator. Element.

これらの構成要素のうち、電解液として検討されているのは、過塩素酸リチウム、6フッ化リン酸リチウム等の電解質を、エチレンカーボネート(EC)、ジメチルカーボネート(DMC)、プロピレンカーボネート(PC)、ジエチルカーボネート(DEC)等の溶媒に溶解させたもの、等が挙げられる。 Among these components, the electrolytes that have been studied are electrolytes such as lithium perchlorate and lithium hexafluorophosphate, ethylene carbonate (EC), dimethyl carbonate (DMC), and propylene carbonate (PC). And those dissolved in a solvent such as diethyl carbonate (DEC).

これらの材料は、良好なリチウムイオン伝導性を有することから、現行のリチウム二次電池のほとんどすべてにおいて、このような液系の電解質が採用されている。 Since these materials have good lithium ion conductivity, such liquid electrolytes are employed in almost all current lithium secondary batteries.

しかしながら、このような液系の電解質を採用したリチウム二次電池は、電池の構成から、正極と負極の短絡を起こしやすく、短絡による発熱・発火を引き起こすことから、安全上の問題があった。 However, the lithium secondary battery employing such a liquid electrolyte has a safety problem because it easily causes a short circuit between the positive electrode and the negative electrode due to the battery structure, and causes heat generation and ignition due to the short circuit.

また、電解液自身が4.3V以上の高電圧では分解してしまうことから、作動電圧は4.3V以上に上げられないことが、電池の容量を増加させる上で、問題であった。 Further, since the electrolytic solution itself is decomposed at a high voltage of 4.3 V or higher, it is a problem in increasing the battery capacity that the operating voltage cannot be increased to 4.3 V or higher.

このような目的で、電解質を液系ではなく、固体化することで、安全性が確保できることが期待され、かつ広い電位窓においても化学的に安定な高分子ポリマーや無機系のセラミックスなどを電池電解質とする電池の開発が検討されてきている。 For this purpose, it is expected that safety can be ensured by solidifying the electrolyte instead of a liquid system, and a polymer polymer or an inorganic ceramic that is chemically stable even in a wide potential window is used as a battery. Development of a battery as an electrolyte has been studied.

中でも酸化物セラミックス系固体電解質は、化学的な安定性が高く、安全性の観点から注目されている。 Among these, oxide ceramic solid electrolytes are attracting attention from the viewpoint of safety because of their high chemical stability.

このうち、リチウムアルミニウムチタンリン酸化物、ペロブスカイト型リチウムランタンチタン酸化物などのチタン酸化物が、良好なリチウム伝導性を有することから広く検討されてきた。 Among these, titanium oxides such as lithium aluminum titanium phosphorous oxide and perovskite type lithium lanthanum titanium oxide have been widely studied because they have good lithium conductivity.

しかしながら、充放電時に、電極材料と酸化還元反応を起こしてしまい、チタンの一部が4価から3価に還元されてしまうことから、電子伝導性が生まれ、短絡の危険性を有することが問題であった。 However, it causes a redox reaction with the electrode material during charging and discharging, and a part of titanium is reduced from tetravalent to trivalent, so that there is a problem that electronic conductivity is born and there is a risk of short circuit. Met.

一方、最近、立方晶ガーネット関連型の結晶構造を有するリチウムイオン伝導体が検討され、化学的な安定性、電極反応における安定性が高く、またイオン伝導性も酸化物系では高いことから注目されていた。(特許文献1、非特許文献1参照) On the other hand, recently, lithium ion conductors having a cubic garnet-related type crystal structure have been studied and attracted attention because of their high chemical stability and stability in electrode reactions and high ionic conductivity in oxide systems. It was. (See Patent Document 1 and Non-Patent Document 1)

中でも、立方晶ガーネット関連型構造をリチウムランタンジルコニウム酸化物LiLaZr12は、一連の立方晶ガーネット関連型酸化物中で最もリチウムイオン伝導性が高いことから、注目されている。(非特許文献2参照) Among them, the lithium lanthanum zirconium oxide Li 7 La 3 Zr 2 O 12 having a cubic garnet-related structure is attracting attention because it has the highest lithium ion conductivity among a series of cubic garnet-related oxides. (See Non-Patent Document 2)

この物質は、結晶格子の分類から、立方晶系に帰属されるガーネット関連型の結晶構造を有することが知られている。 This substance is known to have a garnet-related crystal structure belonging to a cubic system from the classification of the crystal lattice.

この結晶構造においては、リチウムイオン伝導経路は、リチウムが占有した一次元的な空間が、3次元的に組み合わさっていることによって形成されていることが特徴である。 This crystal structure is characterized in that the lithium ion conduction path is formed by three-dimensionally combining one-dimensional spaces occupied by lithium.

しかしながら、実用的なリチウムイオン伝導性の観点から、さらに高速なリチウム拡散が可能な結晶構造が必要であった。 However, from the viewpoint of practical lithium ion conductivity, a crystal structure capable of faster lithium diffusion was required.

一般に、リチウムイオンの占有する構造の特徴として、占有席の乱れが多く、また占有スペースが拡がった場合に、より良好な伝導性を発現出来る場合が多い。 In general, as a characteristic of the structure occupied by lithium ions, there are many disturbances in occupied seats, and when the occupied space is expanded, better conductivity can often be expressed.

このことを、本ガーネット関連型リチウムイオン伝導体について当てはめると、同じリチウムランタンジルコニウム酸化物について、化学組成比を変えることで格子サイズを大きくし拡散経路を拡大させること、結晶構造に長周期性や変調性を導入しリチウムの占有席を乱すこと等の構造制御が、イオン伝導性の向上に効果的であることが予想された。 When this is applied to this garnet-related lithium ion conductor, for the same lithium lanthanum zirconium oxide, by changing the chemical composition ratio, the lattice size is increased and the diffusion path is expanded, and the crystal structure has long periodicity and It was expected that structural control such as introducing modulation and disturbing the occupied seat of lithium would be effective in improving ion conductivity.

また、リチウムランタンジルコニウム酸化物LiLaZr12の構成元素であるジルコニウムとランタンの組成比によって構造制御された一例として、ZrOなる化合物のジルコニウムをランタンで置換したZr1−xLa2−0.5x(x=0.1、0.5)なる化学組成を有する化合物が報告されている。ランタン量の増加に伴い格子サイズの増大が見られると共に、酸素欠損が結晶構造に秩序性を与えることが報告されている。(非特許文献3参照) Further, as an example of the structure controlled by the composition ratio of zirconium and lanthanum, which are constituent elements of lithium lanthanum zirconium oxide Li 7 La 3 Zr 2 O 12 , Zr 1-x La in which zirconium of the compound ZrO 2 is substituted with lanthanum A compound having a chemical composition of x O 2-0.5x (x = 0.1, 0.5) has been reported. It has been reported that the lattice size increases as the amount of lanthanum increases, and oxygen deficiency gives order to the crystal structure. (See Non-Patent Document 3)

リチウムランタンジルコニウム酸化物系においては、これまでに、正方晶リチウムランタンジルコニウム酸化物LiLaZr12のように、平均構造が低対称化することで、リチウム席が秩序化することは報告されていた。(特許文献2、非特許文献4参照) In the lithium lanthanum zirconium oxide system, the lithium structure has been ordered by reducing the average structure as in the case of tetragonal lithium lanthanum zirconium oxide Li 7 La 3 Zr 2 O 12 so far. It was reported. (See Patent Document 2 and Non-Patent Document 4)

しかしながら、公知の立方晶ガーネット関連型リチウムイオン伝導体において、イオン伝導性の向上に適するような、結晶構造の長周期性、変調性を有する化合物は知られていなかった。 However, in a known cubic garnet-related lithium ion conductor, a compound having a long periodicity and a modulation property of a crystal structure suitable for improving the ionic conductivity has not been known.

特表2007−528108号公報Special table 2007-528108 gazette 特願2008−321998号Japanese Patent Application No. 2008-321998

V.Thangadurai,W.Weppner,Advanced Functional Materials,15,107−112(2005)V. Thangadurai, W.H. Weppner, Advanced Functional Materials, 15, 107-112 (2005) R.Murugan,V.Thangadurai,W.Weppner,Angewandte Chemie−International Edition,46,7778−7781(2007)R. Murugu, V.M. Thangadurai, W.H. Weppner, Agewandte Chemie-International Edition, 46, 7778-7781 (2007) C.−K.Loong,J.W.Richardson,Jr.,M.Ozawa,M.Kimura,Journal of Alloys and Compounds,207/208,174−177(1994)C. -K. Long, J. et al. W. Richardson, Jr. , M.M. Ozawa, M .; Kimura, Journal of Alloys and Compounds, 207/208, 174-177 (1994) J.Awaka,N.Kijima,H.Hayakawa,J.Akimoto,Journal of Solid State Chemistry,182,2046−2052(2009)J. et al. Awaka, N .; Kijima, H .; Hayaka, J .; Akimoto, Journal of Solid State Chemistry, 182, 2046-2052 (2009)

したがって、本発明は、イオン伝導性の向上に適するような、結晶構造の長周期性、変調性を有する立方晶ガーネット関連型リチウムイオン伝導性酸化物、及びその製造方法、並びにそれを部材として使用した電気化学デバイスを提供することを課題とする。 Accordingly, the present invention is a cubic garnet-related lithium ion conductive oxide having a long period and a crystal structure suitable for improving ion conductivity, a method for producing the same, and a method for using the same. It is an object of the present invention to provide an electrochemical device.

課題を解決するための手段は、次のとおりである。
(1)化学組成として、リチウム、ランタン、ジルコニウム、酸素から構成され、Li7+xLa3+xZr2−x12(―3<x<2、x≠0)なる化学組成式で標記されることを特徴とするリチウムイオン伝導性酸化物。
(2)化学組成として、リチウム、ランタン、ジルコニウム、酸素から構成され、Li7+x―2yLa3+xZr2−x12―y(―3<x<2、x≠0、0<y<(3.5+0.5x))なる化学組成式で標記されることを特徴とするリチウムイオン伝導性酸化物。
(3)平均構造として立方晶系の結晶構造を有することを特徴とする、(1)又は(2)に記載のリチウムイオン伝導性酸化物。
(4)平均構造として立方晶ガーネット関連型の結晶構造を有することを特徴とする、(1)又は(2)に記載のリチウムイオン伝導性酸化物。
(5)平均構造として立方晶ガーネット関連型の結晶構造を有し、その立方晶系の格子定数aが12.98Å以上13.20Å以下であることを特徴とする、(1)又は(2)に記載のリチウムイオン伝導性酸化物。
(6)平均構造として立方晶ガーネット関連型の結晶構造を有し、その立方晶系の格子定数aが12.98Å以上13.20Å以下であり、さらにそのX線回折図形において長周期性及び変調性を反映した主反射スポットの分裂、衛星反射スポットの出現、ピークブロード化が観測されることを特徴とする、(1)又は(2)に記載のリチウムイオン伝導性酸化物。
(7)リチウム、ランタン、ジルコニウムの各原料化合物の混合物を出発原料として、600℃以上1300℃以下の温度範囲で合成することを特徴とする、(1)から(6)のいずれかに記載のリチウムイオン伝導性酸化物の製造方法。
(8)正方晶ガーネット型リチウムランタンジルコニウム酸化物を原料として用い、1100℃以上1300℃以下の温度範囲で合成することを特徴とする、(1)から(6)のいずれかに記載のリチウムイオン伝導性酸化物の製造方法。
(9)上記(1)から(6)のいずれかに記載のリチウムイオン伝導性酸化物を、固体電解質材料として利用した電気化学デバイス。
Means for solving the problems are as follows.
(1) The chemical composition is composed of lithium, lanthanum, zirconium, and oxygen, and is represented by a chemical composition formula of Li 7 + x La 3 + x Zr 2−x O 12 (−3 <x <2, x ≠ 0). Lithium ion conductive oxide characterized.
(2) The chemical composition is composed of lithium, lanthanum, zirconium, and oxygen, and Li 7 + x-2y La 3 + x Zr 2−x O 12−y (−3 <x <2, x ≠ 0, 0 <y <(3 .5 + 0.5x)) a lithium ion conductive oxide characterized by the chemical composition formula:
(3) The lithium ion conductive oxide according to (1) or (2), which has a cubic crystal structure as an average structure.
(4) The lithium ion conductive oxide according to (1) or (2), which has a cubic garnet-related crystal structure as an average structure.
(5) It has a cubic garnet-related crystal structure as an average structure, and its cubic lattice constant a is 12.98 to 13.20, (1) or (2) Lithium ion conductive oxide described in 1.
(6) It has a cubic garnet-related crystal structure as an average structure, and its cubic lattice constant a is not less than 12.98Å and not more than 13.20Å, and further, long-periodicity and modulation in its X-ray diffraction pattern The lithium ion conductive oxide according to (1) or (2), characterized in that splitting of the main reflection spot, appearance of a satellite reflection spot, and peak broadening reflecting the properties are observed.
(7) The composition according to any one of (1) to (6), characterized in that it is synthesized in a temperature range of 600 ° C. or more and 1300 ° C. or less using a mixture of raw material compounds of lithium, lanthanum, and zirconium as starting materials. A method for producing a lithium ion conductive oxide.
(8) The lithium ion according to any one of (1) to (6), characterized in that it is synthesized in a temperature range of 1100 ° C. to 1300 ° C. using tetragonal garnet-type lithium lanthanum zirconium oxide as a raw material. A method for producing a conductive oxide.
(9) An electrochemical device using the lithium ion conductive oxide according to any one of (1) to (6) as a solid electrolyte material.

本発明によれば、高速なリチウムイオン伝導性を有し、平均構造として立方晶系に属したガーネット関連型リチウムイオン伝導体の新規化合物を製造可能であり、この酸化物を固体電解質材料として使用することによって、優れた特性を有するリチウム二次電池などの電気化学デバイスが可能となる。 According to the present invention, it is possible to produce a novel compound of a garnet-related lithium ion conductor having high-speed lithium ion conductivity and belonging to a cubic system as an average structure, and using this oxide as a solid electrolyte material By doing so, an electrochemical device such as a lithium secondary battery having excellent characteristics becomes possible.

全固体リチウム二次電池の1例を示す模式図である。It is a schematic diagram which shows one example of an all-solid-state lithium secondary battery. ガーネット関連型化合物が有する平均構造を示す図である。It is a figure which shows the average structure which a garnet related type compound has. 実施例1で合成されたLi7.1La3.1Zr1.912の単結晶X線回折図形である。1 is a single crystal X-ray diffraction pattern of Li 7.1 La 3.1 Zr 1.9 O 12 synthesized in Example 1. FIG. 図3の拡大図である。FIG. 4 is an enlarged view of FIG. 3. 比較例1で合成されたLiLaZr12(a)と実施例2で合成された本発明のLi7.0La3.2Zr1.811.9(b)の粉末X線回折図形を比較した図である。Powder of Li 7 La 3 Zr 2 O 12 (a) synthesized in Comparative Example 1 and Li 7.0 La 3.2 Zr 1.8 O 11.9 (b) of the present invention synthesized in Example 2 It is the figure which compared the X-ray diffraction pattern. 比較例1で合成されたLiLaZr12の単結晶X線回折図形である。 2 is a single crystal X-ray diffraction pattern of Li 7 La 3 Zr 2 O 12 synthesized in Comparative Example 1. FIG. 図6の拡大図である。FIG. 7 is an enlarged view of FIG. 6.

本発明者らは、平均構造が立方晶系のガーネット関連型で説明されるリチウムランタンジルコニウム酸化物の化学組成範囲について鋭意検討した結果、ジルコニウムの一部をランタンで置換できること、またリチウム量を酸素欠損量で制御可能なことを見出し、化学組成が異なる新規化合物が存在することを見出した。 As a result of intensive studies on the chemical composition range of lithium lanthanum zirconium oxide, which is explained in the cubic garnet-related type, the average structure of the present inventors, it was found that a part of zirconium can be substituted with lanthanum, and the amount of lithium is It was found that it can be controlled by the amount of deficiency and found that there are novel compounds having different chemical compositions.

その結果として、公知の立方晶ガーネット関連型LiLaZr12と比べて、結晶格子体積を増大することができ、また、単結晶X線回折図形において、結晶構造の長周期性、変調性を示す主反射スポットの割れ、衛星反射スポットを観測すると共に、粉末X線回折図形において、回折ピークのブロード化を確認できたことから、本発明は完成するに至った。 As a result, compared to the known cubic garnet-related Li 7 La 3 Zr 2 O 12 , the crystal lattice volume can be increased, and in the single crystal X-ray diffraction pattern, the long periodicity of the crystal structure, The present invention has been completed by observing cracks in the main reflection spot and satellite reflection spots showing the modulation property and confirming the broadening of diffraction peaks in the powder X-ray diffraction pattern.

本発明のリチウムイオン伝導性酸化物は、公知の化合物LiLaZr12のランタンの一部をジルコニウム、もしくはジルコニウムの一部をランタンで置換し、電荷補償のためリチウム量が変化したLi7+xLa3+xZr2−x12(―3<x<2、x≠0)なる化学組成をもつ化合物である。
又は、ランタンの一部をジルコニウム、もしくはジルコニウムの一部をランタンで置換すると同時に、電荷補償のためリチウム及び酸素量が変化したLi7+x―2yLa3+xZr2−x12―y(―3<x<2、x≠0、0<y<(3.5+0.5x))なる化学組成をもつ新規化合物である。
その結晶構造の特徴として、平均構造として立方晶系のガーネット関連型構造をもつことを特徴とする化合物であり、さらに、立方晶系の格子定数aが12.98Å以上13.20Å以下であることを特徴とする化合物である。
さらにより詳しい結晶構造の特徴として、そのX線回折図形において長周期性及び変調性を反映した主反射スポットの分裂、衛星反射スポットの出現、ピークブロード化が観測されることを特徴とする化合物である。
また、このリチウムイオン伝導性酸化物の製造方法は、リチウム、ランタン、ジルコニウムの各原料化合物の混合物を出発原料として、600℃以上1300℃以下の温度範囲で焼成することを特徴としている。
さらにまた、このリチウムイオン伝導性酸化物の別の製造方法として、正方晶ガーネット型リチウムランタンジルコニウム酸化物を原料として用い、1100℃以上1300℃以下の温度範囲で合成することを特徴としている。
さらに、これらのガーネット関連型構造を有するリチウムイオン伝導性酸化物は、全固体リチウム二次電池、リチウム空気二次電池、リチウム電池などの電気化学デバイスにおいて固体電解質材料として使用できることを特徴とする。
In the lithium ion conductive oxide of the present invention, a part of lanthanum of the known compound Li 7 La 3 Zr 2 O 12 was substituted with zirconium or a part of zirconium with lanthanum, and the amount of lithium was changed for charge compensation. It is a compound having a chemical composition of Li 7 + x La 3 + x Zr 2−x O 12 (−3 <x <2, x ≠ 0).
Alternatively, Li 7 + x−2y La 3 + x Zr 2−x O 12−y (−3 << 3) in which a part of lanthanum is replaced with zirconium or a part of zirconium is replaced with lanthanum and at the same time the amount of lithium and oxygen is changed for charge compensation. It is a novel compound having a chemical composition of x <2, x ≠ 0, 0 <y <(3.5 + 0.5x)).
The crystal structure is characterized by having a cubic garnet-related structure as an average structure, and the cubic lattice constant a is not less than 12.98 and not more than 13.20. It is a compound characterized by these.
As a more detailed characteristic of the crystal structure, it is a compound characterized in that the main reflection spot splitting, the appearance of the satellite reflection spot, and the peak broadening reflected in the X-ray diffraction pattern reflecting the long periodicity and modulation are observed. is there.
In addition, this method for producing a lithium ion conductive oxide is characterized by firing in a temperature range of 600 ° C. to 1300 ° C. using a mixture of raw material compounds of lithium, lanthanum, and zirconium as starting materials.
Furthermore, another method for producing this lithium ion conductive oxide is characterized by using tetragonal garnet-type lithium lanthanum zirconium oxide as a raw material and synthesizing in a temperature range of 1100 ° C. or higher and 1300 ° C. or lower.
Furthermore, lithium ion conductive oxides having these garnet-related structures can be used as solid electrolyte materials in electrochemical devices such as all-solid lithium secondary batteries, lithium-air secondary batteries, and lithium batteries.

本発明に係わる製造方法をさらに詳しく説明する。
(Li7+xLa3+xZr2−x12(―3<x<2、x≠0)及びLi7+x―2yLa3+xZr2−x12―y(―3<x<2、x≠0、0<y<(3.5+0.5x))のリチウム、ランタン、ジルコニウムの各原料化合物を出発原料とした合成)
本発明のリチウムイオン伝導性酸化物は、原料として、リチウム元素を含む化合物の少なくとも1種、ランタン元素を含む化合物の少なくとも1種、ジルコニウム元素を含む化合物の少なくとも1種を用い、所定の比率となるよう出発原料を秤量・混合し、空気中などの酸素ガスが存在する雰囲気中で加熱することによって合成することができる。
The production method according to the present invention will be described in more detail.
(Li 7 + x La 3 + x Zr 2−x O 12 (−3 <x <2, x ≠ 0) and Li 7 + x−2y La 3 + x Zr 2−x O 12−y (−3 <x <2, x ≠ 0, Synthesis with starting materials of lithium, lanthanum and zirconium starting materials of 0 <y <(3.5 + 0.5x))
The lithium ion conductive oxide of the present invention uses, as a raw material, at least one compound containing a lithium element, at least one compound containing a lanthanum element, and at least one compound containing a zirconium element, The starting materials can be weighed and mixed so as to be synthesized and heated in an atmosphere containing oxygen gas such as air.

リチウム原料としては、リチウム(金属リチウム)及びリチウム化合物の少なくとも1種を用いる。リチウム化合物としては、リチウムを含有するものであれば特に制限されず、例えば、Li等の酸化物、LiCO、LiNO等の塩類、LiOH等の水酸化物等があげられる。これらの中でも、特にLiCO又はLiNOが好ましい。 As the lithium raw material, at least one of lithium (metallic lithium) and a lithium compound is used. The lithium compound is not particularly limited as long as it contains lithium, and examples thereof include oxides such as Li 2 O 2 , salts such as Li 2 CO 3 and LiNO 3 , and hydroxides such as LiOH. . Among these, Li 2 CO 3 or LiNO 3 is particularly preferable.

ランタン原料としては、ランタン(金属ランタン)及びランタン化合物の少なくとも1種を用いる。ランタン化合物としては、ランタンを含有するものであれば特に制限されず、例えば、La等の酸化物、La(CO、La(NO等の塩類等があげられる。これらの中でも、特にLa等が好ましい。 As the lanthanum raw material, at least one of lanthanum (metal lanthanum) and a lanthanum compound is used. The lanthanum compound is not particularly limited as long as it contains lanthanum, and examples thereof include oxides such as La 2 O 3 and salts such as La 2 (CO 3 ) 3 and La (NO 3 ) 3. . Among these, La 2 O 3 and the like are particularly preferable.

ジルコニウム原料としては、ジルコニウム(金属ジルコニウム)及びジルコニウム化合物の少なくとも1種を用いる。ジルコニウム化合物としては、ジルコニウムを含有するものであれば特に制限されず、例えば、ZrO等の酸化物、ZrCといった炭化物、ZrN等の窒化物等があげられる。これらの中でも、特にZrO等が好ましい。 As the zirconium raw material, at least one of zirconium (metallic zirconium) and a zirconium compound is used. The zirconium compound is not particularly limited as long as it contains zirconium, and examples thereof include oxides such as ZrO 2 , carbides such as ZrC, and nitrides such as ZrN. Among these, ZrO 2 is particularly preferable.

はじめに、これらを含む混合物を調整する。各出発原料の混合の割合は、生成物の組成がLi7+xLa3+xZr2−x12(―3<x<2、x≠0)及びLi7+x―2yLa3+xZr2−x12―y(―3<x<2、x≠0、0<y<(3.5+0.5x))の化学組成となるように混合することが好ましい。このうち、Liは高温で揮発し易いことから、目的組成よりも3〜10%多く秤量することがより好ましい。混合方法は、これらを均一に混合できる限り、特に限定されず、例えばミキサー等の公知の混合機を用いて、湿式又は乾式で混合すればよい。 First, a mixture containing these is prepared. The mixing ratio of each starting material is such that the product composition is Li 7 + x La 3 + x Zr 2−x O 12 (−3 <x <2, x ≠ 0) and Li 7 + x−2y La 3 + x Zr 2−x O 12− It is preferable to mix such that the chemical composition is y (−3 <x <2, x ≠ 0, 0 <y <(3.5 + 0.5x)). Among these, since Li easily volatilizes at a high temperature, it is more preferable to weigh 3 to 10% more than the target composition. The mixing method is not particularly limited as long as these can be uniformly mixed, and may be mixed by a wet method or a dry method using a known mixer such as a mixer.

次いで、粒子サイズを整えた粉体試料を、成型する。成型方法は特に限定されず、例えば錠剤成型器、一軸加圧プレス、静水圧プレス、HIP、CIP等を利用した公知の方法で成型すればよい。本焼成の前に、あらかじめ仮焼、焼結体の作製を行ってもよい。 Next, a powder sample with an adjusted particle size is molded. The molding method is not particularly limited, and may be molded by a known method using, for example, a tablet molding machine, a uniaxial press, a hydrostatic press, HIP, CIP or the like. Prior to the main firing, calcination and production of a sintered body may be performed in advance.

次いで、成型した試料を、るつぼ等の容器に入れる。るつぼ材としては、アルミナ、白金など、通常高温で安定な材質のものが好ましい。 Next, the molded sample is put into a container such as a crucible. The crucible material is preferably made of a material that is usually stable at high temperatures, such as alumina or platinum.

次いで、熱処理をおこなう。組成比は熱処理温度に依存し適宜設定することが出来るが、通常は600℃〜1300℃、好ましくは1100℃〜1270℃とすればよい。熱処理時の雰囲気も特に限定されず、通常は酸化性雰囲気又は大気中で実施すればよい。熱処理時間は、熱処理温度などに応じて適宜変更することができる。冷却方法も特に限定されないが、通常は自然放冷(炉内放冷)又は徐冷とすればよい。 Next, heat treatment is performed. The composition ratio can be appropriately set depending on the heat treatment temperature, but it is usually 600 ° C. to 1300 ° C., preferably 1100 ° C. to 1270 ° C. The atmosphere at the time of the heat treatment is not particularly limited, and may be usually performed in an oxidizing atmosphere or air. The heat treatment time can be appropriately changed according to the heat treatment temperature and the like. The cooling method is not particularly limited, but may be natural cooling (cooling in the furnace) or slow cooling.

(Li7+xLa3+xZr2−x12(―3<x<2、x≠0)及びLi7+x―2yLa3+xZr2−x12―y(―3<x<2、x≠0、0<y<(3.5+0.5x))の正方晶リチウムランタンジルコニウム酸化物を出発原料とした合成)
本発明のリチウムイオン伝導性酸化物は、別の製造方法として、原料として正方晶ガーネット型リチウムランタンジルコニウム酸化物を用い、空気中などの酸素ガスの存在する雰囲気中で加熱することによっても、高温での熱分解反応を伴うことによって、合成することができる。
(Li 7 + x La 3 + x Zr 2−x O 12 (−3 <x <2, x ≠ 0) and Li 7 + x−2y La 3 + x Zr 2−x O 12−y (−3 <x <2, x ≠ 0, Synthesis using tetragonal lithium lanthanum zirconium oxide of 0 <y <(3.5 + 0.5x)) as a starting material)
The lithium ion conductive oxide of the present invention, as another production method, uses tetragonal garnet-type lithium lanthanum zirconium oxide as a raw material, and is heated in an atmosphere containing oxygen gas such as in the air. It can be synthesized by involving a thermal decomposition reaction at.

原料である正方晶ガーネット型リチウムランタンジルコニウム酸化物は、リチウム、ランタン、ジルコニウム、酸素を主要構成元素として含有し、正方晶系に属したガーネット型の結晶構造を有した化合物であれば特に制限されない。例えば、正方晶ガーネット型LiLaZr12が好ましい。 The raw material tetragonal garnet-type lithium lanthanum zirconium oxide is not particularly limited as long as it is a compound that contains lithium, lanthanum, zirconium, and oxygen as main constituent elements and has a garnet-type crystal structure belonging to the tetragonal system. . For example, tetragonal garnet-type Li 7 La 3 Zr 2 O 12 is preferable.

はじめに、出発原料である正方晶ガーネット関連型リチウムランタンジルコニウム酸化物を粉砕・混合することが好ましい。粉砕・混合方法は、これらを均一に粉砕・混合できる限り、特に限定されず、例えばミキサー等の公知の粉砕・混合機を用いて、湿式又は乾式で粉砕・混合すればよい。 First, it is preferable to pulverize and mix tetragonal garnet-related lithium lanthanum zirconium oxide as a starting material. The pulverization / mixing method is not particularly limited as long as they can be uniformly pulverized / mixed, and may be pulverized / mixed in a wet or dry manner using a known pulverizer / mixer such as a mixer.

次いで、粒子サイズを整えた粉体試料を、成型する。成型方法は特に限定されず、例えば錠剤成型器、一軸加圧プレス、静水圧プレス、HIP、CIP等を利用した公知の方法で成型すればよい。本焼成の前に、あらかじめ仮焼、焼結体の作製を行ってもよい。 Next, a powder sample with an adjusted particle size is molded. The molding method is not particularly limited, and may be molded by a known method using, for example, a tablet molding machine, a uniaxial press, a hydrostatic press, HIP, CIP or the like. Prior to the main firing, calcination and production of a sintered body may be performed in advance.

次いで、成型した試料を、るつぼ等の容器に入れる。るつぼ材としては、アルミナ、白金などなど、通常高温で安定な材質のものが好ましい。高温時に、リチウム化合物、ジルコニウム化合物、ランタン化合物が揮発することが、この合成方法では重要となってくるので、揮発の程度を蓋等を用いて、るつぼの密閉性を制御することが好ましい、 Next, the molded sample is put into a container such as a crucible. The crucible material is preferably made of a material that is usually stable at high temperatures, such as alumina or platinum. Since it is important in this synthesis method that the lithium compound, zirconium compound, and lanthanum compound volatilize at a high temperature, it is preferable to control the sealing property of the crucible using a lid or the like.

次いで、熱処理をおこなう。組成比は熱処理温度に依存し適宜設定することが出来るが、通常は正方晶が安定に存在し難い1100℃〜1300℃、好ましくは1130℃〜1270℃とすればよい。熱処理時の雰囲気も特に限定されず、通常は酸化性雰囲気又は大気中で実施すればよい。熱処理時間は、熱処理温度などに応じて適宜変更することができる。冷却方法も特に限定されないが、通常は自然放冷(炉内放冷)又は徐冷とすればよい。 Next, heat treatment is performed. The composition ratio can be set as appropriate depending on the heat treatment temperature, but it is usually 1100 ° C. to 1300 ° C., preferably 1130 ° C. to 1270 ° C., in which tetragonal crystals hardly exist stably. The atmosphere at the time of the heat treatment is not particularly limited, and may be usually performed in an oxidizing atmosphere or air. The heat treatment time can be appropriately changed according to the heat treatment temperature and the like. The cooling method is not particularly limited, but may be natural cooling (cooling in the furnace) or slow cooling.

(固体電解質の作製)
次いで、上記により得られたガーネット関連型リチウムイオン伝導体化合物を用いて、リチウム電池などの電気化学デバイスに使用する固体電解質材料を作製する。
(Production of solid electrolyte)
Subsequently, the solid electrolyte material used for electrochemical devices, such as a lithium battery, is produced using the garnet related type lithium ion conductor compound obtained by the above.

すなわち、上記リチウムイオン伝導性酸化物の粉体成型体、もしくは、焼結体、或いは薄膜化することによって、固体電解質が作製できる。 That is, a solid electrolyte can be produced by forming a powder molded body, a sintered body, or a thin film of the lithium ion conductive oxide.

このうち、焼結体は、あらかじめ合成された上記粉体を原料として用い、一軸加圧、或いは静水圧プレス、ホットプレス、通電焼結法などの公知の加圧・成型手法によって、作製された成型体を、600℃〜1400℃、好ましくは800℃〜1000℃で焼成することによって作製できる。焼成雰囲気も特に限定されず、通常は酸化性雰囲気又は大気中で実施すればよい。焼成時間は、焼成温度などに応じて適宜変更することができる。冷却方法も特に限定されないが、通常は自然放冷(炉内放冷)又は徐冷とすればよい。この際、高温焼成時に、リチウムが高温で揮発しやすいために分解してしまうことを抑制するために、成型体を上記粉体で覆っておくことが望ましい。 Among these, the sintered body was produced by using known powder / molding techniques such as uniaxial pressing or isostatic pressing, hot pressing, and current sintering using the previously synthesized powder as a raw material. The molded body can be produced by firing at 600 ° C. to 1400 ° C., preferably 800 ° C. to 1000 ° C. The firing atmosphere is not particularly limited, and the firing atmosphere is usually performed in an oxidizing atmosphere or air. The firing time can be appropriately changed according to the firing temperature and the like. The cooling method is not particularly limited, but may be natural cooling (cooling in the furnace) or slow cooling. At this time, it is desirable to cover the molded body with the above powder in order to prevent the lithium from being decomposed due to high volatility at high temperature during firing.

また、固体電解質膜の作製には、通常の薄膜並びに厚膜作製プロセスを適用可能であり、スパッター法、レーザーアブレーション(PLD)法、エアロゾルデポジッション(AD)法、或いは簡便な塗工・乾燥プロセスなどの方法が適用できる。 In addition, for the production of solid electrolyte membranes, normal thin film and thick film production processes can be applied, such as sputtering, laser ablation (PLD), aerosol deposition (AD), or simple coating / drying processes. Such a method can be applied.

(電気化学デバイスの作製)
本発明の電気化学デバイスは、上記リチウムイオン伝導性酸化物を使用した固体電解質を部材として用いるものである。すなわち、固体電解質材料のひとつとして本発明のリチウムイオン伝導性酸化物を用いる以外は、公知のリチウム二次電池(コイン型、ボタン型、円筒型、全固体型等)、リチウム電池、アルカリ電池、センサーなどの電気化学デバイスの要素技術をそのまま採用することができる。
(Production of electrochemical devices)
The electrochemical device of the present invention uses a solid electrolyte using the above lithium ion conductive oxide as a member. That is, other than using the lithium ion conductive oxide of the present invention as one of the solid electrolyte materials, known lithium secondary batteries (coin type, button type, cylindrical type, all solid type, etc.), lithium batteries, alkaline batteries, Elemental technologies of electrochemical devices such as sensors can be used as they are.

図1は、本発明の電気化学デバイスとして、コイン型リチウム二次電池に適用した1例を示す模式図である。このコイン型電池1は、負極端子2、負極3、固体電解質4、絶縁パッキング5、正極6、正極缶7により構成される。 FIG. 1 is a schematic view showing an example in which the present invention is applied to a coin-type lithium secondary battery as an electrochemical device of the present invention. The coin battery 1 includes a negative electrode terminal 2, a negative electrode 3, a solid electrolyte 4, an insulating packing 5, a positive electrode 6, and a positive electrode can 7.

本発明の電気化学デバイス(リチウム二次電池)において、上記本発明のリチウムイオン伝導性酸化物を固体電解質材料として適用できる。そのため、公知のリチウム二次電池で多く使用されている有機電解液やセパレータの使用を必ずしも必要としない点が、大きな特徴である。 In the electrochemical device (lithium secondary battery) of the present invention, the lithium ion conductive oxide of the present invention can be applied as a solid electrolyte material. Therefore, it is a great feature that it is not always necessary to use an organic electrolyte or a separator that is often used in known lithium secondary batteries.

本発明のリチウム二次電池において、正極材料としては、例えばリチウムコバルト酸化物(LiCoO)やリチウムマンガン酸化物(LiMn)などの、正極として機能し、リチウム基準で電位が比較的高く、かつリチウムを吸蔵可能な公知のものを採用することができる。特に、本材料は、5V程度の高電位でも安定に電解質として機能することが特徴であることから、高い電位を有する正極材料の使用が可能である。 In the lithium secondary battery of the present invention, the positive electrode material functions as a positive electrode such as lithium cobalt oxide (LiCoO 2 ) or lithium manganese oxide (LiMn 2 O 4 ), and has a relatively high potential on the basis of lithium. In addition, a known material capable of occluding lithium can be employed. In particular, since this material is characterized by functioning stably as an electrolyte even at a high potential of about 5 V, a positive electrode material having a high potential can be used.

また、本発明のリチウム二次電池において、負極材料としては、例えば金属リチウム、リチウム合金、炭素材料、リチウムチタン酸化物など、負極として機能し、リチウム基準で電位が比較的低く、かつリチウムを吸蔵可能な公知のものを採用することができる。特に、本材料は金属リチウムに対しても還元されず、また、5V程度の高電位でも安定に電解質として機能することが特徴であることから、幅広い材料の選択が可能である。
また、本発明のリチウム二次電池において、電池容器等も公知の電池要素を採用すればよい。
In the lithium secondary battery of the present invention, as the negative electrode material, for example, metallic lithium, lithium alloy, carbon material, lithium titanium oxide, etc., function as a negative electrode, have a relatively low potential with respect to lithium, and occlude lithium. Possible known ones can be employed. In particular, this material is not reduced against metallic lithium, and also functions stably as an electrolyte even at a high potential of about 5 V, so that a wide range of materials can be selected.
In the lithium secondary battery of the present invention, a known battery element may be adopted for the battery container and the like.

以下に、実施例を示し、本発明の特徴とするところをより一層明確にする。本発明は、これら実施例に限定されるものではない。 Hereinafter, examples will be shown to further clarify the features of the present invention. The present invention is not limited to these examples.

[実施例1]
(リチウムイオン伝導性酸化物Li7+xLa3+xZr2−x12の合成)
出発原料として、純度99.9%以上の硝酸リチウム(LiNO)粉末、純度99.9%以上の酸化ランタン(La)粉末、純度99.9%以上の酸化ジルコニウム(ZrO)粉末を用いて、Li:La:Zrのモル比で7.2:3.1:1.9となるように秤量した。これらを乳鉢中で混合した後、錠剤成型器を用いて成型し、アルミナるつぼ(Al 99.6%)に入れた。これを電気炉に入れ、空気中、1150℃で、4時間加熱することで試料を得た。
[Example 1]
(Synthesis of lithium ion conductive oxide Li 7 + x La 3 + x Zr 2-x O 12)
As starting materials, lithium nitrate (LiNO 3 ) powder having a purity of 99.9% or more, lanthanum oxide (La 2 O 3 ) powder having a purity of 99.9% or more, zirconium oxide (ZrO 2 ) powder having a purity of 99.9% or more Was used so that the molar ratio of Li: La: Zr was 7.2: 3.1: 1.9. These were mixed in a mortar, then molded using a tablet molding machine, and placed in an alumina crucible (Al 2 O 3 99.6%). This was put in an electric furnace and a sample was obtained by heating in air at 1150 ° C. for 4 hours.

得られた試料中から、粒成長した粒子を一粒選定し、イメージングプレート式単結晶X線回折装置によって単結晶X線回折測定を行った。図3に得られた単結晶X線回折図形(振動写真)を、図4にその拡大図を示す。図3から、主反射スポットは、立方晶系のガーネット関連型の結晶構造で妥当であることが確認された。 One grain-grown particle was selected from the obtained samples, and single crystal X-ray diffraction measurement was performed using an imaging plate type single crystal X-ray diffractometer. FIG. 3 shows a single crystal X-ray diffraction pattern (vibration photograph) obtained, and FIG. 4 shows an enlarged view thereof. From FIG. 3, it was confirmed that the main reflection spot was appropriate in a cubic garnet-related crystal structure.

しかしながら、回折図形から立方晶系の格子定数を求めたところ、以下の値となり、公知のLiLaZr12の格子定数と比べて、明らかに長く、化学組成の違いがあることが示唆され、新化合物であることが明らかとなった。
a=13.134Å(誤差0.004Å以内)
However, when the cubic lattice constant is obtained from the diffraction pattern, the following values are obtained, which are clearly longer than the known Li 7 La 3 Zr 2 O 12 lattice constant and have a difference in chemical composition. It was suggested that it was a new compound.
a = 13.134 mm (within an error of 0.004 mm)

さらに、図4の回折図形を詳しく見ていくと、結晶構造の長周期性、或いは変調性を示唆する反射スポットの割れが見られ、衛星反射スポットが出現していることが明らかとなった。このような回折図形は公知の立方晶系LiLaZr12では報告されておらず、化学組成の変化による結晶構造の長周期性であることが確認された。 Further, when the diffraction pattern of FIG. 4 is examined in detail, it is clear that the reflection spot cracks suggesting the long periodicity or modulation of the crystal structure, and the satellite reflection spot appears. Such a diffraction pattern has not been reported in the known cubic system Li 7 La 3 Zr 2 O 12 , and was confirmed to be a long periodicity of the crystal structure due to a change in chemical composition.

得られた試料について、エネルギー分散型X線分析装置を用いて、ランタンとジルコニウムの化学組成を分析したところ、La:Zr=3.1:1.9であり、電荷補償から見積もった化学組成式としては、Li7.1La3.1Zr1.912で妥当であった。この結果から、本リチウムイオン伝導性酸化物は、公知のLiLaZr12と比べ、ジルコニウムの一部をランタンが置換したLi7+xLa3+xZr2−x12(x=0.1)組成であることが明らかとなり、結晶構造の長周期性の起源が化学組成のずれであることが明らかとなった。 When the chemical composition of lanthanum and zirconium was analyzed for the obtained sample using an energy dispersive X-ray analyzer, La: Zr = 3.1: 1.9, and the chemical composition formula estimated from charge compensation As Li 7.1 La 3.1 Zr 1.9 O 12 . From this result, compared with the publicly known Li 7 La 3 Zr 2 O 12 , the present lithium ion conductive oxide is Li 7 + x La 3 + x Zr 2−x O 12 (x = 0. 1) It became clear that it was a composition, and it became clear that the origin of the long periodicity of the crystal structure was a shift in chemical composition.

[比較例1]
(立方晶LiLaZr12の合成)
非特許文献4に記述されている公知の製法によりあらかじめ合成された正方晶ガーネット型リチウムランタンジルコニウム酸化物を原料として用い、乳鉢中で粉砕・混合した後、錠剤成型器を用いて成型したものを、蓋付きのアルミナるつぼ(Al、純度99.6%)に入れた。これを電気炉に入れ、空気中、1250℃で、6時間加熱した。電気炉中で自然放冷した後、取り出した。
[Comparative Example 1]
(Synthesis of cubic Li 7 La 3 Zr 2 O 12 )
A tetragonal garnet-type lithium lanthanum zirconium oxide synthesized in advance by a known production method described in Non-Patent Document 4 is used as a raw material, pulverized and mixed in a mortar, and then molded using a tablet molding machine. In an alumina crucible with a lid (Al 2 O 3 , purity 99.6%). This was put into an electric furnace and heated in air at 1250 ° C. for 6 hours. After naturally cooling in an electric furnace, it was taken out.

得られた試料について、粉末X線回折装置を用いて、粉末X線回折測定を行った結果、平均構造が立方晶系、ガーネット関連型構造を有する単一相であることが明らかになった。その粉末X線回折図形を図5(a)に示す。この結果から、非常に良好な結晶性を有する、単一相試料であることが確認された。 The obtained sample was subjected to powder X-ray diffraction measurement using a powder X-ray diffractometer. As a result, it was found that the average structure was a single phase having a cubic system and a garnet-related structure. The powder X-ray diffraction pattern is shown in FIG. From this result, it was confirmed that it was a single phase sample having very good crystallinity.

さらに、得られた試料について、粒成長した粒子を一粒選定し、イメージングプレート式単結晶X線回折装置によって単結晶X線回折図形を測定した。図6に得られた単結晶X線回折図形(振動写真)を、図7にその拡大図を示す。主反射、明瞭な単一のスポットとして観測され、図4の場合のような長周期性、或いは変調性などは認められず、その結晶構造は、立方晶系で十分説明可能であった。また、回折図形から、立方晶系ガーネット関連型構造の格子定数を求めたところ、以下の値となり、非特許文献2に記述されている公知のLiLaZr12と非常に良い一致であり、生成物は、LiLaZr12であることが確認された。
a=12.959Å(誤差0.002Å以内)
Further, for the obtained sample, one grain-grown particle was selected, and a single crystal X-ray diffraction pattern was measured by an imaging plate type single crystal X-ray diffractometer. FIG. 6 shows a single crystal X-ray diffraction pattern (vibration photograph) obtained, and FIG. 7 shows an enlarged view thereof. The main reflection was observed as a clear single spot, and no long periodicity or modulation as in the case of FIG. 4 was observed, and the crystal structure was sufficiently explained by a cubic system. Further, when the lattice constant of the cubic garnet-related structure was obtained from the diffraction pattern, the following values were obtained, which was in good agreement with the known Li 7 La 3 Zr 2 O 12 described in Non-Patent Document 2. And the product was confirmed to be Li 7 La 3 Zr 2 O 12 .
a = 12.959 mm (within 0.002 mm error)

[実施例2]
(リチウムイオン伝導性酸化物Li7+x―2yLa3+xZr2−x12―y(―3<x<2、0<y<(3.5+0.5x))の合成)
非特許文献2に記述されている公知の製法によりあらかじめ合成された正方晶ガーネット型LiLaZr12を原料として用い、乳鉢中で粉砕・混合した後、錠剤成型器を用いて成型した試料を、蓋なしのアルミナるつぼ(Al、純度99.6%)に入れた。これを電気炉に入れ、空気中、1150℃で6時間加熱した。得られた生成物は、電気炉中で自然放冷することによって、取り出した。
[Example 2]
(Synthesis of lithium ion conductive oxide Li 7 + x-2y La 3 + x Zr 2-x O 12-y (-3 <x <2,0 <y <(3.5 + 0.5x)))
Using tetragonal garnet-type Li 7 La 3 Zr 2 O 12 synthesized in advance by a known production method described in Non-Patent Document 2 as a raw material, pulverized and mixed in a mortar, and then molded using a tablet molding machine The sample was placed in an alumina crucible (Al 2 O 3 , purity 99.6%) without a lid. This was put into an electric furnace and heated in air at 1150 ° C. for 6 hours. The obtained product was taken out by naturally cooling in an electric furnace.

得られた試料について、粉末X線回折装置を用いて粉末X線回折測定を行った結果、平均構造が立方晶系、ガーネット関連型構造を有する単一相であることが明らかになった。その粉末X線回折図形を図5(b)に示す。 The obtained sample was subjected to powder X-ray diffraction measurement using a powder X-ray diffractometer. As a result, it was revealed that the average structure was a single phase having a cubic system and a garnet-related structure. The powder X-ray diffraction pattern is shown in FIG.

図5(a)に示す公知のガーネット関連型LiLaZr12の粉末X線回折図形と比べると、図5(b)のパターンはピーク位置が低角側へシフトしており、格子定数がより大きいことが明らかとなった。 Compared with the powder X-ray diffraction pattern of the known garnet-related Li 7 La 3 Zr 2 O 12 shown in FIG. 5 (a), the peak position of the pattern in FIG. 5 (b) is shifted to the low angle side, It became clear that the lattice constant was larger.

さらに、そのピークは明らかにブロード化しており、特に低角度側の裾が広がった形状を有することが確認され、構造の長周期性、或いは変調性などを示唆する図5の単結晶X線回折図形と良く合致した結果であった。このような結果は、公知のLiLaZr12では報告されておらず、化学組成の変化による結晶構造の違いと判断された。 Furthermore, the peak is clearly broad, and it is confirmed that it has a shape with an especially wide skirt on the low angle side, suggesting the long period or modulation of the structure, etc. The single crystal X-ray diffraction of FIG. The result was in good agreement with the figure. Such a result was not reported in the known Li 7 La 3 Zr 2 O 12 , and was judged to be a difference in crystal structure due to a change in chemical composition.

また、本試料について、ICP−AES法により化学組成分析を行った結果、Li7.0La3.2Zr1.811.9で妥当であり、Li7+x―2yLa3+xZr2−x12―yの化学組成式におけるx=0.2、y=0.1に相当する組成であることが確認された。 Further, as a result of chemical composition analysis of this sample by ICP-AES method, Li 7.0 La 3.2 Zr 1.8 O 11.9 is valid, and Li 7 + x-2y La 3 + x Zr 2-x It was confirmed that the composition corresponds to x = 0.2 and y = 0.1 in the chemical composition formula of O 12-y .

さらに、上記リチウムイオン伝導性酸化物の生成のためには、リチウム、ジルコニウム、酸素の試料中からの揮発が必要であるが、実際、るつぼ外に揮発したZrOの結晶相析出が確認された。この結果は、本リチウムイオン伝導性酸化物におけるジルコニウム欠損組成を示唆するものである。 Furthermore, in order to produce the lithium ion conductive oxide, it is necessary to volatilize lithium, zirconium, and oxygen from the sample, but in fact, the crystal phase precipitation of ZrO 2 volatilized outside the crucible was confirmed. . This result suggests a zirconium deficient composition in the present lithium ion conductive oxide.

1 コイン型リチウム二次電池
2 負極端子
3 負極
4 固体電解質
5 絶縁パッキング
6 正極
7 正極缶
DESCRIPTION OF SYMBOLS 1 Coin type lithium secondary battery 2 Negative electrode terminal 3 Negative electrode 4 Solid electrolyte 5 Insulation packing 6 Positive electrode 7 Positive electrode can

Claims (9)

化学組成として、リチウム、ランタン、ジルコニウム、酸素から構成され、Li7+xLa3+xZr2−x12(―3<x<2、x≠0)なる化学組成式で標記されることを特徴とするリチウムイオン伝導性酸化物。 The chemical composition is composed of lithium, lanthanum, zirconium, and oxygen, and is represented by a chemical composition formula of Li 7 + x La 3 + x Zr 2−x O 12 (−3 <x <2, x ≠ 0). Lithium ion conductive oxide. 化学組成として、リチウム、ランタン、ジルコニウム、酸素から構成され、Li7+x―2yLa3+xZr2−x12―y(―3<x<2、x≠0、0<y<(3.5+0.5x))なる化学組成式で標記されることを特徴とするリチウムイオン伝導性酸化物。 The chemical composition is composed of lithium, lanthanum, zirconium, and oxygen, and Li 7 + x-2y La 3 + x Zr 2-x O 12-y (-3 <x <2, x ≠ 0, 0 <y <(3.5 + 0. 5x)) Lithium ion conductive oxide characterized by the chemical composition formula 平均構造として立方晶系の結晶構造を有することを特徴とする、請求項1又は2に記載のリチウムイオン伝導性酸化物。 3. The lithium ion conductive oxide according to claim 1, wherein the lithium ion conductive oxide has a cubic crystal structure as an average structure. 平均構造として立方晶ガーネット関連型の結晶構造を有することを特徴とする、請求項1及び2に記載のリチウムイオン伝導性酸化物。 3. The lithium ion conductive oxide according to claim 1, wherein the lithium ionic conductive oxide has a cubic garnet-related crystal structure as an average structure. 平均構造として立方晶ガーネット関連型の結晶構造を有し、その立方晶系の格子定数aが12.98Å以上13.20Å以下であることを特徴とする、請求項1又は2に記載のリチウムイオン伝導性酸化物。 3. The lithium ion according to claim 1, wherein the lithium ion has a cubic garnet-related crystal structure as an average structure, and a cubic lattice constant a of 12.98 to 1320. Conductive oxide. 平均構造として立方晶ガーネット関連型の結晶構造を有し、その立方晶系の格子定数aが12.98Å以上13.20Å以下であり、さらにそのX線回折図形において長周期性及び変調性を反映した主反射スポットの分裂、衛星反射スポットの出現、ピークブロード化が観測されることを特徴とする、請求項1又は2に記載のリチウムイオン伝導性酸化物。 It has a cubic garnet-related crystal structure as an average structure, and its cubic lattice constant a is not less than 12.98Å and not more than 13.20Å. Further, its X-ray diffraction pattern reflects long-periodity and modulation. The lithium ion conductive oxide according to claim 1, wherein splitting of the main reflection spot, appearance of a satellite reflection spot, and peak broadening are observed. リチウム、ランタン、ジルコニウムの各原料化合物の混合物を出発原料として、600℃以上1300℃以下の温度範囲で合成することを特徴とする、請求項1から6のいずれか1項に記載のリチウムイオン伝導性酸化物の製造方法。 The lithium ion conduction according to any one of claims 1 to 6, characterized by being synthesized in a temperature range of 600 ° C or higher and 1300 ° C or lower using a mixture of raw material compounds of lithium, lanthanum and zirconium as starting materials. Of producing a conductive oxide. 正方晶ガーネット型リチウムランタンジルコニウム酸化物を原料として用い、1100℃以上1300℃以下の温度範囲で合成することを特徴とする、請求項1から6のいずれか1項に記載のリチウムイオン伝導性酸化物の製造方法。 7. The lithium ion conductive oxidation according to claim 1, wherein tetragonal garnet-type lithium lanthanum zirconium oxide is used as a raw material and is synthesized in a temperature range of 1100 ° C. to 1300 ° C. 7. Manufacturing method. 上記請求項1から6のいずれか1項に記載のリチウムイオン伝導性酸化物を、固体電解質材料として利用した電気化学デバイス。 An electrochemical device using the lithium ion conductive oxide according to any one of claims 1 to 6 as a solid electrolyte material.
JP2010063407A 2010-03-19 2010-03-19 Lithium ion conductive oxide, method for producing the same, and electrochemical device using the same as a member Active JP5649033B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010063407A JP5649033B2 (en) 2010-03-19 2010-03-19 Lithium ion conductive oxide, method for producing the same, and electrochemical device using the same as a member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010063407A JP5649033B2 (en) 2010-03-19 2010-03-19 Lithium ion conductive oxide, method for producing the same, and electrochemical device using the same as a member

Publications (2)

Publication Number Publication Date
JP2011195373A true JP2011195373A (en) 2011-10-06
JP5649033B2 JP5649033B2 (en) 2015-01-07

Family

ID=44874047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010063407A Active JP5649033B2 (en) 2010-03-19 2010-03-19 Lithium ion conductive oxide, method for producing the same, and electrochemical device using the same as a member

Country Status (1)

Country Link
JP (1) JP5649033B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015163152A1 (en) * 2014-04-24 2015-10-29 第一稀元素化学工業株式会社 Method for producing garnet-type compound, garnet-type compound, and all-solid lithium secondary cell containing said garnet-type compound
JP2016526771A (en) * 2013-07-04 2016-09-05 コリア インスティテュート オブ インダストリアル テクノロジー Solid electrolyte for all-solid lithium secondary battery and method for producing the same
CN106796825A (en) * 2014-10-31 2017-05-31 国立研究开发法人产业技术综合研究所 Lithium-ion-conducting crystal and all-solid-state lithium-ion secondary battery
JPWO2016017769A1 (en) * 2014-07-31 2017-06-22 国立研究開発法人産業技術総合研究所 Lithium-containing garnet crystal, method for producing the same, and all-solid-state lithium ion secondary battery
KR101933130B1 (en) 2018-02-27 2018-12-27 김동현 Oxide based solid electrolytes and method for manufacturing the same
KR20190002660A (en) 2016-05-26 2019-01-08 내셔날 인스티튜트 오브 어드밴스드 인더스트리얼 사이언스 앤드 테크놀로지 Low symmetric garnet-related structure solid electrolytes and lithium ion secondary batteries
US10319985B2 (en) 2014-10-27 2019-06-11 National Institute Of Advanced Industrial Science And Technology Lithium lanthanum zirconium tantalum oxide garnet crystal and all-solid-state lithium ion secondary battery
US10566655B2 (en) 2016-01-29 2020-02-18 National Institute Of Advanced Industrial Science And Technology Solid electrolyte material and all solid lithium ion secondary battery
WO2021053923A1 (en) 2019-09-19 2021-03-25 国立研究開発法人産業技術総合研究所 Gallium-substituted solid electrolyte material, and all-solid-state lithium ion secondary battery
EP3825282A4 (en) * 2019-07-19 2021-11-17 Daiichi Kigenso Kagaku Kogyo Co., Ltd. Ceramic powder material, method for producing ceramic powder material, and battery
WO2022074959A1 (en) 2020-10-09 2022-04-14 国立研究開発法人産業技術総合研究所 Composite oxide with novel crystal structure, and all-solid-state lithium ion secondary battery using said composite oxide as solid electrolyte
WO2022107687A1 (en) 2020-11-17 2022-05-27 国立研究開発法人産業技術総合研究所 Lithium composite oxide single crystal, lithium composite oxide polycrystal, lithium composite oxide material, solid electrolyte material, all-solid-state lithium ion secondary battery, and method for producing solid electrolyte material

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009245913A (en) * 2007-09-11 2009-10-22 Sumitomo Electric Ind Ltd Lithium battery
JP2010040439A (en) * 2008-08-07 2010-02-18 Sumitomo Electric Ind Ltd Lithium battery
JP2010045019A (en) * 2008-07-16 2010-02-25 Tokyo Metropolitan Univ All-solid lithium secondary battery, and method of manufacturing the same
JP2010534383A (en) * 2007-07-02 2010-11-04 ビーエーエスエフ ソシエタス・ヨーロピア Ionic conductor with garnet structure
JP2011070939A (en) * 2009-09-25 2011-04-07 Toyota Central R&D Labs Inc All-solid type lithium secondary battery
JP2011081915A (en) * 2009-10-02 2011-04-21 Toyota Motor Corp Solid electrolyte, solid electrolyte film containing solid electrolyte and all solid lithium secondary battery using the solid electrolyte
WO2011089710A1 (en) * 2010-01-22 2011-07-28 トヨタ自動車株式会社 Negative electrode structure for aqueous electrolyte battery, and aqueous electrolyte battery comprising the negative electrode structure
JP2011195372A (en) * 2010-03-19 2011-10-06 National Institute Of Advanced Industrial Science & Technology Single crystal of lithium ion conductive oxide and method for producing the same, and electrochemical device using the same as member

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010534383A (en) * 2007-07-02 2010-11-04 ビーエーエスエフ ソシエタス・ヨーロピア Ionic conductor with garnet structure
JP2009245913A (en) * 2007-09-11 2009-10-22 Sumitomo Electric Ind Ltd Lithium battery
JP2010045019A (en) * 2008-07-16 2010-02-25 Tokyo Metropolitan Univ All-solid lithium secondary battery, and method of manufacturing the same
JP2010040439A (en) * 2008-08-07 2010-02-18 Sumitomo Electric Ind Ltd Lithium battery
JP2011070939A (en) * 2009-09-25 2011-04-07 Toyota Central R&D Labs Inc All-solid type lithium secondary battery
JP2011081915A (en) * 2009-10-02 2011-04-21 Toyota Motor Corp Solid electrolyte, solid electrolyte film containing solid electrolyte and all solid lithium secondary battery using the solid electrolyte
WO2011089710A1 (en) * 2010-01-22 2011-07-28 トヨタ自動車株式会社 Negative electrode structure for aqueous electrolyte battery, and aqueous electrolyte battery comprising the negative electrode structure
JP2011195372A (en) * 2010-03-19 2011-10-06 National Institute Of Advanced Industrial Science & Technology Single crystal of lithium ion conductive oxide and method for producing the same, and electrochemical device using the same as member

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016526771A (en) * 2013-07-04 2016-09-05 コリア インスティテュート オブ インダストリアル テクノロジー Solid electrolyte for all-solid lithium secondary battery and method for producing the same
JP5828992B1 (en) * 2014-04-24 2015-12-09 第一稀元素化学工業株式会社 Method for producing garnet-type compound, garnet-type compound, and all-solid lithium secondary battery containing this garnet-type compound
US9660270B2 (en) 2014-04-24 2017-05-23 Daiichi Kigenso Kagaku Kogyo Co., Ltd. Method for producing garnet-type compound, garnet-type compound, and all-solid lithium secondary cell containing said garnet-type compound
WO2015163152A1 (en) * 2014-04-24 2015-10-29 第一稀元素化学工業株式会社 Method for producing garnet-type compound, garnet-type compound, and all-solid lithium secondary cell containing said garnet-type compound
JPWO2016017769A1 (en) * 2014-07-31 2017-06-22 国立研究開発法人産業技術総合研究所 Lithium-containing garnet crystal, method for producing the same, and all-solid-state lithium ion secondary battery
US10319985B2 (en) 2014-10-27 2019-06-11 National Institute Of Advanced Industrial Science And Technology Lithium lanthanum zirconium tantalum oxide garnet crystal and all-solid-state lithium ion secondary battery
US11139504B2 (en) 2014-10-31 2021-10-05 National Institute Of Advanced Industrial Science And Technology Lithium ion conductive crystal body and all-solid state lithium ion secondary battery
CN106796825B (en) * 2014-10-31 2018-06-29 国立研究开发法人产业技术综合研究所 Lithium-ion-conducting crystal and all-solid-state lithium-ion secondary battery
CN106796825A (en) * 2014-10-31 2017-05-31 国立研究开发法人产业技术综合研究所 Lithium-ion-conducting crystal and all-solid-state lithium-ion secondary battery
JPWO2016068329A1 (en) * 2014-10-31 2017-07-20 国立研究開発法人産業技術総合研究所 Lithium ion conductive crystal and all solid lithium ion secondary battery
KR20170065594A (en) 2014-10-31 2017-06-13 내셔날 인스티튜트 오브 어드밴스드 인더스트리얼 사이언스 앤드 테크놀로지 Lithium ion conductive crystal body and all-solid state lithium ion secondary battery
US10566655B2 (en) 2016-01-29 2020-02-18 National Institute Of Advanced Industrial Science And Technology Solid electrolyte material and all solid lithium ion secondary battery
US10763544B1 (en) 2016-05-26 2020-09-01 National Institute Of Advanced Industrial Science And Technology Solid electrolyte with low-symmetry garnet-related structure and lithium-ion secondary battery
KR20190002660A (en) 2016-05-26 2019-01-08 내셔날 인스티튜트 오브 어드밴스드 인더스트리얼 사이언스 앤드 테크놀로지 Low symmetric garnet-related structure solid electrolytes and lithium ion secondary batteries
KR101933130B1 (en) 2018-02-27 2018-12-27 김동현 Oxide based solid electrolytes and method for manufacturing the same
EP3825282A4 (en) * 2019-07-19 2021-11-17 Daiichi Kigenso Kagaku Kogyo Co., Ltd. Ceramic powder material, method for producing ceramic powder material, and battery
US11342581B2 (en) 2019-07-19 2022-05-24 Daiichi Kigenso Kagaku Kogyo Co., Ltd. Ceramic powder material, method for producing ceramic powder material, and battery
WO2021053923A1 (en) 2019-09-19 2021-03-25 国立研究開発法人産業技術総合研究所 Gallium-substituted solid electrolyte material, and all-solid-state lithium ion secondary battery
KR20220044537A (en) 2019-09-19 2022-04-08 내셔날 인스티튜트 오브 어드밴스드 인더스트리얼 사이언스 앤드 테크놀로지 Gallium-substituted solid electrolyte material and all-solid-state lithium ion secondary battery
WO2022074959A1 (en) 2020-10-09 2022-04-14 国立研究開発法人産業技術総合研究所 Composite oxide with novel crystal structure, and all-solid-state lithium ion secondary battery using said composite oxide as solid electrolyte
WO2022107687A1 (en) 2020-11-17 2022-05-27 国立研究開発法人産業技術総合研究所 Lithium composite oxide single crystal, lithium composite oxide polycrystal, lithium composite oxide material, solid electrolyte material, all-solid-state lithium ion secondary battery, and method for producing solid electrolyte material
KR20230107583A (en) 2020-11-17 2023-07-17 고쿠리츠켄큐카이하츠호진 상교기쥬츠 소고켄큐쇼 Lithium composite oxide single crystal, lithium composite oxide polycrystal, lithium composite oxide material, solid electrolyte material, all-solid lithium ion secondary battery, and manufacturing method of solid electrolyte material

Also Published As

Publication number Publication date
JP5649033B2 (en) 2015-01-07

Similar Documents

Publication Publication Date Title
JP5649033B2 (en) Lithium ion conductive oxide, method for producing the same, and electrochemical device using the same as a member
Ren et al. Chemical compatibility between garnet-like solid state electrolyte Li6. 75La3Zr1. 75Ta0. 25O12 and major commercial lithium battery cathode materials
JP5131854B2 (en) Lithium ion conductive oxide, method for producing the same, and solid electrolyte composed of the oxide
Buannic et al. Dual substitution strategy to enhance Li+ ionic conductivity in Li7La3Zr2O12 solid electrolyte
Kumar et al. A novel low-temperature solid-state route for nanostructured cubic garnet Li 7 La 3 Zr 2 O 12 and its application to Li-ion battery
KR101633718B1 (en) Solid electrolyte and all-solid state lithium ion secondary battery
Zheng et al. Enhanced Li+ ion transport in LiNi 0.5 Mn 1.5 O 4 through control of site disorder
JP5617417B2 (en) Garnet-type lithium ion conductive oxide and process for producing the same
Matsuda et al. Sintering behavior and electrochemical properties of garnet-like lithium conductor Li6. 25M0. 25La3Zr2O12 (M: Al3+ and Ga3+)
Gao et al. Synthesis, ionic conductivity, and chemical compatibility of garnet-like lithium ionic conductor Li5La3Bi2O12
Dynarowska et al. Ionic conductivity and structural properties of Na2Ti3O7 anode material
JP5177672B2 (en) Active material for lithium battery, method for producing the same, and lithium battery using the same
Hagh et al. A new solid-state process for synthesis of LiMn1. 5Ni0. 5O4− δ spinel
Zhong Synthesis of Mo4+ Substituted Spinel Li4Ti5− x Mo x O12
Yu et al. High-temperature chemical stability of Li1. 4Al0. 4Ti1. 6 (PO4) 3 solid electrolyte with various cathode materials for solid-state batteries
CN102010182A (en) Ceramic material and use thereof
Liu et al. Preparation and chemical compatibility of lithium aluminum germanium phosphate solid electrolyte
JP2011195372A (en) Single crystal of lithium ion conductive oxide and method for producing the same, and electrochemical device using the same as member
Spence et al. Tuning the Morphology and Electronic Properties of Single-Crystal LiNi0. 5Mn1. 5O4− δ: Exploring the Influence of LiCl–KCl Molten Salt Flux Composition and Synthesis Temperature
Qin et al. Oriented attachment strategy toward enhancing ionic conductivity in garnet-type electrolytes for solid-state lithium batteries
Cao et al. Y and Sb co-doped Li 7 La 3 Zr 2 O 12 electrolyte for all solid-state lithium batteries
JP5644273B2 (en) Titanium oxide, method for producing the same, and electrochemical device using the same as member
JP5858410B2 (en) Single crystal of lithium ion conductive oxide, method for producing the same, and electrochemical device using the same as member
JP7285013B2 (en) Composite oxides and electrochemical devices using them as electrolyte materials
Mereacre et al. Instantaneous surface Li3PO4 coating and Al–Ti doping and their effect on the performance of LiNi0. 5Mn1. 5O4 cathode materials

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120827

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131218

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140715

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140925

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20141006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141105

R150 Certificate of patent or registration of utility model

Ref document number: 5649033

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250