JP2011190952A - Regenerator, cold storage type refrigerating machine, cryopump, and refrigerating device - Google Patents
Regenerator, cold storage type refrigerating machine, cryopump, and refrigerating device Download PDFInfo
- Publication number
- JP2011190952A JP2011190952A JP2010055879A JP2010055879A JP2011190952A JP 2011190952 A JP2011190952 A JP 2011190952A JP 2010055879 A JP2010055879 A JP 2010055879A JP 2010055879 A JP2010055879 A JP 2010055879A JP 2011190952 A JP2011190952 A JP 2011190952A
- Authority
- JP
- Japan
- Prior art keywords
- refrigerator
- regenerator
- stage
- helium
- cooled
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000007789 gas Substances 0.000 claims abstract description 168
- 239000001307 helium Substances 0.000 claims abstract description 83
- 229910052734 helium Inorganic materials 0.000 claims abstract description 83
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 claims abstract description 82
- 239000011232 storage material Substances 0.000 claims abstract description 11
- 230000001172 regenerating effect Effects 0.000 claims description 43
- 239000000463 material Substances 0.000 claims description 19
- 238000010790 dilution Methods 0.000 claims description 15
- 239000012895 dilution Substances 0.000 claims description 15
- 238000005057 refrigeration Methods 0.000 claims description 7
- 230000003252 repetitive effect Effects 0.000 claims description 2
- 238000001816 cooling Methods 0.000 abstract description 105
- 150000002371 helium Chemical class 0.000 abstract 1
- 230000005855 radiation Effects 0.000 description 19
- 238000001514 detection method Methods 0.000 description 14
- 239000007788 liquid Substances 0.000 description 13
- 238000005194 fractionation Methods 0.000 description 10
- 238000002156 mixing Methods 0.000 description 10
- 230000006835 compression Effects 0.000 description 9
- 238000007906 compression Methods 0.000 description 9
- 239000000696 magnetic material Substances 0.000 description 9
- 239000000126 substance Substances 0.000 description 7
- 239000002775 capsule Substances 0.000 description 6
- 230000008859 change Effects 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 229910001220 stainless steel Inorganic materials 0.000 description 4
- 239000010935 stainless steel Substances 0.000 description 4
- 238000001179 sorption measurement Methods 0.000 description 3
- 239000008207 working material Substances 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 239000002918 waste heat Substances 0.000 description 2
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 239000000112 cooling gas Substances 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 229910052754 neon Inorganic materials 0.000 description 1
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000009941 weaving Methods 0.000 description 1
Images
Landscapes
- Containers, Films, And Cooling For Superconductive Devices (AREA)
Abstract
Description
本発明は、蓄冷器に関し、特に蓄冷式の冷凍機に使用され得る蓄冷器に関する。 The present invention relates to a regenerator, and more particularly to a regenerator that can be used in a regenerative refrigerator.
ギフォード・マクマホン式(GM)冷凍機、パルスチューブ冷凍機、スターリング冷凍機、およびソルベー冷凍機等の蓄冷式冷凍機は、100K程度の低温から4K(ケルビン)の極低温までの範囲の寒冷を発生することができ、超電導磁石や検出器等の冷却、クライオポンプ等に用いることができる。 Regenerative refrigerators such as Gifford McMahon (GM) refrigerators, pulse tube refrigerators, Stirling refrigerators, and Solvay refrigerators generate cold temperatures ranging from as low as 100K to as low as 4K (Kelvin). It can be used for cooling a superconducting magnet or a detector, a cryopump or the like.
例えば、GM冷凍機では、圧縮機で圧縮されたヘリウムガスのような作動ガスが蓄冷器に導かれ、蓄冷器内の蓄冷材で予冷される。さらに、作動ガスは、膨張室で膨張仕事に相当した寒冷を発生した後、再び蓄冷器を通過し、圧縮機に戻る。この際に、作動ガスは、次に誘導される作動ガスのため、蓄冷器内の蓄冷材を冷やしながら、蓄冷器を通過する。この行程を1サイクルとすることにより、周期的に寒冷が発生される。 For example, in a GM refrigerator, working gas such as helium gas compressed by a compressor is led to a regenerator and precooled by a regenerator material in the regenerator. Further, the working gas generates cold corresponding to expansion work in the expansion chamber, and then passes through the regenerator again and returns to the compressor. At this time, the working gas passes through the regenerator while cooling the regenerator material in the regenerator because of the next induced working gas. By making this process one cycle, cold is periodically generated.
このような蓄冷式冷凍機において、温度が30K未満の極低温を発生させることが必要な場合、前述のような蓄冷器の蓄冷材として、HoCu2等の磁性材料が使用される。 In such a regenerative refrigerator, when it is necessary to generate an extremely low temperature of less than 30K, a magnetic material such as HoCu 2 is used as the regenerator material of the regenerator as described above.
また、最近では、ヘリウムガスを蓄冷器の蓄冷材として使用することが検討されている(このような蓄冷器は、ヘリウム冷却式の蓄冷器とも称される)。例えば、特許文献1には、内部にヘリウムガスが充填された多数の熱伝導性カプセルを蓄冷器の蓄冷材として使用することが示されている。
Recently, it has been studied to use helium gas as a regenerator material for a regenerator (such a regenerator is also referred to as a helium-cooled regenerator). For example,
図1には、各温度におけるヘリウムガスとHoCu2磁性材料の比熱の変化を示す。この図から明らかなように、約10K前後の極低温域では、圧力が1.5MPa程度のヘリウムガスの比熱は、HoCu2磁性材料の比熱を上回る。従って、このような温度域では、HoCu2磁性材料の代わりにヘリウムガスを使用することにより、より効率的な熱交換を行うことが可能になる。 FIG. 1 shows the change in specific heat between the helium gas and the HoCu 2 magnetic material at each temperature. As is clear from this figure, the specific heat of the helium gas having a pressure of about 1.5 MPa exceeds the specific heat of the HoCu 2 magnetic material in an extremely low temperature range of about 10 K. Therefore, in such a temperature range, it becomes possible to perform more efficient heat exchange by using helium gas instead of the HoCu 2 magnetic material.
しかしながら、実際には、特許文献1のようなカプセルを製作することは容易ではない。例えば、4Kにおいてカプセル内のヘリウムガスが1.5MPa程度の圧力を有するためには、室温において、おおよそ160MPa程度の圧力が必要となる。このような高圧のヘリウムが充填されたカプセルは、簡単に製作することはできない。また、このような高圧に耐え得るカプセルを形成しようとすると、カプセルの肉厚がどうしても厚くなってしまい、熱伝導性が低下してしまう。
However, in practice, it is not easy to manufacture a capsule as in
このため、蓄冷器の内部に、蓄冷器の温度勾配方向、すなわち高温端から低温端に沿って、細長い棒状の容器を配列することが提案されている(特許文献2)。これらの容器は、低温側の端部に孔を有する。従って、この穴を介して、装置の作動ガスとして使用されるヘリウムガスを容器内に流通させることにより、ヘリウム冷却式の蓄冷器を構成することができる。 For this reason, it has been proposed to arrange elongated rod-shaped containers inside the regenerator along the temperature gradient direction of the regenerator, that is, from the high temperature end to the low temperature end (Patent Document 2). These containers have holes at the end on the low temperature side. Therefore, a helium-cooled regenerator can be configured by circulating the helium gas used as the working gas of the apparatus through the hole.
特許文献2に記載のヘリウム冷却式の蓄冷器では、細長い棒状の容器を、蓄冷器の温度勾配方向に沿って配列させる必要がある。しかしながら、このような配置では、各容器内のヘリウムガスにおいて、高温側から低温側に熱の侵入が生じやすくなる。また、このため、蓄冷器の温度勾配方向に沿って熱伝導が生じやすくなり、蓄冷器の熱損失が大きくなってしまうという問題がある。 In the helium-cooled regenerator described in Patent Document 2, it is necessary to arrange elongated rod-shaped containers along the temperature gradient direction of the regenerator. However, in such an arrangement, intrusion of heat from the high temperature side to the low temperature side tends to occur in the helium gas in each container. For this reason, heat conduction tends to occur along the temperature gradient direction of the regenerator, and there is a problem that heat loss of the regenerator increases.
本発明は、このような背景に鑑みなされたものであり、本発明では、従来のヘリウム冷却式の蓄冷器に比べて、より熱損失の少ないヘリウム冷却式の蓄冷器を提供することを目的とする。また、そのような蓄冷器を有する各種装置を提供することを目的とする。 The present invention has been made in view of such a background, and an object of the present invention is to provide a helium-cooled regenerator with less heat loss than a conventional helium-cooled regenerator. To do. Moreover, it aims at providing the various apparatuses which have such a cool storage.
本発明では、主流方向に流れる作動ガスの寒冷を蓄冷する、ヘリウム冷却式の蓄冷器であって、
当該ヘリウム冷却式の蓄冷器は、内部に蓄冷材となるヘリウムガスが収容される複数の第1の中空管および複数の第2の中空管を有し、
各中空管は、少なくとも一つの端部が開放されており、前記作動ガスは、前記中空管の内部に流通することが可能であり、
前記複数の第1の中空管および前記複数の第2の中空管は、前記主流方向に対して略垂直な方向に配列され、
前記複数の第1の中空管と、前記複数の第2の中空管は、網状の構造となるように相互に対して編み込まれた部分を有することを特徴とするヘリウム冷却式の蓄冷器が提供される。
The present invention is a helium-cooled regenerator that stores the cold of the working gas flowing in the mainstream direction,
The helium-cooled regenerator has a plurality of first hollow tubes and a plurality of second hollow tubes in which helium gas serving as a regenerator material is accommodated.
Each hollow tube has at least one open end, and the working gas can flow inside the hollow tube,
The plurality of first hollow tubes and the plurality of second hollow tubes are arranged in a direction substantially perpendicular to the main flow direction,
The helium-cooled regenerator, wherein the plurality of first hollow tubes and the plurality of second hollow tubes have portions knitted to each other so as to have a net-like structure. Is provided.
ここで、本発明によるヘリウム冷却式の蓄冷器において、前記複数の第1の中空管は、実質的に同一の第1の延伸方向に沿って延伸し、および/または前記複数の第2の中空管は、実質的に同一の第2の延伸方向に沿って延伸し、
前記第1の延伸方向と前記第2の延伸方向は、異なっていても良い。
Here, in the helium-cooled regenerator according to the present invention, the plurality of first hollow tubes extend along substantially the same first extending direction and / or the plurality of second tubes. The hollow tube extends along substantially the same second extension direction;
The first stretching direction and the second stretching direction may be different.
また、本発明によるヘリウム冷却式の蓄冷器において、前記第1の延伸方向は、前記第2の延伸方向と実質的に直交していても良い。 In the helium-cooled regenerator according to the present invention, the first stretching direction may be substantially orthogonal to the second stretching direction.
また、本発明によるヘリウム冷却式の蓄冷器において、前記網状の構造となるように相互に対して編み込まれた部分は、前記主流方向に圧延処理されていても良い。 Further, in the helium-cooled regenerator according to the present invention, the portions knitted with respect to each other so as to have the net-like structure may be rolled in the mainstream direction.
また、本発明によるヘリウム冷却式の蓄冷器は、前記主流方向に沿って、前記網状の構造となるように相互に対して編み込まれた部分の繰り返し構造を有しても良い。 In addition, the helium-cooled regenerator according to the present invention may have a repetitive structure of portions knitted to each other so as to form the net-like structure along the main flow direction.
また、本発明によるヘリウム冷却式の蓄冷器は、
さらに、内部に蓄冷材となるヘリウムガスが収容される複数の第3の中空管を有し、
各第3の中空管は、少なくとも一つの端部が開放されており、前記作動ガスは、前記第3の中空管の内部に流通することが可能であり、
前記複数の第3の中空管は、前記複数の第1の中空管および/または前記複数の第2の中空管に対して編み込まれた部分を有しても良い。
The helium-cooled regenerator according to the present invention is
Furthermore, it has a plurality of third hollow tubes in which helium gas serving as a cold storage material is accommodated,
Each third hollow tube is open at least at one end, and the working gas can flow inside the third hollow tube.
The plurality of third hollow tubes may have a portion knitted with respect to the plurality of first hollow tubes and / or the plurality of second hollow tubes.
また、本発明によるヘリウム冷却式の蓄冷器において、前記中空管の少なくとも一つは、両方の端部が開放されていても良い。 In the helium-cooled regenerator according to the present invention, at least one of the hollow tubes may be open at both ends.
また、本発明によるヘリウム冷却式の蓄冷器において、前記中空管の少なくとも一つは、開放されている端部に、流路抵抗部を有しても良い。 In the helium-cooled regenerator according to the present invention, at least one of the hollow tubes may have a flow path resistance part at an open end.
また、本発明では、前述のような蓄冷器を備える蓄冷式冷凍機であって、
当該蓄冷式冷凍機は、GM冷凍機、パルスチューブ冷凍機、スターリング冷凍機、およびソルベー冷凍機のいずれか一つであることを特徴とする蓄冷式冷凍機が提供される。
Moreover, in the present invention, a regenerative refrigerator having a regenerator as described above,
The regenerative refrigerator is provided with any one of a GM refrigerator, a pulse tube refrigerator, a Stirling refrigerator, and a Solvay refrigerator.
また、本発明では、そのような蓄冷式冷凍機を備えるクライオポンプが提供される。 Moreover, in this invention, a cryopump provided with such a cool storage type refrigerator is provided.
また、本発明による蓄冷式冷凍機において、被被冷却対象は、超伝導マグネット、X線検出器、または赤外線検出器のいずれか一つであっても良い。 In the regenerative refrigerator according to the present invention, the object to be cooled may be any one of a superconducting magnet, an X-ray detector, and an infrared detector.
また、本発明では、前述のような蓄冷式冷凍機によって予冷される冷凍装置であって、
希釈冷凍機、磁気冷凍機、He3冷凍機、またはJT冷凍機を有する冷凍装置が提供される。
Moreover, in the present invention, a refrigerating apparatus precooled by a regenerative refrigerator as described above,
A refrigeration apparatus having a dilution refrigerator, a magnetic refrigerator, a He3 refrigerator, or a JT refrigerator is provided.
本発明では、従来のヘリウム冷却式の蓄冷器に比べて、より熱損失の少ないヘリウム冷却式の蓄冷器を提供することができる。また、そのような蓄冷器を有する各種装置を提供することが可能となる。 According to the present invention, it is possible to provide a helium-cooled regenerator with less heat loss compared to a conventional helium-cooled regenerator. Moreover, it becomes possible to provide various apparatuses having such a regenerator.
以下、図面を参照して、本発明を説明する。 Hereinafter, the present invention will be described with reference to the drawings.
まず、本発明をより良く理解するため、ヘリウム冷却式の蓄冷器を有する一般的な蓄冷式冷凍機の構成について簡単に説明する。 First, in order to better understand the present invention, the configuration of a general regenerative refrigerator having a helium-cooled regenerator will be briefly described.
図2には、蓄冷式冷凍機の一例として、GM(ギフォード・マクマホン)冷凍機の概略的な構成図を示す。 FIG. 2 shows a schematic configuration diagram of a GM (Gifford McMahon) refrigerator as an example of a regenerative refrigerator.
GM冷凍機1は、ガス圧縮機3と、冷凍機として機能する2段式のコールドヘッド10とを有する。コールドヘッド10は、第1段冷却部15と、第2段冷却部50とを有し、これらの冷却部は、フランジ12に同軸となるように連結されている。
The
第1段冷却部15は、中空状の第1段シリンダ20と、この第1段シリンダ20内に、軸方向に往復運動可能に設けられた第1段ディスプレーサ22と、第1段ディスプレーサ22内に充填された第1段蓄冷器30と、第1段シリンダ20の低温端23b側の内部に設けられ、第1段ディスプレーサ22の往復運動により容積が変化する第1段膨張室31と、第1段シリンダ20の低温端23b付近に設けられた第1段冷却ステージ35とを有する。第1段シリンダ20の内壁と第1段ディスプレーサ22の外壁との間には、第1段シール39が設けられている。
The first
第1段シリンダ20の高温端23aには、第1段蓄冷器30に対してヘリウムガスを流出入させるため、複数の第1段高温側流通路40−1が設けられている。また、第1段シリンダ20の低温端23bには、第1段蓄冷器30および第1段膨張室31にヘリウムガスを流出入させるため、複数の第1段低温側流通路40−2が設けられている。
A plurality of first-stage high-temperature side flow passages 40-1 are provided at the high-
第2段冷却部50は、第1段冷却部15と略同様の構成を有し、中空状の第2段シリンダ51と、第2段シリンダ51内に軸方向に往復運動可能に設けられた第2段ディスプレーサ52と、第2段ディスプレーサ52内に充填された第2段蓄冷器60と、第2段シリンダ51の低温端53bの内部に設けられ、第2段ディスプレーサ52の往復運動により容積が変化する第2段膨張室55と、第2段シリンダ51の低温端53b付近に設けられた第2段冷却ステージ85とを有する。第2段シリンダ51の内壁と第2段ディスプレーサ52の外壁との間には、第2段シール59が設けられている。第2段シリンダ51の高温端53aには、第1段蓄冷器30に対してヘリウムガスを流出入させるため、第2段高温側流通路40−3が設けられている。また、第2段シリンダ51の低温端53bには、第2段膨張室55にヘリウムガスを流出入させるため、複数の第2段低温側流通路54−2が設けられている。
The second-
GM冷凍機1において、ガス圧縮機3からの高圧のヘリウムガスは、バルブ5および配管7を介して、第1段冷却部15に供給され、また、低圧のヘリウムガスは、第1段冷却部15から配管7およびバルブ6を介して、ガス圧縮機3に排気される。第1段ディスプレーサ22および第2段ディスプレーサ52は、駆動モータ8により、往復運動される。また、これに連動して、バルブ5およびバルブ6の開閉が行われ、ヘリウムガスの吸排気のタイミングが制御される。
In the
第1段シリンダ20の高温端23aは、例えば室温に設定され、低温端23bは、例えば20K〜40Kに設定される。第2段シリンダ51の高温端53aは、例えば20K〜40Kに設定され、低温端53bは、例えば4Kに設定される。
The
次に、このような構成のGM冷凍機1の動作について、簡単に説明する。
Next, operation | movement of the
まず、バルブ5が閉、バルブ6が閉の状態で、第1段ディスプレーサ22および第2段ディスプレーサ52が、それぞれ、第1段シリンダ20および第2段シリンダ51内の下死点にあるとする。
First, it is assumed that the
ここで、バルブ5を開状態とし、排気バルブ6を閉状態とすると、ガス圧縮機3から、高圧のヘリウムガスが第1段冷却部15に流入する。高圧のヘリウムガスは、第1段高温側流通路40−1から第1段蓄冷器30に流入し、第1段蓄冷器30の蓄冷材によって所定の温度まで冷却される。冷却されたヘリウムガスは、第1段低温側流通路40−2から第1段膨張室31に流入する。
Here, when the
第1段膨張室31へ流入した高圧のヘリウムガスの一部は、第2段高温側流通路40−3から第2段蓄冷器60に流入する。このヘリウムガスは、第2段蓄冷器60の蓄冷材によって、さらに低い所定の温度まで冷却され、第2段低温側流通路54−2から第2段膨張室55に流入する。これらの結果、第1段膨張室31および第2段膨張室55内は、高圧状態となる。
Part of the high-pressure helium gas that has flowed into the first
次に、第1段ディスプレーサ22および第2段ディスプレーサ52が上死点に移動するとともに、バルブ5が閉じられる。また、バルブ6が開かれる。これにより、第1段膨張室31および第2段膨張室55内のヘリウムガスは、高圧の状態から低圧の状態となり、体積が膨張し、第1段膨張室31および第2段膨張室55に寒冷が発生する。また、これにより、第1段冷却ステージ35および第2段冷却ステ−ジ85がそれぞれ冷却される。
Next, the
次に、第1段ディスプレーサ22および第2段ディスプレーサ52は、下死点に向かって移動される。これに伴い、低圧のヘリウムガスは、上記の逆の順路を通り、第1段蓄冷器30および第2段蓄冷器60をそれぞれ冷却しつつ、バルブ6および配管7を介してガス圧縮機3に戻る。その後、バルブ6が閉じられる。
Next, the
以上の動作を1サイクルとし、上記動作を繰り返すことにより、第1段冷却ステージ35、第2段冷却ステージ85において、それぞれに熱接続された冷却対象物(図示されていない)から熱を吸収し、冷却することができる。
By repeating the above operation as one cycle, the first
ここで、第2段冷却ステージ85において、例えば、温度が30K未満の極低温を形成することが必要な場合、第2段蓄冷器60の蓄冷材として、HoCu2等の磁性材料が使用される。
Here, in the second
また、最近では、ヘリウムガスを蓄冷器の蓄冷材として使用した、いわゆるヘリウム冷却式の蓄冷器を使用することも提案されている。 Recently, it has also been proposed to use a so-called helium-cooled regenerator using helium gas as a regenerator material for the regenerator.
図3には、図2に示したようなGM冷凍機1の第2段蓄冷器60として使用される、従来のヘリウム冷却式の蓄冷器60Aの構成を、その周囲の部材とともに示す。図3において、図2と同様の部材には、図2と同一の参照符号が付されている。
FIG. 3 shows the configuration of a conventional helium-cooled
図3に示すように、従来のヘリウム冷却式の蓄冷器60Aは、図2で示した第2段ディスプレーサ52内の第2段蓄冷器として使用される。
As shown in FIG. 3, the conventional helium-cooled
ヘリウム冷却式の蓄冷器60Aは、多数の容器62を有し、これらの容器62は、それぞれが細長い棒状の形状を有し、蓄冷器60Aの温度勾配方向に沿って(すなわち、第2段シリンダ51の高温端53aから低温端53bに沿って)延伸している。各容器62は、第2段シリンダ51の低温端側に孔65を有する。容器62内には、蓄冷材として機能するヘリウムガス68が存在する。
The helium-cooled
一般に、ヘリウムガスは、HoCu2等の磁性材料に比べて、10K近傍での比熱が大きく、ヘリウムガスを蓄冷材として使用することにより、蓄冷器60A内に流通する作動ガス(ヘリウムガス)をより効率的に冷却させることができる。
In general, helium gas has a large specific heat in the vicinity of 10K compared to a magnetic material such as HoCu 2 , and by using helium gas as a regenerator material, a working gas (helium gas) flowing through the
しかしながら、このような構成の蓄冷器60Aでは、多数の細長い棒状の容器62が、蓄冷器60Aの温度勾配方向に沿って配列されているため、各容器62内のヘリウムガス68において、高温端53aの側から低温端53bの側に、熱の侵入が生じやすくなる。また、このため、蓄冷器60Aの温度勾配方向に沿って熱伝導が生じやすくなり、蓄冷器60Aの熱損失が大きくなってしまうという問題がある。
However, in the
これに対して、本発明によるヘリウム冷却式の蓄冷器は、
内部に蓄冷材となるヘリウムガスが収容される複数の第1の中空管および複数の第2の中空管を有し、
各中空管は、少なくとも一つの端部が開放されており、前記作動ガスは、前記中空管の内部に流通することが可能であり、
前記複数の第1の中空管および前記複数の第2の中空管は、前記主流方向に対して略垂直な方向に配列され、
前記複数の第1の中空管と、前記複数の第2の中空管は、網状の構造となるように相互に対して編み込まれた部分を有することを特徴とする。
On the other hand, the helium-cooled regenerator according to the present invention is
A plurality of first hollow tubes and a plurality of second hollow tubes in which helium gas serving as a cold storage material is accommodated;
Each hollow tube has at least one open end, and the working gas can flow inside the hollow tube,
The plurality of first hollow tubes and the plurality of second hollow tubes are arranged in a direction substantially perpendicular to the main flow direction,
The plurality of first hollow tubes and the plurality of second hollow tubes have portions knitted to each other so as to form a net-like structure.
本発明による蓄冷器の構成では、内部に蓄冷材となるヘリウムガスが収容される各中空管は、蓄冷器の主流方向に対して垂直な方向に配列されている。また、第1の中空管と第2の中空管は、網状の構造となるように相互に対して編み込まれている。このため、第1の中空管と第2の中空管の間では、相互に接触している接触面積が小さくなり、蓄冷器内での主流方向と平行な方向におけるヘリウムガス(蓄冷材)の熱伝導を小さく抑制することができる。 In the configuration of the regenerator according to the present invention, the hollow tubes in which helium gas serving as a regenerator material is accommodated are arranged in a direction perpendicular to the mainstream direction of the regenerator. Further, the first hollow tube and the second hollow tube are knitted to each other so as to have a net-like structure. For this reason, between the 1st hollow tube and the 2nd hollow tube, the contact area which mutually contacts becomes small, and helium gas (cool storage material) in the direction parallel to the mainstream direction in a cool storage device The heat conduction can be suppressed to be small.
従って、本発明では、従来のヘリウム冷却式の蓄冷器に比べて、より熱損失の少ないヘリウム冷却式の蓄冷器を提供することができる。 Therefore, according to the present invention, it is possible to provide a helium-cooled regenerator with less heat loss than a conventional helium-cooled regenerator.
以下、本発明について詳しく説明する。 The present invention will be described in detail below.
図4には、本発明によるヘリウム冷却式の蓄冷器の一例を概略的に示す。また、図5には、蓄冷器を構成する中空管の一例を模式的に示す。 FIG. 4 schematically shows an example of a helium-cooled regenerator according to the present invention. Moreover, in FIG. 5, an example of the hollow tube which comprises a cool storage is shown typically.
図4に示すように、本発明によるヘリウム冷却式の蓄冷器160は、一例として、前述のGM冷凍機1の第2段ディスプレーサ52内に設置されている。
As shown in FIG. 4, the helium-cooled
蓄冷器160には、第1の流路161および第2の流路162が設けられ、ヘリウムのような作動ガスは、例えば、第1の流路161から第2の流路162に向かって、あるいはその逆向きに、主流方向Pに沿って移動する。
The
蓄冷器160は、複数の第1の中空管165Aと、複数の第2の中空管165Bと、これらの中空管165A、165Bの存在しない領域に相当する空間部175とで構成される。中空管165A、165B内には、蓄冷材となるヘリウムガスが収容される。また、空間部175には、作動ガスが流れる。
The
中空管165Aは、図の上下方向に蛇行しながら、紙面に対して略垂直な方向に延伸している。一方、中空管165Bは、図の上下方向に蛇行しながら、図のX方向に沿って延伸している。
The
図4に示すように、蓄冷器160は、主流方向Pに沿って、複数の面180(180−1、180−2、180−3...180−n)が積層された構成となっており、各面180は、中空管165A、165Bの配列を有する。なお、面180とは、主流方向Pに対して実質的に平行な方向の、仮想上の平面である。
As shown in FIG. 4, the
図5に示すように、各中空管165A、165Bは、開放された両端部168a、168bと、内側部173とを有する。従って、中空管165は、両端部168a、168bを介して、空間部175と連通される。なお、図において、中空管165は、略円筒状の形状を有するが、中空管165の形状は、これに限られない。中空管165は、略四角形状の断面、多角形状の断面、または楕円形状の断面を有しても良い。
As shown in FIG. 5, each hollow tube 165 </ b> A, 165 </ b> B has open both ends 168 a, 168 b and an
図6には、作動ガスの主流方向Pに沿って積層される各面180の分解構成図が示されている。この図に示すように、第1の面180−1には、相互に平行に設置された中空管165Aの配列と、相互に平行に設置された中空管165Bの配列とを有する。中空管165Aは、第1の方向に配向され、中空管165Bは、第2の方向に配向されている。
FIG. 6 shows an exploded configuration diagram of each
ここで、図6に示すように、各面180(180−1、180−2、180−3...180−n)において、中空管165Aと中空管165Bとは、相互に網状に編み込まれた状態で、配置されている。また、このような構成は、以下の第2の面180−2〜180−nにおいても同様であり、すなわち、蓄冷器160は、面180−1の繰り返し構造を有する。
Here, as shown in FIG. 6, on each surface 180 (180-1, 180-2, 180-3... 180-n), the
このような網状構造を積層して構成される本発明による蓄冷器160では、主流方向Pにおいて、中空管165A、165B同士が接触している部分は、極めて少なくなっている。従って、中空管165A、165Bを介した、蓄冷材の高温端側から低温端側に向かう熱伝達は、有意に抑制される。また、この結果、熱損失の少ない蓄冷器160が得られる。
In the
ここで、図6の例では、各面180における中空管165A、165Bの配向方向は、他の面180の中空管165A、165Bの配向方向と実質的に等しくなっている。さらに、図6の例では、第1の方向(中空管165Aの延伸方向)と第2の方向(中空管165Bの延伸方向)は、実質的に直交している。
Here, in the example of FIG. 6, the orientation direction of the
しかしながら、図6の構成は、一例であって、中空管165A、165Bの配向方向は、面180ごとに異なっていても良い。また、一つの面180において、各中空管165Aは、必ずしも同一の方向に配置されている必要はない。同様に、各中空管165Bは、必ずしも同一の方向に配置されている必要はない。
However, the configuration of FIG. 6 is an example, and the orientation direction of the
また、図6の例では、網状構造は、中空管165Aに対して中空管165Bを編み込むことにより構成されている。しかしながら、網状構造は、さらに、中空管165Aおよび/または中空管165Bに対して編み込まれた、第3、第4、...第nの中空管を有しても良い。
In the example of FIG. 6, the network structure is configured by weaving the
図7には、本発明による蓄冷器160に使用される中空管の別の構成を示す。この図の例では、中空管165−2は、両端部168a、168bに、「流路抵抗部」170を有する。ここで、「流路抵抗部」とは、作動ガスが蓄冷材として中空管内に流入し、または中空管内から蓄冷材が作動ガスとして流出する際に、何らかの障壁となる機能を有する部分の総称である。例えば、中空管のある部分が、他の部分に比べて寸法が狭小化されている場合、そのような場所は、「流路抵抗部」となる。
In FIG. 7, another structure of the hollow tube used for the
例えば、中空管の延伸軸に対して垂直な方向における流路抵抗部の最大寸法(例えば直径)は、中空管のその他の部分の同方向における最大寸法(例えば直径)に対して、1/2〜1/10程度であっても良い。例えば、図7に示す例では、両端部168a、168bの延伸軸に対して垂直な方向における流路抵抗部170の最大寸法(例えば直径)は、中空管165−2の内側部173の同方向における最大寸法(例えば直径)に対して、1/4程度となっている。
For example, the maximum dimension (for example, diameter) of the flow path resistance portion in the direction perpendicular to the extending axis of the hollow tube is 1 with respect to the maximum dimension (for example, diameter) in the same direction of other portions of the hollow tube. It may be about / 2 to 1/10. For example, in the example shown in FIG. 7, the maximum dimension (for example, diameter) of the flow
このような流路抵抗部170は、作動ガスの中空管165−2への流入、中空管165−2からの流出に対する抵抗として機能する。従って、中空管165−2で構成された蓄冷器では、作動ガスが簡単に中空管内に流入したり、あるいは中空管内のヘリウムガスが簡単に外部に流出したりすることが抑制される。また、これにより、ヘリウムガスの圧力変動、およびそれによる温度変動を抑制することができる。
Such a flow
流路抵抗部170の構成態様にもよるが、中空管165−2を使用した蓄冷器では、蓄冷式冷凍機(例えばGM冷凍機)の運転が安定化した際、中空管内のヘリウムガスの作動圧力は、0.01MPa〜5.0MPa程度であることが試算されている。また、中空管内のヘリウムガスの圧力変動の振幅は、作動ガスの圧力変動の振幅に比べて十分に小さくなる(例えば1/10以下となる)ことが試算されている。
Although depending on the configuration aspect of the flow
なお、図7の例では、流路抵抗部170は、中空管165−2の両端部168a、168bにのみ形成されている。しかしながら、中空管165−2の内側部173の側に、一つ以上の流路抵抗部を設けても良い。
In the example of FIG. 7, the flow
図8には、本発明による蓄冷器160に使用される中空管の別の構成を示す。この図の例では、中空管165−3は、一方の端部168bが封止されている。従って、この中空管165−3の場合、ヘリウムガスは、端部168aを介して、空間部175と連通される。なお、図8の例では、中空管165−3は、一方の端部168aに、流路抵抗部170を有する。しかしながら、これは、必ずしも必要ではない。また、中空管165−3の内側部173の側に、一つ以上の流路抵抗部が設けられても良い。
FIG. 8 shows another configuration of the hollow tube used in the
また、このような網状構造は、作動ガスの主流方向Pの側から圧延されていても良い。これにより、網状構造を構成する第1の中空管165Aと第2の中空管165Bの各々が平坦化される。この場合、網状構造の高さが小さくなり、積層方向により多くの面180を積層することができ、より効率的な蓄冷器を構成することができる。
Further, such a network structure may be rolled from the main flow direction P side of the working gas. Thereby, each of the first
なお、以上の説明では、蓄冷器内において、蓄冷材がヘリウムガスのみで構成される場合)を例に、本発明の構成およびその効果について説明した。しかしながら、本発明において、蓄冷器は、複数の蓄冷材で構成されても良い。例えば、一つの蓄冷器において、高温側では、HoCu2磁性材料を使用し、中低温側では、ヘリウムを使用しても良い。さらに、より低温側に、第3の蓄冷材として、GdO2S2のような磁性材料を使用しても良い。 In the above description, the configuration and the effect of the present invention have been described by taking as an example the case where the regenerator material is composed of only helium gas in the regenerator. However, in the present invention, the regenerator may be composed of a plurality of regenerator materials. For example, in one regenerator, HoCu 2 magnetic material may be used on the high temperature side, and helium may be used on the medium / low temperature side. Furthermore, a magnetic material such as GdO 2 S 2 may be used on the lower temperature side as the third cold storage material.
(本発明による蓄冷器を有する冷凍機)
本発明による蓄冷器160は、GM冷凍機1の他、パルスチューブ冷凍機、スターリング冷凍機、およびソルベー冷凍機など、各種蓄冷式冷凍機に適用することができる。以下、そのような蓄冷式冷凍機への適用例について、簡単に説明する。
(Refrigerator having a regenerator according to the present invention)
The
(パルスチューブ冷凍機)
図9には、本発明による蓄冷器を有するパルスチューブ冷凍機の一構成例を概略的に示す。
(Pulse tube refrigerator)
FIG. 9 schematically shows a configuration example of a pulse tube refrigerator having a regenerator according to the present invention.
図9に示すように、このパルスチューブ冷凍機200は、2段式のパルスチューブ冷凍機である。パルスチューブ冷凍機200は、ガス圧縮機211と、ハウジング部210と、該ハウジング部210にフランジ221を介して連結されたコールドヘッド部220とを備えている。
As shown in FIG. 9, the
ガス圧縮機211は、ハウジング部210さらにはコールドヘッド部220に、ヘリウムガスのような作動ガスを所定の周期で高圧流入させたり、低圧排気させたりする役割を有する。
The
ハウジング部210は、ハウジング205を有し、このハウジング205内には、第1段リザーバ215A、第2段リザーバ215B、熱交換器218a、219a、バルブ212、バルブ213およびオリフィス217等が収容されている。バルブ212およびバルブ213は、ガス流路214を介して、ガス圧縮機211に接続されている。
The
コールドヘッド部220は、フランジ221に固定された第1段蓄冷管231、第1段パルス管236、第1段冷却ステージ230、第2段蓄冷管241、第2段パルス管246および第2段冷却ステージ240を有する。
The
第1段蓄冷管231は、例えばステンレス鋼の中空状のシリンダ232と、その内部に設置された蓄冷器233を有する。第1段パルス管236は、例えばステンレス鋼の中空状のシリンダ237で構成される。これらのシリンダ232、237の高温端232a、237aは、フランジ221に接触、固定され、これらのシリンダ232、237の低温端232b、237bは、第1段冷却ステージ230に接触、固定されている。第1段冷却ステージ230には、その内部にガス流通路238が形成されており、第1段パルス管236の低温端237bと第1段蓄冷管231の低温端232bとが熱交換器218bおよびガス流路238を介して接続されている。第1段冷却ステージ230は、図示しない被冷却対象に熱的および機械的に接続され、寒冷が被冷却対象に取り出される。
The first-
また、第2段蓄冷管241は、例えばステンレス鋼の中空状のシリンダ242と、その内部に設置された蓄冷器260とを有する。第2段パルス管246は、例えばステンレス鋼の中空状のシリンダ247で構成される。第2段蓄冷管241のシリンダ242の高温端242aは、第1冷却ステージ230に接触、固定され、低温端242bは、第2段冷却ステージ240に接触、固定されている。第2段パルス管246のシリンダ247の高温端247aは、フランジ221に接触、固定され、低温端247bは、第2段冷却ステージ240に接触、固定されている。第2段冷却ステージ240には、その内部にガス流通路248が形成されており、第2段パルス管246の低温端247bと第2段蓄冷管241の低温端242bとが、熱交換器219bおよびガス流路248を介して接続されている。第2段冷却ステージ240は、図示しない被冷却対象に熱的および機械的に接続され、寒冷が被冷却対象に取り出される。
The second-
パルスチューブ冷凍機200では、ガス圧縮機211から、高圧の作動ガスがバルブ212およびガス流路214を介して第1段蓄冷管231に供給され、また、第1段蓄冷管231から低圧の作動ガスがガス流路214およびバルブ213を介してガス圧縮機211に排気される。第1段パルス管236の高温端237aには、熱交換器218aおよびオリフィス217を介して、第1段リザーバ215Aが接続されている。また、第2段パルス管246の高温端247aには、熱交換器219aおよびオリフィス217を介して、第2段リザーバ215Bが接続されている。オリフィス217は、第1段パルス管236および第2段パルス管246において、周期的に変化する作動ガスの圧力変動と体積変化との位相差を調整する役割を果たす。
In the
次に、このように構成されるパルスチューブ冷凍機200の動作を説明する。まず、バルブ212が開状態、バルブ213が閉状態になると、高圧の作動ガスが、ガス圧縮機211から第1段蓄冷管231に流入する。第1段蓄冷管231内に流入した作動ガスは、蓄冷器233により冷却されて温度を下げながら、第1段蓄冷管231の低温端232bからガス流通路238を通り、第1段パルス管236の内部に流入する。この際に、第1段パルス管236の内部に予め存在していた低圧の作動ガスは、流入した高圧の作動ガスにより圧縮される。これにより、第1段パルス管236内の作動ガスの圧力は、第1段リザーバ215A内の圧力よりも高くなり、作動ガスは、オリフィス217およびガス流路216を通って、第1段リザーバ215Aに流入する。
Next, operation | movement of the
また、第1段蓄冷管231で冷却された高圧の作動ガスの一部は、第2段蓄冷管241にも流入する。この作動ガスは、蓄冷器260によりさらに冷却されて温度を下げながら、第2段蓄冷管241の低温端242bからガス流通路248を通り、第2段パルス管246の内部に流入する。この際に、第2段パルス管246の内部に予め存在していた低圧の作動ガスは、流入した高圧の作動ガスにより圧縮される。これにより、第2段パルス管246内の作動ガスの圧力は、第2段リザーバ215B内の圧力よりも高くなり、作動ガスは、オリフィス217およびガス流路216を通って、第2段リザーバ215Bに流入する。
A part of the high-pressure working gas cooled by the first
次に、バルブ212を閉じ、バルブ213を開くと、第1段パルス管236および第2段パルス管246内の作動ガスは、それぞれ、蓄冷器233および260を冷却しながら、第1段蓄冷管231および第2段蓄冷管241を通過する。また、第2段蓄冷管241を通過した作動ガスは、さらに第1段蓄冷管231を通過する。その後、作動ガスは、第1段蓄冷管231の高温端232aから排気バルブ213を通り、ガス圧縮機211に戻る。ここで、第1段パルス管236および第2段パルス管246は、それぞれ、オリフィス217を介して、第1段リザーバ215Aおよび第2段リザーバ215Bと接続されているため、作動ガスの圧力変動の位相と、作動ガスの体積変化の位相とは、一定の位相差で変化する。この位相差により、第1段パルス管236の低温端237bおよび第2段パルス管246の低温端247bにおいて、作動ガスの膨張による寒冷が発生する。パルスチューブ冷凍機200は、上記の動作が反復されることで冷凍機として機能する。
Next, when the
ここで、パルスチューブ冷凍機200の第2段蓄冷管241内の蓄冷器260には、前述のような本発明による蓄冷器が使用されている。従って、このパルスチューブ冷凍機200においても、第2段蓄冷管241内の蓄冷器260において、蓄冷材の高温端側から低温端側に向かう熱伝達は、有意に抑制される。また、この結果、熱損失の少ない蓄冷器260が得られる。
Here, the regenerator according to the present invention as described above is used for the
(スターリング冷凍機)
図10には、本発明による蓄冷器を有するスターリング冷凍機の一構成例を概略的に示す。
(Stirling refrigerator)
FIG. 10 schematically shows a configuration example of a Stirling refrigerator having a regenerator according to the present invention.
図10に示すように、このスターリング冷凍機300は、ガス圧縮機310と、ガス圧縮機310から作動ガスがキャピラリーチューブ301を介して吸排気され、冷凍機として機能するコールドヘッド320とを備える。
As shown in FIG. 10, the
ガス圧縮機310は、ヨーク311、保圧容器312、および圧縮ピストン313を有する。ヨーク311は、圧縮ピストン313のシリンダとなる円筒状の溝318と、圧縮ピストン313に固定された可動コイル315が挿入される環状の溝319と、溝319の外側内壁に埋め込まれた環状の永久磁石316とを有する。図には示さないが、可動コイル315には、外部電源が接続される。
The
保圧容器312は、ヨーク311に固定されている。また、保圧容器312の内部には、圧縮ピストン313が収容され、ヘリウムガスが充填される保圧空間が形成される。圧縮ピストン313と保圧容器312とを連結するようにして、ピストン制御スプリング314が設けられ、これにより、圧縮ピストン313が保圧容器312の内壁に接触することが回避される。
The
コールドヘッド320は、ハウジング部321と、このハウジング部321に連結されたシリンダ322と、冷却ステージ328とを有する。シリンダ322の内部には、蓄冷器360が充填されたディスプレーサ323が設けられ、シリンダ322の低温端322bには、膨張室325が設置される。また、コールドヘッド320には、ディスプレーサ323を中立点に保つためのディスプレーサ制御スプリング324が設置される。
The
シリンダ322の高温端322aの温度は、10Kよりも高い温度に設定され、シリンダ322の低温端322bの温度は、10Kよりも低い温度に設定されることが好ましい。
The temperature of the
次に、このようなスターリング冷凍機300の動作を簡単に説明する。
Next, the operation of the
スターリング冷凍機300において、外部電源から交流電流を可動コイル315に供給すると、圧縮ピストン313が紙面の横方向に往復運動する。これにより、溝319の空間と、膨張室325の空間と、これらを接続するガスが流通する空間とからなる領域において、ヘリウムガスの等温圧縮、等容移送、等温膨張、および等容移送の4行程からなるサイクルが繰り返される。これにより、膨張室325に寒冷が発生する。この寒冷は、冷却ステージ328を介して被冷却対象に伝えられ、被冷却対象を冷却することができる。
In the
ここで、スターリング冷凍機300の蓄冷器360には、前述のような本発明による蓄冷器が使用されている。従って、このスターリング冷凍機300においても、ディスプレーサ323内の蓄冷器360において、蓄冷材の高温端側から低温端側に向かう熱伝達は、有意に抑制される。また、この結果、熱損失の少ない蓄冷器360が得られる。
Here, the
(ソルベー冷凍機)
図11には、本発明による蓄冷器を有するソルベー冷凍機の一構成例を概略的に示す。
(Solvay refrigerator)
FIG. 11 schematically shows a configuration example of a Solvay refrigerator having a regenerator according to the present invention.
図11に示すように、このソルベー冷凍機400は、ガス圧縮機411と、蓄冷管431と、シリンダ436と、冷却ステージ430と、バッファタンク415とを備える。
As shown in FIG. 11, the
ガス圧縮機411には、ガス配管414を介して、バルブ412および413が設置される。ガス圧縮機411は、蓄冷管431に、ヘリウムガスのような作動ガスを所定の周期で高圧流入させたり、低圧排気させたりする役割を有する。
蓄冷管431は、高温端432aおよび低温端432bを有し、蓄冷管431の内部には、蓄冷器460が設置されている。蓄冷管431の高温端432aは、ガス配管414を介して、ガス圧縮機411と接続される。蓄冷管431の低温端432bは、冷却ステージ430に接触、固定されている。
The
シリンダ436は、高温端437aおよび低温端437bを有し、シリンダ436の内部には、ディスプレーサ452が設置されている。シリンダ436の高温端437aは、オリフィス417が設置された配管416を介して、バッファタンク415に接続されている。シリンダ436の低温端437bは、冷却ステージ430に接触、固定されている。シリンダ436は、冷却ステージ430内に設けられた流通路438を介して、蓄冷管431と接続されている。
The
なお、ソルベー冷凍機400の基本的な動作は、前述のパルスチューブ冷凍機200と同様であるため、ここでは、その動作については説明しない。
Since the basic operation of the
ソルベー冷凍機400の蓄冷器460には、前述のような本発明による蓄冷器が使用されている。従って、このソルベー冷凍機400においても、蓄冷器460において、蓄冷材の高温端側から低温端側に向かう熱伝達は、有意に抑制される。また、この結果、熱損失の少ない蓄冷器460が得られる。
The
(クライオポンプ)
前述のような本発明による蓄冷器を備える蓄冷式冷凍機は、クライオポンプとしても使用することができる。
(Cryopump)
The regenerative refrigerator equipped with the regenerator according to the present invention as described above can also be used as a cryopump.
図12には、そのようなクライオポンプ500の一構成例を概略的に示す。
FIG. 12 schematically shows a configuration example of such a
クライオポンプ500は、排気対象の真空槽に吸気口を介して接続された本体部551、および冷凍機部560を有する。
The
本体部551は、真空容器552を有し、その内部には、シールド部554、後述する冷凍機部560のコールド部、バッフル555、およびクライオパネル556等が配置される。なお、図には示していないが、真空容器552には、シールド部554、バッフル555、および/またはクライオパネル556等の温度を測定するため、温度計が設置される。また、真空容器552には、真空容器552の内圧が過度に上昇した際、ガスを真空容器552外に逃がすための安全弁等が設けられる。
The
冷凍機部560は、前述のGM冷凍機1と同様の構成を有する。すなわち、冷凍機部560は、圧縮された作動ガスを生成する圧縮器561およびGM冷凍機563のコールド部を有する。コールド部は、第1段冷却部570および第2段冷却部580等を備える。
The
第1段冷却部570は、シリンダ571を有する。図には示さないが、シリンダ571は、圧縮器561からガス流路562を介して供給される作動ガスを断熱膨張させるための第1の膨張室および第1の蓄冷器が設けられる。また、第2段冷却部580は、シリンダ581を有する。圧縮器561からガス流路562を介して供給される作動ガスを断熱膨張させるための第2の膨張室(図示されていない)および第2の蓄冷器590が設けられる。
The first
第1段冷却部570の先端には、80K以下に冷却可能な第1段冷却ステージ575が設けられている。第2段冷却部580の先端には、10K以下、例えば4Kに冷却可能な第2段冷却ステージ585が設けられている。
A first-
シールド部554は、円筒状部554aおよびフランジ554bを有する。フランジ554bは、第1冷却ステージ575に固定される。これにより、フランジ554bが第1冷却ステージ575と熱的に接触し、フランジ554bおよび円筒状部554aは、第1冷却ステージ575と同等の温度まで冷却される。
The
バッフル555は、シールド部554の吸気口側に配置される。バッフル555は、上
端および下端が開口されている。また、バッフル555は、中空の台錐形状部材で構成され、内径の異なる複数の台錐形状部材が組み合わされる。また、バッフル555は、図示されない梁材等によりシールド部554と熱接触するように組み合わされる。シールド部554は、第1冷却ステージ575と熱接触しているので、バッフル555に第1冷却ステージ575の寒冷が伝えられ、バッフル555は、例えば80K程度まで冷却される。バッフル555は、本体部551の内部に流れるガスの方向を調整するとともに、ガスを冷却する役割を有する。バッフル555は、ガスに含まれる水蒸気を凝縮し、クライオパネル556への熱輻射を低減する。
The
クライオパネル556は、その頂上部が第2冷却ステージ585上に固定され、その頂上部自体、および頂上部から下方に延びる円筒状部には、笠状に形成された金属板が複数、互いに離隔して配設される。クライオパネル556は、頂上部が第2冷却ステージ585と熱接触しているので、第2冷却ステージ585と略同等の温度に保たれる。
The top of the
クライオパネル556の裏面には、吸着パネルが形成されている。吸着パネルには、熱伝導性の良好なエポキシ樹脂により、活性炭等の吸着剤が固着されている。クライオパネル556で凝縮しきれないような水素、ネオン、ヘリウム等を吸着する働きを有する。なお、吸着パネルが形成される箇所は、クライオパネル556の裏面に限定されない。
An adsorption panel is formed on the back surface of the
クライオポンプ500において、第2段冷却部580の蓄冷器590には、前述のような本発明による蓄冷器が使用されている。従って、このクライオポンプ500においても、前述のような本発明の効果を得ることができる。
In the
ここで、本発明による蓄冷器を有する蓄冷式冷凍機は、各種被冷却対象を冷却することができる。そのような被冷却対象は、超伝導マグネット、X線または赤外線のような放射線検出装置であっても良い。また、そのような被冷却対象は、蓄冷式冷凍機によって予冷される希釈冷凍機、磁気冷凍機、He3冷凍機、またはJT冷凍機等であっても良い。以下、各構成について簡単に説明する。 Here, the regenerative refrigerator having the regenerator according to the present invention can cool various objects to be cooled. Such an object to be cooled may be a radiation detector such as a superconducting magnet, X-rays or infrared rays. In addition, such an object to be cooled may be a dilution refrigerator, a magnetic refrigerator, a He3 refrigerator, a JT refrigerator, or the like that is pre-cooled by a regenerative refrigerator. Each configuration will be briefly described below.
(超伝導マグネット装置)
図13には、蓄冷式冷凍機により冷却される超伝導磁石を有する超伝導マグネット装置600の一構成例を概略的に示す。
(Superconducting magnet device)
FIG. 13 schematically shows a configuration example of a
超伝導マグネット装置600は、真空容器651と、蓄冷式冷凍機670と、強磁場空間661に磁場を印加する超電導磁石660とを有する。蓄冷式冷凍機670は、真空容器651内に設置された天板652に、コールドヘッドが垂下された状態で設置される。
The
蓄冷式冷凍機670は、2段式のGM冷凍機であっても良く、図13の例では、蓄冷式冷凍機670は、図2に示したGM冷凍機1と同様の構成を有する。従って、蓄冷式冷凍機670の構成の詳細な説明は、省略する。
The
蓄冷式冷凍機670の第1段冷却ステージ685は、熱シールド板653により、超電導磁石660の超電導コイル655に電流を供給する酸化物超電導電流リード658に、熱的機械的に接続されている。蓄冷式冷凍機670の第2段冷却ステージ695は、超電導コイル655のコイル冷却ステージ654に、熱的機械的に接続されている。コイル冷却ステージ654は、超電導コイル655に接触されており、第2段冷却ステージ695からの寒冷により、超電導コイル655は、超電導臨界温度以下に冷却される。
The first cooling stage 685 of the
なお、蓄冷式冷凍機670には、GM冷凍機の代わりに、パルスチューブ冷凍機、スターリング冷凍機、ソルベー冷凍機等を用いてもよい。
Note that the
(放射線検出装置)
図14には、蓄冷式冷凍機により冷却される放射線検出器を有する放射線検出装置の一構成例を概略的に示す。
(Radiation detector)
FIG. 14 schematically shows a configuration example of a radiation detection apparatus having a radiation detector cooled by a regenerative refrigerator.
放射線検出装置700は、圧縮機710と、蓄冷式冷凍機750と、蓄冷式冷凍機750の冷却ステージ728に接触固定された放射線検出器780と、放射線検出器780からの信号を処理する信号処理部790とを有する。
The
圧縮機710および蓄冷式冷凍機750は、図10に示したスターリング冷凍機300と同様の構成を有する。そのため蓄冷式冷凍機750の詳しい説明は、省略する。
The
放射線検出器780は、各種半導体検出素子を有する。例えば、放射線検出器780がX線検出素子(例えばSi検出素子、Ge検出素子)を有する場合、そのような放射線検出装置700は、X線を検出するX線検出装置となる。また、放射線検出器780が赤外線検出素子(例えばInGaAs PINフォトダイオード)を有する場合、そのような放射線検出装置700は、赤外線を検出する赤外線検出装置となる。信号処理部790には、公知の信号処理回路を使用することができ、信号処理部790は、放射線検出器780の種類に応じて適宜選択される。
The
放射線検出器780のそのような半導体検出素子を、冷凍機750により生じた寒冷により冷却することで、ノイズが少なくなり、信号対雑音比(SN比)が向上する。
By cooling such a semiconductor detection element of the
(希釈冷凍機装置)
図15には、蓄冷式冷凍機を有する希釈冷凍機装置の一構成例を概略的に示す。
(Dilution refrigerator)
In FIG. 15, one structural example of the dilution refrigerator apparatus which has a cool storage type refrigerator is shown roughly.
希釈冷凍機装置800は、ヘリウムガスを循環させるポンプ801と、蓄冷式冷凍機(GM冷凍機)822と、希釈冷凍機部分850とを有する。蓄冷式冷凍機(GM冷凍機)822は、本発明による蓄冷器を有する。
The
ポンプ801は、トラップ821が接続された往路側流路802と、復路側流路803とに接続されている。従って、ポンプ801から送出された3Heガス(通常は室温)は、トラップ821を介して、往路側流路802を通り、復路側流路803を通って、ポンプ801に回収される。
The
希釈冷凍機部分850は、第1伝熱部824a、分溜室806、第2伝熱部809、および混合室810を備える。
The
分溜室806は、3Heと4Heとの飽和蒸気圧の差を利用して、3He−4Heの混合溶液中から3Heを選択的に取り出す役割を有する。分溜室806は、0.5K〜0.7Kに保持される。
The
混合室810は、100%の3Heの濃縮相と、3Heが4Heに溶け込んだ4He−6.4%3Heの希薄相とを有する。2相は、相互に分離しており、密度の差により、上相が濃縮相(3He液)で、下相が希薄相(4He−6.4%3He液)となっている。
The mixing
GM冷凍機822のコールドヘッド822bは、冷却ヘッド822aに接続された伝熱板823により、希釈冷凍機部分850の第1伝熱部824aと熱的に接続されている。従って、GM冷凍機822で発生した4K程度の寒冷は、冷却ヘッド822a〜伝熱板823を介して、第1伝熱部824aに伝えられる。
The
GM冷凍機822のコールドヘッド822bおよび希釈冷凍機部分850は、真空容器825内に収容される。
The
往路側流路802は、ポンプ801〜トラップ821〜希釈冷凍機部分850の第1伝熱部824a内に設けられた第1熱交換器824〜コンデンサ804〜インピーダンス805〜分溜室806内に設けられた第2熱交換器807〜第2伝熱部809〜混合室810のラインで構成される。
The forward-
一方、復路側流路803は、混合室810〜第2伝熱部809〜分溜室806〜配管803a〜ポンプ801で構成される。配管803aは、往路側流路802内のコンデンサ804〜インピーダンス805の部分を収容している。
On the other hand, the return-
次に、このように構成された希釈冷凍機装置800の動作について説明する。
Next, the operation of the
ポンプ801により送り出された3Heガスは、トラップ821を介して、往路側流路802に送り込まれる。前述のように、第1伝熱部824aは、GM冷凍機822によって、4K程度まで冷却されている。このため、3Heガスは、第1伝熱部824aを通過した際に、第1熱交換器824を介して予冷される。さらに、予冷された3Heガスは、コンデンサ804〜インピーダンス805を通り、凝縮/液化される。
The 3He gas sent out by the
液化した3Heは、さらに、分溜室806に送られ、第2熱交換器807により、分溜室806に収容された液体と熱交換される。3Heは、0.5K〜0.7Kにまで冷却される。
The liquefied 3He is further sent to the
さらに、液体3Heは、第2伝熱部808を経て、100mK程度にまで冷却され、混合室810に送られる。
Further, the liquid 3He is cooled to about 100 mK through the second
前述のように混合室810には、100%の3Heの濃縮相(上側)と、3Heが4Heに溶け込んだ4He−6.4%3Heの希薄相(下側)とが収容されている。濃縮相側に3Heが導入されると、3Heが希薄相(下側相)に溶け込む際に、熱吸収が生じる。これにより、混合室810において、数十mKの超低温が発生する。
As described above, the mixing
なお、分溜室806では、希薄相中の3He濃度を維持するため、混合室810内の希薄相中から分溜室806に向かって、3Heの移動が生じる。これに伴い、混合室810では、100%3Heの濃縮相から希薄相への3Heの溶け込みが連続的に生じる。
In the
その後、3Heガスは、復路側流路803、すなわち分溜室806から配管803aを通り、最終的にポンプ801に回収される。その途中で、3Heガスは、第2伝熱部809、および配管803a部分において、往路側流路802を通る3Heと熱交換される。
Thereafter, the 3He gas passes from the return-
(磁気冷凍機)
図16には、蓄冷式冷凍機によって冷却される磁気冷凍機の一構成例を概略的に示す。
(Magnetic refrigerator)
In FIG. 16, one structural example of the magnetic refrigerator cooled with a cool storage type refrigerator is shown roughly.
磁気冷凍機900は、パルス励磁される超電導磁石901と、この超電導磁石901によって形成される磁場空間内に設置された作業物質902と、ヒートパイプ903を介して、作業物質902の設置空間に連通された液体ヘリウム槽904とを備える。
The
また、磁気冷凍機900は、ガス注入弁906、ガス戻り弁907、およびバイパス弁908等で構成された弁機構を有し、この弁機構を介して、GM冷凍機のような予冷用冷凍機905と接続される。
The
このような磁気冷凍機900において、超電導磁石901を励磁して、作業物質902に磁界を加えると、作業物質902の温度が上昇する。この際、バイパス弁908を閉じ、ガス注入弁906およびガス戻り弁907を開くと、予冷用冷凍機905から、高温廃熱部909に冷却ガスが流れ、作業物質902の熱が回収される。
In such a
その後、ガス注入弁906およびガス戻り弁907を閉じ、バイパス弁908を開け、超電導磁石の励磁を停止する。これにより、作業物質902の温度が低下する。また、作業物質902の温度がヘリウムの液化点以下になると、作業物質902の表面でヘリウムが凝縮する。
Thereafter, the
この凝縮により生じた液体ヘリウムは、ヒートパイプ903を通って、液体ヘリウム槽904に落下する。また、これにより、液体ヘリウム槽904のヘリウムガスが作業物質902の収納空間に送られる。
The liquid helium generated by this condensation passes through the
磁気冷凍機900では、このような工程を繰り返すことにより、ヘリウムの液化、冷却を行うことができる。
In the
(He3冷凍機)
図17には、He3冷凍機装置の一構成例を概略的に示す。
(He3 refrigerator)
FIG. 17 schematically shows a configuration example of the He3 refrigerator apparatus.
He3冷凍機装置1000は、蓄冷式冷凍機部分1006およびHe3冷凍機部分1010を備える。
The
また、He3冷凍機装置1000は、液体He4収容容器1002を取り囲む第1の熱シールド1001を有する。容器1002には、超伝導マグネット1020が配置される。また、第1の熱シールド1001を取り囲むようにして、第2の熱シールド1004が配置される。これらのシールド1001、1004、および容器1002は、外側真空チャンバ1005内に収容され、中央孔1003の周囲に配置される。中央孔1003の内側にはサンプルが配置される。
In addition, the
蓄冷式冷凍機部分1006は、例えばGM冷凍機のような蓄冷式冷凍機で構成される。
蓄冷式冷凍機部分1006は、外側真空チャンバ1005の第1のタレット1007に取付けられる。蓄冷式冷凍機部分1006は、第2の熱シールド1004に熱が伝わるように結合された第1の冷却ステージ1008と、第1の熱シールド1001に熱が伝わるように結合された第2の冷却ステージ1009と、を有する。
The
The
蓄冷式冷凍機部分1006の第1の冷却ステージ1008は、第2のシールド1004を約50Kの温度に維持し、第2の冷却ステージ1009は、第1の熱シールド1001を約5Kに維持する。
The
He3冷凍機部分1010は、外側真空チャンバ1005の第2のタレット1011に取付けられる。He3冷凍機部分1010は、容器1002の内側に配置された冷却ステージ1012を有する。He3冷凍機部分1010の第1の部分1013は、冷却ステージ1012よりも高温になっており、第1の熱シールド1001と熱的に結合される。第2の部分1014は、第1の部分1013よりも高温であり、第2の熱シールド1004と熱的に結合されている。
The
He3冷凍機部分1010は、室温で作動するHe3コンプレッサ(図示せず)によって駆動される。
The
第2の冷却ステージ1009は、He3冷凍機部分1010の第1の部分1013への熱伝達により、He3冷凍機部分1010を予備冷却するために用いられる。さらに、蓄冷式冷凍機部分1006の第1の冷却ステージ1008とHe3冷凍機部分1010の第2の部分1014の間の熱伝達により、予備冷却が行われても良い。
The
このような構成により、He3冷凍機部分1010の冷却ステージ1012が冷却され、容器1002の内側において、約2.2Kのヘリウムが凝縮される。
With such a configuration, the
(JT冷凍機)
図18には、蓄冷式冷凍機およびJT冷凍機を有する冷凍装置の一構成例を概略的に示す。
(JT refrigerator)
FIG. 18 schematically shows a configuration example of a refrigerating apparatus having a regenerative refrigerator and a JT refrigerator.
冷凍装置1100は、圧縮機ユニット1101と、冷凍機ユニット1102とを備えている。圧縮機ユニット1101には、低段側圧縮機1103および高段側圧縮機1104が設けられている。冷凍機ユニット1102には、第1ヒートステーション1113および第2ヒートステーション1114を有するGM冷凍機1112と、JT弁1116を有するJT冷凍機1111とが設けられている。
The refrigeration apparatus 1100 includes a
圧縮機ユニット1101において、高段側圧縮機1104の吐出側には吐出配管1105が接続され、低段側圧縮機1103の吸入側には吸入配管1109が接続されている。吐出配管1105には、油分離器1106と吸着器1107とが設けられている。吐出配管1105は、2本の高圧配管1108、1110に分岐し、第1の高圧配管1108は、JT冷凍機1111に接続され、第2の高圧配管1110は、GM冷凍機1112に接続されている。第1高圧配管1108には、流量制御弁1135と、装置の運転停止時に常温の作動ガスが冷凍機ユニット1102に流入することを防止するための開閉弁1134とが設けられている。なお、吸入配管1109にも、装置の運転停止時に常温の作動ガスが冷凍機ユニット1102に流入することを防止するための逆止弁1126が設けられている。
In the
冷凍機ユニット1102におけるJT回路1115は、高圧ライン1117と低圧ライン1118とからなり、JT弁1116は、高圧ライン1117に設けられている。高圧ライン1117には、第1ヒートステーション1113に配置された第1予冷部1119と、第2ヒートステーション1114に配置された第2予冷部1120とが設けられている。また、JT回路1115には、高圧ライン1117を流れる高圧ヘリウムガスと低圧ライン1118を流れる低圧ヘリウムガスとを熱交換させる第1〜第3の熱回収用熱交換器1121〜1123が設けられている。
The
第1高圧配管1108には、開閉弁1128が設けられ、吸入配管1109には、開閉弁1130が設けられている。
The first high-
冷却運転の際には、開閉弁1128および開閉弁1130が開放される。これにより、圧縮機1103、1104から吐出された高圧ヘリウムガスは、第1熱交換器1121→第1予冷部1119→第2熱交換器1122→第2予冷部1120→第3熱交換器1123の順に冷却された後、JT弁1116において膨張し、極低温レベルの液体ヘリウムとなって、ヘリウムタンク1136に流入する。ヘリウムタンク1136内で蒸発したヘリウムガスは、低圧ライン1118を通じて、圧縮機1103、1104の吸入配管1109に流れ込み、圧縮機1103、1104によって圧縮された後、再び上記循環動作を繰り返す。
During the cooling operation, the on-off
このような動作により、液体ヘリウムを冷却することができる。 By such an operation, liquid helium can be cooled.
以上、本発明による蓄冷器の適用対象の一部について説明した。しかしながら、この他にも本発明による蓄冷器が様々な冷凍機に使用することができることは当業者には明らかであろう。 In the above, a part of application object of the regenerator by this invention was demonstrated. However, it will be apparent to those skilled in the art that the regenerator according to the present invention can be used in various refrigerators.
本発明は、GM冷凍機、パルスチューブ冷凍機、スターリング冷凍機、およびソルベー冷凍機などの蓄冷式冷凍機に適用することができる。また、本発明は、そのような蓄冷式冷凍機によって構成または予冷される冷凍装置に適用することができる。 The present invention can be applied to a regenerative refrigerator such as a GM refrigerator, a pulse tube refrigerator, a Stirling refrigerator, and a Solvay refrigerator. Further, the present invention can be applied to a refrigeration apparatus configured or pre-cooled by such a regenerative refrigerator.
1 GM冷凍機
3 ガス圧縮機
5、6 バルブ
7 配管
8 駆動モータ
10 コールドヘッド
12 フランジ
15 第1段冷却部
20 第1段シリンダ
22 第1段ディスプレーサ
23a 高温端
23b 低温端
30 第1段蓄冷器
31 第1段膨張室
35 第1段冷却ステージ
39 第1段シール
40−1 流通路
40−2 流通路
40−3 流通路
50 第2段冷却部
51 第2段シリンダ
52 第2段ディスプレーサ
53a 高温端
53b 低温端
54−2 流通路
55 第2段膨張室
59 第2段シール
60 第2段蓄冷器
60A 従来のヘリウム冷却式の蓄冷器
62 容器
65 孔
68 ヘリウムガス
85 第2段冷却ステージ
160 本発明によるヘリウム冷却式の蓄冷器
161 第1の流路
162 第2の流路
165A、165B 中空管
165−2、165−3 中空管
168a、168b 端部
170 流路抵抗部
173 内側部
175 空間部
180−1 第1の面
180−2 第2の面
180−3 第3の面
200 パルスチューブ冷凍機
205 ハウジング
210 ハウジング部
211 ガス圧縮機
212、213 バルブ
214 ガス流路
215A 第1段リザーバ
215B 第2段リザーバ
217 オリフィス
220 コールドヘッド部
221 フランジ
230 第1段冷却ステージ
231 第1段蓄冷管
232 シリンダ
232a、237a 高温端
232b、237b 低温端
233 蓄冷器
236 第1段パルス管
237 シリンダ
238 ガス流通路
240 第2段冷却ステージ
241 第2段蓄冷管
242 シリンダ
242a、247a 高温端
242b、247b 低温端
246 第2段パルス管
248 ガス流通路
247 シリンダ
260 蓄冷器
300 スターリング冷凍機
301 キャピラリーチューブ
310 ガス圧縮機
311 ヨーク
312 保圧容器
313 圧縮ピストン
314 ピストン制御スプリング
315 可動コイル
316 永久磁石
318、319 溝
320 コールドヘッド
321 ハウジング部
322 シリンダ
322a 高温端
322b 低温端
323 ディスプレーサ
324 ディスプレーサ制御スプリング
325 膨張室
328 冷却ステージ
360 蓄冷器
400 ソルベー冷凍機
411 ガス圧縮機
412、413 バルブ
414 ガス配管
415 バッファタンク
416 配管
417 オリフィス
430 冷却ステージ
431 蓄冷管
432a 高温端
432b 低温端
436 シリンダ
437a 高温端
437b 低温端
438 流通路
452 ディスプレーサ
460 蓄冷器
500 クライオポンプ
551 本体部
552 真空容器
554 シールド部
554a 円筒状部
554b フランジ
555 バッフル
556 クライオパネル
560 冷凍機部
561 圧縮器
562 ガス流路
563 GM冷凍機
570 第1段冷却部
571 シリンダ
575 第1段冷却ステージ
580 第2段冷却部
581 シリンダ
585 第2段冷却ステージ
590 第2の蓄冷器
600 超伝導マグネット装置
651 真空容器
652 天板
653 熱シールド板
654 コイル冷却ステージ
655 超電導コイル
658 酸化物超電導電流リード
660 超電導磁石
661 強磁場空間
670 蓄冷式冷凍機
685 第1段冷却ステージ
695 第2段冷却ステージ
700 放射線検出装置
710 圧縮機
728 冷却ステージ
750 蓄冷式冷凍機
780 放射線検出器
790 信号処理部
800 希釈冷凍機装置
801 ポンプ
802 往路側流路
803 復路側流路
803a 配管
804 コンデンサ
805 インピーダンス
806 分溜室
807 第2熱交換器
809 第2伝熱部
810 混合室
821 トラップ
822 GM冷凍機
822a 冷却ヘッド
822b コールドヘッド
823 伝熱板
824 第1熱交換器
824a 第1伝熱部
825 真空容器
850 希釈冷凍機部分
900 磁気冷凍機
901 超電導磁石
902 作業物質
903 ヒートパイプ
904 液体ヘリウム槽
905 予冷用冷凍機
906 ガス注入弁
907 ガス戻り弁
908 バイパス弁
909 高温廃熱部
1000 He3冷凍機装置
1001 第1の熱シールド
1002 液体He4収容容器
1003 中央孔
1004 第2の熱シールド
1005 外側真空チャンバ
1006 蓄冷式冷凍機部分
1007 第1のタレット
1008 第1の冷却ステージ
1009 第2の冷却ステージ
1010 He3冷凍機部分
1011 第2のタレット
1012 冷却ステージ
1013 第1の部分
1014 第2の部分
1020 超伝導マグネット
1100 冷凍装置
1101 圧縮機ユニット
1102 冷凍機ユニット
1103 低段側圧縮機
1104 高段側圧縮機
1105 吐出配管
1106 油分離器
1107 吸着器
1108、1110 高圧配管
1109 吸入配管
1111 JT冷凍機
1112 GM冷凍機
1113 第1ヒートステーション
1114 第2ヒートステーション
1115 JT回路
1116 JT弁
1117 高圧ライン
1118 低圧ライン
1119 第1予冷部
1120 第2予冷部
1121〜1123 熱回収用熱交換器
1126 逆止弁
1128、1130、1134 開閉弁
1135 流量制御弁。
DESCRIPTION OF SYMBOLS 1 GM refrigerator 3 Gas compressor 5, 6 Valve 7 Piping 8 Drive motor 10 Cold head 12 Flange 15 First stage cooling part 20 First stage cylinder 22 First stage displacer 23a High temperature end 23b Low temperature end 30 First stage regenerator 31 1st stage expansion chamber 35 1st stage cooling stage 39 1st stage seal 40-1 Flow path 40-2 Flow path 40-3 Flow path 50 2nd stage cooling part 51 2nd stage cylinder 52 2nd stage displacer 53a High temperature End 53b Low temperature end 54-2 Flow path 55 Second stage expansion chamber 59 Second stage seal 60 Second stage regenerator 60A Conventional helium cooling regenerator 62 Container 65 Hole 68 Helium gas 85 Second stage cooling stage 160 Helium-cooled regenerator 161 according to the invention 161 first flow path 162 second flow path 165A, 165B hollow tube 165-2, 65-3 Hollow tube 168a, 168b End portion 170 Flow path resistance portion 173 Inner portion 175 Space portion 180-1 First surface 180-2 Second surface 180-3 Third surface 200 Pulse tube refrigerator 205 Housing 210 Housing part 211 Gas compressor 212, 213 Valve 214 Gas flow path 215A First stage reservoir 215B Second stage reservoir 217 Orifice 220 Cold head part 221 Flange 230 First stage cooling stage 231 First stage regenerator 232 Cylinder 232a, 237a High temperature end 232b, 237b Low temperature end 233 Regenerator 236 First stage pulse tube 237 Cylinder 238 Gas flow path 240 Second stage cooling stage 241 Second stage regenerator tube 242 Cylinder 242a, 247a High temperature end 242b, 247b Low temperature end 246 Second stage Pa Pipe 248 Gas flow path 247 Cylinder 260 Regenerator 300 Stirling refrigerator 301 Capillary tube 310 Gas compressor 311 Yoke 312 Holding vessel 313 Compression piston 314 Piston control spring 315 Movable coil 316 Permanent magnet 318, 319 Groove 320 Cold head 321 Housing Part 322 Cylinder 322a High temperature end 322b Low temperature end 323 Displacer 324 Displacer control spring 325 Expansion chamber 328 Cooling stage 360 Regenerator 400 Solvay refrigerator 411 Gas compressor 412, 413 Valve 414 Gas piping 415 Buffer tank 416 Piping stage 417 Piping stage 417 Cold storage pipe 432a Hot end 432b Low temperature end 436 Cylinder 437a Hot end 437b Hot end 438 Flow path 452 Displacer 460 Regenerator 500 Cryo pump 551 Main body part 552 Vacuum container 554 Shield part 554a Cylindrical part 554b Flange 555 Baffle 556 Cryopanel 560 Refrigerator part 561 Compressor 562 M Refrigerator 563 G 1st stage cooling part 571 Cylinder 575 1st stage cooling stage 580 2nd stage cooling part 581 Cylinder 585 2nd stage cooling stage 590 2nd regenerator 600 Superconducting magnet device 651 Vacuum vessel 652 Top plate 653 Heat shield plate 654 Coil cooling Stage 655 Superconducting coil 658 Oxide superconducting current lead 660 Superconducting magnet 661 High magnetic field space 670 Regenerative refrigerator 685 First stage cooling stage 695 Second stage cooling stage 700 Radiation detection device 710 Compressor 728 Cooling stage 750 Regenerative refrigerator 780 Radiation detector 790 Signal processing unit 800 Dilution refrigerator device 801 Pump 802 Outbound channel 803 Return channel 803a Piping 804 Capacitor 805 Impedance 806 Reservoir 807 Exchanger 809 Second heat transfer section 810 Mixing chamber 821 Trap 822 GM refrigerator 822a Cooling head 822b Cold head 823 Heat transfer plate 824 First heat exchanger 824a First heat transfer section 825 Vacuum container 850 Dilution refrigerator section 900 Magnetic refrigeration Machine 901 Superconducting magnet 902 Work substance 903 Heat pipe 904 Liquid helium tank 905 Precooling refrigerator 906 Gas injection valve 907 Gas return valve 908 Bypass valve 909 High temperature waste heat unit 1000 He3 refrigerator apparatus 1001 First heat shield 1002 Liquid He4 container 1003 Central hole 1004 Second heat shield 1005 Outer vacuum chamber 1006 Regenerative refrigerator part 1007 First turret 1008 First cooling stage 1009 Second cooling stage 1010 He3 refrigerator part 1011 Second Turret 1012 Cooling stage 1013 1st part 1014 2nd part 1020 Superconducting magnet 1100 Refrigeration equipment 1101 Compressor unit 1102 Refrigerator unit 1103 Low stage compressor 1104 High stage compressor 1105 Discharge piping 1106 Oil separator 1107 Adsorption Apparatus 1108, 1110 High pressure piping 1109 Suction piping 1111 JT refrigerator 1112 GM refrigerator 1113 1st heat station 1114 2nd heat station 1115 JT circuit 1116 JT valve 1117 High pressure line 1118 Low pressure line 1119 1st precooling part 1120 2nd precooling part 1121-1123 Heat exchanger for heat recovery 1126 Check valve 1128, 1130, 1134 On-off valve 1135 Flow control valve.
Claims (12)
当該ヘリウム冷却式の蓄冷器は、内部に蓄冷材となるヘリウムガスが収容される複数の第1の中空管および複数の第2の中空管を有し、
各中空管は、少なくとも一つの端部が開放されており、前記作動ガスは、前記中空管の内部に流通することが可能であり、
前記複数の第1の中空管および前記複数の第2の中空管は、前記主流方向に対して略垂直な方向に配列され、
前記複数の第1の中空管と、前記複数の第2の中空管は、網状の構造となるように相互に対して編み込まれた部分を有することを特徴とするヘリウム冷却式の蓄冷器。 A helium-cooled regenerator that stores the cold of working gas flowing in the mainstream direction,
The helium-cooled regenerator has a plurality of first hollow tubes and a plurality of second hollow tubes in which helium gas serving as a regenerator material is accommodated.
Each hollow tube has at least one open end, and the working gas can flow inside the hollow tube,
The plurality of first hollow tubes and the plurality of second hollow tubes are arranged in a direction substantially perpendicular to the main flow direction,
The helium-cooled regenerator, wherein the plurality of first hollow tubes and the plurality of second hollow tubes have portions knitted to each other so as to have a net-like structure. .
前記第1の延伸方向と前記第2の延伸方向は、異なることを特徴とする請求項1に記載のヘリウム冷却式の蓄冷器。 The plurality of first hollow tubes extend along substantially the same first extending direction and / or the plurality of second hollow tubes extend substantially along the same second extending direction. Stretch along the direction,
The helium-cooled regenerator according to claim 1, wherein the first extending direction and the second extending direction are different.
各第3の中空管は、少なくとも一つの端部が開放されており、前記作動ガスは、前記第3の中空管の内部に流通することが可能であり、
前記複数の第3の中空管は、前記複数の第1の中空管および/または前記複数の第2の中空管に対して編み込まれた部分を有することを特徴とする請求項1乃至5のいずれか一つ記載のヘリウム冷却式の蓄冷器。 Furthermore, it has a plurality of third hollow tubes in which helium gas serving as a cold storage material is accommodated,
Each third hollow tube is open at least at one end, and the working gas can flow inside the third hollow tube.
The plurality of third hollow tubes have portions knitted with respect to the plurality of first hollow tubes and / or the plurality of second hollow tubes. The helium-cooled regenerator according to any one of 5.
当該蓄冷式冷凍機は、GM冷凍機、パルスチューブ冷凍機、スターリング冷凍機、およびソルベー冷凍機のいずれか一つであることを特徴とする蓄冷式冷凍機。 A regenerative refrigerator comprising the regenerator according to any one of claims 1 to 8,
The regenerative refrigerator is one of a GM refrigerator, a pulse tube refrigerator, a Stirling refrigerator, and a Solvay refrigerator.
当該冷凍装置は、希釈冷凍機、磁気冷凍機、He3冷凍機、またはJT冷凍機を有することを特徴とする冷凍装置。 A refrigerating apparatus precooled by the regenerative refrigerator according to claim 9,
The refrigeration apparatus includes a dilution refrigerator, a magnetic refrigerator, a He3 refrigerator, or a JT refrigerator.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010055879A JP5465558B2 (en) | 2010-03-12 | 2010-03-12 | Regenerator, regenerative refrigerator, cryopump, and refrigeration system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010055879A JP5465558B2 (en) | 2010-03-12 | 2010-03-12 | Regenerator, regenerative refrigerator, cryopump, and refrigeration system |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011190952A true JP2011190952A (en) | 2011-09-29 |
JP5465558B2 JP5465558B2 (en) | 2014-04-09 |
Family
ID=44796076
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010055879A Active JP5465558B2 (en) | 2010-03-12 | 2010-03-12 | Regenerator, regenerative refrigerator, cryopump, and refrigeration system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5465558B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104197591A (en) * | 2014-08-29 | 2014-12-10 | 浙江大学 | Deep hypothermic heat regenerator adopting helium as heat regeneration medium and pulse tube refrigerator thereof |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104949401B (en) * | 2015-06-18 | 2017-04-12 | 浙江大学 | He-4 regenerator and low temperature refrigerator with the same |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59115941A (en) * | 1982-12-23 | 1984-07-04 | 東洋酸素株式会社 | Cold accumulator for cryogenic refrigerator |
JPS61228263A (en) * | 1985-03-30 | 1986-10-11 | アイシン精機株式会社 | Cold accumulator |
JPS62112072U (en) * | 1986-01-08 | 1987-07-16 | ||
JPS62112070U (en) * | 1986-01-08 | 1987-07-16 | ||
JPH07318181A (en) * | 1994-05-20 | 1995-12-08 | Daikin Ind Ltd | Very low temperature freezer |
JP2650437B2 (en) * | 1989-09-29 | 1997-09-03 | 三菱電機株式会社 | Cold storage cryogenic refrigerator |
JPH1137582A (en) * | 1997-07-23 | 1999-02-12 | Daikin Ind Ltd | Cold storage material and cold storage refrigerator |
JP2003028526A (en) * | 2001-05-09 | 2003-01-29 | Sumitomo Heavy Ind Ltd | Cool storage unit and refrigerating machine |
-
2010
- 2010-03-12 JP JP2010055879A patent/JP5465558B2/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59115941A (en) * | 1982-12-23 | 1984-07-04 | 東洋酸素株式会社 | Cold accumulator for cryogenic refrigerator |
JPS61228263A (en) * | 1985-03-30 | 1986-10-11 | アイシン精機株式会社 | Cold accumulator |
JPS62112072U (en) * | 1986-01-08 | 1987-07-16 | ||
JPS62112070U (en) * | 1986-01-08 | 1987-07-16 | ||
JP2650437B2 (en) * | 1989-09-29 | 1997-09-03 | 三菱電機株式会社 | Cold storage cryogenic refrigerator |
JPH07318181A (en) * | 1994-05-20 | 1995-12-08 | Daikin Ind Ltd | Very low temperature freezer |
JPH1137582A (en) * | 1997-07-23 | 1999-02-12 | Daikin Ind Ltd | Cold storage material and cold storage refrigerator |
JP2003028526A (en) * | 2001-05-09 | 2003-01-29 | Sumitomo Heavy Ind Ltd | Cool storage unit and refrigerating machine |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104197591A (en) * | 2014-08-29 | 2014-12-10 | 浙江大学 | Deep hypothermic heat regenerator adopting helium as heat regeneration medium and pulse tube refrigerator thereof |
Also Published As
Publication number | Publication date |
---|---|
JP5465558B2 (en) | 2014-04-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5468424B2 (en) | Regenerator, regenerative refrigerator, cryopump, and refrigeration system | |
JP3347870B2 (en) | Superconducting magnet and regenerative refrigerator for the magnet | |
EP3477225B1 (en) | Cryogenic system | |
US8375742B2 (en) | Reliquifier and recondenser with vacuum insulated sleeve and liquid transfer tube | |
US20070186560A1 (en) | Hybrid heat pump / refrigerator with magnetic cooling stage | |
US20140202174A1 (en) | Closed Cycle 1 K Refrigeration System | |
US20080173026A1 (en) | Regenerative cryocooler, cylinder used for the regenerative cryocooler, cryopump, recondensing apparatus, superconducting magnet apparatus, and semiconductor detecting apparatus | |
US7114341B2 (en) | Cryopump with two-stage pulse tube refrigerator | |
US20190226724A1 (en) | Compact Low-power Cryo-Cooling Systems for Superconducting Elements | |
JP2016075429A (en) | Cryogenic refrigeration machine | |
JP2019015466A (en) | Cryogenic refrigerator, and magnetic shield structure of cryogenic refrigerator | |
US20130000326A1 (en) | Regenerator, gm refrigerator, and pulse tube refrigerator | |
CN114151989B (en) | Superconducting magnet | |
JP2014020716A (en) | Cold storage type refrigeration machine | |
JP2000502175A (en) | Cryogenic refrigerator with refrigeration head and method for optimizing refrigeration head for desired temperature range | |
CN114739031B (en) | Dilution refrigeration system | |
JP5468425B2 (en) | Regenerator, regenerative refrigerator, cryopump, and refrigeration system | |
JP4762840B2 (en) | Cylinder of cool storage type refrigerator, cool storage type refrigerator, cryopump equipped with cool storage type refrigerator, recondensing device, superconducting magnet device, and semiconductor detection device | |
JP5465558B2 (en) | Regenerator, regenerative refrigerator, cryopump, and refrigeration system | |
JP2008538856A (en) | Cryostat assembly | |
JP3936117B2 (en) | Pulse tube refrigerator and superconducting magnet system | |
JPH0452468A (en) | Cryogenic refrigerator | |
JP2008215783A (en) | Cryogenic refrigerating machine and cryogenic refrigerating method | |
JP2015083914A (en) | Regenerative refrigerator, first stage regenerator, and second stage regenerator | |
CN209181303U (en) | Ultra-low temperature refrigerating device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120517 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130611 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130724 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140121 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140122 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5465558 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S802 | Written request for registration of partial abandonment of right |
Free format text: JAPANESE INTERMEDIATE CODE: R311802 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |