JP2011192721A - Semiconductor device, and method of mounting the same - Google Patents

Semiconductor device, and method of mounting the same Download PDF

Info

Publication number
JP2011192721A
JP2011192721A JP2010055931A JP2010055931A JP2011192721A JP 2011192721 A JP2011192721 A JP 2011192721A JP 2010055931 A JP2010055931 A JP 2010055931A JP 2010055931 A JP2010055931 A JP 2010055931A JP 2011192721 A JP2011192721 A JP 2011192721A
Authority
JP
Japan
Prior art keywords
mounting
semiconductor chip
mounting substrate
chip
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010055931A
Other languages
Japanese (ja)
Inventor
Tomohiro Murata
智洋 村田
Hiroyuki Sakai
啓之 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2010055931A priority Critical patent/JP2011192721A/en
Publication of JP2011192721A publication Critical patent/JP2011192721A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

<P>PROBLEM TO BE SOLVED: To provide a mounting method capable of securely mounting a semiconductor chip by improving positioning precision between an electrode on a mounting substrate and a semiconductor chip back electrode without any influence on a semiconductor chip size, and to provide a semiconductor device. <P>SOLUTION: The semiconductor device includes: the mounting substrate 101 having a wiring pattern on a surface; and a semiconductor chip 105 mounted on the mounting substrate 101 and having a wiring pattern formed on a transparent substrate 104 and including a ground electrode 110 and a signal electrode 109 at least on a reverse surface. The mounting substrate 101 and the wiring pattern on the reverse surface of the semiconductor chip 105 have reference marks 106 and 111 for alignment, respectively. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、無線通信装置等に用いられる半導体装置及びその実装方法に関し、特に高周波用途に用いる半導体集積回路の半導体装置及びパッケージの実装技術に関する。   The present invention relates to a semiconductor device used in a wireless communication device or the like and a mounting method thereof, and more particularly, to a semiconductor device and package mounting technology of a semiconductor integrated circuit used for high frequency applications.

近年、半導体チップは小型化・集積化が進んでおり、チップサイズと同等又は、チップ自体がパッケージとなる超小型サイズのチップサイズパッケージ(CSP)の研究開発が盛んに行われている(例えば特許文献1を参照。)。特に、ウェハ状態でパッケージ化を行うウェハレベルCSPは、組み立て費用や部品点数を削減できる、低コストのパッケージング方法として注目されている。   In recent years, semiconductor chips have been miniaturized and integrated, and research and development of a chip size package (CSP) having a chip size package equivalent to the chip size or the chip itself as a package has been actively conducted (for example, patents). See reference 1.) In particular, a wafer level CSP that performs packaging in a wafer state is attracting attention as a low-cost packaging method that can reduce assembly costs and the number of parts.

ウェハレベルCSPは、半導体チップの実装基板と向き合う面に接地電極と信号用電極が設けられているため、実装基板上に配置するだけでチップと実装基板との配線を行うことができる。この方法は、チップと実装基板との距離が短いため、チップ特性が端子接続状態に大きく影響するような高周波用チップにおいて、不確定なワイヤー接続を回避できる。また、端子接続損失を最小限にできる。このため、高周波領域で非常に有効な実装方法である。   In the wafer level CSP, since the ground electrode and the signal electrode are provided on the surface facing the mounting substrate of the semiconductor chip, it is possible to perform wiring between the chip and the mounting substrate simply by disposing on the mounting substrate. In this method, since the distance between the chip and the mounting substrate is short, indeterminate wire connection can be avoided in a high-frequency chip whose chip characteristics greatly affect the terminal connection state. Further, terminal connection loss can be minimized. For this reason, it is a very effective mounting method in a high frequency region.

ウェハレベルCSP等の裏面実装型半導体チップを実装基板に実装する際には、実装基板側の電極との位置あわせが必要である。特に集積度が高く、電極数が多いチップ及び端子接続状態がチップ特性に影響しやすい高周波を扱う半導体チップの場合は、精度の高いチップ実装位置制御が求められる。図3に示す従来技術では、チップ305側面(又はチップ端)を実装基板301上の基準マーク306にあわせることよって実装位置を決定している。また、フリップチップ等の裏面配線を有するチップの実装に際し、チップ側面に接するように半田ボールを設けることでチップ位置制御を行う方法も開示されている(例えば、特許文献2を参照。)。   When mounting a back surface mounting type semiconductor chip such as a wafer level CSP on a mounting substrate, it is necessary to align it with an electrode on the mounting substrate side. In particular, in the case of a chip having a high degree of integration and a large number of electrodes and a semiconductor chip handling a high frequency whose terminal connection state easily affects the chip characteristics, highly accurate chip mounting position control is required. In the prior art shown in FIG. 3, the mounting position is determined by aligning the side surface (or chip end) of the chip 305 with the reference mark 306 on the mounting substrate 301. Further, a method of controlling the chip position by providing a solder ball so as to be in contact with the side surface of the chip when mounting a chip having a backside wiring such as a flip chip is also disclosed (see, for example, Patent Document 2).

一方、窒化ガリウム(GaN)、窒化アルミニウム(AlN)及び窒化インジウム(InN)並びに一般式が(InxAl1-xyGa1-yN(0≦x≦1、0≦y≦1)で表される混晶物である窒化物半導体は、その物理的特徴である広いバンドギャップ及び直接遷移型バンド構造を利用して光学素子へ応用されている。また、破壊電界及び飽和電子速度が大きいという特長を利用した電子デバイスへの応用も検討されている。特に半絶縁性基板の上にエピタキシャル成長したAlxGa1-xNとGaNとの界面に現れる二次元電子ガスを利用するヘテロ接合電界効果トランジスタ(Heterojunction Field Effect Transistor; 以下HFETと略す)は、高出力高周波デバイスとして開発が進められている。透明基板であるサファイア基板上にマイクロストリップ線路を用いて整合回路、バイアス回路とともにAlGaN/GaN HFETを集積化したMMICが報告されている(例えば、非特許文献1を参照。)。 On the other hand, gallium nitride (GaN), aluminum nitride (AlN) and indium nitride (InN) and the general formula is (In x Al 1-x ) y Ga 1-y N (0 ≦ x ≦ 1, 0 ≦ y ≦ 1) A nitride semiconductor, which is a mixed crystal represented by the following formula, is applied to an optical element by utilizing a wide band gap and a direct transition type band structure which are physical characteristics of the nitride semiconductor. In addition, application to electronic devices utilizing the feature that the breakdown electric field and the saturation electron velocity are large is also being studied. In particular, heterojunction field effect transistors (hereinafter abbreviated as HFETs) that use a two-dimensional electron gas appearing at the interface between Al x Ga 1-x N and GaN epitaxially grown on a semi-insulating substrate are Development is progressing as an output high frequency device. There has been reported an MMIC in which an AlGaN / GaN HFET is integrated with a matching circuit and a bias circuit using a microstrip line on a sapphire substrate, which is a transparent substrate (see, for example, Non-Patent Document 1).

特開平9−64236号公報JP-A-9-64236 特開2009−188260号公報JP 2009-188260 A

2008 IEEE MTT-S Int. Microwave Symp, Dig. p.1293-12962008 IEEE MTT-S Int. Microwave Symp, Dig. P.1293-1296

しかしながら、従来技術には以下のような課題がある。ウェハレベルCSP、フリップチップ等の裏面実装型半導体チップを実装基板に実装する際に、チップ側面を基準として実装位置を決定する従来技術では、ダイシングの位置制御及びダイシング時の欠損量の変動がチップ実装位置の精度に影響を及ぼすおそれがある。チップ側と実装基板側の電極位置ズレは、入力及び出力インピーダンスの変動となり、結果的に反射損失の増加につながる。特に高周波を扱う半導体チップの場合には、実装位置ズレによる不良品の発生及び実装時の歩留まり低下が懸念される。   However, the prior art has the following problems. When mounting a back surface mounting type semiconductor chip such as a wafer level CSP or a flip chip on a mounting substrate, the conventional technique for determining the mounting position with reference to the side surface of the chip has dicing position control and fluctuations in the amount of defects during dicing. May affect the accuracy of the mounting position. The displacement of the electrode position between the chip side and the mounting substrate side results in fluctuations in input and output impedances, resulting in an increase in reflection loss. In particular, in the case of a semiconductor chip that handles high frequencies, there are concerns about the occurrence of defective products due to mounting position shifts and a decrease in yield during mounting.

本発明は、上記の課題を解決し、半導体チップ寸法(側面位置)に影響することなく、実装基板上電極と半導体チップ裏面電極の位置あわせ精度を向上させ、半導体チップを確実に実装できる実装方法及び半導体装置を実現できるようにすることを目的とする。   The present invention solves the above-described problems, improves the alignment accuracy of the mounting substrate upper electrode and the semiconductor chip back surface electrode without affecting the semiconductor chip dimensions (side surface position), and enables the semiconductor chip to be mounted reliably. Another object of the present invention is to realize a semiconductor device.

第1の半導体装置は、表面に配線パターンを有する実装基板と、実装基板上に実装されており、透明基板上に形成され、少なくとも裏面に接地電極と信号用電極を含む配線パターンを有する高周波用半導体チップとを備えた半導体装置を対象とし、実装基板及び半導体チップ裏面にある配線パターンは、それぞれアライメント用の基準マークを有している。   A first semiconductor device is mounted on a mounting substrate having a wiring pattern on a front surface, is formed on a transparent substrate, and has a wiring pattern including a ground electrode and a signal electrode on at least a back surface. Targeting a semiconductor device including a semiconductor chip, the wiring patterns on the mounting substrate and the back surface of the semiconductor chip each have a reference mark for alignment.

このような構成とすることで、実装基板上に半導体チップを実装する際に、半導体チップ裏面にある基準マークと実装基板上にある基準マークを用いることで、半導体チップ寸法(側面位置)に影響することなく、実装基板上電極と半導体チップ裏面電極の位置あわせ精度を向上させることができる。半導体チップは、透明基板を用いているため、チップ表面から裏面の基準マークを透かして確認することができる。   With this configuration, when mounting a semiconductor chip on a mounting substrate, the reference mark on the back surface of the semiconductor chip and the reference mark on the mounting substrate are used, thereby affecting the semiconductor chip dimensions (side surface position). Without this, it is possible to improve the alignment accuracy of the mounting substrate upper electrode and the semiconductor chip back surface electrode. Since the semiconductor chip uses a transparent substrate, the reference mark on the back surface can be confirmed through the chip surface.

第2の半導体装置は、表面に配線パターンを有する実装基板と、実装基板上に実装されており、裏面に少なくとも接地電極と信号用電極を含む配線パターンを有する半導体チップを有する半導体装置を対象とし、実装基板に第1の貫通孔が形成されており、半導体チップに第1の貫通孔より直径の小さい第2の貫通孔が複数形成されており、第2の貫通孔の少なくとも一つは第1の貫通孔と平面位置が一致している。   The second semiconductor device is intended for a semiconductor device having a mounting substrate having a wiring pattern on the front surface and a semiconductor chip mounted on the mounting substrate and having a wiring pattern including at least a ground electrode and a signal electrode on the back surface. The mounting substrate has a first through hole, the semiconductor chip has a plurality of second through holes having a smaller diameter than the first through hole, and at least one of the second through holes is a first through hole. One through hole and the plane position coincide.

このような構成とすることで、実装基板上に半導体チップを実装する際、実装基板の裏面側から照明を当て、チップ表面へ透過する光を確認することで、実装基板と半導体チップとのあわせズレを確認することができる。半導体チップ側には、実装基板上の第1の貫通孔に相当する場所を中心に同心円上に複数の貫通孔を空けておけば、透過する光の強さによって位置ズレの距離と方向についての情報を得ることができる。また、本構成はほとんどが裏面電極で覆われている半導体チップや不透明な半導体チップについても適用可能である。   With this configuration, when mounting a semiconductor chip on the mounting substrate, illumination is applied from the back side of the mounting substrate, and light transmitted to the chip surface is confirmed, so that the mounting substrate and the semiconductor chip are aligned. A deviation can be confirmed. On the semiconductor chip side, if a plurality of through holes are formed concentrically around a place corresponding to the first through hole on the mounting substrate, the distance and direction of the positional shift are determined depending on the intensity of transmitted light. Information can be obtained. This configuration can also be applied to a semiconductor chip that is mostly covered with a back electrode or an opaque semiconductor chip.

本発明の半導体装置によれば、チップ寸法(側面位置)に影響することなく、実装基板上電極と半導体チップの裏面電極の位置あわせを行うことができ、互いの位置ズレを最小限に抑制できる。この結果、高周波チップの位置ズレによる高周波損失を低減できる。   According to the semiconductor device of the present invention, it is possible to align the electrode on the mounting substrate and the back electrode of the semiconductor chip without affecting the chip size (side surface position), and to suppress the positional deviation between each other to the minimum. . As a result, it is possible to reduce the high frequency loss due to the displacement of the high frequency chip.

(a)及び(b)は第1の実施形態に係る半導体装置であり、(a)は平面図であり、(b)はIb−Ib線における断面図である。(A) And (b) is the semiconductor device which concerns on 1st Embodiment, (a) is a top view, (b) is sectional drawing in the Ib-Ib line. (a)及び(b)は第1の実施形態に係る半導体装置であり、(a)は平面図であり、(b)はIIb−IIb線における断面図である。(A) And (b) is the semiconductor device which concerns on 1st Embodiment, (a) is a top view, (b) is sectional drawing in the IIb-IIb line | wire. (a)及び(b)は第1の実施形態に係る半導体装置であり、(a)は平面図であり、(b)はIIIb−IIIb線における断面図である。(A) And (b) is the semiconductor device which concerns on 1st Embodiment, (a) is a top view, (b) is sectional drawing in a IIIb-IIIb line | wire.

以下、本発明の実施の形態における半導体装置について、図面を参照しながら説明する。   Hereinafter, semiconductor devices according to embodiments of the present invention will be described with reference to the drawings.

(第1の実施形態)
図1は、本発明の第1の実施形態に係る半導体装置の構造を模式的に示す断面図及び上面図である。実装基板101上には、接地電極102と信号用配線103とともに、透明基板104上に形成した高周波用途の半導体チップ105の実装位置を表す基準マーク106が配線パターンの一部として形成されている。その上に銀ペーストなどの導電性固定剤107を、半導体チップ上信号用配線112を有する半導体チップ105の信号用ビア108を介して基板裏面に接続した裏面の信号電極109及び接地電極110と実装基板上の接地電極102及び信号用配線103との接続部分に塗布し、半導体チップ105を配置する。このとき、透明基板104上部から半導体チップ裏面に形成した基準マーク111と実装基板上の基準マーク106とを透かして確認することで、実装基板上の信号用配線103と半導体チップ105の裏面の信号電極109とを位置ズレすることなく配置することができる。配置する際に、導電性固定剤107を塗布しているため、誤った位置に配置してしまうと導電性の固定剤が不要な場所にも広がってしまい、場合によっては信号線と接地電極を短絡してしまう危険性がある。基準マークの存在により事前にチップ位置を正確に把握できるので、配置ミスによる不良の発生を抑制することができる。半導体チップ105を実装基板101上に配置したのち、恒温槽にて乾燥させることで、本実施形態の半導体装置となる。
(First embodiment)
FIG. 1 is a cross-sectional view and a top view schematically showing the structure of the semiconductor device according to the first embodiment of the present invention. A reference mark 106 representing the mounting position of the high-frequency semiconductor chip 105 formed on the transparent substrate 104 is formed as a part of the wiring pattern on the mounting substrate 101 together with the ground electrode 102 and the signal wiring 103. A conductive fixing agent 107 such as silver paste is mounted on the back surface signal electrode 109 and the ground electrode 110 connected to the back surface of the substrate through the signal via 108 of the semiconductor chip 105 having the signal wiring 112 on the semiconductor chip. The semiconductor chip 105 is disposed on the substrate by applying it to the connection portion between the ground electrode 102 and the signal wiring 103. At this time, by confirming the reference mark 111 formed on the back surface of the semiconductor chip from the top of the transparent substrate 104 and the reference mark 106 on the mounting substrate, the signal wiring 103 on the mounting substrate and the signal on the back surface of the semiconductor chip 105 are confirmed. The electrode 109 can be disposed without being misaligned. Since the conductive fixing agent 107 is applied at the time of placement, if it is placed at an incorrect position, it spreads to places where the conductive fixing agent is unnecessary, and in some cases, the signal line and the ground electrode are connected. There is a risk of short circuit. Since the chip position can be accurately grasped in advance by the presence of the reference mark, it is possible to suppress the occurrence of defects due to misplacement. After the semiconductor chip 105 is disposed on the mounting substrate 101, the semiconductor device of this embodiment is obtained by drying in a constant temperature bath.

ここで、透明基板104は、例えばサファイア基板上にGaN/AlGaN半導体層をエピタキシャル成長したもので、表面にはAlGaN/GaN HFETを含む集積回路が形成されている。なお、サファイア基板のほかシリコンカーバイト(SiC)、窒化ガリウム(GaN)、窒化アルミニウム(AlN)、又はこれらを積層した基板であっても基板が透明であれば同様の構成とすることが可能である。また、半導体チップ105についてもAlGaN/GaN系に限らない。   Here, the transparent substrate 104 is obtained by epitaxially growing a GaN / AlGaN semiconductor layer on a sapphire substrate, for example, and an integrated circuit including an AlGaN / GaN HFET is formed on the surface. In addition to the sapphire substrate, silicon carbide (SiC), gallium nitride (GaN), aluminum nitride (AlN), or a substrate in which these are laminated can be configured in a similar manner as long as the substrate is transparent. is there. Further, the semiconductor chip 105 is not limited to the AlGaN / GaN system.

(第2の実施形態)
図2は、本発明の第2の実施形態に係る半導体装置を模式的に示す断面図及び上面図である。実装基板101上には、接地電極102と信号用配線103とともに、高周波用途の半導体チップ105の実装位置を表す基準マークの役割をもつ第1の貫通孔201が形成されている。その上に銀ペーストなどの導電性固定剤107を実装基板上の半導体チップ105の信号用ビア108を介して基板裏面に接続した裏面の信号電極109及び接地電極110と実装基板101上の接地電極102及び信号用配線103との接続部分に塗布し、半導体チップ上信号用配線112を有する半導体チップ105を配置する。半導体チップ105には、第1の貫通孔201より直径が小さい第2の貫通孔202が複数個形成されている。なお、第2の貫通孔202は、第1の貫通孔201に対応する位置のほか、同心円上に並ぶように形成されていることが望ましい。半導体チップ105を配置する際、実装基板101の裏面から光203を照射すると、実装基板101と半導体チップ105の互いの位置が一致している場合、中心の第2の貫通孔を透過する光204がもっとも強くなる。位置が一致していない場合、周辺の第2の貫通孔を透過する光204’が強くなるため、補正する方向とおおよその距離を知ることができる。このようにチップ位置を調整して実装基板101上に配置することで、配置ミスによる不良の発生を抑制することができる。半導体チップ105を実装基板101上に配置したのち、恒温槽にて乾燥させることで、本実施形態の半導体装置となる。
(Second Embodiment)
FIG. 2 is a cross-sectional view and a top view schematically showing a semiconductor device according to the second embodiment of the present invention. A first through-hole 201 having a role of a reference mark indicating the mounting position of the high-frequency semiconductor chip 105 is formed on the mounting substrate 101 together with the ground electrode 102 and the signal wiring 103. A backside signal electrode 109 and a ground electrode 110 on which a conductive fixing agent 107 such as a silver paste is connected to the back side of the substrate through a signal via 108 of the semiconductor chip 105 on the mounting substrate, and a ground electrode on the mounting substrate 101. The semiconductor chip 105 having the signal wiring 112 on the semiconductor chip is disposed on the connection portion between the wiring 102 and the signal wiring 103. A plurality of second through holes 202 having a diameter smaller than that of the first through holes 201 are formed in the semiconductor chip 105. The second through holes 202 are preferably formed so as to be arranged concentrically in addition to the positions corresponding to the first through holes 201. When the semiconductor chip 105 is disposed, when the light 203 is irradiated from the back surface of the mounting substrate 101, the light 204 that passes through the second through-hole at the center when the mounting substrate 101 and the semiconductor chip 105 are in the same position. Is the strongest. When the positions do not match, the light 204 ′ transmitted through the second peripheral through hole becomes strong, so that the correction direction and the approximate distance can be known. By adjusting the chip position and placing it on the mounting substrate 101 in this manner, it is possible to suppress the occurrence of defects due to placement mistakes. After the semiconductor chip 105 is disposed on the mounting substrate 101, the semiconductor device of this embodiment is obtained by drying in a constant temperature bath.

本実施形態の構成は、ほとんどが裏面電極で覆われている半導体チップや不透明な半導体チップについても適用可能である。   The configuration of the present embodiment is applicable to a semiconductor chip that is mostly covered with a back electrode or an opaque semiconductor chip.

ここで、透明基板104は、例えばサファイア基板上にGaN/AlGaN半導体層をエピタキシャル成長したもので、表面にはAlGaN/GaN HFETを含む集積回路が形成されている。なお、サファイア基板のほかシリコンカーバイト(SiC)、窒化ガリウム(GaN)、窒化アルミニウム(AlN)、又はこれらの積層した基板であっても基板が透明であれば同様の構成とすることが可能である。また、半導体チップ105についてもAlGaN/GaN系に限らない。   Here, the transparent substrate 104 is obtained by epitaxially growing a GaN / AlGaN semiconductor layer on a sapphire substrate, for example, and an integrated circuit including an AlGaN / GaN HFET is formed on the surface. In addition to the sapphire substrate, silicon carbide (SiC), gallium nitride (GaN), aluminum nitride (AlN), or a laminate of these can be used as long as the substrate is transparent. is there. Further, the semiconductor chip 105 is not limited to the AlGaN / GaN system.

本発明に係る半導体装置は、高出力高周波用の無線通信装置として非常に有効である。   The semiconductor device according to the present invention is very effective as a radio communication device for high output and high frequency.

101 実装基板
102 接地電極
103 信号用配線
104 透明基板
105 半導体チップ
106 基準マーク
107 導電性固定剤
108 信号用ビア
109 信号電極
110 接地電極
111 基準マーク
112 半導体チップ上信号用配線
201 第1の貫通孔
202 第2の貫通孔
203 光
204 光
204’ 光
Reference Signs List 101 mounting substrate 102 ground electrode 103 signal wiring 104 transparent substrate 105 semiconductor chip 106 reference mark 107 conductive fixing agent 108 signal via 109 signal electrode 110 ground electrode 111 reference mark 112 signal wiring 201 on semiconductor chip first through hole 202 2nd through-hole 203 light 204 light 204 'light

Claims (5)

表面に配線パターンを有する実装基板と、
前記実装基板上に実装されており、透明基板上に形成され、少なくとも裏面に接地電極及び信号用電極を含む配線パターンを有する半導体チップとを備え、
前記実装基板及び半導体チップ裏面にある配線パターンは、それぞれアライメント用の基準マークを有していることを特徴とする半導体装置。
A mounting board having a wiring pattern on the surface;
A semiconductor chip mounted on the mounting substrate, formed on a transparent substrate, and having a wiring pattern including at least a ground electrode and a signal electrode on the back surface;
The wiring patterns on the mounting substrate and the back surface of the semiconductor chip each have a reference mark for alignment.
表面に配線パターンを有する実装基板と、
前期実装基板上に実装されており、裏面に少なくとも接地電極及び信号用電極を含む配線パターンを有する半導体チップとを備え、
前記実装基板は、第1の貫通孔を有し、
前記半導体チップは、前記第1の貫通孔より直径が小さい複数の第2の貫通孔を有し、
前記第2の貫通孔の少なくとも一つは、前記第1の貫通孔と平面位置が一致していることを特徴とする半導体装置。
A mounting board having a wiring pattern on the surface;
The semiconductor chip is mounted on the mounting board in the previous period and has a wiring pattern including at least a ground electrode and a signal electrode on the back surface, and
The mounting substrate has a first through hole,
The semiconductor chip has a plurality of second through holes having a diameter smaller than that of the first through holes,
At least one of the second through-holes has a planar position that matches the first through-hole.
表面に配線パターンを有する実装基板上に、透明基板上に形成され、裏面に少なくとも接地電極と信号用電極を含む配線パターンを有する半導体チップを実装する方法であって、
前記半導体チップの基準マークと前記実装基板上の基準マークを用いて、実装基板上のチップ位置を決定する工程を備えていることを特徴とする半導体装置の実装方法。
A method of mounting a semiconductor chip having a wiring pattern formed on a transparent substrate on the mounting substrate having a wiring pattern on the front surface and including at least a ground electrode and a signal electrode on the back surface,
A method for mounting a semiconductor device, comprising: a step of determining a chip position on a mounting substrate using a reference mark on the semiconductor chip and a reference mark on the mounting substrate.
表面に配線パターンを有する実装基板上に、裏面に少なくとも接地電極と信号用電極を含む配線パターンを有する半導体チップを実装する方法であって、
前記実装基板に第1の貫通孔を形成する工程と、
前記半導体チップに複数の第2の貫通孔を形成する工程と、
前記第2の貫通孔の少なくとも一つを前記第1の貫通孔と平面位置が一致するようにチップの実装位置を決定する工程を備えていることを特徴とする半導体装置の実装方法。
A method of mounting a semiconductor chip having a wiring pattern including at least a ground electrode and a signal electrode on a back surface on a mounting substrate having a wiring pattern on a front surface,
Forming a first through hole in the mounting substrate;
Forming a plurality of second through holes in the semiconductor chip;
A method of mounting a semiconductor device, comprising the step of determining a chip mounting position so that at least one of the second through holes coincides with a plane position of the first through hole.
前記チップ位置を決定する工程において、裏面照射した光の透過光を利用することを特徴とする請求項4に記載の半導体装置の実装方法。   5. The method of mounting a semiconductor device according to claim 4, wherein in the step of determining the chip position, transmitted light of light irradiated on the back surface is used.
JP2010055931A 2010-03-12 2010-03-12 Semiconductor device, and method of mounting the same Pending JP2011192721A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010055931A JP2011192721A (en) 2010-03-12 2010-03-12 Semiconductor device, and method of mounting the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010055931A JP2011192721A (en) 2010-03-12 2010-03-12 Semiconductor device, and method of mounting the same

Publications (1)

Publication Number Publication Date
JP2011192721A true JP2011192721A (en) 2011-09-29

Family

ID=44797353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010055931A Pending JP2011192721A (en) 2010-03-12 2010-03-12 Semiconductor device, and method of mounting the same

Country Status (1)

Country Link
JP (1) JP2011192721A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018121793A (en) * 2017-01-31 2018-08-09 株式会社大一商会 Game machine
JP2019121704A (en) * 2018-01-09 2019-07-22 トヨタ自動車株式会社 Semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018121793A (en) * 2017-01-31 2018-08-09 株式会社大一商会 Game machine
JP2019121704A (en) * 2018-01-09 2019-07-22 トヨタ自動車株式会社 Semiconductor device

Similar Documents

Publication Publication Date Title
US7706756B2 (en) RF power module
US9780090B2 (en) Integrated circuits and devices with interleaved transistor elements, and methods of their fabrication
US10204992B2 (en) Tuned semiconductor amplifier
US20060118970A1 (en) Semiconductor device, its manufacturing method, and radio communication device
JP2023528051A (en) Method for pillar connection on front side of die and passive device integration on back side
US8908383B1 (en) Thermal via structures with surface features
US10090586B2 (en) Wireless communication device with joined semiconductors
JP5439415B2 (en) Package for MMIC
US8546939B2 (en) RF module including control IC without the aid of a relay pad
US7391067B1 (en) Hybrid microwave integrated circuit
JP2011192721A (en) Semiconductor device, and method of mounting the same
JP4872409B2 (en) Manufacturing method of semiconductor device
WO2022123840A1 (en) High frequency module and communication device
JP6592948B2 (en) Manufacturing method of semiconductor device
US20220208646A1 (en) Circuit modules with front-side interposer terminals and through-module thermal dissipation structures
JP2010186959A (en) Semiconductor package, and method of fabricating the same
JP2008235759A (en) Electronic device
JP5951265B2 (en) Broadband amplifier
US10679924B2 (en) Semiconductor device with antenna integrated
US11145607B2 (en) Semiconductor chip
WO2022123882A1 (en) High frequency module and communication device
US11764197B2 (en) RF circuit module and manufacturing method therefor
US20240105692A1 (en) Packaged flip chip radio frequency transistor amplifier circuits
JP2007005476A (en) Semiconductor device and its manufacturing method