JP2011193728A - PEPTIDE HAVING BINDING CAPABILITY TO EpCAM - Google Patents
PEPTIDE HAVING BINDING CAPABILITY TO EpCAM Download PDFInfo
- Publication number
- JP2011193728A JP2011193728A JP2008185819A JP2008185819A JP2011193728A JP 2011193728 A JP2011193728 A JP 2011193728A JP 2008185819 A JP2008185819 A JP 2008185819A JP 2008185819 A JP2008185819 A JP 2008185819A JP 2011193728 A JP2011193728 A JP 2011193728A
- Authority
- JP
- Japan
- Prior art keywords
- epcam
- peptide
- phage
- peptide according
- amino acid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K7/00—Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
- C07K7/04—Linear peptides containing only normal peptide links
- C07K7/08—Linear peptides containing only normal peptide links having 12 to 20 amino acids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2795/00—Bacteriophages
- C12N2795/00011—Details
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2795/00—Bacteriophages
- C12N2795/00011—Details
- C12N2795/00022—New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medicinal Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Biochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Pharmacology & Pharmacy (AREA)
- Biophysics (AREA)
- Genetics & Genomics (AREA)
- Molecular Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Peptides Or Proteins (AREA)
- Investigating Or Analysing Biological Materials (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
Description
本発明は、EpCAMに結合能を有するペプチドや、かかるペプチドを用いたEpCAMの検出・定量方法や、かかるペプチドを含む癌の診断及び/又は治療用組成物等に関する。 The present invention relates to a peptide capable of binding to EpCAM, a method for detecting and quantifying EpCAM using such a peptide, a composition for diagnosis and / or treatment of cancer containing such a peptide, and the like.
上皮細胞接着分子(Epithelial cell adhesion molecule:EpCAM)は、1979年にG. Riethmuellerにより初めて報告された癌特異的細胞表面抗原タンパク質であり、現在までに知られている癌抗原のなかでも最も重要な癌抗原の一つである。EpCAMは、膜貫通型糖タンパク質であり(非特許文献1)、17−1A抗原、KSA、EGP40、GA733−2、ks1−4又はesaとも呼ばれている(例えば、非特許文献2)。また、悪性腫瘍患者の血清中EpCAMタンパク質の量を健常者と比較した結果から、悪性腫瘍患者の10%において有意にEpCAMが増加していることが明らかにされている(非特許文献3)。この結果は、EpCAMが腫瘍細胞表面から解離して、体循環中に放出されていることを示しており、EpCAMが血清中の腫瘍マーカーとして利用できる可能性を示唆するものである。これに関連する報告として、EpCAMが細胞増殖を促進するシグナルを誘起する際に、細胞膜上などに存在するプロテアーゼによりEpCAMの細胞内ドメインが切り出され、これがFHL2タンパク質と相互作用することにより、β-catenin/TCF/Lefシグナル伝達経路を活性化することが示されている(特許文献1、非特許文献4)。 Epithelial cell adhesion molecule (EpCAM) is a cancer-specific cell surface antigen protein first reported by G. Riethmueller in 1979, and is the most important cancer antigen known to date. It is one of cancer antigens. EpCAM is a transmembrane glycoprotein (Non-patent Document 1) and is also called 17-1A antigen, KSA, EGP40, GA733-2, ks1-4, or esa (for example, Non-patent Document 2). In addition, the results of comparing the amount of EpCAM protein in the serum of patients with malignant tumors with healthy subjects reveals that EpCAM is significantly increased in 10% of patients with malignant tumors (Non-patent Document 3). This result shows that EpCAM is dissociated from the tumor cell surface and released into the systemic circulation, suggesting the possibility of using EpCAM as a tumor marker in serum. As a report related to this, when EpCAM induces a signal that promotes cell proliferation, the intracellular domain of EpCAM is excised by a protease present on the cell membrane and the like, and this interacts with the FHL2 protein. It has been shown to activate the catenin / TCF / Lef signaling pathway (Patent Document 1, Non-Patent Document 4).
既にEpCAMを利用した癌ワクチンが開発されており、バキュロウイルス等による昆虫細胞発現系を利用して調製した組換えEpCAMタンパク質や、抗EpCAM抗体の抗原認識部位に結合する抗イディオタイプ抗体IGN−101(edrecolomab) を用いたワクチン療法が報告されている。また、癌治療用抗EpCAM抗体も開発され、Adecatumumab(MT201)、ING−1等の抗EpCAM抗体を用いた治験が行われている。これらの抗体を用いた治療では、癌細胞表面上のEpCAMに抗体が結合し、生体内の免疫系により細胞性免疫(細胞障害活性)を誘導することにより癌を縮小させることを狙いとしている。さらに、抗EpCAM抗体による細胞障害活性を高める目的で、抗EpCAM抗体と緑膿菌外毒素を融合させたProxiniums Vivendiums (VB4−845)や、IL−2と融合させたEMD 273 066(huKS−IL2)や、抗CD3活性を併せ持つCatumaxomab(removab)等が開発されている。 A cancer vaccine using EpCAM has already been developed. Recombinant EpCAM protein prepared using an insect cell expression system using baculovirus or the like, or an anti-idiotype antibody IGN-101 that binds to an antigen recognition site of an anti-EpCAM antibody Vaccine therapy using (edrecolomab) has been reported. In addition, anti-EpCAM antibodies for cancer treatment have been developed, and clinical trials using anti-EpCAM antibodies such as Adecatumumab (MT201) and ING-1 are being conducted. The treatment using these antibodies aims to reduce the cancer by binding the antibody to EpCAM on the surface of cancer cells and inducing cellular immunity (cytotoxic activity) by the in vivo immune system. Further, for the purpose of enhancing the cytotoxic activity by the anti-EpCAM antibody, Proxiniums Vivendiums (VB4-845) fused with anti-EpCAM antibody and Pseudomonas aeruginosa exotoxin, or EMD 273 066 (huKS-IL2 fused with IL-2). ) And Catumaxomab (removab) having anti-CD3 activity have been developed.
さらに、EpCAMを循環癌細胞の表面マーカーとして、磁気ビーズ(非特許文献5)や、MEMSデバイス(非特許文献6)に結合させたEpCAM抗体により循環癌細胞の捕捉が試みられている。循環癌細胞は癌の転移と密接な関係にあり、癌患者の予後を予測する指標となりうることから、このような循環癌細胞検出方法の確率は非常に重要である。 Furthermore, using EpCAM as a surface marker for circulating cancer cells, capture of circulating cancer cells has been attempted with EpCAM antibodies bound to magnetic beads (Non-Patent Document 5) or MEMS devices (Non-Patent Document 6). Since circulating cancer cells are closely related to cancer metastasis and can be an index for predicting the prognosis of cancer patients, the probability of such circulating cancer cell detection methods is very important.
抗EpCAM抗体以外にも、生体内でEpCAMと特異的に結合する分子として、αアクチニン、クローディン7、CD44のスプライシングバリアントであるCD44v4‐v7、テトラスパニンの一種であるD6.1Aタンパク質などが知られている (非特許文献7)。 In addition to anti-EpCAM antibodies, αactinin, claudin 7, CD44v4-v7, a splicing variant of CD44, and D6.1A protein, a kind of tetraspanin, are known as molecules that specifically bind to EpCAM in vivo. (Non-Patent Document 7).
上述のように、抗体等のEpCAMに特異的に結合する分子は、広く癌の診断・治療に利用できる可能性がある。しかし、これまでに知られている抗体やその他の天然の(生体内に存在する)EpCAM結合能を有する分子は、単離や調製が難しく、高いコストを必要する。また、培養細胞等を用いたタンパク質調製における有害物のコンタミネーションなどの生物学的なリスクも考えられる。本発明の課題は、化学合成法や遺伝子工学的方法により簡単に作製することができる、EpCAMに結合能を有する新規のペプチドを提供することにある。 As described above, a molecule that specifically binds to EpCAM, such as an antibody, may be widely used for diagnosis and treatment of cancer. However, known antibodies and other natural (in vivo) EpCAM-binding molecules are difficult to isolate and prepare and require high costs. In addition, biological risks such as contamination of harmful substances in protein preparation using cultured cells and the like are also conceivable. An object of the present invention is to provide a novel peptide capable of binding to EpCAM, which can be easily prepared by a chemical synthesis method or a genetic engineering method.
本発明者らは、上記課題を解決するため鋭意研究し、固相化したEpCAMタンパク質に、多様なペプチド配列をファージ粒子上に提示するファージ集団を接触させ、EpCAMタンパク質に結合したファージ粒子を回収し、得られたファージ粒子を大腸菌中で増殖させた。次いで、この増殖させたファージ粒子を、再度EpCAMタンパク質に接触させるパニング操作を繰り返すことにより、EpCAMに特異的に結合するファージクローンを得ることに成功した。このファージクローンのDNA配列を解析し、EpCAMに特異的に結合するアミノ酸配列がKSLQCINNLCWP(配列番号7)であることを見い出し、本発明を完成するに至った。 The present inventors have intensively studied to solve the above-mentioned problems, and contact the phage population displaying various peptide sequences on the phage particle with the immobilized EpCAM protein to recover the phage particle bound to the EpCAM protein. The resulting phage particles were grown in E. coli. Subsequently, by repeating the panning operation of bringing the grown phage particles into contact with the EpCAM protein again, a phage clone that specifically binds to EpCAM was successfully obtained. The DNA sequence of this phage clone was analyzed, and the amino acid sequence specifically binding to EpCAM was found to be KSLQCINNLCWP (SEQ ID NO: 7), thereby completing the present invention.
すなわち本発明は、(1)配列番号7に示されるアミノ酸配列からなるEpCAMに結合能を有するペプチドや、(2)配列番号7に示されるアミノ酸配列において、1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、かつEpCAMに結合能を有するペプチドや、(3)配列番号7に示されるアミノ酸配列において、4、5、10及び11番目のアミノ酸残基が保存されていることを特徴とする上記(2)記載のペプチドや、(4)配列番号7に示されるアミノ酸配列において、3、4、5、6、8、9、10及び11番目のアミノ酸残基が保存されていることを特徴とする上記(2)又は(3)記載のペプチドや、(5)配列番号7に示されるアミノ酸配列において、1番目のリジン、2番目のセリン、7番目のアスパラギン及び12番目のプロリンのうち、少なくとも1以上のアミノ酸がアラニンに置換されていることを特徴とする上記(2)〜(4)のいずれか記載のペプチドに関する。 That is, the present invention relates to (1) a peptide capable of binding to EpCAM consisting of the amino acid sequence represented by SEQ ID NO: 7, or (2) one or several amino acids deleted in the amino acid sequence represented by SEQ ID NO: 7, A peptide comprising a substituted or added amino acid sequence and capable of binding to EpCAM, and (3) the amino acid residues at positions 4, 5, 10 and 11 are conserved in the amino acid sequence shown in SEQ ID NO: 7. In the peptide according to (2) above and (4) the amino acid sequence represented by SEQ ID NO: 7, the 3, 4, 5, 6, 8, 9, 10 and 11th amino acid residues are conserved. The peptide according to (2) or (3) above, or (5) the first lysine, the second serine in the amino acid sequence represented by SEQ ID NO: 7, Th of asparagine and 12 proline, at least one or more amino acids relates to peptides according to any one of the above (2) to (4), characterized in that it is substituted with alanine.
また本発明は、(6)検出可能なマーカーで標識された上記(1)〜(5)のいずれか記載のペプチドや、(7)上記(1)〜(5)のいずれか記載のペプチドと、マーカータンパク質及び/又はペプチドタグとを結合させた融合ペプチドや、(8)マルトース結合タンパク質(MBP)融合ペプチドであることを特徴とする上記(7)記載の融合ペプチドや、(9)上記(1)〜(6)のいずれか記載のペプチド、若しくは上記(7)又は(8)記載の融合ペプチドと、EpCAMとが結合したEpCAM−ペプチド複合体に関する。 The present invention also provides (6) the peptide according to any one of (1) to (5) labeled with a detectable marker, and (7) the peptide according to any one of (1) to (5) above. A fusion peptide in which a marker protein and / or a peptide tag are bound, (8) a fusion peptide according to (7) above, which is a maltose binding protein (MBP) fusion peptide, and (9) the above ( The present invention relates to an EpCAM-peptide complex in which the peptide according to any one of 1) to (6) or the fusion peptide according to (7) or (8) above is bound to EpCAM.
さらに本発明は、(10)上記(1)〜(5)のいずれか記載のペプチドを、その粒子表面上に提示することを特徴とするEpCAMに結合能を有するファージや、(11)上記(1)〜(5)のいずれか記載のペプチドを認識する抗体や、(12)上記(1)〜(5)のいずれか記載のペプチドをコードするDNAや、(13)上記(12)記載のDNAを含み、かつEpCAMに結合能を有するペプチドを発現することができる組換えベクターや、(14)組換えプラスミドベクターである上記(12)記載の組換えベクターや、(15)上記(13)又は(14)記載の組換えベクターが導入された形質転換体に関する。 Furthermore, the present invention provides (10) a phage capable of binding to EpCAM, wherein the peptide according to any one of (1) to (5) above is displayed on the particle surface, and (11) the above ( An antibody that recognizes the peptide according to any one of 1) to (5), (12) DNA that encodes the peptide according to any one of (1) to (5) above, (13) the DNA according to (12) above A recombinant vector capable of expressing a peptide containing DNA and capable of binding to EpCAM, (14) a recombinant vector according to (12) above which is a recombinant plasmid vector, (15) (13) above Alternatively, the present invention relates to a transformant introduced with the recombinant vector according to (14).
また本発明は、(16)上記(1)〜(6)のいずれか記載のペプチド、若しくは上記(7)又は(8)記載の融合ペプチドを用いることを特徴とする、EpCAMの検出・定量方法や、(17)上記(1)〜(6)のいずれか記載のペプチド、若しくは上記(7)又は(8)記載の融合ペプチドを用いることを特徴とする、EpCAMを発現する細胞の分離方法や、(18)上記(1)〜(6)のいずれか記載のペプチド、若しくは上記(7)又は(8)記載の融合ペプチドを含むことを特徴とする、癌の治療又は診断用組成物や、(19)上記(1)〜(6)のいずれか記載のペプチド、若しくは上記(7)又は(8)記載の融合ペプチドを含むことを特徴とする、ドラッグデリバリーシステムの運搬体に関する。 In addition, the present invention uses (16) the peptide described in any one of (1) to (6) above or the fusion peptide described in (7) or (8) above, and a method for detecting and quantifying EpCAM (17) A method for separating an EpCAM-expressing cell, comprising using the peptide according to any one of (1) to (6) above or the fusion peptide according to (7) or (8) above. (18) A composition for treating or diagnosing cancer, comprising the peptide according to any one of (1) to (6) above or the fusion peptide according to (7) or (8) above, (19) A drug delivery system carrier comprising the peptide according to any one of (1) to (6) above or the fusion peptide according to (7) or (8) above.
本発明のEpCAMに特異的に結合するペプチドは、簡単に化学合成することができ、また、遺伝子工学的手法を用いることで他のタンパク質等と融合させた融合ペプチドを作製することができる。これらのEpCAMに特異的に結合するペプチドや融合ペプチドは、EpCAMの検出・定量や、EpCAMを発現する細胞の分離に利用できるだけでなく、EpCAMを高発現する癌細胞をターゲットとした癌治療用組成物やドラッグデリバリーシステムの運搬体としても有用である。 Peptides that specifically bind to EpCAM of the present invention can be easily chemically synthesized, and fusion peptides fused with other proteins can be prepared by using genetic engineering techniques. These peptides and fusion peptides that specifically bind to EpCAM can be used for detection and quantification of EpCAM and separation of cells expressing EpCAM, as well as cancer treatment compositions targeting cancer cells that highly express EpCAM. It is also useful as a carrier for goods and drug delivery systems.
本発明のEpCAMに結合能を有するペプチドとしては、配列番号7に示されるアミノ酸配列Lys−Ser−Leu−Gln−Cys−Ile−Asn−Asn−Leu−Cys−Trp−Pro(KSLQCINNLCWP;以下、「Ep301(WT)」ということもある)からなるEpCAMに結合能を有するペプチドや、配列番号7に示されるアミノ酸配列において、1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、かつEpCAMに結合能を有するペプチド(以下、「Ep301(VT)」ということもある)であれば特に制限されるものではないが、Ep301(VT)において「EpCAMに結合能を有する」とは、Ep301(WT)のEpCAMに対する結合能の少なくとも80%以上の結合能を有することを意味し、Ep301(VT)としては、Xaa−Xaa−Xaa−Gln−Cys−Xaa−Xaa−Xaa−Xaa−Cys−Trp−Xaa(配列番号8;Xaaは任意のアミノ酸残基)等の配列番号7に示されるアミノ酸配列において、4、5、10及び11番目のアミノ酸残基が保存されているペプチドを例示することができ、中でも、Xaa−Xaa−Leu−Gln−Cys−Ile−Xaa−Asn−Leu−Cys−Trp−Xaa(配列番号9)等の配列番号7に示されるアミノ酸配列において、3、4、5、6、8、9、10及び11番目のアミノ酸残基が保存されているペプチドを好適に例示することができ、具体的には、Ala−Ser−Leu−Gln−Cys−Ile−Asn−Asn−Leu−Cys−Trp−Pro(配列番号10),Lys−Ala−Leu−Gln−Cys−Ile−Asn−Asn−Leu−Cys−Trp−Pro(配列番号11),Lys−Ser−Leu−Gln−Cys−Ile−Ala−Asn−Leu−Cys−Trp−Pro(配列番号12),Lys−Ser−Leu−Gln−Cys−Ile−Asn−Asn−Leu−Cys−Trp−Ala(配列番号13)など、配列番号7に示されるアミノ酸配列において、1番目のリジン、2番目のセリン、7番目のアスパラギン及び12番目のプロリンのうち、少なくとも1以上のアミノ酸がアラニンに置換されているペプチドを、EpCAMへの優れた結合能を有するペプチドとして好適に挙げることができる。 The peptide having binding ability to EpCAM of the present invention includes the amino acid sequence Lys-Ser-Leu-Gln-Cys-Ile-Asn-Asn-Leu-Cys-Trp-Pro (KSLQCINNLCWP; A peptide having an ability to bind to EpCAM, or an amino acid sequence obtained by deleting, substituting, or adding one or several amino acids in the amino acid sequence shown in SEQ ID NO: 7. And a peptide capable of binding to EpCAM (hereinafter sometimes referred to as “Ep301 (VT)”), it is not particularly limited. In Ep301 (VT), “having the ability to bind to EpCAM” , At least 80% of the binding capacity of Ep301 (WT) to EpCAM Ep301 (VT) is Xaa-Xaa-Xaa-Gln-Cys-Xaa-Xaa-Xaa-Xaa-Cys-Trp-Xaa (SEQ ID NO: 8; Xaa is any amino acid) In the amino acid sequence shown in SEQ ID NO: 7 such as residues), peptides in which the 4, 5, 10 and 11th amino acid residues are conserved can be exemplified, among which Xaa-Xaa-Leu-Gln- In the amino acid sequence shown in SEQ ID NO: 7 such as Cys-Ile-Xaa-Asn-Leu-Cys-Trp-Xaa (SEQ ID NO: 9), the third, fourth, fifth, sixth, eighth, ninth, tenth and eleventh amino acids Peptides in which residues are conserved can be preferably exemplified, and specifically, Ala-Ser-Leu-Gln-Cys-Ile-Asn-As -Leu-Cys-Trp-Pro (SEQ ID NO: 10), Lys-Ala-Leu-Gln-Cys-Ile-Asn-Asn-Leu-Cys-Trp-Pro (SEQ ID NO: 11), Lys-Ser-Leu-Gln -Cys-Ile-Ala-Asn-Leu-Cys-Trp-Pro (SEQ ID NO: 12), Lys-Ser-Leu-Gln-Cys-Ile-Asn-Asn-Leu-Cys-Trp-Ala (SEQ ID NO: 13) In the amino acid sequence represented by SEQ ID NO: 7, a peptide in which at least one amino acid of the first lysine, the second serine, the seventh asparagine, and the twelfth proline is substituted with alanine is used as EpCAM. A peptide having an excellent binding ability to can be preferably mentioned.
上記本発明ペプチドは、そのアミノ酸配列に従って、一般的な化学合成法により製造することができる。化学合成法には、通常の液相法及び固相法によるペプチド合成法が包含され、より詳しくは、アミノ酸配列情報に基づいて、各アミノ酸を1個ずつ逐次結合させ鎖を延長させていくステップワイズエロゲーション法と、アミノ酸数個からなるフラグメントを予め合成し、次いで各フラグメントをカップリング反応させるフラグメント・コンデンセーション法とが包含される。本発明のペプチドを合成するには、そのいずれの方法をも採用することができる。上記ペプチド合成に採用される縮合法も、公知の各種方法に従うことができる。その具体例としては、例えばアジド法、混合酸無水物法、DCC法、活性エステル法、酸化還元法、DPPA(ジフェニルホスホリルアジド)法、DCC+添加物(1−ヒドロキシベンゾトリアゾール、N−ヒドロキシサクシンアミド、N−ヒドロキシ−5−ノルボルネン−2,3−ジカルボキシイミド等)、ウッドワード法等を例示できる。これら各方法に利用できる溶媒もこの種ペプチド縮合反応に使用されることがよく知られている一般的なものから適宜選択することができ、例えばジメチルホルムアミド(DMF)、ジメチルスルホキシド(DMSO)、ヘキサホスホロアミド、ジオキサン、テトラヒドロフラン(THF)、酢酸エチル等及びこれらの混合溶媒等を挙げることができる。 The peptide of the present invention can be produced by a general chemical synthesis method according to the amino acid sequence. Chemical synthesis methods include peptide synthesis methods using ordinary liquid-phase methods and solid-phase methods. More specifically, the step of extending the chain by sequentially binding each amino acid one by one based on amino acid sequence information. The wise erosion method and a fragment condensation method in which a fragment consisting of several amino acids is synthesized in advance and then each fragment is subjected to a coupling reaction are included. Any method can be employed to synthesize the peptide of the present invention. The condensation methods employed for the peptide synthesis can also follow various known methods. Specific examples thereof include, for example, azide method, mixed acid anhydride method, DCC method, active ester method, redox method, DPPA (diphenylphosphoryl azide) method, DCC + additive (1-hydroxybenzotriazole, N-hydroxysuccinamide) N-hydroxy-5-norbornene-2,3-dicarboximide, etc.), Woodward method and the like. Solvents that can be used in each of these methods can also be appropriately selected from general solvents that are well known to be used in this type of peptide condensation reaction, such as dimethylformamide (DMF), dimethyl sulfoxide (DMSO), hexa Examples include phosphoramide, dioxane, tetrahydrofuran (THF), ethyl acetate, and mixed solvents thereof.
さらに、上記本発明のペプチドは、本発明のEpCAMに結合能を有するペプチドをコードするDNAの塩基配列情報により、遺伝子工学的手法を用いて常法により調製することもできる。このようにして得られる本発明のEpCAMに結合能を有するペプチド、通常の方法に従って、例えばイオン交換樹脂、分配クロマトグラフィー、ゲルクロマトグラフィー、アフィニティークロマトグラフィー、高速液体クロマトグラフィー(HPLC)、向流分配法等のペプチド化学の分野で汎用されている方法に従って、適宜その精製を行うことができる。 Furthermore, the peptide of the present invention can also be prepared by a conventional method using genetic engineering techniques based on the base sequence information of DNA encoding a peptide capable of binding to EpCAM of the present invention. Peptides capable of binding to the EpCAM of the present invention thus obtained, according to ordinary methods, for example, ion exchange resin, partition chromatography, gel chromatography, affinity chromatography, high performance liquid chromatography (HPLC), countercurrent distribution According to a method widely used in the field of peptide chemistry such as a method, the purification can be appropriately performed.
上記本発明のペプチドは、検出可能なマーカーで標識されていてもよく、上記検出可能なマーカーとしては、従来知られているペプチド標識用のマーカーであれば特に制限されるものではないが、例えば、3H、14C、125I等の放射性同位体や、ダンシルクロライド、テトラメチルローダミンイソチオシアネート等の蛍光物質や、ビオチン、ジゴキシゲニンのような生物学的に関連する結合構造や、生物発光化合物や、化学発光化合物や、金属キレート等を具体的に挙げることができる。 The peptide of the present invention may be labeled with a detectable marker, and the detectable marker is not particularly limited as long as it is a conventionally known marker for peptide labeling. , 3 H, 14 C, 125 I and the like, fluorescent materials such as dansyl chloride, tetramethylrhodamine isothiocyanate, biologically relevant binding structures such as biotin and digoxigenin, bioluminescent compounds, Specific examples include chemiluminescent compounds and metal chelates.
また、本発明のペプチドは、マーカータンパク質及び/又はペプチドタグに結合した融合ペプチドであってもよい。本発明の融合ペプチドとしては、本発明のEpCAMに結合能を有するペプチドと、マーカータンパク質及び/又はペプチドタグとが結合しているものであればどのようなものでもよく、上記マーカータンパク質やペプチドタグは従来知られているものであれば特に制限されるものではないが、上記マーカータンパク質としては、例えば、アルカリフォスファターゼ、HRP等の酵素、抗体のFc領域、GFP等の蛍光物質などを具体的に挙げることができ、また、上記ペプチドタグとしては、例えば、HA、FLAG、Myc等のエピトープタグや、GST、マルトース結合タンパク質(MBP)、ビオチン化ペプチド 、オリゴヒスチジン等の親和性タグなどを具体的に例示することができる。なかでも、本発明のEpCAMに結合能を有するペプチド(Ep301(WT))とマルトース結合タンパク質(MBP)とを結合させたMBP−Ep301(WT)は、後述の実施例でも示されているように、EpCAMへの優れた結合能を有する融合ペプチドであり、特に好例として挙げることができる。以上のような、本発明の標識されたペプチドや融合ペプチドは、常法により作製することができ、本発明のペプチドの精製や、本発明のペプチドの検出の際に有用であるだけでなく、後述するように被検試料中のEpCAMを検出・定量やEpCAMを発現する細胞の検出・分離等を行う際にも非常に有用である。 The peptide of the present invention may be a fusion peptide bound to a marker protein and / or a peptide tag. The fusion peptide of the present invention may be any peptide as long as the peptide capable of binding to EpCAM of the present invention and a marker protein and / or peptide tag are bound. Is not particularly limited as long as it is conventionally known. Examples of the marker protein include, for example, enzymes such as alkaline phosphatase and HRP, antibody Fc region, and fluorescent substances such as GFP. Specific examples of the peptide tag include epitope tags such as HA, FLAG, and Myc, and affinity tags such as GST, maltose binding protein (MBP), biotinylated peptide, and oligohistidine. Can be exemplified. Among them, MBP-Ep301 (WT) obtained by binding a peptide (Ep301 (WT)) capable of binding to EpCAM of the present invention and maltose binding protein (MBP) is also shown in the examples described later. , A fusion peptide having excellent binding ability to EpCAM, and can be cited as a particularly good example. The labeled peptide or fusion peptide of the present invention as described above can be prepared by a conventional method, and is not only useful for purification of the peptide of the present invention or detection of the peptide of the present invention, As will be described later, this method is also very useful for detecting and quantifying EpCAM in a test sample, detecting and separating cells expressing EpCAM, and the like.
さらに、本発明には、上記本発明のペプチドや融合ペプチドを、EpCAMタンパク質と結合させたEpCAM−ペプチド複合体も含まれる。本発明のEpCAM−ペプチド複合体としては、本発明のペプチドや融合ペプチドとEpCAMとが結合したEpCAM−ペプチド複合体であれば特に制限されるものではなく、EpCAMと他の分子(タンパク等)との相互作用の検討など、EpCAMの分子レベルでの機能解析に有効に用いることができる。 Furthermore, the present invention also includes an EpCAM-peptide complex in which the peptide or fusion peptide of the present invention is bound to an EpCAM protein. The EpCAM-peptide complex of the present invention is not particularly limited as long as it is an EpCAM-peptide complex in which the peptide or fusion peptide of the present invention and EpCAM are bound together. EpCAM and other molecules (proteins, etc.) It can be effectively used for functional analysis of EpCAM at the molecular level, such as examination of interactions.
本発明のEpCAMに結合能を有するファージとしては、本発明のEpCAMに結合能を有するペプチドをその粒子表面上に提示するファージであればどのようなものでもよく、かかるEpCAMに結合能を有するファージは、ファージライブラリスクリーニングの過程で、EpCAMに強く結合したペプチド提示ファージを、その他のファージ集団から分離することにより得られる他、本発明のEpCAMに結合有するペプチドをコードするDNAを、常法によりファージミドベクターに組み込んで大腸菌等の宿主細胞を形質転換し、ヘルパーファージを感染させることで得ることもできる。 The phage capable of binding to EpCAM of the present invention may be any phage that displays a peptide capable of binding to EpCAM of the present invention on the particle surface, and phage capable of binding to such EpCAM. Is obtained by separating peptide-displayed phages strongly bound to EpCAM from other phage populations in the process of phage library screening, as well as DNA encoding a peptide having a binding to EpCAM of the present invention by a conventional method. It can also be obtained by incorporating into a vector and transforming host cells such as E. coli and infecting helper phage.
本発明のペプチドを認識する抗体としては、モノクローナル抗体、ポリクローナル抗体、キメラ抗体、一本鎖抗体、ヒト化抗体等の免疫特異的な抗体を具体的に挙げることができ、これらは上記本発明のペプチドを抗原として用いて常法により作製することができるが、なかでもモノクローナル抗体がその特異性の点でより好ましい。かかる本発明のペプチドに対する抗体は、慣用のプロトコールを用いて、動物(好ましくはヒト以外)に本発明のペプチド又はその断片を免疫することにより産生され、例えばモノクローナル抗体の調製には、連続細胞系の培養物により産生される抗体をもたらす、ハイブリドーマ法(Nature 256, 495-497, 1975)、トリオーマ法、ヒトB細胞ハイブリドーマ法(Immunology Today 4, 72, 1983)及びEBV−ハイブリドーマ法(MONOCLONAL ANTIBODIES AND CANCER THERAPY, pp.77-96, Alan R.Liss, Inc.,1985)など任意の方法を用いることができる。以下に、本発明のペプチドのひとつであるEp301(WT)に対して特異的に結合するマウスのモノクローナル抗体、すなわち抗Ep301(WT)モノクローナル抗体の作製方法を説明する。 Specific examples of antibodies that recognize the peptides of the present invention include immunospecific antibodies such as monoclonal antibodies, polyclonal antibodies, chimeric antibodies, single chain antibodies, humanized antibodies, and the like. Although it can be prepared by a conventional method using a peptide as an antigen, a monoclonal antibody is more preferable in terms of its specificity. Such an antibody against the peptide of the present invention is produced by immunizing an animal (preferably non-human) with the peptide of the present invention or a fragment thereof using a conventional protocol. For example, for preparation of a monoclonal antibody, a continuous cell line is used. Hybridoma method (Nature 256, 495-497, 1975), trioma method, human B cell hybridoma method (Immunology Today 4, 72, 1983) and EBV-hybridoma method (MONOCLONAL ANTIBODIES AND CANCER THERAPY, pp. 77-96, Alan R. Liss, Inc., 1985) can be used. A method for producing a mouse monoclonal antibody that specifically binds to Ep301 (WT), which is one of the peptides of the present invention, that is, an anti-Ep301 (WT) monoclonal antibody is described below.
上記抗Ep301(WT)モノクローナル抗体は、抗Ep301(WT)モノクローナル抗体産生ハイブリドーマをインビボ又はインビトロで常法により培養することにより生産することができる。例えば、インビボ系においては、齧歯動物、好ましくはマウス又はラットの腹腔内で培養することにより、またインビトロ系においては、動物細胞培養用培地で培養することにより得ることができる。インビトロ系でハイブリドーマを培養するための培地としては、ストレプトマイシンやペニシリン等の抗生物質を含むRPMI1640又はMEM等の細胞培養培地を例示することができる。抗Ep301(WT)モノクローナル抗体産生ハイブリドーマは、例えば、Ep301(WT)を用いてBALB/cマウスを免疫し、免疫されたマウスの脾臓細胞とマウスNS−1細胞(ATCC TIB−18)とを、常法により細胞融合させ、免疫蛍光染色パターンによりスクリーニングすることにより、抗Ep301(WT)モノクローナル抗体産生ハイブリドーマを作出することができる。また、かかるモノクローナル抗体の分離・精製方法としては、タンパク質の精製に一般的に用いられる方法であればどのような方法でもよく、アフィニティークロマトグラフィー等の液体クロマトグラフィーを具体的に例示することができる。 The anti-Ep301 (WT) monoclonal antibody can be produced by culturing an anti-Ep301 (WT) monoclonal antibody-producing hybridoma in a conventional manner in vivo or in vitro. For example, in an in vivo system, it can be obtained by culturing in the abdominal cavity of a rodent, preferably a mouse or a rat. In an in vitro system, it can be obtained by culturing in an animal cell culture medium. As a medium for culturing a hybridoma in an in vitro system, a cell culture medium such as RPMI 1640 or MEM containing an antibiotic such as streptomycin or penicillin can be exemplified. The anti-Ep301 (WT) monoclonal antibody-producing hybridoma immunizes a BALB / c mouse using, for example, Ep301 (WT), spleen cells of the immunized mouse and mouse NS-1 cells (ATCC TIB-18), Anti-Ep301 (WT) monoclonal antibody-producing hybridomas can be produced by cell fusion using conventional methods and screening using immunofluorescent staining patterns. In addition, as a method for separating and purifying the monoclonal antibody, any method can be used as long as it is a method generally used for protein purification, and liquid chromatography such as affinity chromatography can be specifically exemplified. .
また、上記Ep301(WT)に対する一本鎖抗体をつくるためには、一本鎖抗体の調製法(米国特許第4,946,778号)を適用することができる。また、ヒト化抗体を発現させるために、トランスジェニックマウス又は他の哺乳動物等を利用したり、上記抗体を用いて、そのEp301(WT)を発現するクローンを単離・同定したり、アフィニティークロマトグラフィーでそのポリペプチドを精製することもできる。さらに、上記抗Ep301(WT)モノクローナル抗体等の抗体に、例えば、FITC(フルオレセインイソシアネート)又はテトラメチルローダミンイソシアネート等の蛍光物質や、125I、32P、14C、35S又は3H等のラジオアイソトープや、アルカリフォスファターゼ、ペルオキシダーゼ、β−ガラクトシダーゼ又はフィコエリトリン等の酵素で標識したものや、グリーン蛍光タンパク質(GFP)等の蛍光発光タンパク質などを融合させた融合タンパク質を用いることによって、上記Ep301(WT)を検出・定量等を行うことができる。上記抗体を用いた免疫学的測定方法としては、RIA法、ELISA法、蛍光抗体法、プラーク法、スポット法、血球凝集反応法、オクタロニー法等の方法を挙げることができる。 In order to produce a single chain antibody against Ep301 (WT), a method for preparing a single chain antibody (US Pat. No. 4,946,778) can be applied. In order to express humanized antibodies, transgenic mice or other mammals are used, clones expressing Ep301 (WT) are isolated and identified using the above antibodies, affinity chromatography The polypeptide can also be purified graphically. In addition, antibodies such as the above-described anti-Ep301 (WT) monoclonal antibody include fluorescent substances such as FITC (fluorescein isocyanate) or tetramethylrhodamine isocyanate, radios such as 125 I, 32 P, 14 C, 35 S or 3 H. By using a fusion protein fused with an isotope, an enzyme labeled with alkaline phosphatase, peroxidase, β-galactosidase or phycoerythrin, or a fluorescent protein such as green fluorescent protein (GFP), the above Ep301 (WT) is used. Can be detected and quantified. Examples of the immunological measurement method using the above-described antibody include RIA method, ELISA method, fluorescent antibody method, plaque method, spot method, hemagglutination method, and octalony method.
本発明の組換えベクターとしては、前記本発明のDNAを含み、かつEpCAMに結合能を有するペプチドを発現することができる組換えベクターであれば特に制限されず、本発明の組換えベクターは、本発明のDNAを発現ベクター、好ましくは発現プラスミドベクターに適切に挿入することにより構築することができる。かかる発現ベクターとしては、宿主細胞において自立複製可能であるものや、あるいは宿主細胞の染色体中へ組込み可能であるものが好ましく、また、本発明のDNAが転写できる位置にプロモーター、エンハンサー、ターミネーター等の制御配列を含有しているものを好適に使用することができる。 The recombinant vector of the present invention is not particularly limited as long as it is a recombinant vector containing the DNA of the present invention and capable of expressing a peptide capable of binding to EpCAM. It can be constructed by appropriately inserting the DNA of the present invention into an expression vector, preferably an expression plasmid vector. Such an expression vector is preferably one that is capable of autonomous replication in a host cell, or one that can be integrated into the host cell chromosome, such as a promoter, enhancer, terminator, etc. at a position where the DNA of the present invention can be transcribed. Those containing a control sequence can be preferably used.
上記発現ベクターとして、例えば、pCMV6−XL3(OriGene Technologies Inc.社製)、EGFP-C1(Clontech社製)、pGBT−9(Clontech社製)、pcDNAI(フナコシ社製)、pcDM8(フナコシ社製)、pAGE107(Cytotechnology, 3,133, 1990)、pCDM8(Nature, 329, 840, 1987)、pcDNAI/AmP(Invitrogen社製)、pREP4(Invitrogen社製)、pAGE103(J.Blochem., 101, 1307,1987)、pAGE210等を例示することができる。また、プロモーターとしては、例えば、サイトメガロウイルス(ヒトCMV)のIE(immediate early)遺伝子のプロモーター、SV40の初期プロモーター、レトロウイルスのプロモーター、メタロチオネインプロモーター、ヒートショックプロモーター、SRαプロモーター等を挙げることができる。さらに、プロモーターの下流に蛍光蛋白質をコードする遺伝子等のレポーター遺伝子を融合することができる。蛍光蛋白質としては、緑色蛍光蛋白質(Green Fluorescence Protein(GFP))、シアン蛍光蛋白質(Cyan Fluorescence Protein(CFP))、青色蛍光蛋白質(Blue Fluorescence Protein(BFP))、黄色蛍光蛋白質(Yellow Fluorescence Protein(YFP))、赤色蛍光蛋白質(Red Fluorescence Protein(RFP))、ルシフェラーゼ(luciferase)を例示することができる。 Examples of the expression vector include pCMV6-XL3 (OriGene Technologies Inc.), EGFP-C1 (Clontech), pGBT-9 (Clontech), pcDNAI (Funakoshi), pcDM8 (Funakoshi). PAGE107 (Cytotechnology, 3,133, 1990), pCDM8 (Nature, 329, 840, 1987), pcDNAI / AmP (Invitrogen), pREP4 (Invitrogen), pAGE103 (J. Blochem., 101, 1307, 1987) , PAGE210 and the like. Examples of promoters include cytomegalovirus (human CMV) IE (immediate early) gene promoter, SV40 early promoter, retrovirus promoter, metallothionein promoter, heat shock promoter, SRα promoter, and the like. . Furthermore, a reporter gene such as a gene encoding a fluorescent protein can be fused downstream of the promoter. Fluorescent proteins include green fluorescent protein (GFP), cyan fluorescent protein (CFP), blue fluorescent protein (BFP), yellow fluorescent protein (YFP). )), Red fluorescent protein (RFP), and luciferase.
また、本発明の形質転換体としては、上記本発明の組換えベクターが宿主細胞に導入され、かつ本発明のEpCAMに結合能を有するペプチドを発現する形質転換体であれば特に制限されるものではなく、形質転換酵母、形質転換植物(細胞、組織、個体)、形質転換細菌、形質転換動物(細胞、組織、個体)等を挙げることができるが、形質転換動物細胞が好ましい。 The transformant of the present invention is particularly limited as long as it is a transformant in which the recombinant vector of the present invention is introduced into a host cell and expresses a peptide capable of binding to EpCAM of the present invention. Instead, a transformed yeast, a transformed plant (cell, tissue, individual), a transformed bacterium, a transformed animal (cell, tissue, individual) and the like can be mentioned, and a transformed animal cell is preferred.
本発明のペプチド又は融合ペプチドは、EpCAMの検出・定量に利用することができる。本発明のEpCAMの検出・定量方法としては、本発明のペプチド又は融合ペプチドを用いるものであれば、どのような方法でもよく、検出可能なマーカーで標識された本発明のペプチドや、本発明の融合ペプチドを用いる場合は、使用したマーカー等の標識物質の種類に応じて適切な検出・定量手法を選択することができる。また、上記EpCAMの検出・定量方法としては、本発明のペプチドと本発明の抗体を組み合わせて行うこともでき、この場合には、RIA法、ELISA法、蛍光方法法、プラーク法、スポット法、血球凝集反応法、オクタロニー法、ウエスタンブロット法等の公知の免疫学的測定方法を選択することができる。 The peptide or fusion peptide of the present invention can be used for detection and quantification of EpCAM. The EpCAM detection / quantification method of the present invention may be any method as long as it uses the peptide or fusion peptide of the present invention, and the peptide of the present invention labeled with a detectable marker, When a fusion peptide is used, an appropriate detection / quantification method can be selected according to the type of labeling substance such as a marker used. The EpCAM detection / quantification method can be performed by combining the peptide of the present invention and the antibody of the present invention. In this case, the RIA method, ELISA method, fluorescence method, plaque method, spot method, A known immunoassay method such as a hemagglutination method, an octalony method, a Western blot method or the like can be selected.
さらに、上記本発明のペプチド又は融合ペプチドを用いることにより、EpCAMを発現する細胞を検出・分離することができる。EpCAMを発現する細胞を分離するには、本発明のペプチドと標識された本発明の抗体を組み合わせて用いることができるほか、検出可能なマーカーで標識された本発明のペプチドや、本発明の融合ペプチドを用いることもでき、使用したマーカー等の標識物質の種類に応じて適切な分離手法を選択することができる。例えば、標識物質として蛍光物質を使用した場合には、蛍光を指標としたフローサイトメトリー(シングルセルソーター)によって、効率的かつ高精度のEpCAM発現細胞の分離が可能となる。また、標識物質としてビオチンを採用した場合においてもアビジンとの結合反応を利用してEpCAMを発現する細胞を分離することができる。また、マグネットビーズを採用した場合にも同様に、磁石を用いて良好な分離が可能である。さらに、マイクロマニピュレーターやマイクロメッシュフィルターを用いてEpCAMを発現する細胞を分離することもできる。 Furthermore, EpCAM-expressing cells can be detected and separated by using the peptide or fusion peptide of the present invention. In order to isolate cells expressing EpCAM, the peptide of the present invention and the labeled antibody of the present invention can be used in combination, the peptide of the present invention labeled with a detectable marker, or the fusion of the present invention. Peptides can also be used, and an appropriate separation method can be selected according to the type of labeling substance such as the marker used. For example, when a fluorescent substance is used as the labeling substance, EpCAM-expressing cells can be efficiently and accurately separated by flow cytometry (single cell sorter) using fluorescence as an index. In addition, even when biotin is employed as a labeling substance, cells expressing EpCAM can be separated using a binding reaction with avidin. Similarly, when magnet beads are employed, good separation is possible using magnets. Furthermore, cells expressing EpCAM can also be separated using a micromanipulator or a micromesh filter.
本発明の癌の治療及び/又は診断用組成物としては、本発明のペプチド又は本発明の融合ペプチドを含むものであれば特に制限されるものではないが、本発明のペプチド又は本発明の融合ペプチドに、診断及び/又は治療用作用物質を結合されたものが好ましく、上記用作用物質としては、例えば、緑膿菌外毒素、ジフテリア毒素、リシン毒素等の毒素、インターロイキン、インターフェロン、腫瘍壊死因子(TNF)等のサイトカイン、免疫刺激物質、放射性標識物質、画像処理剤等を挙げることができる。また、本発明には、本発明のペプチド又は本発明の融合ペプチドを癌の治療用組成物や診断用組成物として使用する方法や、本発明のペプチド又は本発明の融合ペプチドを癌の治療用組成物や診断用組成物の製造における使用方法も含まれる。 The composition for treatment and / or diagnosis of cancer of the present invention is not particularly limited as long as it contains the peptide of the present invention or the fusion peptide of the present invention, but the peptide of the present invention or the fusion of the present invention. Peptides are preferably combined with a diagnostic and / or therapeutic agent. Examples of such agents include toxins such as Pseudomonas aeruginosa exotoxin, diphtheria toxin, ricin toxin, interleukin, interferon, tumor necrosis Examples include cytokines such as factor (TNF), immunostimulatory substances, radiolabeled substances, and image processing agents. The present invention also includes a method of using the peptide of the present invention or the fusion peptide of the present invention as a cancer therapeutic composition or a diagnostic composition, or the peptide of the present invention or the fusion peptide of the present invention for treating cancer. Also included are methods of use in the manufacture of compositions and diagnostic compositions.
また、上記本発明のペプチド又は融合ペプチドは、ドラッグデリバリーシステムに用いることもできる。ドラッグデリバリーシステム(DDS)とは、癌細胞や標的組織等を狙い撃ちする薬物や遺伝子送達システムを意味するものであり、その中でも特にターゲティング(標的指向)DDSとは、薬物を「体内の必要な部位に」、「必要な量を」、「必要な時間だけ」送り込むといった概念である。ターゲティングDDSの代表的な運搬体として微粒子性キャリアーであるリポソームが挙げられるが、この粒子に標的指向機能をもたせるために、リポソームの脂質の種類、組成比、粒子径、表面電荷を変化させるなどの受動的ターゲティング法があり、さらに高機能の能動的ターゲティング法として、リポソーム膜面上にリガンドを結合させ、標的組織の細胞膜面上に存在するレセプターに特異的に認識させることによって、積極的にターゲティングを可能にさせる方法が開発されている。本発明のペプチド又は融合ペプチドをリポソーム膜面上に結合させたDDS運搬体は、細胞表面上にEpCAMを発現する癌細胞をターゲットとしたDDSに用いることができる。また、本発明には、本発明のペプチド又は本発明の融合ペプチドをドラッグデリバリーシステムの運搬体として使用する方法や、本発明のペプチド又は本発明の融合ペプチドをドラッグデリバリーシステムの運搬体の製造における使用方法も含まれる。 The peptide or fusion peptide of the present invention can also be used in a drug delivery system. Drug delivery system (DDS) refers to a drug or gene delivery system that targets cancer cells, target tissues, etc. Among them, targeting (target-oriented) DDS particularly refers to drugs as “required sites in the body. ”,“ Necessary amount ”, and“ necessary time ”. A typical carrier for targeting DDS is a liposome, which is a particulate carrier. In order to give this particle a target-directing function, the type of lipid, composition ratio, particle diameter, surface charge, etc. of the liposome are changed. There is a passive targeting method, and as a highly functional active targeting method, a ligand is bound on the membrane surface of the liposome, and it is specifically targeted by allowing the receptor present on the cell membrane surface of the target tissue to specifically recognize. A method has been developed to make this possible. The DDS carrier to which the peptide or fusion peptide of the present invention is bound on the liposome membrane surface can be used for DDS targeting cancer cells that express EpCAM on the cell surface. Further, the present invention includes a method of using the peptide of the present invention or the fusion peptide of the present invention as a carrier for a drug delivery system, and the production of the peptide of the present invention or the fusion peptide of the present invention as a carrier for a drug delivery system. Usage is also included.
以下、実施例により本発明をより具体的に説明するが、本発明の技術的範囲はこれらの例示に限定されるものではない。 EXAMPLES Hereinafter, although an Example demonstrates this invention more concretely, the technical scope of this invention is not limited to these illustrations.
[EpCAM結合ペプチドのスクリーニング]
1.EpCAMコートプレートの作製
EpCAM細胞外ドメインとヒトIgG1−Fc領域の融合タンパク質であるEpCAM/Fcキメラタンパク質(以下、EpCAM/Fcと記載することもある)を用いて、EpCAM/Fcコートプレートを作製した。EpCAM/Fcキメラタンパク質(cat# 960-EP、R&D systems社製)は、Phosphate buffered saline (PBS:NaCl 8.0g、KCl 0.2g、Na2HPO4 1.15g、KH2PO4 0.2gを超純水1000mLに溶解したもの)を用いて10μg/mLに希釈した。このEpCAM/Fc溶液を、ELISA用96ウェルプレート(IMMURON 4HBX、Thermo Fisher Scientific社製)に100μL/ウェルとなるように加え、4℃で1晩静置し吸着させた。翌日、溶液を取り除き、0.5%のウシ血清アルブミン(BSA、岩井化学薬品社製)を含むTris Buffered Saline(TBS:50mM Tris−HCl、150mM NaCl、pH7.5)を300μL/ウェルとなるよう加え、37℃で1時間静置することにより、ブロッキングを行った。その後、0.1%のPolyoxyethylenesorbitan monolaurate(Tween20、シグマ社製)を含むTBSにより150μL/ウェルで3回洗浄した。また、同様の方法により、BMPRII/Fcキメラタンパク質(cat# 811-BR、R&D systems社製)を用いてBMPRII/Fcコートプレートを作製した。
[Screening of EpCAM-binding peptides]
1. Preparation of EpCAM Coated Plate An EpCAM / Fc coated plate was prepared using EpCAM / Fc chimeric protein (hereinafter also referred to as EpCAM / Fc), which is a fusion protein of EpCAM extracellular domain and human IgG1-Fc region. . EpCAM / Fc chimeric protein (cat # 960-EP, manufactured by R & D systems) is Phosphate buffered saline (PBS: NaCl 8.0 g, KCl 0.2 g, Na 2 HPO 4 1.15 g, KH 2 PO 4 0.2 g). Was dissolved in 1000 mL of ultrapure water) and diluted to 10 μg / mL. This EpCAM / Fc solution was added to an ELISA 96-well plate (IMMURON 4HBX, Thermo Fisher Scientific) at 100 μL / well and allowed to stand overnight at 4 ° C. for adsorption. The next day, the solution is removed, and Tris Buffered Saline (TBS: 50 mM Tris-HCl, 150 mM NaCl, pH 7.5) containing 0.5% bovine serum albumin (BSA, manufactured by Iwai Chemicals) is adjusted to 300 μL / well. In addition, blocking was performed by allowing to stand at 37 ° C. for 1 hour. Thereafter, the plate was washed 3 times with 150 μL / well with TBS containing 0.1% Polyoxyethylenesorbitan monolaurate (Tween 20, manufactured by Sigma). In addition, a BMPRII / Fc coated plate was prepared by using the BMPRII / Fc chimeric protein (cat # 811-BR, manufactured by R & D systems) by the same method.
2.ファージライブラリを用いたスクリーニング
スクリーニングには、Ph.D 12 peptide phage display kit(D−12;New England Biolabs社製)を使用した。このライブラリは、12残基の直線状ランダムペプチドを提示するファージライブラリであり、2.7x109種類の多様性を有する。
2. Screening using phage library Ph.D 12 peptide phage display kit (D-12; New England Biolabs) was used for screening. This library is a phage library displaying a 12-residue linear random peptide, and has 2.7 × 10 9 types of diversity.
まず、ヒトIgG1Fcに結合するファージクローンを取り除く目的で、BMPRII/Fcコートプレートにファージライブラリを結合させた。ファージライブラリを0.1% Tween20を含むTBSで希釈し、1.0x1011plaque formation unit(pfu)/ウェルとなるように、BMPRII/Fcコートプレート加えた後、マイルドミキサー(PA−12、タイテック社製)上で穏やかに攪拌しながら室温で1時間反応させた。 First, a phage library was bound to a BMPRII / Fc coated plate for the purpose of removing phage clones that bound to human IgG1 Fc. The phage library was diluted with TBS containing 0.1% Tween 20, and after adding BMPRII / Fc coated plate to 1.0 × 10 11 plaque formation unit (pfu) / well, mild mixer (PA-12, Thaitec Co., Ltd.) was added. The mixture was allowed to react at room temperature for 1 hour with gentle stirring.
次に、反応後の溶液(上清)を採取し、EpCAM/Fcコートプレートに移し、室温で1時間穏やかに攪拌し、EpCAMにファージクローンを結合させた。その後、EpCAM/Fcコートプレートから溶液を取り除き、0.1% Tween20を含むTBS(150μL/ウェル)で10回洗浄を行った。EpCAM/Fcとファージとの結合を解離させるために、1mg/mL BSAを含む0.2M Glycine−HCl(pH2.2)を100μL/ウェルとなるよう添加し、室温で10分間穏やかに攪拌した。反応後の溶液をエッペンドルフチューブ(1.5mL)に回収し、直ちに1M Tris−HCl(pH9.1)を15μL添加し中和した。中和後の溶液の一部を用いて解離したファージの力価測定を行い、残りを大腸菌に感染させることにより増幅した。力価測定及びファージの増幅は常法(Phage Display-A Laboratory Manual, Cold Spring Harbor Laboratory Press, 2001)に従い行った。 Next, the solution (supernatant) after the reaction was collected, transferred to an EpCAM / Fc-coated plate, and gently stirred at room temperature for 1 hour to bind the phage clone to EpCAM. Thereafter, the solution was removed from the EpCAM / Fc-coated plate and washed 10 times with TBS (150 μL / well) containing 0.1% Tween20. In order to dissociate the binding between EpCAM / Fc and phage, 0.2 M Glycine-HCl (pH 2.2) containing 1 mg / mL BSA was added to 100 μL / well, and gently stirred at room temperature for 10 minutes. The solution after the reaction was recovered in an Eppendorf tube (1.5 mL), and immediately 15 μL of 1M Tris-HCl (pH 9.1) was added for neutralization. A part of the neutralized solution was used to measure the titer of the dissociated phage, and the remainder was amplified by infecting E. coli. Titration and phage amplification were performed according to conventional methods (Phage Display-A Laboratory Manual, Cold Spring Harbor Laboratory Press, 2001).
ファージの増幅の増幅は、次のように行った。対数増殖中のER2738菌[F‘laclq△(lacZ)M15proA+B+zzf::Tn10(TetR)fhuA2supEthi△(lac−proAB)△(hsdMS−mcrB)5(rk−mk−McrBC−)]に、得られたファージ溶出液を感染させ、20mLのLB中で振とう培養を行った。培養は、振とう培養機(BR−40LF、タイテック社製)を用い、37℃で激しく撹拌しながら4時間30分行った。ファージ感染菌を含む培養液を遠心チューブ(50mlクリスタル遠心管、グライナー社製)に移し、ユニバーサル冷却遠心機5922(久保田商事、中容量アングルローター)を用いて、4℃、8900 x gで5分間遠心した。遠心後、ER2738菌を取り除き、上清のファージ液を別のチューブに移した。このファージ液に、4mL(1/5量)の20%Polyethylene glycol 6000(以下PEG6000、Fluka社製)・NaCl(2.5M)溶液を加え、ミキサー(S−100、タイテック社製)により良く撹拌した後に氷上で1時間インキュベートし、ファージを沈殿させた。 The amplification of phage amplification was performed as follows. ER2738 in logarithmically growing [F'laclqΔ (lacZ) M15proA + B + zzf :: Tn10 (TetR) fhuA2supEthiΔ (lac-proAB) Δ (hsdMS-mcrB) 5 (rk-mk-McrBC-)] The eluate was infected and cultured with shaking in 20 mL of LB. The culture was performed for 4 hours and 30 minutes with vigorous stirring at 37 ° C. using a shaking incubator (BR-40LF, manufactured by Taitec Corporation). The culture solution containing the phage-infected bacteria is transferred to a centrifuge tube (50 ml crystal centrifuge tube, manufactured by Greiner) and is used at 4 ° C. and 8900 × g for 5 minutes using a universal cooling centrifuge 5922 (Kubota Corp., medium capacity angle rotor). Centrifuged. After centrifugation, ER2738 bacteria were removed, and the supernatant phage solution was transferred to another tube. To this phage solution, add 4 mL (1/5 volume) of 20% Polyethylene glycol 6000 (hereinafter PEG6000, manufactured by Fluka) / NaCl (2.5 M) solution, and stir well with a mixer (S-100, manufactured by Taitec). And then incubated on ice for 1 hour to precipitate the phage.
インキュベート後のファージ溶液を、ユニバーサル冷却遠心機を用いて、4℃、8900 x gで、15分間遠心することにより上清を取り除き、さらに、8900 x gで、1分間遠心した。上清を完全に取り除いた後、得られたファージ沈殿に1mlのTBSを加え、氷上で冷却し、穏やかに懸濁した。このファージ懸濁液を、1.5mL微量遠心管(トレフ社製)に移し、冷却遠心機(5415R及びアングルローターF-45-24-11、エッペンドルフ社製)を用い13200rpmで5分間遠心し、上清を別のチューブに移し、懸濁されない残渣を取り除いた。ファージ懸濁液に再度、250μLの20%PEG6000・2.5M NaClを加え、ミキサーで良く撹拌した後、氷上で5分間インキュベートしてファージを沈殿させた。次に、冷却遠心機により13200rpmで5分間遠心することによりファージ沈殿を回収した。このようにして得られたファージ沈殿に、200μlの0.02%NaN3(和光純薬社製)を含むTBSを加え、完全に懸濁させた。懸濁できない残渣は、冷却遠心機により13200rpmで5分間遠心することにより取り除き、得られた濃縮ファージ液の力価を求めた。 The phage solution after the incubation was centrifuged at 8900 × g for 15 minutes at 4 ° C. using a universal refrigerated centrifuge, and the supernatant was removed, followed by further centrifugation at 8900 × g for 1 minute. After completely removing the supernatant, 1 ml of TBS was added to the obtained phage precipitate, cooled on ice and gently suspended. This phage suspension was transferred to a 1.5 mL microcentrifuge tube (manufactured by Treff), and centrifuged at 13200 rpm for 5 minutes using a refrigerated centrifuge (5415R and angle rotor F-45-24-11, manufactured by Eppendorf). The supernatant was transferred to another tube to remove unsuspended residue. 250 μL of 20% PEG6000 · 2.5M NaCl was added to the phage suspension again, and the mixture was stirred well with a mixer and then incubated on ice for 5 minutes to precipitate the phage. Next, the phage precipitate was recovered by centrifuging at 13200 rpm for 5 minutes with a cooling centrifuge. To the phage precipitate thus obtained, 200 μl of TBS containing 0.02% NaN 3 (manufactured by Wako Pure Chemical Industries, Ltd.) was added and completely suspended. Residues that could not be suspended were removed by centrifuging at 13200 rpm for 5 minutes with a cooling centrifuge, and the titer of the resulting concentrated phage solution was determined.
3.バイオパニング
以上のような、EpCAM/Fcに結合するファージの選別実験を複数回繰り返すことにより、結合特異性の高いペプチドを提示しているファージの濃縮を行った。選別作業において、結合・洗浄に用いる緩衝液(TBS)中のTween20の濃度を、2回目の選別作業では0.3%に、3及び4回目では0.5%にした。このように選別条件順次厳しくすることで、より特異性の高いファージを選別した。これらの作業により、EpCAM/Fcに対して結合するファージが濃縮されているかどうかを確認するため、EpCAM/Fcコートプレートに添加したファージの力価と、最終的に溶出したファージの力価との比を求め選別回数ごとにプロットした。その結果、図1に示すように、3回の選別作業で十分特異性の高いファージが得られていることが確認できた。
3. Biopanning As described above, the phages that bind to EpCAM / Fc were repeatedly selected several times to concentrate the phages displaying peptides with high binding specificity. In the sorting operation, the concentration of Tween 20 in the buffer solution (TBS) used for binding and washing was set to 0.3% for the second sorting operation and 0.5% for the third and fourth times. In this way, the selection conditions were made stricter, so that more specific phages were selected. In order to confirm whether or not the phages that bind to EpCAM / Fc are concentrated by these operations, the titer of the phage added to the EpCAM / Fc coated plate and the titer of the finally eluted phage The ratio was determined and plotted for each number of selections. As a result, as shown in FIG. 1, it was confirmed that phages with sufficiently high specificity were obtained by three selection operations.
4.ファージクローンの配列決定
3回目の選別作業で得られた溶出ファージのクローンの配列を常法(Phage Display A Laboratory Manual,ColdSpring Harbor Laboratory Press, 2001)に従い決定した。塩基配列の決定は、提示ペプチド領域から96塩基下流に位置する塩基配列の相補鎖に相当するプライマー(−96gIII シーケンシングプライマー:配列番号1)を用いたダイデオキシターミネイト法により行った(CEQ DTCS Quick start kit、ベックマン社製)。反応産物の泳動とデータ解析にはキャピラリーシーケンサー(CEQ2000、ベックマン社製)を用いた。3回目の選別作業で得られた溶出ファージ12クローンについて、DNAの配列を確認したところ5種類のクローン(ファージクローンEp301、Ep305、Ep306、Ep307、Ep308)が確認された。それぞれのファージクローンの塩基配列を配列番号2〜6に、予想される提示ペプチドのアミノ酸配列を配列番号7、14〜17に示す。また、得られた12クローンには、ファージクローンEp301(配列番号2)と同じDNA配列のものが7クローン、ファージクローンEp308(配列番号6)と同じDNA配列のものが2クローン含まれていた。また、Ep301のアミノ酸配列を、EpCAMのアミノ酸配列と比較したところ、図2に示すように、EpCAMの106−119番目のアミノ酸残基と部分的な相同性を有することが明らかとなった。
4). Sequencing of phage clones The sequence of the eluted phage clones obtained in the third selection was determined according to a conventional method (Phage Display A Laboratory Manual, Cold Spring Harbor Laboratory Press, 2001). The base sequence was determined by the dideoxy termination method using a primer (-96 gIII sequencing primer: SEQ ID NO: 1) corresponding to the complementary strand of the base sequence located 96 bases downstream from the presented peptide region (CEQ DTCS Quick start kit, manufactured by Beckman). A capillary sequencer (CEQ2000, manufactured by Beckman) was used for electrophoresis of reaction products and data analysis. Regarding the 12 eluted phage clones obtained in the third selection, the DNA sequence was confirmed. As a result, five clones (phage clones Ep301, Ep305, Ep306, Ep307, Ep308) were confirmed. The nucleotide sequences of the respective phage clones are shown in SEQ ID NOs: 2 to 6, and the predicted amino acid sequences of the displayed peptides are shown in SEQ ID NOs: 7 and 14-17. The obtained 12 clones contained 7 clones having the same DNA sequence as the phage clone Ep301 (SEQ ID NO: 2) and 2 clones having the same DNA sequence as the phage clone Ep308 (SEQ ID NO: 6). Moreover, when the amino acid sequence of Ep301 was compared with the amino acid sequence of EpCAM, as shown in FIG. 2, it became clear that it has partial homology with the 106-119th amino acid residue of EpCAM.
[EpCAM結合ペプチドの特徴の決定]
1.結合能
実施例1で得られたファージクローンEp301、Ep305、Ep306、Ep307及びEp308をクローン化し、クローン化状態でのEpCAM/Fcに対する結合能力を評価した。実施例1と同様の方法で、96ウェルプレートに0.1μg/mLのEpCAM/Fcキメラタンパク質を、100μL/ウェルで結合させた、結合能検出用EpCAM/Fcコートプレートを新たに作製した。結合能検出に用いたファージの力価は1ウェル当たり1.0x1010pfu、反応及び洗浄には0.5% Tween20を含むTBSを使用した。この実験の結果、ファージクローンEp301および、Ep308が強い結合能を示すことが明らかとなった(図3)。
[Determination of characteristics of EpCAM-binding peptide]
1. Binding ability The phage clones Ep301, Ep305, Ep306, Ep307 and Ep308 obtained in Example 1 were cloned, and the binding ability to EpCAM / Fc in the cloned state was evaluated. In the same manner as in Example 1, a EpCAM / Fc coated plate for detecting binding ability was newly prepared by binding 0.1 μg / mL of EpCAM / Fc chimeric protein to a 96-well plate at 100 μL / well. The titer of the phage used for detecting the binding ability was 1.0 × 10 10 pfu per well, and TBS containing 0.5% Tween 20 was used for the reaction and washing. As a result of this experiment, it was revealed that the phage clones Ep301 and Ep308 showed strong binding ability (FIG. 3).
2.特異性
続いて、ファージクローンEp301及びEp308の結合特異性を確認するため、EpCAM/Fc又はBMPR2/Fcによりコートしたプレートと、タンパク質を吸着させていないブロッキングのみを行ったプレート対する、それぞれのファージの結合を調べた。その結果、図4に示すとおり、ファージクローンEp301はEpCAM/Fcのみに特異的に結合することが判明した。一方、ファージクローンEp308はEpCAM/FcだけでなくBMPR2/Fcにも結合したため、EpCAMに対する結合特異性が低いことが確認された。以上の実験により、ファージクローンEp301の提示するペプチド(配列番号7)がEpCAMに対して特異的に強い結合能を有することが明らかとなった。
2. Specificity Subsequently, in order to confirm the binding specificity of the phage clones Ep301 and Ep308, each phage was compared with a plate coated with EpCAM / Fc or BMPR2 / Fc and a plate subjected to blocking without adsorbing protein. The binding was examined. As a result, as shown in FIG. 4, it was found that the phage clone Ep301 specifically binds only to EpCAM / Fc. On the other hand, since the phage clone Ep308 bound not only to EpCAM / Fc but also to BMPR2 / Fc, it was confirmed that the binding specificity to EpCAM was low. From the above experiment, it was revealed that the peptide (SEQ ID NO: 7) presented by the phage clone Ep301 has a specifically strong binding ability to EpCAM.
3.アラニンスキャン実験
Ep301配列に類似の配列は、他のファージに認められなかったことから、Ep301のEpCAMへの結合能に重要なアミノ酸残基を同定することを目的としてアラニンスキャン実験を行った。すなわち、Ep301のアミノ酸配列(KSLQCINNLCWP:Ep301(WT))を1アミノ酸ごとにアラニンへと置換した12種類のEp301変異体(K1A、S2A、L3A、Q4A、C5A、I6A、N7A、N8A、L9A、C10A、W11A、P12A)を作製し、これらの変異体クローンのEpCAM/Fcへの結合量を検討した。
3. Alanine scan experiment Since a sequence similar to the Ep301 sequence was not found in other phages, an alanine scan experiment was conducted with the aim of identifying amino acid residues important for the ability of Ep301 to bind to EpCAM. That is, 12 types of Ep301 mutants (K1A, S2A, L3A, Q4A, C5A, I6A, N7A, N8A, L9A, C10A) in which the amino acid sequence of Ep301 (KSLQCINLCWP: Ep301 (WT)) was substituted with alanine for each amino acid. , W11A, P12A), and the amount of these mutant clones bound to EpCAM / Fc was examined.
12種類の点変異体は、配列番号18〜29に示す合成DNAを用いてKunkel法(Molecular Cloning Third Edition, Cold Spring Harbor Laboratory Press)により作製した。点変異導入の確認は、実施例1と同様の方法でファージDNAの塩基配列を決定することにより行った。また、これらの12種類の点変異体のEpCAM/Fcへの結合能の測定は、実施例2に示す方法と同様に、結合能検出用EpCAM/Fcコートプレートを用いて行った。 Twelve types of point mutants were prepared by the Kunkel method (Molecular Cloning Third Edition, Cold Spring Harbor Laboratory Press) using the synthetic DNAs shown in SEQ ID NOs: 18-29. Point mutation introduction was confirmed by determining the nucleotide sequence of phage DNA in the same manner as in Example 1. Further, the binding ability of these 12 types of point mutants to EpCAM / Fc was measured using an EpCAM / Fc coated plate for binding ability detection in the same manner as the method shown in Example 2.
各点変異体のEpCAM/Fcに対する結合実験の結果を図5に示す。K1A、S2A、N7A、P12Aの4種の変異体では、天然型のEp301(WT)と比較して結合能の低下は認められなかったが、それ以外の8種の変異体では結合能が顕著に低下した。これらの結果は、Ep301のEpCAMへの結合に、3、4、5、6、8、9、10、11番目のアミノ酸が関与している可能性を示唆している。また、前述のように、Ep301のアミノ酸配列はEpCAMの配列の106−119番目のアミノ酸残基と部分的な相同性を有しているが(図2)、EpCAMと相同性を示した部分のうち、1番目のアミノ酸残基以外、すなわち4、5、10、11番目のアミノ酸残基がEpCAMへの結合に重要な役割を果たしていることが、この実験で明らかとなった。 The result of the binding experiment of each point mutant to EpCAM / Fc is shown in FIG. In the four mutants K1A, S2A, N7A, and P12A, the binding ability was not decreased as compared with the natural Ep301 (WT), but the binding ability was remarkable in the other eight mutants. Declined. These results suggest that the third, fourth, fifth, sixth, eighth, ninth, tenth and eleventh amino acids may be involved in the binding of Ep301 to EpCAM. In addition, as described above, the amino acid sequence of Ep301 has partial homology with the amino acid residues 106 to 119 of the EpCAM sequence (FIG. 2), Of these, the experiment revealed that the amino acid residues other than the first amino acid residue, that is, the fourth, fifth, tenth and eleventh amino acid residues play an important role in the binding to EpCAM.
[MBP融合Ep301タンパク質の作製]
本実験で取得したペプチド配列の応用を考慮すると、ファージ上に提示された状態の他に、他のタンパク質の末端などにペプチドを融合して用いる用途が想定される。また、ファージに提示した状態で十分な結合能を有しているペプチドを、合成ペプチドや他のタンパク質の末端などに融合した場合に結合能がしばしば大きく低下することが起こりうる。ファージ上に提示している状態では、たとえばgIIIpに提示している場合、ペプチドはファージ粒子当たり約5本提示されており、この多価での提示による、ターゲットへの結合の際におけるエントロピーの寄与、いわゆるAvidity effectが無視できない場合も多く存在する。そこで、今回取得したペプチド提示ファージを元にしてマルトース結合タンパク質(MBP)のN末端側にペプチドを融合したタンパク質を作製し、EpCAMへの結合能を確認した。
[Preparation of MBP fusion Ep301 protein]
Considering the application of the peptide sequence obtained in this experiment, in addition to the state displayed on the phage, it is assumed that the peptide is used by fusing the peptide to the end of another protein. In addition, when a peptide having sufficient binding ability in the state displayed on the phage is fused to the terminal of a synthetic peptide or other protein, the binding ability can often be greatly reduced. In the state of being displayed on the phage, for example, when presenting on gIIIp, about 5 peptides are displayed per phage particle, and this multivalent display contributes to entropy in binding to the target. There are many cases where the so-called Avidity effect cannot be ignored. Therefore, a protein in which a peptide was fused to the N-terminal side of maltose binding protein (MBP) was prepared based on the peptide-displayed phage obtained this time, and the binding ability to EpCAM was confirmed.
1.発現ベクターの作製
MBP融合Ep301(WT)及びMBP融合Ep301(W11A)ペプチドの作製用の発現ベクターは、次のように作製した。まず、Ep301(WT)及びEp301(W11A)ペプチド提示ファージを作製し、それぞれのファージを大腸菌に感染させ増幅させた後、2本鎖ファージゲノムDNA抽出した。このファージゲノムDNAを制限酵素Asp718とEagIで切断し、DNA断片をMBP融合タンパク作製用ベクターであるpMal−pIIIベクタープラスミド(NEB社製)に、常法(例えば、Phage Display A Laboratory Manual, Cold Spring Harbor Laboratory Press, 2001に記載の方法)に従って挿入した。次に、これらのプラスミドを、制限酵素NdeIおよびSacIで切断し、MBP融合Ep301をコードするDNA断片を、T7系発現系であるpET−20b(+)ベクター(Merck社)へ挿入した。このプラスミドによりコードされるタンパク質は、g3pシグナル配列-Ep301(WT)又は(W11A)−リンカー配列(GGGS)−MBP−Hisx6タグ配列という形になり、大腸菌において発現を誘導すると、シグナル配列の働きにより細胞質内からペリプラズムへと分泌される。また、その際に、ファージのg3pシグナル配列が切断され、MBPのN末端にEp301(WT)又は(W11A)融合したタンパク質が発現する(配列番号30及び31)。また、この2種類のタンパク質と同時に、以降の実験での比較対象用にpMal−p2xの天然MBP遺伝子に相当部分をpET−20b(+)に組み込んだプラスミドも作製した。
1. Production of Expression Vector Expression vectors for production of MBP fusion Ep301 (WT) and MBP fusion Ep301 (W11A) peptides were produced as follows. First, Ep301 (WT) and Ep301 (W11A) peptide-displayed phages were prepared, and each phage was infected with E. coli and amplified, and then double-stranded phage genomic DNA was extracted. This phage genomic DNA is cleaved with restriction enzymes Asp718 and EagI, and the DNA fragment is applied to a pMal-pIII vector plasmid (manufactured by NEB), which is a vector for MBP fusion protein production, using conventional methods (eg, Phage Display A Laboratory Manual, Cold Spring). Inserted according to the method described in Harbor Laboratory Press, 2001). Next, these plasmids were digested with restriction enzymes NdeI and SacI, and a DNA fragment encoding MBP fusion Ep301 was inserted into a pET-20b (+) vector (Merck), which is a T7 expression system. The protein encoded by this plasmid is in the form of g3p signal sequence-Ep301 (WT) or (W11A) -linker sequence (GGGS) -MBP-Hisx6 tag sequence. When expression is induced in E. coli, the signal sequence works. It is secreted from the cytoplasm to the periplasm. At this time, the phage g3p signal sequence is cleaved, and a protein fused with Ep301 (WT) or (W11A) at the N-terminus of MBP is expressed (SEQ ID NOs: 30 and 31). Simultaneously with these two types of proteins, a plasmid in which a corresponding part of pMal-p2x natural MBP gene was incorporated into pET-20b (+) was also prepared for comparison in subsequent experiments.
2.形質転換
作製したT7発現プラスミドを用いて、大腸菌BL21(DE3)(Merck社製)を形質転換させた。形質転換体を50μg/mLのアンピシリンを含むLB寒天培地に塗布し、37℃で一晩培養することによりコロニーを形成させた。このコロニーを50μg/mLアンピシリンを含むオートインダクション培地(1Lあたり、10gのトリプトン(Becton Dickinson社製)、5gの酵母エキス(Becton Dickinson社製)、25mM (NH4)2SO4、50mM KH2PO4, 50mM Na2HPO4、5gのグリセロール、0.5gのグルコース、2gのα-ラクトースを含:Studier F. W.ら、Protein Expr. Purif.,2005, 41:207-34.を参考にした)200mLに植菌し、37℃で16時間、振盪培養した。
2. Transformation Using the prepared T7 expression plasmid, E. coli BL21 (DE3) (Merck) was transformed. The transformant was spread on an LB agar medium containing 50 μg / mL ampicillin and cultured at 37 ° C. overnight to form colonies. This colony was autoinduction medium containing 50 μg / mL ampicillin (10 g of tryptone (manufactured by Becton Dickinson), 5 g of yeast extract (manufactured by Becton Dickinson), 25 mM (NH 4 ) 2 SO 4 , 50 mM KH 2 PO 4 , 50 mM Na 2 HPO 4 , containing 5 g glycerol, 0.5 g glucose, 2 g α-lactose: 200 mL (with reference to Studier FW et al., Protein Expr. Purif., 2005, 41: 207-34.) And incubating at 37 ° C. for 16 hours with shaking.
3.タンパクの精製
培養した形質転換体(菌体)を含む培養液を50mLチューブ2本に移し、4000xgで10分間遠心した。残りの培養液を再度同じ50mLチューブで遠心し、菌体を全て回収した。回収した菌体に20%スクロース(ナカライテスク社製)を含むTris−HCl(30mM、pH8.0)を40mL加え、菌体を再度懸濁させた後、終濃度が1mMになるようにEDTAを加えた。これをマイルドミキサー上において室温で穏やかに10分間攪拌し、4000 x gで10分間遠心した。上清を取り除き、氷冷した5mM MgSO4を加えて、再度菌体を懸濁し、氷上で10分間穏やかに攪拌した。その後、8000 x gで10分間遠心し、ペリプラズム画分と残りの菌体を分離した。その後、分画したタンパク質の安定化のため、ペリプラズム画分溶液に終濃度で10mMになるように1MのTris−HCl(pH7.5)を加えた。
3. Protein Purification The culture solution containing the cultured transformant (bacteria) was transferred to two 50 mL tubes and centrifuged at 4000 × g for 10 minutes. The remaining culture solution was centrifuged again in the same 50 mL tube to collect all the cells. 40 mL of Tris-HCl (30 mM, pH 8.0) containing 20% sucrose (manufactured by Nacalai Tesque) is added to the collected cells, and the cells are resuspended, and then EDTA is added so that the final concentration becomes 1 mM. added. This was gently stirred for 10 minutes at room temperature on a mild mixer and centrifuged for 10 minutes at 4000 × g. The supernatant was removed, ice-cooled 5 mM MgSO 4 was added, the cells were suspended again, and gently stirred on ice for 10 minutes. Thereafter, the mixture was centrifuged at 8000 × g for 10 minutes to separate the periplasm fraction and the remaining cells. Thereafter, in order to stabilize the fractionated protein, 1 M Tris-HCl (pH 7.5) was added to the periplasm fraction solution to a final concentration of 10 mM.
TALONレジン(クロンテック社製)を用いて、採取した分画からMBP融合ペプチドを精製した。精製は、TALONレジンのマニュアル記載の方法に従い、非変性条件、イミダゾール添加による溶出で行った。得られた精製タンパク質はCENTRIPREP-10(ミリポア社製)で限外濾過濃縮を行うと同時に、バッファーをTBSに置換した。得られたタンパク質溶液は使用時まで−80℃で保存した。また、タンパク質溶液の280nmの吸光度を測定し、ProtParamプログラム(Gasteiger E. et al. The Proteomics Protocols Handbook, Humana Press (2005).pp. 571-607)を用いて配列から算出した吸光係数を元に、その濃度を決定した。 The MBP fusion peptide was purified from the collected fractions using TALON resin (Clontech). Purification was performed according to the method described in the TALON resin manual, with non-denaturing conditions and elution by addition of imidazole. The obtained purified protein was subjected to ultrafiltration concentration with CENTRIPREP-10 (Millipore), and at the same time, the buffer was replaced with TBS. The obtained protein solution was stored at −80 ° C. until use. In addition, the absorbance at 280 nm of the protein solution was measured, and based on the extinction coefficient calculated from the sequence using the ProtParam program (Gasteiger E. et al. The Proteomics Protocols Handbook, Humana Press (2005). Pp. 571-607). The concentration was determined.
4.ELISA
以上のようにして得られたEp301−MBPを、ELISAプレートに吸着させ、EpCAM/Fcキメラタンパク質の特異的結合について検討した。
まず、作製した3種類のMBP融合ペプチドを、TBSで10μg/mLになるようにそれぞれ希釈した。これらの溶液を、100μL/ウェルとなるようにELISA用96ウェルプレート(IMMURON 4HBX)に加え、4℃で一晩静置し吸着させた。1種類のMBP融合ペプチドにつき3ウェル分を用意した。
4). ELISA
Ep301-MBP obtained as described above was adsorbed on an ELISA plate and examined for specific binding of EpCAM / Fc chimeric protein.
First, the prepared three types of MBP fusion peptides were each diluted with TBS to 10 μg / mL. These solutions were added to an ELISA 96-well plate (IMMURON 4HBX) at 100 μL / well and allowed to stand overnight at 4 ° C. for adsorption. Three wells were prepared for one type of MBP fusion peptide.
反応後のプレートからMBP溶液を除去し、0.5%BSA及び0.1%Tween20を含むTBSを、300μL/ウェルとなるように加え、37℃で1時間静置することによりブロッキングを行った。その後、ブロッキング溶液を除き、0.1%のTween20を含むTBS(150μL/ウェル)で3回洗浄した。洗浄後、0.1%Tween20を含むTBSで1μg/mLになるように希釈したEpCAM/Fcキメラタンパク質を、100μL/ウェルとなるように加え、マイルドミキサーを用いて室温で穏やかに1時間攪拌した。反応終了後、0.1%のTween20を含むTBS(150μL/ウェル)で3回洗浄し、二次抗体として、0.1%Tween20を含むTBSで1000倍希釈した抗ヒトIgG-Fc Horseradish peroxidase conjugate(シグマ社)を100μL/ウェルとなるように加え、マイルドミキサーを用いて室温で穏やかに1時間攪拌した。 Blocking was performed by removing the MBP solution from the plate after the reaction, adding TBS containing 0.5% BSA and 0.1% Tween 20 to 300 μL / well, and allowing to stand at 37 ° C. for 1 hour. . Thereafter, the blocking solution was removed, and the plate was washed three times with TBS (150 μL / well) containing 0.1% Tween20. After washing, EpCAM / Fc chimeric protein diluted to 1 μg / mL with TBS containing 0.1% Tween 20 was added to 100 μL / well, and gently stirred at room temperature for 1 hour using a mild mixer. . After completion of the reaction, the anti-human IgG-Fc Horseradish peroxidase conjugate was washed 3 times with TBS (150 μL / well) containing 0.1% Tween 20 and diluted 1000 times with TBS containing 0.1% Tween 20 as a secondary antibody. (Sigma) was added at 100 μL / well, and the mixture was gently stirred at room temperature for 1 hour using a mild mixer.
0.1%のTween20を含むTBS(150μL/ウェル)で、再度3回の洗浄を行った後に、発色基質溶液[0.22mg/mL ABTS(2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid:シグマ社製)含有50mMクエン酸ナトリウム(pH4.0)21mLに、30%過酸化水素水(和光純薬工業社製)を36μL加え混合した溶液]を200uL/ウェルとなるように添加し、室温で穏やかに攪拌しながら発色させた。1時間後にModel680 マイクロプレートリーダー(Bio-Rad社製)を用いて405nmの吸光度を測定した。 After washing three times with TBS (150 μL / well) containing 0.1% Tween 20 again, a chromogenic substrate solution [0.22 mg / mL ABTS (2,2′-azino-bis (3-ethylbenzthiazoline- 6-sulphonic acid (manufactured by Sigma) containing 21 μL of 50 mM sodium citrate (pH 4.0) mixed with 36 μL of 30% aqueous hydrogen peroxide (manufactured by Wako Pure Chemical Industries, Ltd.)] to be 200 uL / well After 1 hour, the absorbance at 405 nm was measured using a Model 680 microplate reader (Bio-Rad).
測定の結果を図6に示す。Ep301(WT)−MBPは、MBPのみ、又はEp301(W11A)−MBPよりも顕著に高い吸光度を示したことから、Ep301(WT)−MBPは、EpCAM/Fcに特異的に結合することが示された。 The measurement results are shown in FIG. Ep301 (WT) -MBP showed significantly higher absorbance than MBP alone or Ep301 (W11A) -MBP, indicating that Ep301 (WT) -MBP specifically binds to EpCAM / Fc. It was done.
Claims (19)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008185819A JP2011193728A (en) | 2008-07-17 | 2008-07-17 | PEPTIDE HAVING BINDING CAPABILITY TO EpCAM |
PCT/JP2009/002625 WO2010007724A1 (en) | 2008-07-17 | 2009-06-10 | Peptide capable of binding to epcam |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008185819A JP2011193728A (en) | 2008-07-17 | 2008-07-17 | PEPTIDE HAVING BINDING CAPABILITY TO EpCAM |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2011193728A true JP2011193728A (en) | 2011-10-06 |
Family
ID=41550136
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008185819A Pending JP2011193728A (en) | 2008-07-17 | 2008-07-17 | PEPTIDE HAVING BINDING CAPABILITY TO EpCAM |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2011193728A (en) |
WO (1) | WO2010007724A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013157410A1 (en) * | 2012-04-17 | 2013-10-24 | Hoya株式会社 | Fzd10-binding peptide |
WO2014042209A1 (en) * | 2012-09-14 | 2014-03-20 | 公益財団法人がん研究会 | Peptides that bind to epithelial cell adhesion molecule |
US8841125B2 (en) | 2009-03-02 | 2014-09-23 | Renaissance Energy Investment Co., Ltd. | Cancer tissue-derived cell mass and a process for preparing same |
WO2014168230A1 (en) * | 2013-04-12 | 2014-10-16 | 公益財団法人がん研究会 | CONJUGATE COMPOSED OF EpCAM-BINDING PEPTIDE APTAMER AND PHOSPHORYLCHOLINE POLYMER COPOLYMER |
JP2015517982A (en) * | 2012-03-02 | 2015-06-25 | アカデミア シニカAcademia Sinica | Anti-epithelial cell adhesion molecule (EpCAM) antibody and method of use thereof |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113234165B (en) * | 2021-05-07 | 2023-02-28 | 暨南大学 | Engineered binding proteins for EpCAM and uses thereof |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5866363A (en) * | 1985-08-28 | 1999-02-02 | Pieczenik; George | Method and means for sorting and identifying biological information |
-
2008
- 2008-07-17 JP JP2008185819A patent/JP2011193728A/en active Pending
-
2009
- 2009-06-10 WO PCT/JP2009/002625 patent/WO2010007724A1/en active Application Filing
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8841125B2 (en) | 2009-03-02 | 2014-09-23 | Renaissance Energy Investment Co., Ltd. | Cancer tissue-derived cell mass and a process for preparing same |
JP2015517982A (en) * | 2012-03-02 | 2015-06-25 | アカデミア シニカAcademia Sinica | Anti-epithelial cell adhesion molecule (EpCAM) antibody and method of use thereof |
WO2013157410A1 (en) * | 2012-04-17 | 2013-10-24 | Hoya株式会社 | Fzd10-binding peptide |
JPWO2013157410A1 (en) * | 2012-04-17 | 2015-12-21 | Hoya株式会社 | FZD10 binding peptide |
WO2014042209A1 (en) * | 2012-09-14 | 2014-03-20 | 公益財団法人がん研究会 | Peptides that bind to epithelial cell adhesion molecule |
JPWO2014042209A1 (en) * | 2012-09-14 | 2016-08-18 | 公益財団法人がん研究会 | Peptides that bind to EpCAM |
US9815866B2 (en) | 2012-09-14 | 2017-11-14 | Japanese Foundation For Cancer Research | Peptides that bind to epithelial cell adhesion molecule |
WO2014168230A1 (en) * | 2013-04-12 | 2014-10-16 | 公益財団法人がん研究会 | CONJUGATE COMPOSED OF EpCAM-BINDING PEPTIDE APTAMER AND PHOSPHORYLCHOLINE POLYMER COPOLYMER |
JP5824596B2 (en) * | 2013-04-12 | 2015-11-25 | 公益財団法人がん研究会 | Complex comprising peptide aptamer binding to EpCAM and phosphorylcholine polymer copolymer |
Also Published As
Publication number | Publication date |
---|---|
WO2010007724A1 (en) | 2010-01-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11319345B2 (en) | Peptide library and use thereof | |
JP6246128B2 (en) | Peptides that bind to EpCAM | |
WO2010007724A1 (en) | Peptide capable of binding to epcam | |
CZ20013399A3 (en) | Protein isolation method and protein analysis, particularly mass spectrometry analysis | |
EP1456240A2 (en) | Target specific screening and its use for identifying target binders | |
EP3319641B1 (en) | Novel psma-specific binding proteins | |
CA2785359C (en) | Protein display | |
CN113980127A (en) | Nano antibody for resisting methicillin-resistant staphylococcus and preparation method and application thereof | |
WO2010007723A1 (en) | Peptide capable of binding to ceramic material | |
US20070218001A1 (en) | Biotherapeutics, Diagnostics and Research Reagents | |
US8158588B2 (en) | Loop-variant PDZ domains as biotherapeutics, diagnostics and research reagents | |
KR20240066998A (en) | Method for cell panning | |
EP2567968A1 (en) | Polypeptides targeting glycosylated Muc2 proteins, methods of synthesis, their nucleic acids and uses therof | |
Jindrová | Characterisation of Naaladase L2 protein | |
AU2002349903A1 (en) | Target specific screening andits use for identifying target binders |