JP2011195352A - Apparatus for producing hydrogen - Google Patents

Apparatus for producing hydrogen Download PDF

Info

Publication number
JP2011195352A
JP2011195352A JP2010061679A JP2010061679A JP2011195352A JP 2011195352 A JP2011195352 A JP 2011195352A JP 2010061679 A JP2010061679 A JP 2010061679A JP 2010061679 A JP2010061679 A JP 2010061679A JP 2011195352 A JP2011195352 A JP 2011195352A
Authority
JP
Japan
Prior art keywords
gas
hydrogen
reforming catalyst
longitudinal direction
support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010061679A
Other languages
Japanese (ja)
Other versions
JP5588581B2 (en
Inventor
Takumi Nishii
匠 西井
Tomoki Nakagawa
友貴 中川
Ryuichi Tominaga
隆一 冨永
Koya Izeki
孝弥 井関
Yoshinori Shirasaki
義則 白崎
Isamu Yasuda
勇 安田
Masaya Ito
正也 伊藤
Yasuhiro Takagi
保宏 高木
Hidekazu Shigaki
秀和 志垣
Hideaki Hikosaka
英昭 彦坂
Hiroyuki Tanaka
裕之 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd, Tokyo Gas Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2010061679A priority Critical patent/JP5588581B2/en
Publication of JP2011195352A publication Critical patent/JP2011195352A/en
Application granted granted Critical
Publication of JP5588581B2 publication Critical patent/JP5588581B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To obtain an apparatus for producing hydrogen capable of reducing pressure drop of gas to suppress an energy loss by shortening the gas passage in a reforming catalyst serving also as a support that has comparatively large resistance in a unified reforming catalyst module.SOLUTION: The apparatus for producing hydrogen is composed of an inserted tube having a hollow part through which each of a feed gas and an offgas flows, the reforming catalyst serving also as a support installed on the outer peripheral surface of the inserted tube, and a hydrogen separation membrane on the outer peripheral surface of the reforming catalyst serving also as a support. A partition for dividing the hollow part of the inserted tube in the longitudinal direction is installed at the center of the cross section of the hollow part to form two hollow parts in the longitudinal direction. Feed gas blowing holes are disposed on the wall opposite to the partition in the longitudinal direction of one hollow part of the inserted tube, while offgas discharge holes are disposed on the wall opposite to the partition in the longitudinal direction of the other hollow part of the inserted tube.

Description

本発明は、炭化水素ガスの水蒸気改質により改質ガスを生成し、且つ、生成改質ガスを水素分離膜で精製して高純度の水素を製造する水素製造装置に関する。   The present invention relates to a hydrogen production apparatus for producing a reformed gas by steam reforming of a hydrocarbon gas and producing high-purity hydrogen by purifying the produced reformed gas with a hydrogen separation membrane.

水素の工業的製造方法の一つとして炭化水素ガスの水蒸気改質法がある。水蒸気改質法では、通常、粒状等の改質触媒を充填した改質器が用いられる。水蒸気改質器で得られる改質ガスには主成分である水素のほか、CO、CO2等の副生成分や余剰H2Oが含まれている。このため改質ガスを、例えば燃料電池にそのまま用いたのでは電池性能を阻害してしまう。 One of the industrial methods for producing hydrogen is a hydrocarbon gas steam reforming method. In the steam reforming method, a reformer filled with a reforming catalyst such as a granule is usually used. The reformed gas obtained by the steam reformer contains by-products such as CO and CO 2 and surplus H 2 O in addition to hydrogen as a main component. For this reason, if the reformed gas is used as it is in, for example, a fuel cell, the cell performance is hindered.

燃料電池のうちリン酸形燃料電池(PAFC)で用いる水素ガス中のCOは1%(vol%、以下同じ)程度、固体高分子形燃料電池(PEFC)では100ppm(volppm、以下同じ)程度が限度であり、これらを超えると電池性能が著しく劣化する。このため、それら副生成分は燃料電池へ導入する前に除去する必要がある。また、不飽和結合への水素添加用あるいは酸水素炎用の水素は通常ボンベに詰めたものが使用されており、その純度は5N(=99.999%)以上が要求されている。   Among fuel cells, the CO in hydrogen gas used in phosphoric acid fuel cells (PAFC) is about 1% (vol%, the same applies hereinafter), and the polymer electrolyte fuel cell (PEFC) is about 100 ppm (volppm, the same applies hereinafter). If these are exceeded, battery performance will be significantly degraded. For this reason, these by-products must be removed before being introduced into the fuel cell. In addition, hydrogen used for hydrogen addition to an unsaturated bond or oxyhydrogen flame is usually packed in a cylinder, and its purity is required to be 5N (= 99.999%) or more.

水蒸気改質器による改質ガスの生成と生成した改質ガスの精製とを一つの装置で行えるように一体化した装置としてメンブレンリアクターがある。メンブレンリアクターにおいて、炭化水素ガスは、バーナでの発生熱を加熱源とし、水蒸気による改質反応により改質触媒層で改質されて改質ガスとなる。改質ガス中の水素はPd膜などの水素分離膜により選択的に分離され精製水素として取り出される。   There is a membrane reactor as an apparatus integrated so that generation of the reformed gas by the steam reformer and purification of the generated reformed gas can be performed by one apparatus. In the membrane reactor, the hydrocarbon gas is reformed by the reforming catalyst layer by a reforming reaction with water vapor using the heat generated in the burner as a heating source, and becomes a reformed gas. Hydrogen in the reformed gas is selectively separated by a hydrogen separation membrane such as a Pd membrane and taken out as purified hydrogen.

原料ガス(炭化水素ガス+水蒸気)は改質触媒層に平行な流路を流れながら改質触媒層の表面及び改質触媒層中へ流れて改質される。改質ガス中の水素は改質触媒層に続き配置された水素分離膜により選択的に分離され精製水素として取り出され、水素以外のガス(未反応の原料ガスを含む)はオフガスとして排出される。   The raw material gas (hydrocarbon gas + water vapor) flows through the flow path parallel to the reforming catalyst layer and flows into the surface of the reforming catalyst layer and into the reforming catalyst layer to be reformed. Hydrogen in the reformed gas is selectively separated by a hydrogen separation membrane arranged after the reforming catalyst layer and taken out as purified hydrogen, and gases other than hydrogen (including unreacted source gas) are discharged as off-gas. .

改質触媒一体化モジュールは各種の工夫、改良が加えられている。図1〜3はその一例として、改質触媒兼支持体の表面に水素分離膜を配した外膜式円筒型反応管を用いた水素製造装置を説明する図である〔特開2004−149332号公報(同号公報中、特に図4、図11)〕。図1のとおり、円筒型反応管として外膜式円筒型反応管が用いられる。図2〜3に当該外膜式円筒型反応管の構造を示している。   Various devices and improvements have been added to the reforming catalyst integrated module. As an example, FIGS. 1 to 3 are diagrams for explaining a hydrogen production apparatus using an outer membrane cylindrical reaction tube in which a hydrogen separation membrane is arranged on the surface of a reforming catalyst / support [JP 2004-149332 A]. Publication (in the same publication, in particular, FIGS. 4 and 11)]. As shown in FIG. 1, an outer membrane type cylindrical reaction tube is used as the cylindrical reaction tube. 2 to 3 show the structure of the outer membrane type cylindrical reaction tube.

特開2004−149332号公報JP 2004-149332 A

改質触媒一体化モジュールは、図1のように外膜式円筒型反応管を外管内にセットして水素製造装置を構成する。改質触媒兼支持体は、円筒状に構成してもよく、平板状に構成してもよい。図1〜3は、そのうち円筒状に構成した態様で、外膜式円筒型反応管である。この反応管は、例えばNi−YSZサーメットで構成した円筒状改質触媒兼支持体の外周面にPd膜を形成して構成される。Pd膜の形成は無電解めっき法などにより行われる。図1のとおり、円筒型反応管の上部及び外管の上部は蓋により塞がれている。   The reforming catalyst integrated module configures a hydrogen production apparatus by setting an outer membrane cylindrical reaction tube in the outer tube as shown in FIG. The reforming catalyst / support may be formed in a cylindrical shape or a flat plate shape. FIGS. 1 to 3 show an outer membrane type cylindrical reaction tube in a cylindrical configuration. This reaction tube is configured by forming a Pd film on the outer peripheral surface of a cylindrical reforming catalyst / support composed of, for example, Ni—YSZ cermet. The Pd film is formed by an electroless plating method or the like. As shown in FIG. 1, the upper part of the cylindrical reaction tube and the upper part of the outer tube are closed by a lid.

図1〜3のとおり、円筒型反応管内に間隔を置いて内管を配置し、円筒型反応管を囲んで外管が配置されている。外膜式円筒型反応管では、円筒状改質触媒兼支持体の外側すなわち外周面に水素分離膜を配置して構成される。炭化水素ガスの改質には450〜680℃程度に加熱する必要があり、その加熱のため、例えば外膜式円筒型反応管を囲い、その空間に都市ガス等の燃焼ガスを供給される。   As shown in FIGS. 1 to 3, the inner tube is arranged at intervals in the cylindrical reaction tube, and the outer tube is arranged around the cylindrical reaction tube. The outer membrane type cylindrical reaction tube is configured by disposing a hydrogen separation membrane on the outer side of the cylindrical reforming catalyst / support, that is, on the outer peripheral surface. For reforming the hydrocarbon gas, it is necessary to heat to about 450 to 680 ° C. For this heating, for example, an outer membrane type cylindrical reaction tube is surrounded and a combustion gas such as city gas is supplied into the space.

おおよそ、以上のように構成された水素製造装置の作動に際しては、都市ガスをバーナにより空気で燃焼させ、円筒型反応管を昇温する。図1を例に言えば、所定温度に到達後、原料ガス(炭化水素ガス+水蒸気)を下部から内管に供給し、上部で折返して内管と円筒状改質触媒兼支持体との間に導入する。炭化水素ガスは円筒状改質触媒兼支持体の改質触媒による触媒作用により改質される。   In general, when the hydrogen production apparatus configured as described above is operated, city gas is burned with air by a burner, and the temperature of the cylindrical reaction tube is increased. Taking FIG. 1 as an example, after reaching a predetermined temperature, a raw material gas (hydrocarbon gas + water vapor) is supplied from the lower part to the inner pipe and folded at the upper part between the inner pipe and the cylindrical reforming catalyst / support. To introduce. The hydrocarbon gas is reformed by the catalytic action of the reforming catalyst of the cylindrical reforming catalyst / support.

Pd膜は水素を選択に透過するため、生成改質ガス中の水素はPd膜を介して選択的に分離され、円筒状改質触媒兼支持体と外管との間の空隙を経て高純度の水素として取り出される。生成改質ガス中の水素以外の成分、すなわちCO、CO2、H2(Pd膜で未透過のH2)等は内管と円筒型反応管の間を通り、オフガスとして排出される。 Since the Pd membrane selectively permeates hydrogen, the hydrogen in the generated reformed gas is selectively separated through the Pd membrane, and the high purity is obtained through the gap between the cylindrical reforming catalyst / support and the outer tube. As hydrogen. Components other than hydrogen in the reformate gas, i.e. CO, etc. (H 2 retentate with Pd film) CO 2, H 2 passes between the inner tube and a cylindrical reaction tube, and is discharged as off-gas.

このように、改質触媒一体化モジュールは、改質ガスの生成と精製を一つの装置で行えるメンブレンリアクターのなかでも、改質触媒を別に必要としないことから原理的には非常に有用である。ここで、従来の改質触媒一体化モジュールでは、内挿管(内管)と改質触媒兼支持体との間には図1、3中Sとして示すようにガスが流通できる空間がある。改質触媒兼支持体は多孔質からなるため、ガス透過性はあるが、内挿管と改質触媒兼支持体との間の空間よりも抵抗(ガスの流通抵抗)が大きく、一部のガスは改質触媒兼支持体を通過せずにモジュール外部へ排出されてしまう。   In this way, the reforming catalyst integrated module is very useful in principle because it does not require a separate reforming catalyst among membrane reactors that can generate and purify reformed gas in a single device. . Here, in the conventional reforming catalyst integrated module, there is a space through which gas can flow as shown by S in FIGS. 1 and 3 between the inner intubation (inner tube) and the reforming catalyst / support. Since the reforming catalyst / support is porous, it has gas permeability but has a larger resistance (gas flow resistance) than the space between the intubation tube and the reforming catalyst / support, and some gases Is discharged outside the module without passing through the reforming catalyst / support.

すなわち、モジュール先端部では内挿管からモジュール内部に供給される原料ガスの流速が大きく且つ流れが改質触媒兼支持体の内表面に垂直であるため、原料ガスが改質触媒兼支持体内に入り込み、水素分離膜に到達し易いので、改質反応および水素透過が起こりやすい。一方、モジュールの根元に近い部分では、主なガス流は改質触媒兼支持体の内表面に平行であるため、先端部に比べて改質触媒兼支持体内や水素分離膜近傍にガスが到達しにくい。また、ガス流はモジュール長手方向であるため、流路が長く圧損が生じやすい。   That is, since the flow rate of the raw material gas supplied from the inner tube to the inside of the module is large and the flow is perpendicular to the inner surface of the reforming catalyst / support, the raw material gas enters the reforming catalyst / support. Since it easily reaches the hydrogen separation membrane, reforming reaction and hydrogen permeation easily occur. On the other hand, in the part close to the base of the module, the main gas flow is parallel to the inner surface of the reforming catalyst / support, so that the gas reaches the reforming catalyst / support and near the hydrogen separation membrane compared to the tip. Hard to do. Further, since the gas flow is in the longitudinal direction of the module, the flow path is long and pressure loss is likely to occur.

水素製造を効率よく行うためには、より多くの原料ガスが改質触媒兼支持体を流通する必要がある。しかし、多孔質体である改質触媒兼支持体をガスが通過する際にはガス圧損はより大きくなる。そこで、従来の触媒一体化モジュールでは、モジュール長手方向に対してガスを平行に流す構造であったが、本発明においてはこれを垂直に流す構造とする。   In order to efficiently perform hydrogen production, it is necessary that more source gas flows through the reforming catalyst / support. However, when the gas passes through the reforming catalyst / support that is a porous body, the gas pressure loss becomes larger. Therefore, the conventional catalyst integrated module has a structure in which the gas flows in parallel to the longitudinal direction of the module, but in the present invention, this is a structure in which the gas flows vertically.

本発明は、炭化水素ガスの水蒸気改質により改質ガスを生成し且つ生成改質ガスを高純度に精製する外膜式円筒型反応管を含む水素製造装置で生じる以上の問題を解決するためになされたものであり、ガスが流通する経路、特に、より抵抗の大きい改質触媒兼支持体内の流路を短くすることにより、ガス圧損を低減し、エネルギー損失を抑えることにより水素製造を効率よく行うようにしてなる水素製造装置を提供することを目的とするものである。   The present invention solves the above problems that occur in a hydrogen production apparatus including an outer membrane cylindrical reaction tube that generates reformed gas by steam reforming of hydrocarbon gas and purifies the generated reformed gas with high purity. By shortening the flow path of gas, especially the flow path in the reforming catalyst / support that has higher resistance, the gas pressure loss is reduced and the energy loss is reduced, thereby improving the efficiency of hydrogen production. An object of the present invention is to provide a hydrogen production apparatus that is often used.

本発明(1)は、原料ガスの流路およびオフガスの流路となる中空部を持つ内挿管と、前記内挿管の外周に改質触媒兼支持体を配置するとともに、前記改質触媒兼支持体の外周面に水素分離膜を配置してなり、
(a)前記内挿管の内腔の横断面中心部に当該内腔を長手方向に仕切る仕切壁を設けて長手方向の二つの中空部を構成するとともに、
(b)各中空部の仕切壁と相対する側の一方の前記内挿管の長手方向に原料ガス噴出孔を設けるとともに、他方の前記内挿管の長手方向にオフガス流出孔を設け、
(c)原料ガスを前記内挿管の仕切壁で長手方向に仕切られた一方の中空部に通し、原料ガス噴出孔を介して前記改質触媒兼支持体に流入させ、その横断面に沿って折り返しながら改質触媒による改質反応により水素を生成し、生成改質ガス中の水素を水素分離膜により選択的に分離して高純度水素を製造し、
(d)生成改質ガス中の水素以外の成分はオフガス流出孔から前記他方の中空部であるオフガス排出管を介して排出させるようにしてなることを特徴とする水素製造装置である。
The present invention (1) includes an inner tube having a hollow portion serving as a raw material gas channel and an off-gas channel, a reforming catalyst / support disposed on the outer periphery of the inner tube, and the reforming catalyst / support. A hydrogen separation membrane is placed on the outer peripheral surface of the body,
(A) providing a partition wall for partitioning the lumen in the longitudinal direction at the center of the transverse cross section of the lumen of the intubation tube to form two hollow portions in the longitudinal direction;
(B) providing a source gas ejection hole in the longitudinal direction of one of the inner intubations on the side facing the partition wall of each hollow portion, and providing an off-gas outflow hole in the longitudinal direction of the other inner intubation;
(C) The source gas is passed through one hollow portion partitioned in the longitudinal direction by the partition wall of the inner tube, and flows into the reforming catalyst / support through the source gas ejection hole, along the cross section While producing the hydrogen by the reforming reaction with the reforming catalyst, the hydrogen in the generated reformed gas is selectively separated by the hydrogen separation membrane to produce high purity hydrogen,
(D) A hydrogen production apparatus characterized in that components other than hydrogen in the generated reformed gas are discharged from an off-gas outflow hole through an off-gas discharge pipe which is the other hollow portion.

本発明(2)は、原料ガスの流路およびオフガスの流路となる中空部を持つ内挿管と、前記内挿管の外周面に改質触媒兼支持体を密着させて配置するとともに、前記改質触媒兼支持体の外周面に水素分離膜を配置してなり、
(a)前記内挿管の内腔の横断面中心部に当該内腔を長手方向に仕切る仕切壁を設けて長手方向の二つの中空部を構成するとともに、
(b)各中空部の仕切壁と相対する側の一方の前記内挿管の長手方向に原料ガス噴出孔を設けるとともに、他方の前記内挿管の長手方向にオフガス流出孔を設け、
(c)原料ガスを前記内挿管の仕切壁で長手方向に仕切られた一方の中空部に通し、原料ガス噴出孔を介して前記改質触媒兼支持体に流入させ、その横断面に沿って折り返しながら改質触媒による改質反応により水素を生成し、生成改質ガス中の水素を水素分離膜により選択的に分離して高純度水素を製造し、
(d)生成改質ガス中の水素以外の成分はオフガス流出孔から前記他方の中空部であるオフガス排出管を介して排出させるようにしてなることを特徴とする水素製造装置である。
The present invention (2) includes an inner tube having a hollow portion serving as a raw material gas channel and an off-gas channel, a reforming catalyst / support in close contact with the outer peripheral surface of the inner tube, and the modified A hydrogen separation membrane is arranged on the outer peripheral surface of the catalyst / support,
(A) providing a partition wall for partitioning the lumen in the longitudinal direction at the center of the transverse cross section of the lumen of the intubation tube to form two hollow portions in the longitudinal direction;
(B) providing a source gas ejection hole in the longitudinal direction of one of the inner intubations on the side facing the partition wall of each hollow portion, and providing an off-gas outflow hole in the longitudinal direction of the other inner intubation;
(C) The source gas is passed through one hollow portion partitioned in the longitudinal direction by the partition wall of the inner tube, and flows into the reforming catalyst / support through the source gas ejection hole, along the cross section While producing the hydrogen by the reforming reaction with the reforming catalyst, the hydrogen in the generated reformed gas is selectively separated by the hydrogen separation membrane to produce high purity hydrogen,
(D) A hydrogen production apparatus characterized in that components other than hydrogen in the generated reformed gas are discharged from an off-gas outflow hole through an off-gas discharge pipe which is the other hollow portion.

本発明によれば、ガス圧損を低減できるので、原料ガスの入口圧力を従来技術より低くすることができる。その結果、原料ガスである都市ガスの昇圧機や水の蒸発器の動力を抑制できるので水素製造効率が向上する。さらに、原料ガスをより多く改質触媒兼支持体に流通させる構造とした場合には、改質触媒兼支持体の抵抗が空隙部より大きいのでガス圧損の低減効果がより大きくなる。
また、本発明によれば、モジュール先端部だけでなく、モジュール全体で改質反応および水素透過が起こりやすくなるので、改質効率および水素製造量を増加させることができる。
According to the present invention, since the gas pressure loss can be reduced, the inlet pressure of the raw material gas can be made lower than that of the prior art. As a result, the power of the city gas booster or water evaporator, which is the raw material gas, can be suppressed, so that the hydrogen production efficiency is improved. Furthermore, when the structure is such that more raw material gas flows through the reforming catalyst / support, the resistance of the reforming catalyst / support is greater than the gap portion, so the effect of reducing gas pressure loss is greater.
In addition, according to the present invention, the reforming reaction and hydrogen permeation are likely to occur not only at the module tip but also at the entire module, so that the reforming efficiency and the amount of hydrogen produced can be increased.

図1は、改質触媒兼支持体の表面に水素分離膜を配した外膜式円筒型反応管を用いたモジュールからなる水素製造装置を説明する図である。FIG. 1 is a diagram for explaining a hydrogen production apparatus including a module using an outer membrane cylindrical reaction tube in which a hydrogen separation membrane is arranged on the surface of a reforming catalyst / support. 図2は、図1に記載の水素製造装置のうち、改質触媒兼支持体の表面に水素分離膜を配した外膜式円筒型反応管を説明する図である。FIG. 2 is a diagram illustrating an outer membrane type cylindrical reaction tube in which a hydrogen separation membrane is arranged on the surface of the reforming catalyst / support in the hydrogen production apparatus shown in FIG. 図3は、改質触媒兼支持体の表面に水素分離膜を配した外膜式円筒型反応管を用いた水素製造装置を説明する図である。FIG. 3 is a diagram for explaining a hydrogen production apparatus using an outer membrane type cylindrical reaction tube in which a hydrogen separation membrane is arranged on the surface of the reforming catalyst / support. 図4は、本発明(1)の水素製造装置を説明する図である。FIG. 4 is a diagram for explaining the hydrogen production apparatus of the present invention (1). 図5は、本発明(2)の水素製造装置を説明する図である。FIG. 5 is a diagram for explaining the hydrogen production apparatus of the present invention (2). 図6は、本発明(1)〜(2)の水素製造装置を説明する図である。FIG. 6 is a diagram illustrating the hydrogen production apparatus according to the present invention (1) to (2). 図7は、本発明(1)〜(2)の水素製造装置を説明する図である。FIG. 7 is a diagram illustrating a hydrogen production apparatus according to the present invention (1) to (2). 図8は、本発明(1)〜(2)の水素製造装置を説明する図である。FIG. 8 is a diagram for explaining a hydrogen production apparatus according to the present invention (1) to (2). 図9は、原料ガス噴出孔、オフガス流出孔の態様(その5)を説明する図である。FIG. 9 is a diagram for explaining a mode (part 5) of the source gas ejection hole and the off-gas outflow hole. 図10は、原料ガス噴出孔、オフガス流出孔の態様(その5)を説明する図である。FIG. 10 is a diagram for explaining a mode (part 5) of the source gas ejection hole and the off-gas outflow hole.

改質触媒一体化モジュールは、改質触媒兼支持体または改質触媒層と水素分離膜から構成される高効率な水素製造用のメンブレンリアクターである。そして、メンブレンリアクターを、より高効率に水素を製造する手段の一つとして、原料ガス(炭化水素ガスと水蒸気との混合ガス)と改質触媒との接触を促進して反応率を向上させる方法がある。   The reforming catalyst integrated module is a reforming catalyst / support or a membrane reactor for high-efficiency hydrogen production composed of a reforming catalyst layer and a reforming catalyst layer and a hydrogen separation membrane. As a means for producing hydrogen with higher efficiency, the membrane reactor is a method for improving the reaction rate by promoting the contact between the raw material gas (mixed gas of hydrocarbon gas and water vapor) and the reforming catalyst. There is.

一方、改質触媒一体化モジュールの実使用に際して、改質触媒兼支持体内に内挿管を配置する態様がある。この態様においては、内挿管と改質触媒兼支持体との間には原料ガスが流通できる空間があり、一部の原料ガスは改質触媒兼支持体を通過せずにモジュール外部へ排出される可能性があった。すなわち、一部の原料ガスは改質触媒兼支持体の改質触媒と接触せず、未反応のままモジュール外部へ排出される可能性があった。   On the other hand, when the reforming catalyst integrated module is actually used, there is an aspect in which an intubation tube is disposed in the reforming catalyst / support. In this embodiment, there is a space where the raw material gas can flow between the intubation tube and the reforming catalyst / support, and a part of the raw material gas is discharged outside the module without passing through the reforming catalyst / support. There was a possibility. That is, a part of the raw material gas may not come into contact with the reforming catalyst / support reforming catalyst and may be discharged outside the module without being reacted.

また、細長い形状の改質触媒一体化モジュールにおいては、モジュール長手方向にガス流すと圧損が生じやすい。多孔質体である改質触媒兼支持体内をガスが通過する際には、ガス圧損がより大きくなる。しかし、水素製造を効率よく行うためには、より多くの原料ガスが改質触媒兼支持体中を流通する必要がある。   Further, in the reforming catalyst integrated module having an elongated shape, pressure loss is likely to occur when gas flows in the longitudinal direction of the module. When the gas passes through the reforming catalyst / support which is a porous body, the gas pressure loss becomes larger. However, in order to efficiently produce hydrogen, it is necessary to circulate more raw material gas in the reforming catalyst / support.

本発明は、この課題に対し、ガスが流通する経路、特により抵抗の大きい改質触媒兼支持体内の流路を短くすることにより、ガス圧損を低減させ、エネルギー損失を抑えることにより水素製造効率の向上を図るものである。   The present invention solves this problem by shortening the gas flow path, particularly the flow path in the reforming catalyst / support having a higher resistance, thereby reducing gas pressure loss and suppressing energy loss. It is intended to improve.

前述図1〜3に示すように、従来では、改質触媒兼支持体や水素分離膜に対して原料ガスを平行に流す構造であったが、本発明は、その基本構造として、改質触媒兼支持体や水素分離膜に対して原料ガスを垂直に流す構造とするものである。   As shown in FIGS. 1 to 3, the conventional structure has a structure in which the raw material gas is allowed to flow in parallel to the reforming catalyst / support and the hydrogen separation membrane. The material gas is made to flow perpendicularly to the support and the hydrogen separation membrane.

本発明は、原料ガスの流路である中空部とオフガスの流路である中空部を持つ内挿管と、当該内挿管の外周に改質触媒兼支持体を配置してなる改質触媒一体化モジュールにおいて、改質触媒兼支持体に対して原料ガスを良好に供給するようにしてなる改質触媒一体化モジュールからなる水素製造装置の更なる高効率化を達成するものである。   The present invention is an integrated intubation tube having a hollow portion that is a flow path for a raw material gas and a hollow portion that is a flow path for an off gas, and a reforming catalyst integrated by arranging a reforming catalyst / support on the outer periphery of the inner intubation tube. In the module, a further increase in efficiency of a hydrogen production apparatus comprising a reforming catalyst integrated module that is configured to satisfactorily supply the raw material gas to the reforming catalyst / support is achieved.

〈改質触媒兼支持体、水素分離膜について〉
改質触媒兼支持体は、改質触媒としての役割と水素分離膜を支持する役割を同時に果たすもので、本発明において重要な構成部材である。これにより、炭化水素ガスを改質触媒兼支持体で水蒸気改質して改質ガスを生成し、生成改質ガスを改質触媒兼支持体に支持した水素分離膜により精製し、高純度の水素を製造する。
<Reforming catalyst / support, hydrogen separation membrane>
The reforming catalyst / support serves as a reforming catalyst and supports the hydrogen separation membrane at the same time, and is an important component in the present invention. As a result, the hydrocarbon gas is steam reformed by the reforming catalyst / support to generate reformed gas, and the generated reformed gas is purified by the hydrogen separation membrane supported by the reforming catalyst / support, thereby achieving high purity. Produce hydrogen.

改質触媒兼支持体としては、それ自体改質触媒としての機能を有し且つ水素分離膜を支持する機能を有する多孔質材料が用いられる。その例としては、ニッケルとイットリア安定化ジルコニアの混合物の焼結体(=Ni−YSZサーメット)その他、それらの機能を有する多孔質セラミックス、多孔質サーメットなどが挙げられる。   As the reforming catalyst / support, a porous material that itself functions as a reforming catalyst and has a function of supporting the hydrogen separation membrane is used. Examples thereof include a sintered body of a mixture of nickel and yttria-stabilized zirconia (= Ni—YSZ cermet), and other porous ceramics and porous cermets having these functions.

Ni−YSZサーメットの場合、例えばNi粒子、NiO粒子及びYSZ(=イットリア安定化ジルコニア)粒子を混合し、混合物を押し出し成形、加圧成形等により成形し、焼成することにより作製される。焼結体中のNi成分の含有量は10〜70wt%の範囲で選定される。この材料は、改質温度=600℃、S/C比=3.0の場合、触媒単体として39%程度のメタン転化率を示し、従来の粒状改質触媒とほぼ同等の改質性能を有している。   In the case of Ni-YSZ cermet, for example, Ni particles, NiO particles and YSZ (= yttria-stabilized zirconia) particles are mixed, the mixture is formed by extrusion molding, pressure molding or the like, and fired. The content of the Ni component in the sintered body is selected in the range of 10 to 70 wt%. This material exhibits a methane conversion rate of about 39% as a single catalyst when the reforming temperature = 600 ° C. and the S / C ratio = 3.0, and has almost the same reforming performance as a conventional granular reforming catalyst. is doing.

水素分離膜としてはPd膜やPd合金膜などの金属膜が用いられる。Pd合金において、Pdと合金化する金属としてはAg、Pt、Rh、Ru、Ir、Ce、Y又はGdが挙げられる。金属膜は改質触媒兼支持体に対してめっき法や蒸着法その他適宜の方法により支持される。ここで、多孔質セラミックスの孔径は、金属膜の膜厚等との関係で10μm以下であるのが好ましい。金属膜の膜厚を20μmとする場合、多孔質セラミックスの孔径は10μm程度であるのが好ましく、金属膜の膜厚を20μm以下とする場合、これに対応して多孔質セラミックスの孔径は10μm程度以下とするのが好ましい。   As the hydrogen separation membrane, a metal membrane such as a Pd membrane or a Pd alloy membrane is used. In the Pd alloy, examples of the metal alloyed with Pd include Ag, Pt, Rh, Ru, Ir, Ce, Y, and Gd. The metal film is supported on the reforming catalyst / support by a plating method, a vapor deposition method or other appropriate methods. Here, the pore diameter of the porous ceramics is preferably 10 μm or less in relation to the thickness of the metal film. When the thickness of the metal film is 20 μm, the pore diameter of the porous ceramic is preferably about 10 μm. When the thickness of the metal film is 20 μm or less, the pore diameter of the porous ceramic is about 10 μm correspondingly. The following is preferable.

改質触媒兼支持体は、改質触媒としての役割と水素分離膜を支持する役割を同時に果たすので、従来のメンブレンリアクターでは必須である改質触媒層を別途必要としない。このため、構成部材として改質触媒兼支持体を用いる本発明の水素製造装置は、従来の水素製造装置に比べて格段に小型化できる。特に、改質触媒兼支持体は、それ自体改質触媒としての役割を果たし、改質触媒層を別途必要としないので、従来の水素製造装置では生じるところの、粒子状等の改質触媒との接触による水素分離膜の破損の問題を生じない。   The reforming catalyst / support simultaneously serves as a reforming catalyst and supports the hydrogen separation membrane, so that a reforming catalyst layer that is essential in the conventional membrane reactor is not required. For this reason, the hydrogen production apparatus of the present invention using the reforming catalyst / support as a constituent member can be remarkably reduced in size as compared with the conventional hydrogen production apparatus. In particular, the reforming catalyst / support itself plays a role as a reforming catalyst and does not require a separate reforming catalyst layer. The problem of damage to the hydrogen separation membrane due to contact with the water does not occur.

内挿管はステンレス鋼やセラミックス等で構成する。図4〜8は本発明の態様を説明する図である。本発明において、改質触媒兼支持体は円筒状に構成する。   The intubation is made of stainless steel or ceramics. 4-8 is a figure explaining the aspect of this invention. In the present invention, the reforming catalyst / support is formed in a cylindrical shape.

〈本発明(1)の水素製造装置の態様〉
本発明(1)は、原料ガスの流路およびオフガスの流路となる中空部を持つ内挿管と、前記内挿管の外周に改質触媒兼支持体を配置するとともに、前記改質触媒兼支持体の外周面に水素分離膜を配置してなる。そして、
(a)前記内挿管の内腔の横断面中心部に当該内腔を長手方向に仕切る仕切壁を設けて長手方向の二つの中空部を構成するとともに、
(b)各中空部の仕切壁と相対する側の一方の前記内挿管の長手方向に原料ガス噴出孔を設けるとともに、他方の前記内挿管の長手方向にオフガス流出孔を設け、
(c)原料ガスを前記内挿管の仕切壁で長手方向に仕切られた一方の中空部に通し、原料ガス噴出孔を介して前記改質触媒兼支持体に流入させ、その横断面に沿って折り返しながら改質触媒による改質反応により水素を生成し、生成改質ガス中の水素を水素分離膜により選択的に分離して高純度水素を製造し、
(d)生成改質ガス中の水素以外の成分はオフガス流出孔から前記他方の中空部であるオフガス排出管を介して排出させるようにしてなる。
<Mode of Hydrogen Production Apparatus of the Present Invention (1)>
The present invention (1) includes an inner tube having a hollow portion serving as a raw material gas channel and an off-gas channel, a reforming catalyst / support disposed on the outer periphery of the inner tube, and the reforming catalyst / support. A hydrogen separation membrane is disposed on the outer peripheral surface of the body. And
(A) providing a partition wall for partitioning the lumen in the longitudinal direction at the center of the transverse cross section of the lumen of the intubation tube to form two hollow portions in the longitudinal direction;
(B) providing a source gas ejection hole in the longitudinal direction of one of the inner intubations on the side facing the partition wall of each hollow portion, and providing an off-gas outflow hole in the longitudinal direction of the other inner intubation;
(C) The source gas is passed through one hollow portion partitioned in the longitudinal direction by the partition wall of the inner tube, and flows into the reforming catalyst / support through the source gas ejection hole, along the cross section While producing the hydrogen by the reforming reaction with the reforming catalyst, the hydrogen in the generated reformed gas is selectively separated by the hydrogen separation membrane to produce high purity hydrogen,
(D) Components other than hydrogen in the generated reformed gas are discharged from the offgas outflow hole through the offgas discharge pipe which is the other hollow portion.

図4は、本発明(1)の水素製造装置の態様を説明する図である。図4(a)は縦断面図、図4(b)は斜視図、図4(c)は横断面図である。図4のとおり、原料ガスの流路およびオフガスの流路となる中空部を持つ内挿管と、内挿管の外周に改質触媒兼支持体を配置し、改質触媒兼支持体の外周面に水素分離膜を配置して構成する。   FIG. 4 is a diagram illustrating an embodiment of the hydrogen production apparatus according to the present invention (1). 4A is a longitudinal sectional view, FIG. 4B is a perspective view, and FIG. 4C is a transverse sectional view. As shown in FIG. 4, an inner tube having a hollow portion serving as a raw material gas channel and an off-gas channel, and a reforming catalyst / support body are disposed on the outer periphery of the inner tube, and the reforming catalyst / support body is disposed on the outer circumferential surface. A hydrogen separation membrane is arranged.

〈構成(a)について〉
構成(a)では、内挿管の内腔の横断面中心部に当該内腔を長手方向に仕切る仕切壁を設けて長手方向の二つの中空部を構成する。すなわち、前記内挿管の内腔の横断面中心部に当該内腔を長手方向に仕切る仕切壁Kを設けて長手方向に二つの中空部を構成する。
<About configuration (a)>
In the configuration (a), two hollow portions in the longitudinal direction are configured by providing a partition wall that partitions the lumen in the longitudinal direction at the central portion of the transverse section of the lumen of the intubation tube. That is, a partition wall K for partitioning the lumen in the longitudinal direction is provided at the central portion of the transverse cross section of the lumen of the inner intubation tube to form two hollow portions in the longitudinal direction.

〈構成(b)について〉
構成(b)では、各中空部の仕切壁と相対する側の一方の前記内挿管の長手方向に原料ガス噴出孔を設けるとともに、他方の前記内挿管の長手方向にオフガス流出孔を設ける。すなわち、二つの中空部のうち、一方の中空部は、当該一方の中空部を構成する仕切壁Kと内挿管の断面半円形状の管壁で構成される。この「一方の中空部」が原料ガス導入管を構成している。当該断面半円形状管壁のうち、仕切壁Kと相対する側で、且つ、その長手方向に改質触媒兼支持体への原料ガス噴出孔を設ける。
<About configuration (b)>
In the configuration (b), a raw material gas ejection hole is provided in the longitudinal direction of one of the inner tubes on the side opposite to the partition wall of each hollow portion, and an off-gas outflow hole is provided in the longitudinal direction of the other inner tube. That is, of the two hollow portions, one hollow portion is constituted by a partition wall K constituting the one hollow portion and a tube wall having a semicircular cross section of the inner tube. This “one hollow part” constitutes a raw material gas introduction pipe. A raw material gas injection hole to the reforming catalyst / support is provided on the side facing the partition wall K in the semicircular tube wall in the cross section and in the longitudinal direction thereof.

また、他方の中空部は、当該他方の中空部を構成する仕切壁Kと内挿管の断面半円形状の管壁で構成される。この「他方の中空部」がオフガス排出管を構成している。当該断面半円形状管壁のうち、仕切壁Kと相対する側で、且つ、その長手方向に改質触媒兼支持体からのオフガス流出孔を設ける。   Moreover, the other hollow part is comprised by the partition wall K which comprises the said other hollow part, and the pipe wall of the cross-sectional semicircle shape of an intubation tube. This “other hollow part” constitutes an off-gas discharge pipe. An off-gas outflow hole from the reforming catalyst / support is provided on the side facing the partition wall K in the semicircular tube wall in the cross section and in the longitudinal direction thereof.

ここで、一方の中空部を構成する仕切壁Kと他方の中空部を構成する仕切壁Kとは同じものであり、当該仕切壁Kは一方の中空部を構成する部材でもあり他方の中空部を構成する部材でもある。また、ガス流出孔については、改質触媒兼支持体側から言えばガス流出孔となるが、オフガス排出管側から言えばガス流入孔となる。   Here, the partition wall K constituting one hollow portion and the partition wall K constituting the other hollow portion are the same, and the partition wall K is also a member constituting one hollow portion and the other hollow portion. It is also a member which comprises. Further, the gas outflow hole is a gas outflow hole when viewed from the reforming catalyst / support side, but is a gas inflow hole when viewed from the offgas discharge pipe side.

〈構成(c)について〉
構成(c)では、原料ガスを前記内挿管の仕切壁で長手方向に仕切られた一方の中空部に通し、原料ガス噴出孔を介して前記改質触媒兼支持体に流入させ、その横断面に沿って折り返しながら改質触媒による改質反応により水素を生成し、生成改質ガス中の水素を水素分離膜により選択的に分離して高純度水素を製造する。
<About configuration (c)>
In the configuration (c), the raw material gas is passed through one hollow portion partitioned in the longitudinal direction by the partition wall of the inner tube, and flows into the reforming catalyst / support through the raw material gas injection hole, Then, hydrogen is generated by a reforming reaction by the reforming catalyst while turning back along the line, and hydrogen in the generated reformed gas is selectively separated by a hydrogen separation membrane to produce high purity hydrogen.

すなわち、原料ガスを前記内挿管の仕切壁Kで長手方向に仕切られた一方の中空部に通し、原料ガス噴出孔を介して改質触媒兼支持体に流入させ、その横断面に沿って折り返しながら前記改質触媒兼支持体に流入させる。改質触媒兼支持体に流入した原料ガスすなわち炭化水素ガスと水蒸気の混合ガスは、改質触媒兼支持体の横断面に沿って折り返しながら改質触媒による改質反応により水素を生成する。原料ガス、生成改質ガス、オフガス等のガスの流れを図4(a)〜(c)中に矢印で示している。   That is, the raw material gas is passed through one hollow portion that is partitioned in the longitudinal direction by the partition wall K of the inner tube, flows into the reforming catalyst / support through the raw material gas injection hole, and is folded back along the cross section. While flowing into the reforming catalyst / support. The raw material gas that has flowed into the reforming catalyst / support, that is, a mixed gas of hydrocarbon gas and water vapor, generates hydrogen by a reforming reaction by the reforming catalyst while turning back along the cross section of the reforming catalyst / support. The flow of gas such as raw material gas, generated reformed gas, off-gas, etc. is shown by arrows in FIGS.

改質触媒兼支持体に導入された原料ガスは、改質触媒兼支持体中をオフガス排出管へのガス流出孔に向けて流れながら改質触媒での改質反応により改質され続け、生成水素は水素分離膜を選択的に透過して分離され続ける。すなわち、改質触媒兼支持体に導入された原料ガスは、オフガス排出管へのガス流出孔直前まで改質され続け、生成水素は水素分離膜を選択的に透過して分離され続けることになる。   The raw material gas introduced into the reforming catalyst / support continues to be reformed by the reforming reaction in the reforming catalyst while flowing through the reforming catalyst / support toward the gas outflow hole to the off-gas discharge pipe. Hydrogen selectively permeates through the hydrogen separation membrane and continues to be separated. That is, the raw material gas introduced into the reforming catalyst / support is continuously reformed until just before the gas outflow hole to the off-gas discharge pipe, and the generated hydrogen continues to permeate selectively through the hydrogen separation membrane. .

〈構成(d)について〉
構成(d)では、生成改質ガス中の水素以外の成分はオフガス流出孔から前記他方の中空部であるオフガス排出管を介して排出させる。すなわち、改質触媒兼支持体中で改質され、水素分離膜で水素のみが透過して分離される。水素分離膜で分離されず空隙Tに到達したガス、すなわち生成改質ガス中の水素以外の成分、すなわちCO、CO2、H2(Pd膜等の水素分離膜で未透過のH2)等からなるオフガスは、改質触媒兼支持体からオフガス排出管へのガス流出孔を介してオフガス排出管へ流れ込み、当該オフガス排出管から排出される。
<About configuration (d)>
In the configuration (d), components other than hydrogen in the generated reformed gas are discharged from the offgas outflow hole through the offgas discharge pipe which is the other hollow portion. That is, reforming is performed in the reforming catalyst / support, and only hydrogen permeates and is separated by the hydrogen separation membrane. Gas that has reached the separated without gaps T at the hydrogen separation membrane, i.e. components other than hydrogen in the reformate gas, i.e. CO, CO 2, H 2 ( Pd H 2 retentate hydrogen separation membrane film or the like) and the like The off gas consisting of flows into the off gas discharge pipe through the gas outflow hole from the reforming catalyst / support to the off gas discharge pipe, and is discharged from the off gas discharge pipe.

〈本発明(2)の水素製造装置の態様〉
本発明(2)原料ガスの流路およびオフガスの流路となる中空部を持つ内挿管と、前記内挿管の外周面に改質触媒兼支持体を密着させて配置するとともに、前記改質触媒兼支持体の外周面に水素分離膜を配置してなる。そして、
(a)前記内挿管の内腔の横断面中心部に当該内腔を長手方向に仕切る仕切壁を設けて長手方向の二つの中空部を構成するとともに、
(b)各中空部の仕切壁と相対する側の一方の前記内挿管の長手方向に原料ガス噴出孔を設けるとともに、他方の前記内挿管の長手方向にオフガス流出孔を設け、
(c)原料ガスを前記内挿管の仕切壁で長手方向に仕切られた一方の中空部に通し、原料ガス噴出孔を介して前記改質触媒兼支持体に流入させ、その横断面に沿って折り返しながら改質触媒による改質反応により水素を生成し、生成改質ガス中の水素を水素分離膜により選択的に分離して高純度水素を製造し、
(d)生成改質ガス中の水素以外の成分はオフガス流出孔から前記他方の中空部であるオフガス排出管を介して排出させるようにしてなることを特徴とする。
<Mode of Hydrogen Production Apparatus of the Present Invention (2)>
The present invention (2) an internal intubation having a hollow portion serving as a raw material gas flow path and an off-gas flow path, a reforming catalyst and support disposed in close contact with the outer peripheral surface of the internal intubation, and the reforming catalyst A hydrogen separation membrane is arranged on the outer peripheral surface of the cum support. And
(A) providing a partition wall for partitioning the lumen in the longitudinal direction at the center of the transverse cross section of the lumen of the intubation tube to form two hollow portions in the longitudinal direction;
(B) providing a source gas ejection hole in the longitudinal direction of one of the inner intubations on the side facing the partition wall of each hollow portion, and providing an off-gas outflow hole in the longitudinal direction of the other inner intubation;
(C) The source gas is passed through one hollow portion partitioned in the longitudinal direction by the partition wall of the inner tube, and flows into the reforming catalyst / support through the source gas ejection hole, along the cross section While producing the hydrogen by the reforming reaction with the reforming catalyst, the hydrogen in the generated reformed gas is selectively separated by the hydrogen separation membrane to produce high purity hydrogen,
(D) A component other than hydrogen in the generated reformed gas is discharged from an off-gas outflow hole through an off-gas discharge pipe which is the other hollow portion.

図5は、本発明(2)の水素製造装置の態様を説明する図である。図5(a)は縦断面図、図5(b)は斜視図、図5(c)は横断面図である。図5のとおり、原料ガスの流路およびオフガスの流路となる中空部を持つ内挿管と、前記内挿管の外周面に密着させて配置した改質触媒兼支持体と、前記改質触媒兼支持体の外周面に配置した水素分離膜を備える。   FIG. 5 is a diagram illustrating an embodiment of the hydrogen production apparatus according to the present invention (2). 5A is a longitudinal sectional view, FIG. 5B is a perspective view, and FIG. 5C is a transverse sectional view. As shown in FIG. 5, an inner tube having a hollow portion serving as a raw material gas channel and an off-gas channel, a reforming catalyst / support disposed in close contact with an outer peripheral surface of the inner tube, and the reforming catalyst A hydrogen separation membrane is provided on the outer peripheral surface of the support.

〈構成(a)について〉
構成(a)では、前記内挿管の内腔の横断面中心部に当該内腔を長手方向に仕切る仕切壁Kを設けて長手方向に二つの中空部を構成する。
<About configuration (a)>
In the configuration (a), a partition wall K for partitioning the lumen in the longitudinal direction is provided in the central portion of the transverse cross section of the lumen of the intubation tube, and two hollow portions are configured in the longitudinal direction.

〈構成(b)について〉
構成(b)では、二つの中空部のうち、一方の中空部は、当該一方の中空部を構成する仕切壁Kと内挿管の断面半円形状の管壁で構成される。この「一方の中空部」が原料ガス導入管を構成している。当該断面半円形状管壁のうち、仕切壁Kと相対する側で、且つ、その長手方向に改質触媒兼支持体への原料ガス噴出孔を設ける。
<About configuration (b)>
In the configuration (b), of the two hollow portions, one hollow portion is constituted by a partition wall K constituting the one hollow portion and a tube wall having a semicircular cross section of an intubation tube. This “one hollow part” constitutes a raw material gas introduction pipe. A raw material gas injection hole to the reforming catalyst / support is provided on the side facing the partition wall K in the semicircular tube wall in the cross section and in the longitudinal direction thereof.

また、他方の中空部は、当該他方の中空部を構成する仕切壁Kと内挿管の断面半円形状の管壁で構成される。この「他方の中空部」がオフガス排出管を構成している。当該断面半円形状管壁のうち、仕切壁Kと相対する側で、且つ、その長手方向に改質触媒兼支持体からのオフガス流出孔を設ける。   Moreover, the other hollow part is comprised by the partition wall K which comprises the said other hollow part, and the pipe wall of the cross-sectional semicircle shape of an intubation tube. This “other hollow part” constitutes an off-gas discharge pipe. An off-gas outflow hole from the reforming catalyst / support is provided on the side facing the partition wall K in the semicircular tube wall in the cross section and in the longitudinal direction thereof.

ここで、一方の中空部を構成する仕切壁Kと他方の中空部を構成する仕切壁Kとは同じものであり、当該仕切壁Kは一方の中空部を構成する部材でもあり他方の中空部を構成する部材でもある。また、ガス流出孔については、改質触媒兼支持体側から言えばガス流出孔となるが、オフガス排出管側から言えばガス流入孔となる。   Here, the partition wall K constituting one hollow portion and the partition wall K constituting the other hollow portion are the same, and the partition wall K is also a member constituting one hollow portion and the other hollow portion. It is also a member which comprises. Further, the gas outflow hole is a gas outflow hole when viewed from the reforming catalyst / support side, but is a gas inflow hole when viewed from the offgas discharge pipe side.

〈構成(c)について〉
構成(c)では、原料ガスを前記内挿管の仕切壁Kで長手方向に仕切られた一方の中空部に通し、原料ガス噴出孔を介して前記改質触媒兼支持体に流入させる。改質触媒兼支持体に流入した原料ガスすなわち炭化水素ガスと水蒸気の混合ガスは、改質触媒兼支持体の横断面に沿って折り返しながら改質触媒による改質反応により水素を生成する。原料ガス、生成改質ガス、オフガス等のガスの流れを図5(a)〜(c)中に矢印で示している。
<About configuration (c)>
In the configuration (c), the raw material gas is passed through one hollow portion partitioned in the longitudinal direction by the partition wall K of the inner insertion tube, and flows into the reforming catalyst / support through the raw material gas injection hole. The raw material gas that has flowed into the reforming catalyst / support, that is, a mixed gas of hydrocarbon gas and water vapor, generates hydrogen by a reforming reaction by the reforming catalyst while turning back along the cross section of the reforming catalyst / support. The flow of gas such as raw material gas, generated reformed gas, off-gas, etc. is indicated by arrows in FIGS.

原料ガスはガス噴出孔を介して改質触媒兼支持体に流入し、導入される。導入原料ガスは、図5(b)〜(c)中に矢印で示すように、改質触媒兼支持体中をオフガス排出管へのガス流出孔に向けて流れながら改質される。改質触媒兼支持体での生成改質ガス中の水素は水素分離膜を選択的に透過して分離される。   The source gas flows into the reforming catalyst / support through the gas ejection holes and is introduced. As shown by arrows in FIGS. 5B to 5C, the introduced raw material gas is reformed while flowing in the reforming catalyst / support toward the gas outflow hole to the off-gas discharge pipe. Hydrogen in the reformed gas produced on the reforming catalyst / support is selectively permeated through the hydrogen separation membrane.

改質触媒兼支持体に導入された原料ガスは、改質触媒兼支持体中をオフガス排出管へのガス流出孔に向けて流れながら改質触媒での改質反応により改質され続け、生成水素は水素分離膜を選択的に透過して分離され続ける。すなわち、改質触媒兼支持体に導入された原料ガスは、オフガス排出管へのガス流出孔直前まで改質され続け、生成水素は水素分離膜を選択的に透過して分離され続けることになる。   The raw material gas introduced into the reforming catalyst / support continues to be reformed by the reforming reaction in the reforming catalyst while flowing through the reforming catalyst / support toward the gas outflow hole to the off-gas discharge pipe. Hydrogen selectively permeates through the hydrogen separation membrane and continues to be separated. That is, the raw material gas introduced into the reforming catalyst / support is continuously reformed until just before the gas outflow hole to the off-gas discharge pipe, and the generated hydrogen continues to permeate selectively through the hydrogen separation membrane. .

〈構成(d)について〉
構成(d)では、生成改質ガス中の水素以外の成分はオフガス流出孔から前記他方の中空部であるオフガス排出管を介して排出される。すなわち、改質触媒兼支持体中で改質され、水素分離膜で水素が分離され、ガス流出孔に到達したガス、すなわち生成改質ガス中の水素以外の成分、すなわちCO、CO2、H2(Pd膜等の水素分離膜で未透過のH2)等からなるオフガスは、改質触媒兼支持体からガス流出孔を介してオフガス排出管へ流れ込み、当該オフガス排出管から排出される。
<About configuration (d)>
In the configuration (d), components other than hydrogen in the generated reformed gas are discharged from the offgas outflow hole through the offgas discharge pipe which is the other hollow portion. That is, reformed in the reforming catalyst / support, hydrogen is separated by the hydrogen separation membrane, and the gas that has reached the gas outflow holes, that is, components other than hydrogen in the generated reformed gas, that is, CO, CO 2 , H 2 Off-gas consisting of (H 2 not permeated through a hydrogen separation membrane such as a Pd membrane) flows from the reforming catalyst / support to the off-gas discharge pipe through the gas outflow hole, and is discharged from the off-gas discharge pipe.

以下に述べる、原料ガス噴出孔、オフガス流出孔の態様(その1)〜原料ガス噴出孔、オフガス流出孔の態様(その5)は本発明(1)〜(2)に共通する態様である。   Aspects (No. 1) of the raw material gas ejection holes and off-gas outflow holes to be described below (No. 5) to an aspect (No. 5) of the raw material gas ejection holes and off-gas outflow holes are common to the present inventions (1) and (2).

〈原料ガス噴出孔、オフガス流出孔の態様(その1)〉
原料ガス導入管からのガス噴出孔、オフガス流出管へのオフガス流出孔の態様については各種態様を採ることができる。図6〜7はその態様を説明する図である。図6(a)は内挿管の平面図で、原料ガス導入管に複数の原料ガス噴出孔を等間隔に設けた態様である。図6(b)は内挿管の裏面図で、オフガス流出管に複数のオフガス流出孔を等間隔に設けた態様である。図7(a)は、図6の態様と同様であるが、各オフガス流出孔の間隔幅を図6(a)〜(b)より大きくした態様である。
<Aspects of source gas ejection holes and off-gas outflow holes (part 1)>
Various modes can be adopted for the mode of the gas ejection holes from the source gas introduction pipe and the off-gas outflow holes to the off-gas outflow pipe. 6-7 is a figure explaining the aspect. FIG. 6A is a plan view of the inner tube, and is a mode in which a plurality of source gas ejection holes are provided at equal intervals in the source gas introduction tube. FIG. 6B is a rear view of the intubation tube, and is a mode in which a plurality of offgas outflow holes are provided at equal intervals in the offgas outflow tube. FIG. 7A is the same as the embodiment of FIG. 6, but is an embodiment in which the interval width of each off-gas outflow hole is made larger than that of FIGS. 6A to 6B.

〈原料ガス噴出孔、オフガス流出孔の態様(その2)〉
図7(b)は、原料ガス噴出孔、オフガス流出孔を内挿管の長手方向に形成したスリットで構成する態様である。本態様(その2)では、図7(b)のようにスリット幅を長手方向に等間隔として構成する。
<Aspects of source gas ejection holes and off-gas outflow holes (part 2)>
FIG. 7B shows a mode in which the source gas ejection holes and the off-gas outflow holes are formed by slits formed in the longitudinal direction of the inner tube. In this mode (No. 2), as shown in FIG. 7B, the slit widths are configured at equal intervals in the longitudinal direction.

〈原料ガス噴出孔、オフガス流出孔の態様(その3)〉
図7(c)は、原料ガス噴出孔、オフガス流出孔を内挿管の長手方向に形成したスリットで構成する態様である。本態様(その3)では、図7(c)のようにスリット幅を長手方向に漸次広がるテーパースリットとして構成する。これにより、モジュール全体に亘って原料ガスを均等に配分する効果がある。
<Aspects of source gas ejection holes and off-gas outflow holes (part 3)>
FIG. 7C shows a mode in which the source gas ejection holes and the off-gas outflow holes are formed by slits formed in the longitudinal direction of the inner tube. In this mode (No. 3), as shown in FIG. 7C, the slit width is configured as a tapered slit that gradually widens in the longitudinal direction. Thereby, there exists an effect which distributes source gas equally over the whole module.

〈原料ガス噴出孔、オフガス流出孔の態様(その4)〉
図8(a)は、原料ガス導入管に複数の原料ガス噴出孔を等間隔に設け、且つ、複数の原料ガス噴出孔の孔径を長手方向に漸次大きく構成する。オフガス排出管に複数のオフガス排出孔を等間隔に設け、且つ、複数のオフガス排出孔の孔径を長手方向に漸次大きく構成する。これにより、モジュール全体に亘って原料ガスを均等に配分する効果がある。
<Aspects of source gas ejection holes and off-gas outflow holes (No. 4)>
In FIG. 8A, a plurality of source gas ejection holes are provided at equal intervals in the source gas introduction pipe, and the diameters of the plurality of source gas ejection holes are gradually increased in the longitudinal direction. A plurality of off-gas discharge holes are provided at equal intervals in the off-gas discharge pipe, and the diameters of the plurality of off-gas discharge holes are gradually increased in the longitudinal direction. Thereby, there exists an effect which distributes source gas equally over the whole module.

〈原料ガス噴出孔、オフガス流出孔の態様(その5)〉
図8(b)は、原料ガス導入管に複数の原料ガス噴出孔をモジュール手前側からモジュール奥側に向けて漸次間隔を大きく設け、且つ、モジュール奥側に長手方向の同じ箇所に複数の噴出孔を構成する。オフガス排出管に複数の原料ガス噴出孔をモジュール手前側からモジュール奥側に向けて漸次間隔を大きく設け、且つ、モジュール奥側に長手方向の同じ箇所に複数の排出孔を構成する。これにより、モジュール全体に亘って原料ガスを均等に配分する効果がある。
<Aspects of source gas ejection holes and off-gas outflow holes (No. 5)>
FIG. 8B shows that a plurality of source gas injection holes are provided in the source gas introduction pipe with gradually increasing intervals from the front side of the module to the back side of the module, and a plurality of injections are made at the same position in the longitudinal direction on the back side of the module. Configure the hole. A plurality of source gas ejection holes are provided in the off-gas discharge pipe with gradually increasing intervals from the front side of the module toward the back side of the module, and a plurality of discharge holes are formed at the same position in the longitudinal direction on the back side of the module. Thereby, there exists an effect which distributes source gas equally over the whole module.

〈原料ガス噴出孔、オフガス流出孔の態様(その5)〉
本発明(1)〜(2)のうち、特に本発明(1)においては、内挿管の原料ガス導入管からの原料ガス噴出孔を介して空隙Tに流れ込んだ原料ガスを改質触媒兼支持体で有効に改質するためには、原料ガスが、オフガス排出管へのガス流出孔を介してオフガス排出管へ素通りすることなく、改質触媒兼支持体表面だけでなく、その内部に流れ込む必要がある。図9〜10はこのための態様例を説明する図である。
<Aspects of source gas ejection holes and off-gas outflow holes (No. 5)>
Among the present inventions (1) to (2), particularly in the present invention (1), the raw material gas that has flowed into the gap T through the raw material gas injection hole from the raw material gas introduction pipe of the inner tube is supported as a reforming catalyst. In order to effectively reform the body, the raw material gas flows not only into the reforming catalyst / support surface but also into the interior thereof without passing through the gas outflow hole to the offgas exhaust pipe. There is a need. 9-10 is a figure explaining the example of an aspect for this.

図9(a)は、原料ガス噴出孔について、その孔の孔径は等径で、先端部側へ行くほど間隔を狭めて配置し、オフガス流出孔については、その孔の孔径は等径で、根元部側から先端部側へ等間隔に配置する。これにより、原料ガスが改質触媒兼支持体表面だけでなく、その内部にも流れ込み、良好に改質を行うことができる。   FIG. 9 (a) shows that the hole diameter of the source gas ejection hole is equal, and the gap is narrowed toward the tip, and the hole diameter of the hole is equal for the off-gas outflow hole. It arrange | positions from the base part side to the front-end | tip part side at equal intervals. As a result, the source gas flows not only into the reforming catalyst / support surface but also into the interior thereof, so that the reforming can be performed satisfactorily.

図9(b)は、原料ガス噴出孔について、根元側から先端部側へ行くほど間隔を広げたスリット構造とし、オフガス流出孔については、根元部側から先端部側へ等間隔のスリット構造とする。これにより、原料ガスが改質触媒兼支持体表面だけでなく、その内部にも流れ込み、良好に改質を行うことができる。   FIG. 9 (b) shows a slit structure in which the interval is widened as it goes from the root side to the tip side with respect to the source gas ejection hole, and an off-gas outflow hole is a slit structure that is equally spaced from the root side to the tip side. To do. As a result, the source gas flows not only into the reforming catalyst / support surface but also into the interior thereof, so that the reforming can be performed satisfactorily.

図9(c)は、原料ガス噴出孔について、根元側から先端部側へ行くほど間隔を広げたスリット構造とし、オフガス流出孔については、その孔の孔径は等径で、根元部側から先端部側へ等間隔に配置する。これにより、原料ガスが改質触媒兼支持体表面だけでなく、その内部にも流れ込み、良好に改質を行うことができる。   FIG. 9 (c) shows a slit structure in which the gap is widened from the base side to the tip side with respect to the source gas ejection hole, and for the off-gas outflow hole, the hole diameter is the same diameter, and the tip from the root side is the tip. It arranges at equal intervals to the part side. As a result, the source gas flows not only into the reforming catalyst / support surface but also into the interior thereof, so that the reforming can be performed satisfactorily.

図10のとおり、内挿管をその横断面を長方形に形成し、原料ガス噴出孔とオフガス流出孔との間隔を長くすることもできる。原料ガス噴出孔からオフガス流出孔までの原料ガスの流路が長くなるので、改質触媒兼支持体内部への流通も良好にすることができる。内挿管をその横断面を長方形に形成するので、これに対応して、改質触媒兼支持体、水素分離膜の横断面も長方形に形成される。これら〈原料ガス噴出孔、オフガス流出孔の態様(その5)〉の態様は本発明(2)のおいても採ることができる。   As shown in FIG. 10, the inner tube can be formed to have a rectangular cross section, and the distance between the source gas ejection hole and the off-gas outflow hole can be increased. Since the flow path of the source gas from the source gas ejection hole to the off-gas outflow hole becomes long, the flow into the reforming catalyst / support can be improved. Since the inner tube has a rectangular cross section, the cross section of the reforming catalyst / support and the hydrogen separation membrane is also formed in a rectangular shape. These aspects of <source gas ejection holes and off-gas outflow holes (No. 5)> can also be adopted in the present invention (2).

S 内挿管と改質触媒兼支持体との間のガスが流通できる空間
T 内挿管と改質触媒兼支持体との間の空隙
S Space for allowing gas to flow between the intubation tube and the reforming catalyst / support T T Gap between the intubation tube and the reforming catalyst / support

Claims (7)

原料ガスの流路およびオフガスの流路となる中空部を持つ内挿管と、前記内挿管の外周に改質触媒兼支持体を配置するとともに、前記改質触媒兼支持体の外周面に水素分離膜を配置してなり、
(a)前記内挿管の内腔の横断面中心部に当該内腔を長手方向に仕切る仕切壁を設けて長手方向の二つの中空部を構成するとともに、
(b)各中空部の仕切壁と相対する側の一方の前記内挿管の長手方向に原料ガス噴出孔を設けるとともに、他方の前記内挿管の長手方向にオフガス流出孔を設け、
(c)原料ガスを前記内挿管の仕切壁で長手方向に仕切られた一方の中空部に通し、原料ガス噴出孔を介して前記改質触媒兼支持体に流入させ、その横断面に沿って折り返しながら改質触媒による改質反応により水素を生成し、生成改質ガス中の水素を水素分離膜により選択的に分離して高純度水素を製造し、
(d)生成改質ガス中の水素以外の成分はオフガス流出孔から前記他方の中空部であるオフガス排出管を介して排出させるようにしてなることを特徴とする水素製造装置。
An internal intubation having a hollow portion serving as a raw material gas flow path and an off-gas flow path, and a reforming catalyst / support disposed on the outer periphery of the internal intubation, and hydrogen separation on the outer peripheral surface of the reforming catalyst / support A membrane,
(A) providing a partition wall for partitioning the lumen in the longitudinal direction at the center of the transverse cross section of the lumen of the intubation tube to form two hollow portions in the longitudinal direction;
(B) providing a source gas ejection hole in the longitudinal direction of one of the inner intubations on the side facing the partition wall of each hollow portion, and providing an off-gas outflow hole in the longitudinal direction of the other inner intubation;
(C) The source gas is passed through one hollow portion partitioned in the longitudinal direction by the partition wall of the inner tube, and flows into the reforming catalyst / support through the source gas ejection hole, along the cross section While producing the hydrogen by the reforming reaction with the reforming catalyst, the hydrogen in the generated reformed gas is selectively separated by the hydrogen separation membrane to produce high purity hydrogen,
(D) A hydrogen production apparatus characterized in that components other than hydrogen in the generated reformed gas are discharged from an offgas outflow hole through an offgas discharge pipe as the other hollow portion.
原料ガスの流路およびオフガスの流路となる中空部を持つ内挿管と、前記内挿管の外周面に改質触媒兼支持体を密着させて配置するとともに、前記改質触媒兼支持体の外周面に水素分離膜を配置してなり、
(a)前記内挿管の内腔の横断面中心部に当該内腔を長手方向に仕切る仕切壁を設けて長手方向の二つの中空部を構成するとともに、
(b)各中空部の仕切壁と相対する側の一方の前記内挿管の長手方向に原料ガス噴出孔を設けるとともに、他方の前記内挿管の長手方向にオフガス流出孔を設け、
(c)原料ガスを前記内挿管の仕切壁で長手方向に仕切られた一方の中空部に通し、原料ガス噴出孔を介して前記改質触媒兼支持体に流入させ、その横断面に沿って折り返しながら改質触媒による改質反応により水素を生成し、生成改質ガス中の水素を水素分離膜により選択的に分離して高純度水素を製造し、
(d)生成改質ガス中の水素以外の成分はオフガス流出孔から前記他方の中空部であるオフガス排出管を介して排出させるようにしてなることを特徴とする水素製造装置。
An internal intubation having a hollow portion serving as a raw material gas flow path and an off-gas flow path, and a reforming catalyst / support in close contact with the outer peripheral surface of the internal intubation, and an outer periphery of the reforming catalyst / support A hydrogen separation membrane on the surface,
(A) providing a partition wall for partitioning the lumen in the longitudinal direction at the center of the transverse cross section of the lumen of the intubation tube to form two hollow portions in the longitudinal direction;
(B) providing a source gas ejection hole in the longitudinal direction of one of the inner intubations on the side facing the partition wall of each hollow portion, and providing an off-gas outflow hole in the longitudinal direction of the other inner intubation;
(C) The source gas is passed through one hollow portion partitioned in the longitudinal direction by the partition wall of the inner tube, and flows into the reforming catalyst / support through the source gas ejection hole, along the cross section While producing the hydrogen by the reforming reaction with the reforming catalyst, the hydrogen in the generated reformed gas is selectively separated by the hydrogen separation membrane to produce high purity hydrogen,
(D) A hydrogen production apparatus characterized in that components other than hydrogen in the generated reformed gas are discharged from an offgas outflow hole through an offgas discharge pipe as the other hollow portion.
請求項1または2の水素製造装置において、前記構成(b)における原料ガス噴出孔とオフガス流出孔が、それぞれ、複数の孔を各中空部の仕切壁と相対する側の一方の前記内挿管の長手方向に等間隔に設けてなることを特徴とする水素製造装置。   3. The hydrogen production apparatus according to claim 1, wherein the source gas ejection hole and the off-gas outflow hole in the configuration (b) are each provided in a plurality of holes on one side of the inner tube that faces the partition wall of each hollow portion. A hydrogen production apparatus characterized by being provided at equal intervals in the longitudinal direction. 請求項1または2の水素製造装置において、前記構成(b)における原料ガス噴出孔とオフガス流出孔が、それぞれ、各中空部の仕切壁と相対する側の一方の前記内挿管の長手方向に等間隔幅のスリットを設けてなることを特徴とする水素製造装置。   3. The hydrogen production apparatus according to claim 1, wherein the source gas ejection hole and the off-gas outflow hole in the configuration (b) are each in the longitudinal direction of one of the inner pipes on the side facing the partition wall of each hollow part. An apparatus for producing hydrogen, comprising slits having an interval width. 請求項1または2の水素製造装置において、前記構成(b)における原料ガス噴出孔とオフガス流出孔が、それぞれ、各中空部の仕切壁と相対する側の一方の前記内挿管の長手方向に漸次広がるテーパースリットを設けてなることを特徴とする水素製造装置。   3. The hydrogen production apparatus according to claim 1, wherein the source gas ejection holes and the off-gas outflow holes in the configuration (b) are gradually formed in the longitudinal direction of one of the inner pipes on the side facing the partition wall of each hollow portion. A hydrogen production apparatus comprising a taper slit that expands. 請求項1または2の水素製造装置において、前記構成(b)における原料ガス噴出孔とオフガス流出孔が、それぞれ、複数の孔を各中空部の仕切壁と相対する側の一方の前記内挿管の長手方向に設け、且つ、複数の原料ガス噴出孔の孔径を長手方向に漸次大きく構成してなることを特徴とする水素製造装置。   3. The hydrogen production apparatus according to claim 1, wherein the source gas ejection hole and the off-gas outflow hole in the configuration (b) are each provided in a plurality of holes on one side of the inner tube that faces the partition wall of each hollow portion. A hydrogen production apparatus characterized in that it is provided in the longitudinal direction, and the diameters of the plurality of source gas ejection holes are gradually increased in the longitudinal direction. 請求項1または2の水素製造装置において、前記構成(b)における原料ガス噴出孔をモジュール手前側からモジュール奥側に向けて漸次間隔を大きく設け、且つ、モジュール奥側に長手方向の同じ箇所に複数の噴出孔を構成し、前記構成(b)におけるオフガス流出孔をモジュール手前側からモジュール奥側に向けて漸次間隔を大きく設け、且つ、モジュール奥側に長手方向の同じ箇所に複数の排出孔を構成してなることを特徴とする水素製造装置。
3. The hydrogen production apparatus according to claim 1, wherein the source gas ejection holes in the configuration (b) are gradually provided from the front side of the module toward the back side of the module, and at the same location in the longitudinal direction on the back side of the module. A plurality of ejection holes are formed, and the off-gas outflow holes in the configuration (b) are provided with gradually increasing intervals from the front side of the module to the back side of the module, and a plurality of discharge holes are provided at the same longitudinal position on the back side of the module The hydrogen production apparatus characterized by comprising.
JP2010061679A 2010-03-17 2010-03-17 Hydrogen production equipment Expired - Fee Related JP5588581B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010061679A JP5588581B2 (en) 2010-03-17 2010-03-17 Hydrogen production equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010061679A JP5588581B2 (en) 2010-03-17 2010-03-17 Hydrogen production equipment

Publications (2)

Publication Number Publication Date
JP2011195352A true JP2011195352A (en) 2011-10-06
JP5588581B2 JP5588581B2 (en) 2014-09-10

Family

ID=44874027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010061679A Expired - Fee Related JP5588581B2 (en) 2010-03-17 2010-03-17 Hydrogen production equipment

Country Status (1)

Country Link
JP (1) JP5588581B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019005684A (en) * 2017-06-22 2019-01-17 国立大学法人名古屋大学 Hydrogen separation device and hydrogen separation system
US11322766B2 (en) 2020-05-28 2022-05-03 Saudi Arabian Oil Company Direct hydrocarbon metal supported solid oxide fuel cell
US11492255B2 (en) 2020-04-03 2022-11-08 Saudi Arabian Oil Company Steam methane reforming with steam regeneration
US11492254B2 (en) 2020-06-18 2022-11-08 Saudi Arabian Oil Company Hydrogen production with membrane reformer
US11578016B1 (en) 2021-08-12 2023-02-14 Saudi Arabian Oil Company Olefin production via dry reforming and olefin synthesis in a vessel
US11583824B2 (en) 2020-06-18 2023-02-21 Saudi Arabian Oil Company Hydrogen production with membrane reformer
US11617981B1 (en) 2022-01-03 2023-04-04 Saudi Arabian Oil Company Method for capturing CO2 with assisted vapor compression
US11639290B2 (en) 2020-06-04 2023-05-02 Saudi Arabian Oil Company Dry reforming of methane with carbon dioxide at elevated pressure
US11718575B2 (en) 2021-08-12 2023-08-08 Saudi Arabian Oil Company Methanol production via dry reforming and methanol synthesis in a vessel
US11787759B2 (en) 2021-08-12 2023-10-17 Saudi Arabian Oil Company Dimethyl ether production via dry reforming and dimethyl ether synthesis in a vessel

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004149332A (en) * 2002-10-29 2004-05-27 Tokyo Gas Co Ltd Hydrogen production system
JP2008222526A (en) * 2007-03-15 2008-09-25 Ngk Insulators Ltd Selective permeation membrane type reactor, and hydrogen production method
JP2009149464A (en) * 2007-12-20 2009-07-09 Petroleum Energy Center Stationary reforming apparatus for hydrogen production
JP2009167060A (en) * 2008-01-17 2009-07-30 Casio Comput Co Ltd Carbon monoxide remover, reaction apparatus, and fuel cell system
JP2010076980A (en) * 2008-09-26 2010-04-08 T Rad Co Ltd Reformer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004149332A (en) * 2002-10-29 2004-05-27 Tokyo Gas Co Ltd Hydrogen production system
JP2008222526A (en) * 2007-03-15 2008-09-25 Ngk Insulators Ltd Selective permeation membrane type reactor, and hydrogen production method
JP2009149464A (en) * 2007-12-20 2009-07-09 Petroleum Energy Center Stationary reforming apparatus for hydrogen production
JP2009167060A (en) * 2008-01-17 2009-07-30 Casio Comput Co Ltd Carbon monoxide remover, reaction apparatus, and fuel cell system
JP2010076980A (en) * 2008-09-26 2010-04-08 T Rad Co Ltd Reformer

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019005684A (en) * 2017-06-22 2019-01-17 国立大学法人名古屋大学 Hydrogen separation device and hydrogen separation system
US11492255B2 (en) 2020-04-03 2022-11-08 Saudi Arabian Oil Company Steam methane reforming with steam regeneration
US11322766B2 (en) 2020-05-28 2022-05-03 Saudi Arabian Oil Company Direct hydrocarbon metal supported solid oxide fuel cell
US11639290B2 (en) 2020-06-04 2023-05-02 Saudi Arabian Oil Company Dry reforming of methane with carbon dioxide at elevated pressure
US11492254B2 (en) 2020-06-18 2022-11-08 Saudi Arabian Oil Company Hydrogen production with membrane reformer
US11583824B2 (en) 2020-06-18 2023-02-21 Saudi Arabian Oil Company Hydrogen production with membrane reformer
US11578016B1 (en) 2021-08-12 2023-02-14 Saudi Arabian Oil Company Olefin production via dry reforming and olefin synthesis in a vessel
US11718575B2 (en) 2021-08-12 2023-08-08 Saudi Arabian Oil Company Methanol production via dry reforming and methanol synthesis in a vessel
US11787759B2 (en) 2021-08-12 2023-10-17 Saudi Arabian Oil Company Dimethyl ether production via dry reforming and dimethyl ether synthesis in a vessel
US11617981B1 (en) 2022-01-03 2023-04-04 Saudi Arabian Oil Company Method for capturing CO2 with assisted vapor compression

Also Published As

Publication number Publication date
JP5588581B2 (en) 2014-09-10

Similar Documents

Publication Publication Date Title
JP5588581B2 (en) Hydrogen production equipment
JP4184037B2 (en) Hydrogen production equipment
JP2014169222A (en) Hydrogen manufacturing apparatus
US9590260B2 (en) Integral reactor system and method for fuel cells
US8992669B2 (en) Hydrogen separation membrane module and hydrogen separation method using same
KR100823477B1 (en) Reformer used in fuel cell, and fuel cell system comprising same
CA2428548C (en) Methanol-steam reformer
JP6398020B2 (en) Membrane hydrogen purifier
JP2009292706A (en) Fuel reforming module and its operation method
KR101336764B1 (en) Module for hydrogen production by simultaneous reaction and separation, and reactor using thereof
JP2008166233A (en) Fuel cell
JP4443968B2 (en) Hydrogen production equipment
Makertihartha et al. Advances of zeolite based membrane for hydrogen production via water gas shift reaction
JP2009242216A (en) Apparatus for generating and separating hydrogen, fuel cell system using the same, and internal combustion engine system
JP2007270256A (en) Apparatus for producing hydrogen, method for producing hydrogen and fuel cell power generator
JP5592680B2 (en) Hydrogen production equipment
KR102168018B1 (en) Fuel cell system associated with a fuel reformer that additionally performs methanation
CN114132896A (en) Device and method for preparing hydrogen by oxidizing and reforming ethanol
JP2007204343A (en) Reformer and its manufacturing method
JP2011195349A (en) Apparatus for producing hydrogen
US8409306B2 (en) Fuel reformer
JP5037878B2 (en) Permselective membrane reactor and method for producing hydrogen gas
JP2008273764A (en) Method for producing hydrogen using permselective membrane reactor
JP2014196208A (en) Fuel reforming apparatus and fuel cell system
KR20090068703A (en) Reactor for fuel cell and fuel cell comprising the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140123

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140722

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140726

R150 Certificate of patent or registration of utility model

Ref document number: 5588581

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees