JP2011192540A - Bipolar secondary battery - Google Patents

Bipolar secondary battery Download PDF

Info

Publication number
JP2011192540A
JP2011192540A JP2010057958A JP2010057958A JP2011192540A JP 2011192540 A JP2011192540 A JP 2011192540A JP 2010057958 A JP2010057958 A JP 2010057958A JP 2010057958 A JP2010057958 A JP 2010057958A JP 2011192540 A JP2011192540 A JP 2011192540A
Authority
JP
Japan
Prior art keywords
current collector
bipolar
active material
electrode active
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010057958A
Other languages
Japanese (ja)
Inventor
Yukinari Kato
行成 加藤
Kenji Hosaka
賢司 保坂
Masashi Matoba
雅司 的場
Kazuki Miyatake
一希 宮竹
Hiroshi Miyakubo
博史 宮窪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2010057958A priority Critical patent/JP2011192540A/en
Priority to CN2011200678628U priority patent/CN201994381U/en
Publication of JP2011192540A publication Critical patent/JP2011192540A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent battery capacity deterioration when a bipolar secondary battery is deformed by an external force. <P>SOLUTION: This bipolar secondary battery includes a power generating element 7 which is provided by laminating a plurality of bipolar electrodes 5 in series with electrolyte layers 4 therebetween, wherein the bipolar electrode 5 is constituted by forming a positive electrode active material layer 2 on one surface of a collector 1 and forming a negative electrode active material layer 3 on the other surface, two sheets of current collectors 9 and 10 which are arranged at both end parts in the laminating direction of the power generating element 7 so as to sandwich the power generating element 7, and an insulating portion 8 constituted by laminating insulating members 8a-8e arranged in the outer periphery of the part where the positive electrode active material layer 2 or the negative electrode active material layer 3 of the collector 1 is formed. The insulating portion 8 has a part having a thickness equal to or more than an interval between the two sheets of current collectors 9 and 10 on the outer side from the periphery of the current collectors 9 and 10. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、集電体を両側から挟むように正極と負極が配置されてなる双極型二次電池のシール構造に関する。   The present invention relates to a seal structure for a bipolar secondary battery in which a positive electrode and a negative electrode are disposed so as to sandwich a current collector from both sides.

電気自動車やハイブリッド自動車等のモータ駆動に用いる二次電池として、集電体の一方の面に正極を、他方の面に負極を形成した双極型電極を、直列に複数枚積層して発電要素を形成する双極型二次電池が知られている。   As a secondary battery used to drive a motor of an electric vehicle or a hybrid vehicle, a power generation element is formed by stacking a plurality of bipolar electrodes in series, each having a positive electrode on one side and a negative electrode on the other side of a current collector. Bipolar secondary batteries that are formed are known.

例えば、特許文献1には、発電要素の積層方向両端に正負極の集電板を配置した双極型二次電池が開示されている。   For example, Patent Document 1 discloses a bipolar secondary battery in which positive and negative current collector plates are arranged at both ends in the stacking direction of power generation elements.

特開2009−016235号公報JP 2009-016235 A

しかしながら、特許文献1の双極型二次電池では、外部から力が加わった場合、特に双極型電極の積層方法と交差する方向から外力が作用した場合には、発電要素が変形して集電板同士が接触するおそれがある。集電板同士が接触すると大電流が流れ、それに伴い発熱するため電池容量劣化を招くこととなる。   However, in the bipolar secondary battery of Patent Document 1, when a force is applied from the outside, particularly when an external force is applied from a direction crossing the bipolar electrode stacking method, the power generation element is deformed and the current collector plate There is a risk of contact with each other. When the current collector plates come into contact with each other, a large current flows, and heat is generated accordingly.

そこで、本発明では、双極型二次電池に外力が加わった場合の電池容量の劣化を防止することを目的とする。   Accordingly, an object of the present invention is to prevent the battery capacity from being deteriorated when an external force is applied to the bipolar secondary battery.

本発明の双極型二次電池は、集電体の両面にそれぞれ正極活物質層と負極活物質層を形成した双極型電極を、電解質層を挟んで複数枚直列に積層してなる発電要素と、発電要素の積層方向両端部に発電要素を挟むように配置する2枚の集電板とを備える。そして集電体の正極又は負極を形成した部分の外周部に配置した絶縁部材が積層してなる絶縁部を備える。さらに、絶縁部が集電板の外周辺より外側で2枚の集電板の間隔以上の厚さとなる部位を有する。   The bipolar secondary battery of the present invention includes a power generation element in which a plurality of bipolar electrodes each having a positive electrode active material layer and a negative electrode active material layer formed on both sides of a current collector are stacked in series with an electrolyte layer interposed therebetween. And two current collector plates arranged so as to sandwich the power generation element at both ends in the stacking direction of the power generation element. And the insulating part formed by laminating | stacking the insulating member arrange | positioned in the outer peripheral part of the part which formed the positive electrode or the negative electrode of the electrical power collector is provided. Furthermore, the insulating portion has a portion that is thicker than the distance between the two current collector plates outside the outer periphery of the current collector plates.

本発明によれば、双極型二次電池が外力によって集電板同士が近づくような変形をしても、絶縁部が電池要素の内部へ押し込まれることで集電板間の間隔がひろがり、発電要素と集電板の接触抵抗が増大する。従って、仮に集電板同士が接触したとしても、その際に流れる電流を抑制することができ、これにより電池容量の劣化を防止することができる。   According to the present invention, even if the bipolar secondary battery is deformed so that the current collector plates approach each other due to an external force, the interval between the current collector plates is expanded by pushing the insulating portion into the inside of the battery element. The contact resistance between the element and the current collector increases. Therefore, even if the current collector plates come into contact with each other, the current flowing at that time can be suppressed, thereby preventing the battery capacity from deteriorating.

第1実施形態の双極型電池の全体構造を模式的に表した概略断面図である。1 is a schematic cross-sectional view schematically showing the overall structure of a bipolar battery according to a first embodiment. 双極型電極の構造を模式的に表した概略断面図である。It is the schematic sectional drawing which represented the structure of the bipolar electrode typically. 単電池層の構造を模式的に表した概略断面図である。It is a schematic sectional drawing which represented typically the structure of the cell layer. 双極型電池を積層方向から見た図である。It is the figure which looked at the bipolar battery from the lamination direction. 第2実施形態の双極型電池の全体構造を模式的に表した概略断面図である。It is a schematic sectional drawing which represented typically the whole structure of the bipolar battery of 2nd Embodiment. 第3実施形態の双極型電池の全体構造を模式的に表した概略断面図である。It is a schematic sectional drawing which represented typically the whole structure of the bipolar battery of 3rd Embodiment.

以下本発明の実施形態を図面に基づいて説明する。
(第1実施形態)
まず、双極型二次電池(以下、単に双極型電池という)の構造について説明する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(First embodiment)
First, the structure of a bipolar secondary battery (hereinafter simply referred to as a bipolar battery) will be described.

図1は第1実施形態の双極型電池の全体構造を模式的に表した概略断面図である。図2は、双極型電池を構成する双極型電極の構造を模式的に表した概略断面図である。図3は双極型電池を構成する単電池層の構造を模式的に表した概略断面図である。図4は双極型電池を積層方向上方から見た図である。   FIG. 1 is a schematic cross-sectional view schematically showing the entire structure of the bipolar battery according to the first embodiment. FIG. 2 is a schematic cross-sectional view schematically showing the structure of a bipolar electrode constituting the bipolar battery. FIG. 3 is a schematic cross-sectional view schematically showing the structure of the single battery layer constituting the bipolar battery. FIG. 4 is a view of the bipolar battery as viewed from above in the stacking direction.

図1に示すように、双極型電池は双極型電極5を、電解質層4を挟んで複数枚直列に積層した発電要素(電池要素)7と、電解質層4からの電解質の漏れを防止するために電池要素7の周囲に配置したシール部8からなる。シール部8は、後述するように複数のシール材8a〜8eで構成する部分である。電池要素7の積層方向の両端には、それぞれに電気的に接続され、面方向に流れる電流を取り出す正及び負の集電板9、10を配置する。なお、双極型電極5、電解質層4、及びシール部8の詳細については後述する。   As shown in FIG. 1, a bipolar battery has a power generation element (battery element) 7 in which a plurality of bipolar electrodes 5 are stacked in series with an electrolyte layer 4 interposed therebetween, and electrolyte leakage from the electrolyte layer 4 is prevented. And a seal portion 8 disposed around the battery element 7. The seal part 8 is a part constituted by a plurality of seal materials 8a to 8e as will be described later. Positive and negative current collecting plates 9 and 10 that are electrically connected to each other and take out current flowing in the surface direction are disposed at both ends of the battery element 7 in the stacking direction. The details of the bipolar electrode 5, the electrolyte layer 4, and the seal portion 8 will be described later.

双極型電極5は、図2に示すように集電体1の一方の面に正極2を、他方の面に負極3を設けたものである。   As shown in FIG. 2, the bipolar electrode 5 has a positive electrode 2 on one surface of the current collector 1 and a negative electrode 3 on the other surface.

電池要素7は、図3に示すように、隣り合う双極型電極5の正極2と負極3が電解質層4を挟んで対向するように、双極型電極5と電解質層4を交互に複数枚直列に積層したものである。そして、電池要素7の積層方向両端には集電板9、10を配置する。なお、集電板9、10は、集電体1に必要な片面のみの電極(正極2または負極3)を形成した構造としてもよい。すなわち、双極型電池の基本構成は、複数の単電池層6が直列に接続された構成ともいえる。   As shown in FIG. 3, the battery element 7 includes a plurality of bipolar electrodes 5 and electrolyte layers 4 alternately arranged in series so that the positive electrodes 2 and the negative electrodes 3 of the adjacent bipolar electrodes 5 face each other with the electrolyte layer 4 interposed therebetween. Are laminated. Then, current collector plates 9 and 10 are disposed at both ends of the battery element 7 in the stacking direction. The current collector plates 9 and 10 may have a structure in which an electrode (positive electrode 2 or negative electrode 3) only on one side necessary for the current collector 1 is formed. That is, the basic configuration of the bipolar battery can be said to be a configuration in which a plurality of single cell layers 6 are connected in series.

集電板9、10は集電体1よりも面積が小さく、図4に示すように、積層方向上方から見た場合に集電板9、10の外周が枠型のフィルムであるシール部8に囲まれる構成となっている。   The current collector plates 9, 10 have a smaller area than the current collector 1, and as shown in FIG. 4, when viewed from above in the stacking direction, the outer periphery of the current collector plates 9, 10 is a frame-shaped film. The structure is surrounded by.

ここで、各構成部品の構成及び双極型電池の作製方法について説明する。   Here, a configuration of each component and a method for manufacturing a bipolar battery will be described.

[集電体]
導電性を有するポリエチレン(PE)樹脂にカーボン材料を分散させた導電性高分子材料を延伸により厚さ100[μm]程度のフィルム状に成形する。これを適当な大きさ(例えば140×90mm)に切断し、集電体1とする。
[Current collector]
A conductive polymer material in which a carbon material is dispersed in a conductive polyethylene (PE) resin is formed into a film having a thickness of about 100 [μm] by stretching. This is cut into an appropriate size (for example, 140 × 90 mm) to obtain a current collector 1.

[正極]
以下の材料を所定の比率で混合して正極スラリーを作製する。
[Positive electrode]
The following materials are mixed at a predetermined ratio to produce a positive electrode slurry.

まず、正極活物質として、LiMn24[85質量%]、導電助剤としてアセチレンブラック[5質量%]、バインダとしてポリフッ化ビニリデン(PVDF)[10質量%]、及びスラリー粘度調整溶媒としてN−メチル−2−ピロリドン(NMP)からなる材料を上記比率にて混合して正極スラリーを作製する。 First, LiMn 2 O 4 [85% by mass] as a positive electrode active material, acetylene black [5% by mass] as a conductive additive, polyvinylidene fluoride (PVDF) [10% by mass] as a binder, and N as a slurry viscosity adjusting solvent A material made of methyl-2-pyrrolidone (NMP) is mixed at the above ratio to prepare a positive electrode slurry.

上記正極スラリーを、集電体1の片面に塗布し、真空オーブンにて乾燥させる。そして、厚さ60[μm]になるようプレスを行い、正極電極を形成する。   The positive electrode slurry is applied to one side of the current collector 1 and dried in a vacuum oven. And it presses so that it may become thickness 60 [micrometer], and forms a positive electrode.

なお、集電体1の外周側の所定範囲(例えば外周から10mm程度)には正極スラリーを塗布しない。シール部8は、この正極スラリーを塗布しない範囲に合わせた枠型に形成する。   The positive electrode slurry is not applied to a predetermined range (for example, about 10 mm from the outer periphery) on the outer peripheral side of the current collector 1. The seal portion 8 is formed in a frame shape that matches the range where the positive electrode slurry is not applied.

[負極]
以下の材料を所定の比率で混合して負極スラリーを作製する。
[Negative electrode]
The following materials are mixed at a predetermined ratio to prepare a negative electrode slurry.

まず、負極活性物質として、ハードカーボン[90質量%]、バインダとしてPVDF[10質量%]、及びスラリー粘度調整溶媒としてNMPからなる材料を上記比率にて混合して負極スラリーを作製する。この負極スラリーを集電体1の正極スラリーを塗布した面と反対側の面に塗布し、真空オーブンにて乾燥させる。そして、厚さ50[μm]になるようプレスを行い、負極電極を形成する。負極スラリーの塗布範囲については、上述した正極と同様である。   First, a negative electrode slurry is prepared by mixing hard carbon [90 mass%] as a negative electrode active material, PVDF [10 mass%] as a binder, and NMP as a slurry viscosity adjusting solvent in the above ratio. This negative electrode slurry is applied to the surface of the current collector 1 opposite to the surface on which the positive electrode slurry is applied, and dried in a vacuum oven. And it presses so that it may become thickness 50 [micrometer], and forms a negative electrode. The application range of the negative electrode slurry is the same as that of the positive electrode described above.

なお、上述した正極及び負極の作製において、NMPは電極乾燥時にすべて揮発させて除去するので、電極の構成材料ではなく、適当なスラリー粘度になるように適量を加える。また、上記比率は、スラリー粘度調整溶媒を除く成分で換算した比率を示す。   In the above-described production of the positive electrode and the negative electrode, since NMP is completely volatilized and removed when the electrode is dried, an appropriate amount is added so as to obtain an appropriate slurry viscosity, not an electrode constituent material. Moreover, the said ratio shows the ratio converted with the component except a slurry viscosity adjustment solvent.

上述の方法により、集電体1である導電性高分子膜の一方の面に正極、これと反対側の面に負極を有する双極型電極5が完成する。   By the above-described method, the bipolar electrode 5 having the positive electrode on one surface of the conductive polymer film as the current collector 1 and the negative electrode on the opposite surface is completed.

[電解質層]
PE製のセパレータ(厚さ35μm)に電解液を含浸させることで電解質層4を形成する。電解液は、ジエチルカーボネイト(DEC)とエチレンカーボネート(EC)が体積比1対1の混合溶媒に、電解質としてLiPF6を1M溶媒したものである。
[Electrolyte layer]
The electrolyte layer 4 is formed by impregnating a PE separator (thickness: 35 μm) with an electrolytic solution. The electrolyte is a mixed solvent of diethyl carbonate (DEC) and ethylene carbonate (EC) in a volume ratio of 1: 1, and 1M LiPF 6 as an electrolyte.

なお、電解液は後述する積層工程にて注液する。   In addition, electrolyte solution is injected in the lamination process mentioned later.

[シール部]
シール部8は、図1に示すように複数のシール材8a〜8eで構成される。シール材8a〜8eは、例えばポリオレフィン、ポリエステル、ポリイミド、またはポリアミドのように絶縁性を有する樹脂材料からなる枠型のフィルムであり、上述した正極スラリーを塗布しない範囲に配置する。これらの材料は、電池の動作電位のなかでも電気的に安定なので、電池に悪影響を与えることなく確実に絶縁することができる。なお、同様の性質を有するものであれば、上記以外のものであってもよい。
[Seal part]
As shown in FIG. 1, the seal portion 8 includes a plurality of seal materials 8 a to 8 e. The sealing materials 8a to 8e are frame-shaped films made of an insulating resin material such as polyolefin, polyester, polyimide, or polyamide, for example, and are arranged in a range where the above-described positive electrode slurry is not applied. Since these materials are electrically stable in the operating potential of the battery, they can be reliably insulated without adversely affecting the battery. Note that other than the above may be used as long as they have similar properties.

シール材8a〜8eは電池要素7よりも剛性が高いことを特徴とする。具体的には、ヤング率が0.1〜120GPaとなるように形成する。   The sealing materials 8a to 8e are characterized by being higher in rigidity than the battery element 7. Specifically, it is formed so that the Young's modulus is 0.1 to 120 GPa.

また、後述する融着による接着強度は引っ張り強度で規定し、例えば0.2[N/mm]以上に設定する。ただし、これに限られるわけではない。   Further, the adhesive strength by fusion described later is defined by the tensile strength, and is set to 0.2 [N / mm] or more, for example. However, it is not limited to this.

[積層方法]
上述した双極型電極5と電解質層4を交互に積層し、シール材8a〜8eの3辺に積層方向両側から熱と圧力をかけて、シール材8a〜8eを集電体1に融着させる。融着のための条件は、140℃の熱と0.2MPaの圧力を5秒間かけるものとする。融着させていない1辺は、電解液を注入するための注液部となる。
[Lamination method]
The bipolar electrode 5 and the electrolyte layer 4 described above are alternately stacked, and heat and pressure are applied to the three sides of the sealing materials 8a to 8e from both sides in the stacking direction, so that the sealing materials 8a to 8e are fused to the current collector 1. . As the conditions for the fusion, heat of 140 ° C. and pressure of 0.2 MPa are applied for 5 seconds. One side which is not fused serves as a liquid injection part for injecting the electrolytic solution.

上記融着の後で注液部から電解液を注液し、アルミ板で形成した集電板9、10(130×80mm、厚さ100μm)で電池要素7を積層方向両端から挟みこみ、これらを覆うようにアルミラミネートで真空密封する。これにより、大気圧によって電池要素7と集電板9、10の接触が高められた双極型電池が完成する。   After the fusion, the electrolytic solution is injected from the injection portion, and the battery element 7 is sandwiched from both ends in the stacking direction by current collector plates 9 and 10 (130 × 80 mm, thickness 100 μm) formed of aluminum plates. Vacuum seal with aluminum laminate to cover. Thus, a bipolar battery in which the contact between the battery element 7 and the current collector plates 9 and 10 is enhanced by the atmospheric pressure is completed.

なお、電池要素7と集電板9、10とを接着する接着剤としては、例えばゴム系、シリコン系、オレフィン系、アクリル系等が挙げられるが、これらに限られるわけではない。   Examples of the adhesive that bonds the battery element 7 and the current collector plates 9 and 10 include, but are not limited to, rubber, silicon, olefin, and acrylic.

また、電池要素7と集電板9、10との間の接着力は、隣り合う双極型電極5間の接着力及び隣り合うシール材8a〜8e間の接着力より弱くする。   Moreover, the adhesive force between the battery element 7 and the current collector plates 9 and 10 is weaker than the adhesive force between the adjacent bipolar electrodes 5 and the adhesive force between the adjacent sealing materials 8a to 8e.

図1の説明に戻る。   Returning to the description of FIG.

前述したように集電板9、10はシール部8より面積が小さく、図1でいうとシール部8が集電板9、10よりも左右方向に張り出した状態となっている。   As described above, the current collector plates 9 and 10 have a smaller area than the seal portion 8, and the seal portion 8 protrudes in the left-right direction from the current collector plates 9 and 10 in FIG. 1.

双極型電池に、積層方向に交差する方向(図1でいうと横方向)から外力が加わると、外力が加わった部分(入力部)は電池要素7の内側方向へ押し込まれ、双極型電池の入力部側の側面は、入力部を頂点とし電池要素7の中心方向に凸な形状となる。つまり、集電板9と集電板10の入力部側の部分が互いに近づくように双極型全体が変形する。   When an external force is applied to the bipolar battery from the direction crossing the stacking direction (the lateral direction in FIG. 1), the portion to which the external force is applied (input part) is pushed inward of the battery element 7, and the bipolar battery The side surface on the input part side has a convex shape in the center direction of the battery element 7 with the input part at the top. That is, the entire bipolar type is deformed so that the current collector plate 9 and the current collector plate 10 on the input portion side are close to each other.

この変形の度合いが大きい場合に、仮にシール部8が集電板9、10と同等の面積、またはシール材8a〜8eの方が集電板9、10より面積が小さいと(例えば特開2009−16235号公報の図3)、集電板9と集電板10の入力部側の端部同士が接触するおそれがある。集電板9と集電板10が接触すると、大電流が流れることで発熱し、電池容量の劣化が促進される。   When the degree of deformation is large, if the seal portion 8 has an area equivalent to that of the current collector plates 9 and 10, or the areas of the seal materials 8 a to 8 e are smaller than those of the current collector plates 9 and 10 (for example, Japanese Patent Laid-Open Publication No. FIG. 3 of No. 16235), there is a possibility that the ends of the current collector plate 9 and the current collector plate 10 on the input portion side come into contact with each other. When the current collector plate 9 and the current collector plate 10 are in contact with each other, a large current flows to generate heat and promote deterioration of the battery capacity.

しかし、図1の構成によれば、集電板9と集電板10が互いに近づくように変形すると、集電板9及び集電板10の入力部側の端部はそれぞれ隣接するシール材8a及びシール材8eにめり込むことになる。これにより、集電板9と集電板10の入力部側の端部が接触しにくくなる。また、仮に接触したとしても、シール材8a〜8eが電池要素の内部へ押し込まれることで集電板9、10の間隔がひろがり、電池要素7と集電板9、10の接触抵抗が増大するので、接触した際に流れる電流を抑制することができる。   However, according to the configuration of FIG. 1, when the current collector plate 9 and the current collector plate 10 are deformed so as to approach each other, the end portions on the input portion side of the current collector plate 9 and the current collector plate 10 are respectively adjacent seal members 8a. And it will sink into the sealing material 8e. This makes it difficult for the current collector plate 9 and the end of the current collector plate 10 on the input side to come into contact with each other. Moreover, even if it contacts, the sealing material 8a-8e will be pushed in into the inside of a battery element, the space | interval of the current collecting plates 9 and 10 will spread, and the contact resistance of the battery element 7 and the current collecting plates 9 and 10 will increase. Therefore, the electric current which flows when contacting can be suppressed.

なお、集電板9、10の外周各部を面取り加工することで、さらに集電板9、10がシール部8を貫通し難くなる。   In addition, the current collecting plates 9 and 10 are less likely to penetrate the seal portion 8 by chamfering the outer peripheral portions of the current collecting plates 9 and 10.

また、上述したようにシール材8a〜8eの剛性が電池要素7の剛性よりも高いので、外力が作用した際の、双極型電池全体の変形量を抑制することができる。その結果、集電板9と集電板10の接触を防止することができる。   Moreover, since the rigidity of the sealing materials 8a to 8e is higher than the rigidity of the battery element 7 as described above, the amount of deformation of the entire bipolar battery when an external force is applied can be suppressed. As a result, contact between the current collector plate 9 and the current collector plate 10 can be prevented.

さらに、電池要素7と集電板9、10との間の接着力が、積層された双極型電極5間及びシール材8a〜8e間の接着力より弱いので、外力が作用して変形した際に、まず集電板9、10が電池要素7から剥がれ、電流が流れなくなる。これにより、双極型電極5間の接着が剥がれること等による発熱を防止することができる。   Furthermore, since the adhesive force between the battery element 7 and the current collector plates 9 and 10 is weaker than the adhesive force between the stacked bipolar electrodes 5 and between the sealing materials 8a to 8e, when the external force acts and deforms First, the current collector plates 9 and 10 are peeled off from the battery element 7 and no current flows. Thereby, the heat_generation | fever by the adhesion | attachment between the bipolar type electrodes 5 peeling can be prevented.

これらの効果は、加振試験実施後の容量維持率及び抵抗変化率にも表れている。加振試験は、所定の入力加速度及び周波数の振動を常に印加して双極型電池を振動させる試験であり、加振試験後の容量維持率及び抵抗変化率は、加振前の容量を100%、抵抗変化率を1として表したものである。   These effects also appear in the capacity retention rate and resistance change rate after the vibration test. The vibration test is a test in which a bipolar battery is vibrated by constantly applying vibration of a predetermined input acceleration and frequency. The capacity maintenance rate and resistance change rate after the vibration test are 100% of the capacity before vibration. The resistance change rate is represented as 1.

試験の結果、本実施形態の構成では加振試験後の容量維持率は約70%、抵抗変化率は約0.9であった。   As a result of the test, in the configuration of the present embodiment, the capacity retention rate after the vibration test was about 70%, and the resistance change rate was about 0.9.

なお、比較対象として、シール部8が集電板9、10の外周辺から張り出していない形態について同様の試験を行ったところ、容量維持率は約50%、抵抗変化率は約0.7であった。   As a comparison object, when the same test was performed on a configuration in which the seal portion 8 did not protrude from the outer periphery of the current collector plates 9 and 10, the capacity maintenance rate was about 50% and the resistance change rate was about 0.7. there were.

なお、本実施形態では、集電体1上に設けたシール材8a〜8eが積層した状態でシール部8となってシール機能を果たす他に、集電板9と集電板10の接触を防止する絶縁部としても機能している。しかし、シール材8a〜8eはシール機能だけを果たし、これとは別に絶縁機能を果たす絶縁部を設けてもよい。   In addition, in this embodiment, the sealing material 8a-8e provided on the electrical power collector 1 is laminated | stacked, and it becomes the sealing part 8 and fulfill | performs a sealing function, In addition, the contact between the current collecting plate 9 and the current collecting plate 10 is performed. It also functions as an insulating part to prevent. However, the sealing materials 8a to 8e may perform only a sealing function, and may be provided with an insulating portion that performs an insulating function.

以上により本実施形態では、次のような効果が得られる。   As described above, in the present embodiment, the following effects can be obtained.

(1)シール部8が集電板9、10の外周辺より外側で集電板9、10の間隔以上の厚さとなる部位を有するので、外力が作用して集電板9、10が近づくように変形した場合でも、集電板9と集電板10が接触することを防止できる。また、仮に接触したとしても、シール材8a〜8eが電池要素の内部へ押し込まれることで集電板9、10の間隔がひろがり、電池要素7と集電板9、10の接触抵抗が増大するので、その際に流れる電流を抑制することができる。したがって、電池容量の劣化を防止できる。   (1) Since the seal portion 8 has a portion that is outside the outer periphery of the current collector plates 9 and 10 and has a thickness that is equal to or greater than the distance between the current collector plates 9 and 10, an external force acts to bring the current collector plates 9 and 10 closer. Even when it deform | transforms like this, it can prevent that the current collecting plate 9 and the current collecting plate 10 contact. Moreover, even if it contacts, the sealing material 8a-8e will be pushed in into the inside of a battery element, the space | interval of the current collecting plates 9 and 10 will spread, and the contact resistance of the battery element 7 and the current collecting plates 9 and 10 will increase. Therefore, the current flowing at that time can be suppressed. Therefore, deterioration of the battery capacity can be prevented.

(2)シール材8a〜8eを積層してなるシール部8が、集電板9、10の接触を防止する絶縁部としても機能するので、シール材8a〜8eの他に絶縁部を設ける必要がなく、コスト及び製作工数を低減できる。   (2) Since the seal portion 8 formed by laminating the seal materials 8a to 8e also functions as an insulating portion for preventing the current collector plates 9 and 10 from contacting, it is necessary to provide an insulating portion in addition to the seal materials 8a to 8e. No cost and manufacturing man-hours can be reduced.

(第2実施形態)
図5は、第2実施形態の双極型電池の全体構造を模式的に表した概略断面図である。
(Second Embodiment)
FIG. 5 is a schematic cross-sectional view schematically showing the entire structure of the bipolar battery according to the second embodiment.

第1実施形態と比較すると、双極型電極5の構造、電解質層4、積層方法等は同様であるが、集電板9、10の面積及びシール部8の構造が異なる。   Compared with the first embodiment, the structure of the bipolar electrode 5, the electrolyte layer 4, the lamination method, and the like are the same, but the areas of the current collector plates 9 and 10 and the structure of the seal portion 8 are different.

本実施形態では、集電板9、10の面積は電解質層4、正極2、及び負極3と同等である。シール部8は、積層方向両端部のシール部8a、8eが、集電板9、10の積層方向端部より積層方向に突出する程度に厚い。つまり、シール部8の方が電池要素7よりも積層方向に厚い。   In the present embodiment, the current collecting plates 9 and 10 have the same area as the electrolyte layer 4, the positive electrode 2, and the negative electrode 3. The seal portion 8 is thick enough that the seal portions 8a and 8e at both ends in the stacking direction protrude in the stacking direction from the end portions in the stacking direction of the current collector plates 9 and 10. That is, the seal portion 8 is thicker in the stacking direction than the battery element 7.

図5のような構成において、第1実施形態で説明したのと同様に積層方向に交差する方向から外力が加わることで集電板9と集電板10が近づくように双極型電池全体が変形すると、これに伴ってシール部8も入力部を中心として屈曲するように変形する。このため、集電板9と集電板10の間には確実にシール材8a、8eが存在することとなる。つまり、第1実施形態と同様に、集電板9と集電板10が接触することを防止できる。   In the configuration as shown in FIG. 5, the entire bipolar battery is deformed so that the current collector plate 9 and the current collector plate 10 approach each other when an external force is applied from the direction intersecting the stacking direction as described in the first embodiment. As a result, the seal portion 8 is also deformed so as to bend around the input portion. For this reason, the sealing materials 8 a and 8 e are surely present between the current collector plate 9 and the current collector plate 10. That is, as in the first embodiment, the current collector plate 9 and the current collector plate 10 can be prevented from contacting each other.

加振試験後の電池容量維持率及び抵抗変化率は、それぞれ約80%、約1.0であった。   The battery capacity retention rate and resistance change rate after the vibration test were about 80% and about 1.0, respectively.

以上により本実施形態では、第1実施形態と同様の効果が得られる。   As described above, in the present embodiment, the same effects as in the first embodiment can be obtained.

(第3実施形態)
図6は、第3実施形態の双極型電池の全体構造を模式的に表した概略断面図である。
(Third embodiment)
FIG. 6 is a schematic cross-sectional view schematically showing the entire structure of the bipolar battery according to the third embodiment.

第1実施形態と比較すると、双極型電極5の構造、電解質層4、積層方法等は同じであるが、シール部8の構造が異なる。   Compared to the first embodiment, the structure of the bipolar electrode 5, the electrolyte layer 4, the lamination method, and the like are the same, but the structure of the seal portion 8 is different.

本実施形態では、シール材8a、8eは、電池要素7から離れるにしたがって徐々に積層方向の厚さを増す「くさび形」になっている。このため、シール部8を電池要素7の内部方向に押し込む方向の外力が作用すると、シール部8は集電板9と集電板10の間隔が広がるようにして押し込まれ、集電板9及び集電板10が電池要素7から剥離する。   In the present embodiment, the sealing materials 8 a and 8 e have a “wedge shape” that gradually increases in thickness in the stacking direction as they are separated from the battery element 7. For this reason, when an external force in the direction of pushing the seal portion 8 toward the inside of the battery element 7 is applied, the seal portion 8 is pushed in such a way that the distance between the current collector plate 9 and the current collector plate 10 is widened. The current collector plate 10 is peeled from the battery element 7.

その結果、集電板9と集電板10が接触することによる発熱を防ぐだけでなく、集電板9、10が電池要素7及びシール部8から電気的に乖離し、電流集中及び発熱を防止することができる。   As a result, not only the heat generation due to the contact between the current collector plate 9 and the current collector plate 10 is prevented, but also the current collector plates 9 and 10 are electrically separated from the battery element 7 and the seal portion 8 to cause current concentration and heat generation. Can be prevented.

加振試験後の電池容量維持率及び抵抗変化率は、それぞれ約90%、約10倍であった。   The battery capacity retention rate and resistance change rate after the vibration test were about 90% and about 10 times, respectively.

以上により本実施形態では、第1実施形態と同様の効果に加え、さらに次のような効果も得られる。   As described above, in the present embodiment, in addition to the same effects as those in the first embodiment, the following effects can also be obtained.

シール部8が、集電板9、10の外周辺から遠ざかるほど厚さが増大する、いわゆるくさび形になっているので、外力が作用すると、くさび部分が電池要素7と集電板9、10との間に入り込み易く、電池要素7から集電板9、10が剥がれ易い。これにより電流集中及び発熱を防止できる。   Since the seal portion 8 has a so-called wedge shape in which the thickness increases as the distance from the outer periphery of the current collector plates 9 and 10 increases, the wedge portion becomes the battery element 7 and the current collector plates 9 and 10 when an external force is applied. The current collector plates 9 and 10 are easily peeled off from the battery element 7. Thereby, current concentration and heat generation can be prevented.

なお、本発明は上記の実施の形態に限定されるわけではなく、特許請求の範囲に記載の技術的思想の範囲内で様々な変更を成し得ることは言うまでもない。   The present invention is not limited to the above-described embodiments, and it goes without saying that various modifications can be made within the scope of the technical idea described in the claims.

1 集電体
2 正極
3 負極
4 電解質層
5 双極型電極
6 単電池層
7 電池要素
8 シール部
9 集電板
10 集電板
DESCRIPTION OF SYMBOLS 1 Current collector 2 Positive electrode 3 Negative electrode 4 Electrolyte layer 5 Bipolar electrode 6 Single cell layer 7 Battery element 8 Seal part 9 Current collector plate 10 Current collector plate

Claims (3)

集電体の一方の面に正極活物質層が形成され他方の面に負極活物質層が形成されてなる双極型電極を、電解質層を挟んで複数枚直列に積層してなる発電要素と、
前記発電要素の積層方向両端部に前記発電要素を挟むように配置する2枚の集電板と、
前記集電体の前記正極活物質層又は前記負極活物質層を形成した部分の外周部に配置した絶縁部材が積層してなる絶縁部と、
を備え、
前記絶縁部が前記集電板の外周辺より外側で前記2枚の集電板の間隔以上の厚さとなる部位を有することを特徴とする双極型二次電池。
A power generation element formed by laminating a plurality of bipolar electrodes each having a positive electrode active material layer formed on one surface of a current collector and a negative electrode active material layer formed on the other surface, with an electrolyte layer interposed therebetween;
Two current collector plates disposed so as to sandwich the power generation element at both ends in the stacking direction of the power generation element;
An insulating portion formed by laminating insulating members disposed on the outer peripheral portion of the positive electrode active material layer or the negative electrode active material layer of the current collector; and
With
The bipolar secondary battery, wherein the insulating portion has a portion outside the outer periphery of the current collector plate and having a thickness greater than or equal to the interval between the two current collector plates.
前記絶縁部の厚さが、前記集電板の外周辺から遠ざかるほど増大する請求項1に記載の双極型二次電池。   The bipolar secondary battery according to claim 1, wherein the thickness of the insulating portion increases as the distance from the outer periphery of the current collector plate increases. 前記絶縁部材が、隣接する前記正極活物質、前記電解質層、及び前記負極活物質を含んで構成される単電池層の周囲を取り囲むように前記集電体間に配置するシール部材である請求項1または2に記載の双極型二次電池。   The insulating member is a seal member disposed between the current collectors so as to surround the periphery of a unit cell layer including the adjacent positive electrode active material, the electrolyte layer, and the negative electrode active material. The bipolar secondary battery according to 1 or 2.
JP2010057958A 2010-03-15 2010-03-15 Bipolar secondary battery Pending JP2011192540A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010057958A JP2011192540A (en) 2010-03-15 2010-03-15 Bipolar secondary battery
CN2011200678628U CN201994381U (en) 2010-03-15 2011-03-15 Bipolar secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010057958A JP2011192540A (en) 2010-03-15 2010-03-15 Bipolar secondary battery

Publications (1)

Publication Number Publication Date
JP2011192540A true JP2011192540A (en) 2011-09-29

Family

ID=44670859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010057958A Pending JP2011192540A (en) 2010-03-15 2010-03-15 Bipolar secondary battery

Country Status (2)

Country Link
JP (1) JP2011192540A (en)
CN (1) CN201994381U (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101381842B1 (en) * 2012-11-09 2014-04-04 주식회사 비츠로셀 Cell of reserve battery for enhancing insulation function
JP2018073583A (en) * 2016-10-27 2018-05-10 株式会社豊田自動織機 Power storage device
WO2022102286A1 (en) * 2020-11-11 2022-05-19 株式会社豊田自動織機 Power storage module

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7199033B2 (en) * 2017-09-25 2023-01-05 パナソニックIpマネジメント株式会社 battery
JP7051620B2 (en) * 2018-07-05 2022-04-11 株式会社日立製作所 Battery cell sheet manufacturing method and secondary battery manufacturing method
JP7084498B2 (en) * 2018-12-25 2022-06-14 トヨタ自動車株式会社 Power storage device
WO2020195032A1 (en) * 2019-03-27 2020-10-01 パナソニックIpマネジメント株式会社 Battery current collector, battery, method for manufacturing battery current collector, and method for manufacturing battery
JP7461705B2 (en) * 2020-03-18 2024-04-04 本田技研工業株式会社 Secondary battery using bipolar electrodes
JP7461765B2 (en) * 2020-03-19 2024-04-04 本田技研工業株式会社 Secondary battery using bipolar electrodes
CN112670548A (en) * 2020-06-12 2021-04-16 中国科学院物理研究所 Bipolar battery, manufacturing method and application thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101381842B1 (en) * 2012-11-09 2014-04-04 주식회사 비츠로셀 Cell of reserve battery for enhancing insulation function
JP2018073583A (en) * 2016-10-27 2018-05-10 株式会社豊田自動織機 Power storage device
WO2022102286A1 (en) * 2020-11-11 2022-05-19 株式会社豊田自動織機 Power storage module
JP7488984B2 (en) 2020-11-11 2024-05-23 株式会社豊田自動織機 Energy Storage Module

Also Published As

Publication number Publication date
CN201994381U (en) 2011-09-28

Similar Documents

Publication Publication Date Title
JP2011192540A (en) Bipolar secondary battery
JP5533137B2 (en) Bipolar battery sealing structure manufacturing method, bipolar battery manufacturing method, bipolar battery sealing structure, and bipolar battery
JP5070703B2 (en) Bipolar battery
KR100987849B1 (en) Bipolar battery and manufacturing method for the same
JP2007273350A (en) Stacked battery and manufacturing method therefor
JP6050066B2 (en) Bipolar secondary battery and manufacturing method thereof
JP2005276486A (en) Laminated battery, battery pack, and vehicle
CN111095605B (en) Separator for lithium ion battery
JP2007188746A (en) Bipolar battery, battery pack, and vehicle mounting their batteries
JP2015079719A (en) All-solid battery
JP2015115313A (en) Battery system
JP2015162353A (en) Method for manufacturing all-solid battery
KR101269328B1 (en) Resin-metal composite film battery
JP2016146270A (en) Secondary battery and method for manufacturing the same
JP6579694B2 (en) Secondary battery
JP4956777B2 (en) Bipolar battery, battery pack and vehicle equipped with these batteries
JP2017107719A (en) Square secondary battery
JP5205749B2 (en) Bipolar battery manufacturing method
JP2011071044A (en) Bipolar secondary battery
JP5522222B2 (en) Bipolar battery manufacturing method
JP7245212B2 (en) Non-aqueous electrolyte secondary battery
US20220216522A1 (en) Nonaqueous electrolyte secondary battery
JP2019145709A (en) Power storage device and manufacturing method of the same
JP2017045710A (en) Flat battery
JP2022064585A (en) Power storage device