JP2011194324A - Crusher - Google Patents

Crusher Download PDF

Info

Publication number
JP2011194324A
JP2011194324A JP2010064377A JP2010064377A JP2011194324A JP 2011194324 A JP2011194324 A JP 2011194324A JP 2010064377 A JP2010064377 A JP 2010064377A JP 2010064377 A JP2010064377 A JP 2010064377A JP 2011194324 A JP2011194324 A JP 2011194324A
Authority
JP
Japan
Prior art keywords
container
wall surface
pulverization
rotating shaft
pulverized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010064377A
Other languages
Japanese (ja)
Inventor
Mikiko Kuroda
幹子 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2010064377A priority Critical patent/JP2011194324A/en
Publication of JP2011194324A publication Critical patent/JP2011194324A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Crushing And Grinding (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a crusher capable of controlling variation of grain sizes of a target material after crushing.SOLUTION: The crusher is for crushing a target material by stirring a mixture of the target material and a medium for crushing and includes a container, a rotation shaft arranged in the container and a stirring member fixed to the rotation shaft and stirring the mixture of the target material and the medium for crushing arranged in the container by moving within the container with the rotation of the rotation shaft. It is equipped with a moving mechanism moving at least a part of the inside wall surface of the container in the radial direction of the container.

Description

本発明は、粉砕装置およびこれを用いた粉砕方法に関する。   The present invention relates to a pulverizing apparatus and a pulverizing method using the same.

粉体の粒径を調整する装置の一例として、例えばセラミックスの原料となるセラミックス粉末の粉体の大きさ(粒径)を調整する際に用いる粉砕装置が、下記特許文献1に記載されている。   As an example of an apparatus for adjusting the particle size of a powder, for example, a pulverizing apparatus used for adjusting the size (particle diameter) of a ceramic powder used as a ceramic raw material is described in Patent Document 1 below. .

図10は、下記特許文献1に記載の粉砕装置100について示す概略断面図である。粉砕装置100は、セラミックビーズなどの粉砕用媒体が内部に配置された容器101と、容器101に配置された回転軸体102と、回転軸体102に固定された撹拌部材104と、を有する。   FIG. 10 is a schematic cross-sectional view showing a pulverizing apparatus 100 described in Patent Document 1 below. The pulverizing apparatus 100 includes a container 101 in which a pulverizing medium such as ceramic beads is disposed, a rotating shaft body 102 disposed in the container 101, and a stirring member 104 fixed to the rotating shaft body 102.

粉砕装置100では、粉砕用媒体が内部に配置された容器101内に、例えばスラリーにセラミック粉体を混合させた流動体を供給しつつ、回転軸体102を回転させて撹拌部材104を回転させる。粉砕装置100では、この回転によって、粉体用媒体と被粉砕物との衝突を生じさせることで被粉砕物を粉砕し、所望の大きさの被粉砕物を得ている。   In the pulverizing apparatus 100, a rotating member 102 is rotated to rotate the stirring member 104 while supplying a fluid in which ceramic powder is mixed with slurry, for example, into a container 101 in which a pulverizing medium is disposed. . In the pulverizer 100, the rotation causes a collision between the powder medium and the object to be pulverized, thereby pulverizing the object to be pulverized to obtain the object to be pulverized in a desired size.

特開平06−142481号公報Japanese Patent Laid-Open No. 06-142481

かかる粉砕装置では、粉砕処理工程において、粉砕装置100の容器の内壁101a、粉砕用媒体、撹拌用部材104などが、被粉砕物と強い圧力で接触する。このため、かかる粉砕装置100では、上記内壁101aや粉砕用媒体や撹拌部材104などが、被処理工程の時間経過とともに摩耗し、容器101内部の空間の大きさが漸増してくる。   In such a pulverizing apparatus, in the pulverizing process, the inner wall 101a of the container of the pulverizing apparatus 100, the pulverizing medium, the stirring member 104, and the like are in contact with the object to be pulverized with a strong pressure. Therefore, in the pulverizing apparatus 100, the inner wall 101a, the pulverizing medium, the stirring member 104, and the like are worn with the passage of time of the process to be processed, and the size of the space inside the container 101 is gradually increased.

このように、粉砕装置100のような従来の粉砕装置では、粉砕処理工程の時間経過とともに摩耗が進行する。このため、粉砕処理工程の時間経過とともに、容器内部の空間が変形し、内部の空間の大きさが大きくなり、これにともなって上記流動体にかかる圧力は漸減し、被粉砕物に印加される機械的エネルギーが時間経過にともなって小さくなる。このような特許文献1に記載されているような従来の粉砕装置では、被粉砕物を連続して粉砕した際、粉砕後の被粉砕物の粒径、例えば平均粒径が、粉砕時間の経過と共に変動するという問題があった。   As described above, in a conventional pulverizing apparatus such as the pulverizing apparatus 100, wear progresses with the lapse of time of the pulverizing process. For this reason, with the passage of time in the pulverization process, the space inside the container is deformed and the size of the internal space is increased, and accordingly, the pressure applied to the fluid gradually decreases and is applied to the object to be crushed. Mechanical energy decreases with time. In the conventional pulverization apparatus as described in Patent Document 1, when the material to be pulverized is continuously pulverized, the particle size of the material to be pulverized, for example, the average particle size, is the elapsed time of pulverization. There was a problem of fluctuating with.

本発明はこの問題に鑑み、粉砕後の被粉砕物の粒径の変動を抑制できる粉砕装置を提供することを目的とする。   An object of this invention is to provide the grinding | pulverization apparatus which can suppress the fluctuation | variation of the particle size of the to-be-ground material after grinding | pulverization in view of this problem.

上記課題を解決するため、本発明は、被粉砕物と粉砕用媒体との混合物を撹拌して、前記被粉砕物を粉砕するための粉砕装置であって、容器と、前記容器内に配置された回転軸体と、前記回転軸体の回転にともなって前記容器内を移動することで、前記容器内に配置される前記粉砕用媒体と前記被粉砕体との混合物を撹拌する、前記回転軸体に固定された撹拌部材と、を備え、前記容器の内壁面の少なくとも一部を移動させ、前記内壁面の少なくとも一部と前記回転軸体の軸心との距離を変化させる移動機構と、を有することを特徴
とする粉砕装置を提供する。
In order to solve the above problems, the present invention is a pulverizing apparatus for agitating a mixture of a material to be pulverized and a pulverizing medium to pulverize the material to be pulverized, the container being disposed in the container. The rotating shaft that stirs the mixture of the pulverizing medium and the object to be crushed disposed in the container by moving in the container with the rotation of the rotating shaft body. A moving member for moving at least a part of the inner wall surface of the container and changing a distance between at least a part of the inner wall surface and the axis of the rotary shaft body, and a stirring member fixed to the body, There is provided a crusher characterized by having.

本発明によれば、粉砕後の被粉砕物の粒径の変動を抑制でき、長時間にわたって安定した粒径の被粉砕物を得ることができる。また、粉砕装置において、摩耗にともなう部材の交換頻度を低減させ、長期間にわたって安定した性能で粉砕処理を行うことができる。   According to the present invention, fluctuations in the particle size of the pulverized material after pulverization can be suppressed, and a pulverized material having a stable particle size over a long period of time can be obtained. Further, in the pulverizing apparatus, the frequency of replacement of the members accompanying wear can be reduced, and the pulverization can be performed with stable performance over a long period of time.

(a)は本発明の一実施形態に係る粉砕装置の断面図、(b)は(a)の粉砕装置の一部を示す斜視図である。(A) is sectional drawing of the grinding | pulverization apparatus which concerns on one Embodiment of this invention, (b) is a perspective view which shows a part of (a) grinding | pulverization apparatus. (a)は本発明の一実施形態に係る粉砕装置を回転軸方向から見たときに移動機構を有する部分の断面図、(b)は移動機構を有しない部分の断面図である。(A) is sectional drawing of the part which has a moving mechanism when the grinding | pulverization apparatus which concerns on one Embodiment of this invention is seen from a rotating shaft direction, (b) is sectional drawing of the part which does not have a moving mechanism. (a)は本発明の一実施形態に係る粉砕装置の一部を切り出して観察したときの斜視図、(b)は(a)のC−C断面図、(c)は(b)の内壁を移動させた状態を示す断面図である。(A) is a perspective view when cutting out and observing a part of crushing device concerning one embodiment of the present invention, (b) is a CC sectional view of (a), and (c) is an inner wall of (b). It is sectional drawing which shows the state which moved. (a)は本発明の他の実施形態に係る粉砕装置の一部を切り出して観察したときの斜視図、(b)は(a)のD−D断面図、(c)は(b)の内壁を移動させた状態を示す断面図である。(A) is a perspective view when cutting out and observing a part of crushing device concerning other embodiments of the present invention, (b) is DD sectional view of (a), and (c) is of (b). It is sectional drawing which shows the state which moved the inner wall. 本発明の他の実施形態に係る粉砕装置の一部を切り出して観察したときの斜視図、(b)は(a)のE−E断面図である。The perspective view when a part of crushing device concerning other embodiments of the present invention is cut out and observed, (b) is an EE sectional view of (a). 本発明の他の実施形態に係る粉砕装置の断面である。It is a cross section of the grinding | pulverization apparatus which concerns on other embodiment of this invention. (a)は本発明の一実施形態に係る粉砕装置に用いられる撹拌部材の斜視図、(b)は(a)の平面図、(c)は(a)の断面図である。(d)は本発明の一実施形態に係る粉砕装置に用いられる撹拌部材の斜視図、(e)は(d)の平面図、(f)は(e)の断面図である。(A) is a perspective view of the stirring member used for the grinding | pulverization apparatus which concerns on one Embodiment of this invention, (b) is a top view of (a), (c) is sectional drawing of (a). (D) is a perspective view of a stirring member used in a pulverizing apparatus according to an embodiment of the present invention, (e) is a plan view of (d), and (f) is a sectional view of (e). (a)は本発明の一実施形態に係る粉砕装置に用いられる撹拌部材の斜視図、(b)は(a)の平面図、(c)は(a)の断面図である。(d)は本発明の一実施形態に係る粉砕装置に用いられる撹拌部材の斜視図、(e)は(d)の平面図、(f)は(e)の断面図である。(A) is a perspective view of the stirring member used for the grinding | pulverization apparatus which concerns on one Embodiment of this invention, (b) is a top view of (a), (c) is sectional drawing of (a). (D) is a perspective view of a stirring member used in a pulverizing apparatus according to an embodiment of the present invention, (e) is a plan view of (d), and (f) is a sectional view of (e). (a)は本発明の一実施形態に係る粉砕装置に用いられる撹拌部材の斜視図、(b)は(a)の平面図、(c)は(a)の断面図である。(d)は本発明の一実施形態に係る粉砕装置に用いられる撹拌部材の斜視図、(e)は(d)の平面図、(f)は(e)の断面図である。(A) is a perspective view of the stirring member used for the grinding | pulverization apparatus which concerns on one Embodiment of this invention, (b) is a top view of (a), (c) is sectional drawing of (a). (D) is a perspective view of a stirring member used in a pulverizing apparatus according to an embodiment of the present invention, (e) is a plan view of (d), and (f) is a sectional view of (e). 従来の粉砕装置の断面図である。It is sectional drawing of the conventional grinding | pulverization apparatus.

以下、図面を参照して本発明の実施形態に係る粉砕装置およびこれを用いた粉砕方法について説明する。   Hereinafter, a pulverizing apparatus and a pulverizing method using the same according to an embodiment of the present invention will be described with reference to the drawings.

図1〜3は、それぞれ本発明の一実施形態に係る粉砕装置40について説明する図である。図1(a)は粉砕装置40の概略断面図、図1(b)は(a)の粉砕装置の一部を示す概略斜視図である。また、図2(a)は、粉砕装置40の一部(後述する移動機構に対応する部分)の断面図であり、図2(b)は粉砕装置40の他の部の断面図である。また、図3(a)は、粉砕装置40の一部を切り出して観察した概略斜視図であり、(b)および(c)は(a)のC−C断面図である。   1-3 is a figure explaining the grinding | pulverization apparatus 40 which concerns on one Embodiment of this invention, respectively. FIG. 1A is a schematic cross-sectional view of the crushing device 40, and FIG. 1B is a schematic perspective view showing a part of the crushing device of FIG. 2A is a cross-sectional view of a part of the crusher 40 (a part corresponding to a moving mechanism described later), and FIG. 2B is a cross-sectional view of another part of the crusher 40. Moreover, Fig.3 (a) is the schematic perspective view which cut out and observed a part of crushing apparatus 40, (b) and (c) are CC sectional drawing of (a).

粉砕装置40は、容器2と、容器2内で回転する回転軸体4と、回転軸体4の長手方向に沿って配置され、かつ回転軸体4に固定された複数の撹拌部材6と、被粉砕物を容器2内に供給するための供給口10aと、被粉砕物を容器2から排出するための排出口10bと、後述する移動機構34と、を備えている。   The crushing device 40 includes a container 2, a rotating shaft body 4 that rotates in the container 2, a plurality of stirring members 6 that are disposed along the longitudinal direction of the rotating shaft body 4 and are fixed to the rotating shaft body 4, A supply port 10 a for supplying the material to be crushed into the container 2, a discharge port 10 b for discharging the material to be crushed from the container 2, and a moving mechanism 34 described later are provided.

容器2内には、粉砕用媒体8が収納されている。粉砕用媒体8は、例えばセラミック製のボールからなる。セラミック製のボールの材質は、アルミナ、ジルコニア、窒化珪素であることが好ましい。ボールの大きさは、例えば平均で外径が0.2〜30mmとすればよい。   A pulverizing medium 8 is accommodated in the container 2. The grinding medium 8 is made of, for example, ceramic balls. The material of the ceramic balls is preferably alumina, zirconia, or silicon nitride. The size of the ball may be, for example, an average outer diameter of 0.2 to 30 mm.

容器2は、それぞれが容器2の内壁面を構成する、固定壁14、14aと可動壁16とを有する。移動機構34の一部である可動壁16は、回転軸体4に近づく方向(第1方向D1)および回転軸体4から離れる方向(第2方向D2)に移動可能である。可動壁16の外側には支持壁14aがある。支持壁14aは固定壁14に固定されている。移動機構34は、支持壁14aに設置された、例えばモータとボールネジ等とを備える公知の移動機構に、可動壁16が取り付けられた構成とされている。可動壁16と固定壁14は、両者の間の気密が保たれるよう当接されている。容器2の固定壁14および可動壁16は、樹脂、金属、セラミックスなど、その主成分については特に限定されない。耐摩耗性を向上させる観点では、容器2の内壁面は、耐摩耗性に優れたセラミックからなることが特に好ましい。   The container 2 has fixed walls 14 and 14 a and a movable wall 16, each constituting the inner wall surface of the container 2. The movable wall 16 that is a part of the moving mechanism 34 is movable in a direction approaching the rotary shaft body 4 (first direction D1) and in a direction away from the rotary shaft body 4 (second direction D2). There is a support wall 14 a outside the movable wall 16. The support wall 14 a is fixed to the fixed wall 14. The moving mechanism 34 is configured such that the movable wall 16 is attached to a known moving mechanism that is installed on the support wall 14a and includes, for example, a motor and a ball screw. The movable wall 16 and the fixed wall 14 are in contact with each other so that the airtightness between them is maintained. The fixed wall 14 and the movable wall 16 of the container 2 are not particularly limited with respect to the main components thereof such as resin, metal, ceramics and the like. From the viewpoint of improving wear resistance, the inner wall surface of the container 2 is particularly preferably made of a ceramic having excellent wear resistance.

また、容器2の可動壁16には、例えば圧電素子等を用いた公知の圧力センサ22が取り付けられている。圧力センサ22は、可動壁16が容器2の内側から受ける圧力の大きさを検出する。圧力センサ22および上述の移動機構は、図示しない制御装置と接続されている。この制御装置は、圧力センサ22が検出した情報を時系列で受け取り、受け取った情報に応じて、移動機構の動作を制御する。   A known pressure sensor 22 using, for example, a piezoelectric element or the like is attached to the movable wall 16 of the container 2. The pressure sensor 22 detects the magnitude of pressure that the movable wall 16 receives from the inside of the container 2. The pressure sensor 22 and the moving mechanism described above are connected to a control device (not shown). This control device receives information detected by the pressure sensor 22 in time series, and controls the operation of the moving mechanism according to the received information.

回転軸体4は図示しないモータと接続されており、モータ30によって回転軸体4の軸心C回りに回転可能な構成とされている。回転軸体4の材質は、金属、セラミックなど特に限定されないが、耐摩耗性の観点ではセラミックスを主成分とすることが好ましい。   The rotating shaft body 4 is connected to a motor (not shown), and is configured to be rotatable around the axis C of the rotating shaft body 4 by the motor 30. The material of the rotating shaft 4 is not particularly limited, such as metal or ceramic, but it is preferable that the main component is ceramic from the viewpoint of wear resistance.

撹拌部材6は、回転軸体4と接合し、回転軸体4の回転にともなって容器2内部を移動する。撹拌部材6は、回転軸体4が挿通された軸孔32を備えた板状部材であり、この板状部材の表面には凸部24が設けられている。   The stirring member 6 is joined to the rotary shaft body 4 and moves inside the container 2 as the rotary shaft body 4 rotates. The stirring member 6 is a plate-like member provided with a shaft hole 32 through which the rotating shaft body 4 is inserted, and a convex portion 24 is provided on the surface of the plate-like member.

粉砕装置40は、例えば以下のように使用される。 容器2内に、例えば直径1mmの
アルミナ製のボールからなる粉砕用媒体8を750g充填し、回転軸体4を例えば2000rpmで回転させた状態で、平均粒径10μmのアルミナ粉末(被粉砕物)を水に分散させたスラリーを、供給口10aから供給して排出口10bから排出させる。容器2内では、被粉砕物(アルミナ粉末)と粉砕用媒体8とがスラリーに混合された流動体が、供給口10aの側から排出口10bの側に向かって移動する。粉砕装置40では、供給口10aから導入されたスラリーが排出口10bから排出されるまでの間に、この流動体が撹拌部材6によって撹拌され、主に粉砕用媒体8と被粉砕物とが衝突することで、被粉砕物が粉砕されて、この被粉砕物の粒径が調整される。
The crusher 40 is used as follows, for example. The container 2 is filled with 750 g of a grinding medium 8 made of, for example, an alumina ball having a diameter of 1 mm, and the rotating shaft 4 is rotated at, for example, 2000 rpm, alumina powder having an average particle size of 10 μm (to be ground) The slurry in which water is dispersed in water is supplied from the supply port 10a and discharged from the discharge port 10b. In the container 2, the fluid in which the material to be crushed (alumina powder) and the pulverizing medium 8 are mixed with the slurry moves from the supply port 10a side to the discharge port 10b side. In the pulverizer 40, the fluid is stirred by the stirring member 6 until the slurry introduced from the supply port 10a is discharged from the discharge port 10b, and the pulverizing medium 8 and the object to be crushed mainly collide with each other. Thus, the object to be crushed is pulverized, and the particle size of the object to be pulverized is adjusted.

本発明の一実施形態である粉砕装置40は、容器2の内壁面の少なくとも一部と回転軸体4の軸心との距離を変化させる移動機構34を備えている。粉砕装置40では、移動機構34によって、容器2の内壁面の一部を構成する壁面を備える可動壁16が、容器2の径方向に沿って移動可能とされている。   The crushing apparatus 40 according to an embodiment of the present invention includes a moving mechanism 34 that changes the distance between at least a part of the inner wall surface of the container 2 and the axis of the rotary shaft body 4. In the pulverizing apparatus 40, the movable wall 16 including a wall surface constituting a part of the inner wall surface of the container 2 can be moved along the radial direction of the container 2 by the moving mechanism 34.

移動機構34は、容器2の内壁の一部を構成する可動壁16を、回転軸体4に近づく方向(第1方向)、および離れる方向(第2方向)へ、移動可能な構成とされている。   The moving mechanism 34 is configured to be able to move the movable wall 16 constituting a part of the inner wall of the container 2 in a direction approaching the rotary shaft body 4 (first direction) and a direction away from it (second direction). Yes.

移動機構34によって可動壁16の位置を調整することで、この可動壁16に対応する
部位における容器2の断面積、ひいてはこの部位における、容器2内部の容積を調整することができる。
By adjusting the position of the movable wall 16 by the moving mechanism 34, the cross-sectional area of the container 2 at a part corresponding to the movable wall 16 and, by extension, the volume inside the container 2 at this part can be adjusted.

例えば、可動壁16の内壁面が、他の部位の内壁面の位置と略一致した状態で、粉砕処理が開始された場合、粉砕処理の開始時点において、可動壁16の位置は図3(a)に示す位置に設定されている。粉砕処理時間の経過にともなって、容器2の可動壁16、回転軸体4、撹拌部材6が摩耗すると、容器2の内部空間の大きさが漸増し、容器2内に供給した流動体(スラリー、被粉砕物、粉砕用媒体8の混合物)にかかる圧力の大きさが小さくなる。この場合、容器2の内壁面にかかる圧力も小さくなり、可動壁16に設けられている圧力センサ22によって検出される圧力の大きさも小さくなる。上述の制御装置は、この圧力の変動を検知すると、可動壁16の内面にかかる圧力が大きくなる方向、すなわち上記第1方向に沿って可動壁16を移動させる(図3(c))。これにより、流動体にかかる圧力を上昇させて、粉砕処理の経過にともなう内部圧力の減少を抑制し、すなわち、被粉砕物に加わる粉砕エネルギーの減少を抑制し、長時間の粉砕処理時間全体にわたって、粉砕粒径の変動を小さく抑制することができる。   For example, when the pulverization process is started in a state where the inner wall surface of the movable wall 16 substantially coincides with the position of the inner wall surface of the other part, the position of the movable wall 16 is as shown in FIG. ). When the movable wall 16, the rotating shaft 4, and the stirring member 6 of the container 2 are worn with the lapse of the pulverization time, the size of the internal space of the container 2 gradually increases, and the fluid (slurry) supplied into the container 2 The pressure applied to the object to be pulverized and the pulverizing medium 8 is reduced. In this case, the pressure applied to the inner wall surface of the container 2 is also reduced, and the magnitude of the pressure detected by the pressure sensor 22 provided on the movable wall 16 is also reduced. When detecting the fluctuation of the pressure, the above-described control device moves the movable wall 16 along the direction in which the pressure applied to the inner surface of the movable wall 16 increases, that is, the first direction (FIG. 3C). As a result, the pressure applied to the fluid is increased, and the decrease in internal pressure with the progress of the pulverization process is suppressed, that is, the decrease in pulverization energy applied to the object to be pulverized is suppressed, and the entire pulverization process time is prolonged. In addition, fluctuations in the pulverized particle size can be suppressed small.

また、粉砕装置40では、部材が摩耗しても可動壁の位置調整によって、容器内の流動体にかかる圧力の大きさを調整できる。このため、摩耗にともなって容器内の空間の大きさが変動した場合でも、部材を交換することなく、可動壁の位置を調整することで、流動体にかかる圧力の大きさを調整することができる。このように粉砕装置40では、摩耗にともなう部材の交換頻度を低減させ、長期間にわたって安定した性能で粉砕処理を行うことができる。   In the pulverizer 40, the pressure applied to the fluid in the container can be adjusted by adjusting the position of the movable wall even if the member is worn. For this reason, even when the size of the space in the container fluctuates due to wear, the magnitude of the pressure applied to the fluid can be adjusted by adjusting the position of the movable wall without replacing the member. it can. As described above, the pulverizing apparatus 40 can reduce the frequency of replacement of the members accompanying wear and perform the pulverization process with stable performance over a long period of time.

なお、粉砕処理においては、内壁が被粉砕物から受ける圧力が時間と共に減少するのみに限らず、反対に、粉砕中にスラリーの粘度が上昇すると、可動壁16が粉砕溶媒帯および被粉砕物から受ける圧力が上昇して、粉砕粒径が小さくなることもある。粉砕装置40では、この場合にも、可動壁16を第2方向D2へ移動させることにより、粉砕粒径が小さく変化することを回避することができる。粉砕装置40は、圧力センサ22が検知する圧力が一定となるように可動壁16の位置を調整することで、被粉砕物の粉砕粒径の経時変化が抑制される。   In the pulverization process, the pressure applied to the inner wall from the object to be pulverized is not limited to decrease with time. Conversely, when the viscosity of the slurry increases during pulverization, the movable wall 16 moves from the pulverizing solvent zone and the object to be pulverized. The pressure received is increased, and the pulverized particle size may be reduced. In this case, the pulverizing apparatus 40 can also prevent the pulverized particle size from changing small by moving the movable wall 16 in the second direction D2. The pulverizer 40 adjusts the position of the movable wall 16 so that the pressure detected by the pressure sensor 22 is constant, thereby suppressing a change with time in the pulverized particle size of the pulverized material.

図1(a)に示したように、供給口10aは回転軸体4の長手方向の一方側に設けられ、排出口10bは長手方向の他方側に設けられていることが好ましい。この構造を選択することによって、被粉砕物が長手方向の一方側から他方側までの長い距離を移動しながら粉砕されるので、被粉砕物を効率良く、小さい粒径に粉砕することができる。   As shown to Fig.1 (a), it is preferable that the supply port 10a is provided in the one side of the longitudinal direction of the rotating shaft body 4, and the discharge port 10b is provided in the other side of the longitudinal direction. By selecting this structure, the object to be crushed is pulverized while moving a long distance from one side to the other side in the longitudinal direction, so that the object to be pulverized can be efficiently pulverized to a small particle size.

可動壁16は、図1、3に示したように、供給口10aよりも排出口10b側により近い位置に配置されている。容器2内部の流動体は、一般的に供給口10a側よりも排出口10b側で大きな圧力(ひいては大きな粉砕エネルギー)を受ける。このため、排出口10b側に近い位置に移動機構34を有すると、被粉砕物が受ける粉砕エネルギーの大きさを効率よく調整することができる。これによって、被粉砕物の粉砕粒径の変動を効率よく抑制できる。   As shown in FIGS. 1 and 3, the movable wall 16 is disposed at a position closer to the discharge port 10b side than the supply port 10a. The fluid inside the container 2 generally receives a larger pressure (and thus a larger pulverization energy) on the discharge port 10b side than on the supply port 10a side. For this reason, when the moving mechanism 34 is provided at a position close to the discharge port 10b, the amount of pulverization energy received by the object to be pulverized can be adjusted efficiently. Thereby, the fluctuation | variation of the grinding | pulverization particle size of a to-be-ground material can be suppressed efficiently.

なお、粉砕処理装置では、供給口10aが重力方向、排出口10bが重力と反対方向に形成されていることが好ましい。被粉砕物は供給口10a側よりも排出口10b側で大きな粉砕エネルギーを受けるため、供給口10a側にある被粉砕物の粉砕効率を上げることができれば、被粉砕物はさらに効率良く粉砕される。供給口10aを重力方向、排出口10bを重力と反対方向に形成することによって、被粉砕物が受ける粉砕エネルギーが増えるので、粉砕粒径を小さくしつつ粉砕粒径の変動をさらに抑制することができる。   In the pulverization apparatus, it is preferable that the supply port 10a is formed in the direction of gravity and the discharge port 10b is formed in the direction opposite to the gravity. Since the material to be crushed receives greater pulverization energy on the discharge port 10b side than on the supply port 10a side, the material to be crushed can be crushed more efficiently if the pulverization efficiency of the material to be crushed on the supply port 10a side can be increased. . By forming the supply port 10a in the direction of gravity and the discharge port 10b in the direction opposite to the gravity, the pulverization energy received by the object to be crushed increases, so that the fluctuation of the pulverized particle size can be further suppressed while reducing the pulverized particle size. it can.

また、図4および図5は、本発明の他の実施形態について示す図である。図4および図5では、図1〜3に示す実施形態と同様の構成については、図1〜3と同一の符号を付して示している。図4および図5(a)は、粉砕装置の一部を切り出して観察した概略斜視図であり、(b)および(c)は(a)の断面図である。粉砕装置は、図4のように内面の全体が一体的に可動するように構成されていてもよい。また図5のように、複数の可動壁16が組み合わされており、各部分の可動壁16が独立して移動可能形成されていても良い。図5のように可動壁16が複数に分割されていると可動壁16が受ける圧力をそれぞれの可動壁毎にコントロールでき、より高い精度で粉砕粒径を調整、管理することができる。可動壁16が図4のように一体的に形成されている場合は、それぞれの可動壁の間の段差が形成されにくくなるので、この段差が摩耗することで発生する不純物混入が減少する。不純物を低減させたい場合、図4の構成が好適に用いられる。   4 and 5 are diagrams showing another embodiment of the present invention. 4 and 5, the same configurations as those in the embodiment illustrated in FIGS. 1 to 3 are denoted by the same reference numerals as those in FIGS. 4 and 5 (a) are schematic perspective views of a part of the pulverizing apparatus cut out and observed, and (b) and (c) are cross-sectional views of (a). The pulverizing apparatus may be configured so that the entire inner surface can move integrally as shown in FIG. Further, as shown in FIG. 5, a plurality of movable walls 16 may be combined, and the movable walls 16 of each part may be formed to be independently movable. When the movable wall 16 is divided into a plurality of pieces as shown in FIG. 5, the pressure received by the movable wall 16 can be controlled for each movable wall, and the pulverized particle size can be adjusted and managed with higher accuracy. When the movable wall 16 is integrally formed as shown in FIG. 4, it is difficult to form a step between the respective movable walls, so that contamination of impurities caused by wear of the step is reduced. When it is desired to reduce impurities, the configuration of FIG. 4 is preferably used.

なお、固定壁14の形状は、図2および図3に示す形態に限定されず、例えば図6に示すように部分的に曲面形状とし、断面が略円周状をなすように構成してもよい。この場合、撹拌部材6の回転に伴って、粉砕用媒体8が容器2内で回転し易くなるので、粉砕効率が向上する。容器2の内壁の形状についても、特に限定されない。   The shape of the fixed wall 14 is not limited to the form shown in FIGS. 2 and 3, and may be configured to have a partially curved shape as shown in FIG. 6 and a substantially circular cross section, for example. Good. In this case, the grinding medium 8 is easily rotated in the container 2 as the stirring member 6 is rotated, so that the grinding efficiency is improved. The shape of the inner wall of the container 2 is not particularly limited.

図7は、粉砕装置40が備える撹拌部材6を説明する図である。(a)は第1の板状体36の斜視図、(b)は平面図、(c)は断面図である。また、(d)は第2の板状体38の斜視図、(e)は平面図、(f)は断面図である。   FIG. 7 is a diagram illustrating the agitation member 6 provided in the crusher 40. (A) is a perspective view of the 1st plate-shaped body 36, (b) is a top view, (c) is sectional drawing. Further, (d) is a perspective view of the second plate-like body 38, (e) is a plan view, and (f) is a sectional view.

粉砕装置40の撹拌部材6は板状体からなり、回転軸体4の長手方向と撹拌部材6の主面方向が略直交する構造を有する粉砕装置であって、撹拌部材6は、主面18a、18bの少なくとも一方に複数の突起(凸部24)を有し、撹拌部材6は、回転軸体4側と撹拌部材6の外周側との間に複数の貫通孔20が形成された第1の板状体36と、貫通孔が形成されていない第2の板状体38と、を有することが好ましい。被粉砕物の供給量が一定の場合に、被粉砕物が10a供給口から排出口10bへ移動する経路が長い程、被粉砕物に効率よく粉砕エネルギーを伝えることができ、被粉砕物の粉砕粒径は小さくなる。例えば、回転軸体4に、第1の板状体36と、第2の板状体38とを交互に取り付けた場合など、第1の板状体36の貫通孔20を通過した流動体が、第2の板状体の外周を周り込むように移動し、また次の第1の板状体36の貫通孔20を通過するように移動する、比較的経路の長い流れが生じる。これにより、被粉砕物の粉砕粒径の変動を抑制したまま、粉砕粒径を小さくすることができる。   The stirring member 6 of the pulverizing apparatus 40 is a pulverizing apparatus having a structure in which the longitudinal direction of the rotating shaft 4 and the main surface direction of the stirring member 6 are substantially orthogonal to each other, and the stirring member 6 has a main surface 18a. , 18b has a plurality of protrusions (convex portions 24), and the stirring member 6 is a first in which a plurality of through holes 20 are formed between the rotating shaft body 4 side and the outer peripheral side of the stirring member 6. It is preferable to have a plate-like body 36 and a second plate-like body 38 in which no through hole is formed. When the supply amount of the material to be pulverized is constant, the longer the path of the material to be crushed from the 10a supply port to the discharge port 10b, the more efficiently the pulverization energy can be transmitted to the material to be pulverized. The particle size becomes smaller. For example, when the first plate-like body 36 and the second plate-like body 38 are alternately attached to the rotary shaft body 4, the fluid that has passed through the through hole 20 of the first plate-like body 36 is A relatively long path is generated that moves around the outer periphery of the second plate-like body and moves so as to pass through the through-hole 20 of the next first plate-like body 36. Thereby, a grinding | pulverization particle size can be made small, suppressing the fluctuation | variation of the grinding | pulverization particle size of a to-be-ground material.

この撹拌部材6はセラミック体からなることが好ましい。撹拌部材6は、粉砕用媒体8および被粉砕物と強い力で接触するため、摩耗し易い。撹拌部材6の摩耗を抑制すれば、被粉砕物が受ける粉砕エネルギーの低下を抑制することができる。このため、撹拌部材6を、耐摩耗性に優れたセラミック体により構成することによって、被粉砕物の粉砕粒径の変動をさらに抑制することができる。   The stirring member 6 is preferably made of a ceramic body. Since the stirring member 6 contacts the grinding medium 8 and the material to be ground with a strong force, the stirring member 6 is easily worn. If the abrasion of the stirring member 6 is suppressed, it is possible to suppress a decrease in pulverization energy received by the object to be pulverized. For this reason, the fluctuation | variation of the grinding | pulverization particle size of a to-be-ground material can further be suppressed by comprising the stirring member 6 with the ceramic body excellent in abrasion resistance.

なお、撹拌部材の形状は特に限定されず、例えば図8に示すように、一方面のみに突起を設けた構成であてもよいし、図9に示すように、突起の数を4つ以外としてもよく、突起の数についても特に限定されない。また、図9(a)〜(c)に示すように、長円形状の貫通孔を備える構成であってもよく、貫通孔の形状についても特に限定されない。   The shape of the stirring member is not particularly limited. For example, as shown in FIG. 8, a configuration in which protrusions are provided only on one surface may be used. As shown in FIG. 9, the number of protrusions is other than four. The number of protrusions is not particularly limited. Moreover, as shown to Fig.9 (a)-(c), the structure provided with an oval through-hole may be sufficient, and it does not specifically limit about the shape of a through-hole.

なお、粉砕装置を用いた粉砕方法では、粉砕装置40を用いて粉砕された被粉砕物を再度記供給口10aへ供給することが好ましい。特に、被粉砕物が粉砕されにくい材質の場合、粉砕された被粉砕物を再度供給口10aへ供給し、繰り返して粉砕すれば、所望の粉砕粒径に粉砕することが容易である。この粉砕方法によれば、被粉砕物の被粉砕物の粉砕粒径を一旦測定し、所望の粉砕粒径になるまで、粉砕を断続的または連続的に繰り返すこ
とができるので、高い精度で粉砕粒径を制御することができる。
In the pulverization method using the pulverizer, it is preferable to supply the material to be pulverized using the pulverizer 40 to the supply port 10a again. In particular, when the material to be pulverized is difficult to pulverize, if the pulverized material to be pulverized is supplied again to the supply port 10a and repeatedly pulverized, it can be easily pulverized to a desired pulverized particle size. According to this pulverization method, the pulverized particle size of the material to be pulverized is once measured, and the pulverization can be repeated intermittently or continuously until the desired pulverized particle size is obtained. The particle size can be controlled.

(実験例1:内壁固定、1,000g)
図1に示す湿式粉砕装置において、容器2内に、直径1mmのアルミナ製の粉砕用媒体
を750g充填し、回転軸体4を2000rpmで回転させた状態で、平均粒径10μmのアルミナ粉末を水に分散させたスラリー120ml/分の流量で、アルミナ粉末換算で1000gを1回通過させた。その結果、粉砕後の平均粒径は3μmであった。なお、容
器2の大きさは、内径84mm、長さ120mmとした。撹拌部材6は、厚みが8mm、外径70mmでアルミナ焼結体とした。図9に示す第1板状体36、第2板状体38を交互に配置した。
(Experimental example 1: inner wall fixation, 1,000 g)
In the wet pulverization apparatus shown in FIG. 1, 750 g of an alumina pulverization medium having a diameter of 1 mm is filled in a container 2 and alumina powder having an average particle diameter of 10 μm is added to water in a state where the rotating shaft 4 is rotated at 2000 rpm. 1000 g in terms of alumina powder was passed once at a flow rate of 120 ml / min. As a result, the average particle size after pulverization was 3 μm. In addition, the magnitude | size of the container 2 was made into the internal diameter 84mm and length 120mm. The stirring member 6 was an alumina sintered body having a thickness of 8 mm and an outer diameter of 70 mm. The first plate-like body 36 and the second plate-like body 38 shown in FIG. 9 were alternately arranged.

(実験例2:内壁固定、10,000g)
実施例1と同じ条件で、アルミナ粉末換算で10000gを容器2内を通過させて粉砕
した。粉砕開始始めの1000gの粉砕粒径は、平均粒子3μmであったが、最後の1000gの平均粒子径は3.8μmと大きくなった。
(Experimental example 2: Inner wall fixing, 10,000 g)
Under the same conditions as in Example 1, 10000 g in terms of alumina powder was passed through the container 2 and pulverized. The pulverized particle size of 1000 g at the beginning of pulverization was an average particle size of 3 μm, but the final 1000 g average particle size was increased to 3.8 μm.

(実験例3:内壁部分移動、10,000g)
参考例2の条件において、粉砕途中、アルミナ粉末換算で約半分の約5000gを粉砕した直後に可動壁16を第1方向D1へ20μm移動させた。その結果、その後、粉砕終了までアルミナ粉末の平均粒径は3.1μmと一定であった。
(Experimental example 3: inner wall partial movement, 10,000 g)
Under the conditions of Reference Example 2, during the pulverization, the movable wall 16 was moved 20 μm in the first direction D1 immediately after pulverizing about 5000 g of about half of the alumina powder. As a result, thereafter, the average particle diameter of the alumina powder was constant at 3.1 μm until the end of pulverization.

(実験例4:内壁全体移動、10,000g)
可動壁16の構造を図4の構造にした以外は実施例1と同じ条件で粉砕した。可動壁16を第1方向D1に30μm移動させた。その結果、アルミナ粉末換算で粉砕の終了前の1000gの平均粒子径は3.0μmであった。
(Experimental example 4: movement of entire inner wall, 10,000 g)
The movable wall 16 was pulverized under the same conditions as in Example 1 except that the structure of FIG. The movable wall 16 was moved 30 μm in the first direction D1. As a result, the average particle diameter of 1000 g before the completion of pulverization in terms of alumina powder was 3.0 μm.

実験の結果、容器の内壁を移動させた場合、粉砕処理における粒径の変動が抑制できることが確認できた。   As a result of the experiment, it was confirmed that when the inner wall of the container was moved, fluctuations in the particle size in the pulverization treatment could be suppressed.

2 容器
4 回転軸体
6 撹拌部材
8 粉砕用媒体
10a 供給口
10b 排出口
12 移動機構
14 固定壁
16 可動壁
18a、18b:主面
20 貫通孔
22 圧力センサ
24 凸部
30 モータ
40 粉砕装置
DESCRIPTION OF SYMBOLS 2 Container 4 Rotating shaft body 6 Stirring member 8 Crushing medium 10a Supply port 10b Discharge port 12 Movement mechanism 14 Fixed wall 16 Movable wall 18a, 18b: Main surface 20 Through-hole 22 Pressure sensor 24 Convex part 30 Motor 40 Crusher

Claims (9)

被粉砕物と粉砕用媒体との混合物を撹拌して、前記被粉砕物を粉砕するための粉砕装置であって、
容器と、
前記容器内に配置された回転軸体と、
前記回転軸体の回転にともなって前記容器内を移動することで、前記容器内に配置される前記粉砕用媒体と前記被粉砕体との混合物を撹拌する、前記回転軸体に固定された撹拌部材と、を備え、
前記容器の内壁面の少なくとも一部を移動させ、前記内壁面の少なくとも一部と前記回転軸体の軸心との距離を変化させる移動機構と、を有することを特徴とする粉砕装置。
A pulverizing apparatus for agitating a mixture of a material to be ground and a grinding medium to grind the material to be ground,
A container,
A rotating shaft disposed in the container;
Stirring fixed to the rotating shaft body that stirs the mixture of the grinding medium and the object to be ground disposed in the container by moving in the container as the rotating shaft body rotates. A member, and
A crushing apparatus comprising: a moving mechanism that moves at least a part of an inner wall surface of the container and changes a distance between at least a part of the inner wall surface and an axis of the rotating shaft body.
前記容器は、
前記被粉砕物の供給口と、
前記回転軸体の軸方向に沿って前記供給口と離間した位置に設けられた、前記被粉砕物の排出口と、
を備えることを特徴とする請求項1記載の粉砕装置。
The container is
A supply port for the object to be crushed;
A discharge port for the object to be crushed, provided at a position separated from the supply port along the axial direction of the rotating shaft body;
The pulverizing apparatus according to claim 1, further comprising:
前記移動機構が移動させる前記内壁面は、
前記供給口よりも前記排出口により近いことを特徴とする請求項2記載の粉砕装置。
The inner wall surface moved by the moving mechanism is
The pulverization apparatus according to claim 2, wherein the pulverization apparatus is closer to the discharge port than the supply port.
前記排出口に対し、前記供給口がより鉛直下側に配置されていることを特徴とする請求項2に記載の粉砕装置。   The pulverization apparatus according to claim 2, wherein the supply port is disposed vertically further with respect to the discharge port. 前記容器は、対向する2つの固定内壁面を備え、
前記移動機構が、前記2つの固定内壁面の間隙に配置された、前記固定内壁面に沿って移動可能な可動内壁面と、前記可動内壁面を移動させる移動手段と、を有することを特徴とする請求項1〜4のいずれかに記載の粉砕装置。
The container includes two fixed inner walls facing each other,
The moving mechanism has a movable inner wall surface arranged in a gap between the two fixed inner wall surfaces and movable along the fixed inner wall surface, and moving means for moving the movable inner wall surface. The pulverizing apparatus according to any one of claims 1 to 4.
前記粉砕用媒体が、粉砕用ボール部材であり、
前記被粉砕物が、セラミック粉体であることを特徴とする請求項1〜5のいずれかに記載の粉砕装置。
The grinding medium is a grinding ball member;
The pulverizing apparatus according to claim 1, wherein the object to be pulverized is ceramic powder.
前記容器の内壁面が、セラミックスを主成分とすることを特徴とする請求項1〜6のいずれかに記載の粉砕装置。   The pulverizing apparatus according to any one of claims 1 to 6, wherein an inner wall surface of the container contains ceramic as a main component. 前記撹拌部材が、セラミックスを主成分とすることを特徴とする請求項1〜7のいずれかに記載の粉砕装置。   The pulverizer according to any one of claims 1 to 7, wherein the stirring member contains ceramic as a main component. 前記容器の内壁にかかる圧力を検出する圧力計測部と、
前記圧力計測部による計測結果に応じて、前記移動機構による前記内壁面の移動状態を制御する調整手段と、を備えることを特徴とする粉砕装置。
A pressure measuring unit for detecting pressure applied to the inner wall of the container;
A pulverizing apparatus comprising: adjusting means for controlling a moving state of the inner wall surface by the moving mechanism according to a measurement result by the pressure measuring unit.
JP2010064377A 2010-03-19 2010-03-19 Crusher Pending JP2011194324A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010064377A JP2011194324A (en) 2010-03-19 2010-03-19 Crusher

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010064377A JP2011194324A (en) 2010-03-19 2010-03-19 Crusher

Publications (1)

Publication Number Publication Date
JP2011194324A true JP2011194324A (en) 2011-10-06

Family

ID=44873201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010064377A Pending JP2011194324A (en) 2010-03-19 2010-03-19 Crusher

Country Status (1)

Country Link
JP (1) JP2011194324A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016539797A (en) * 2013-12-13 2016-12-22 ネッツシュ−ファインマールテヒニック ゲーエムベーハー Grinding device with wear protection disc
CN109158176A (en) * 2018-08-16 2019-01-08 苏州和必尔斯电子科技有限公司 A kind of factory's electronics technology product waste disposal cylinder

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016539797A (en) * 2013-12-13 2016-12-22 ネッツシュ−ファインマールテヒニック ゲーエムベーハー Grinding device with wear protection disc
CN109158176A (en) * 2018-08-16 2019-01-08 苏州和必尔斯电子科技有限公司 A kind of factory's electronics technology product waste disposal cylinder

Similar Documents

Publication Publication Date Title
US9511374B2 (en) Horizontal dry mill
ES2818524T3 (en) Crushing device and procedure for crushing raw materials
JP6293471B2 (en) Horizontal dry crusher
JP4859534B2 (en) Horizontal dry crusher
JP5473916B2 (en) Crushing mill and crushing method
EP2647424A1 (en) Apparatus for producing highly homogenous multi-component suspensions, mixtures, powders, and materials
JP5404955B1 (en) Medium agitating crusher
JP5940666B2 (en) Grinding mill
JP2011194324A (en) Crusher
JP2006255519A (en) Medium circulation type crusher
CN107921436B (en) Improvements in grinding mills
JP6102126B2 (en) Crusher
JP6892107B2 (en) Supply device and supply method of powder and granular material
JP3217671U (en) Bead mill
JP2008272678A (en) Crusher, crushing system, and crushing fluid manufacturing system
JP7276796B2 (en) Media agitating pulverizer
JP2012211010A (en) Granular material supply device
CN202478862U (en) High-speed precision powder mixer
JP5406431B2 (en) Media agitation type wet crusher
KR200355885Y1 (en) One body type milling hammer for hammer mill
KR102654583B1 (en) Ultra fine grinding mill
JP2006255551A (en) Wet pulverization of granular particle
EP2719448A1 (en) Treatment apparatus for highly viscous fluid
RU2164815C1 (en) Method for disintegrating hard materials and apparatus for performing the same
JPH0148057B2 (en)