JP2011190733A - Ultrasonic standing wave-driven micropump - Google Patents

Ultrasonic standing wave-driven micropump Download PDF

Info

Publication number
JP2011190733A
JP2011190733A JP2010056917A JP2010056917A JP2011190733A JP 2011190733 A JP2011190733 A JP 2011190733A JP 2010056917 A JP2010056917 A JP 2010056917A JP 2010056917 A JP2010056917 A JP 2010056917A JP 2011190733 A JP2011190733 A JP 2011190733A
Authority
JP
Japan
Prior art keywords
liquid
discharge pipe
ultrasonic
wavelength
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010056917A
Other languages
Japanese (ja)
Inventor
Tameo Nakanishi
為雄 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2010056917A priority Critical patent/JP2011190733A/en
Publication of JP2011190733A publication Critical patent/JP2011190733A/en
Pending legal-status Critical Current

Links

Landscapes

  • Reciprocating Pumps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ultrasonic wave pump having an extremely simple structure, a free choice of driving liquid, and a novel constitution easily achieving microminiaturization. <P>SOLUTION: In this ultrasonic wave pump, an ultrasonic standing wave having intensity exceeding a microcavitation generation threshold is formed in liquid by using a means for radiating ultrasonic wave within a KHz band, the introducing port of a discharge pipe having an inside diameter sufficiently smaller than the wavelength of the ultrasonic wave in the liquid is set at the position of the maximum pressure variation point of the standing wave, and the liquid is continuously pumped up from the introducing port of the discharge pipe to a discharge port. The pump includes: a vessel 2; the means 3 for radiating the ultrasonic wave within the KHz band, formed on the bottom surface of the vessel; the outflow port 4b of a suction pipe, passed through the wall of the vessel and formed in a position close to the bottom of the liquid in the vessel; and the discharge pipe 5 inserted from the upper surface of the vessel to the position of the maximum pressure variation point so as to be opposed to the means for radiating the ultrasonic wave, and having the inside diameter sufficiently smaller than the wavelength of the ultrasonic wave. The pump is operated with the height of a space in the vessel being equal to the half wavelength of the ultrasonic wave in the liquid and the vessel filled with the liquid. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、超音波定在波駆動バルブレスマイクロポンプに関するものである。   The present invention relates to an ultrasonic standing wave drive valveless micro pump.

機械や化学、バイオなどの分野で使用されるマイクロポンプに対する共通的な要求として、駆動液体を選ばない、超小型化、高精度、静粛性、長寿命などが挙げられる。   Common requirements for micropumps used in fields such as machinery, chemistry, and biotechnology include ultra-miniaturization, high precision, quietness, and long life, regardless of the driving liquid.

従来の電磁式や遠心式ポンプは小型化に適さない。ダイヤフラム型の圧電ポンプは逆止弁を必要とするため、可動部の摩耗や振動が問題になる。吸入流路・吐出流路内の流れの非対称性を利用したダイヤフラム型バルブレスマイクロポンプ(特許文献1)や圧電アクチュエータを用いた進行波型バルブレスマイクロポンプ(非特許文献1)が提案されているが、構造や制御が複雑である。EHD型マイクロポンプは利用できる流体の種類が限られ、また、流量あるいは最大吐出圧が極めて小さく、実用性に乏しい。   Conventional electromagnetic and centrifugal pumps are not suitable for miniaturization. Diaphragm-type piezoelectric pumps require a check valve, so that wear and vibration of the movable part becomes a problem. Diaphragm type valveless micropumps (Patent Document 1) using asymmetry of the flow in the suction flow path and discharge flow path and traveling wave valveless micropumps using a piezoelectric actuator (Non-Patent Document 1) have been proposed. The structure and control are complicated. EHD type micro pumps are limited in the types of fluids that can be used, and the flow rate or maximum discharge pressure is extremely small, making them less practical.

特許文献2と3では、液体で満たされた容器に吸込口と吐出口を設け、吐出口に対向し、超音波放射手段から超音波を放射することにより、液体を吐出口から流出させる超音波ポンプが提案されている。いずれの場合もMHz帯の超音波を使用し、超音波を吐出口に向かって集束する工夫が施されている。しかし、吐出口の径、超音波放射手段から吐出口までの距離などの諸パラメータの範囲、当該ポンプで得られる最大吐出圧および流量の目安に関する記述がなく、ポンプとしての性能に判断がつかない。実際に、上記のパラメータが異なると、超音波ポンプの揚水メカニズムが完全に異なるものとなるが、それに関する説明も全くない。   In Patent Documents 2 and 3, an ultrasonic wave that causes a liquid to flow out of a discharge port by providing a suction port and a discharge port in a container filled with a liquid, facing the discharge port, and radiating ultrasonic waves from an ultrasonic radiation means. A pump has been proposed. In any case, a device has been devised that uses ultrasonic waves in the MHz band and focuses the ultrasonic waves toward the discharge port. However, there is no description about the range of various parameters such as the diameter of the discharge port, the distance from the ultrasonic radiation means to the discharge port, the maximum discharge pressure and flow rate obtained by the pump, and the performance as a pump cannot be judged. . Actually, if the above parameters are different, the pumping mechanism of the ultrasonic pump is completely different, but there is no explanation about it.

一方、液中に浸した管を超音波振動させると液体が吸い揚げられる現象は古くから知られ、これを利用した超音波ポンプ(非特許文献2)の開発が行われている。しかし,検討された管は内径3mm程度のものに限られ、その場合の吐出圧は1 KPa程度である。管の先に平板を配置し、10μm 程度の隙間を設けると吐出圧を数倍上げることができるが、組立に高い精度が要求され、また、不純物による目詰まりが発生した場合、処置が困難である。   On the other hand, the phenomenon that liquid is sucked up by ultrasonically vibrating a tube immersed in the liquid has been known for a long time, and an ultrasonic pump (Non-patent Document 2) using this phenomenon has been developed. However, the examined pipes are limited to those with an inner diameter of about 3 mm, and the discharge pressure in that case is about 1 KPa. If a flat plate is placed at the end of the tube and a gap of about 10 μm is provided, the discharge pressure can be increased several times.However, high accuracy is required for assembly, and if clogging due to impurities occurs, the treatment is difficult. is there.

特開平10−110681号公報Japanese Patent Laid-Open No. 10-110681 特開昭55−005464号公報JP-A-55-005464 特開2007−187095号公報JP 2007-187095 A

鈴木孝明、他4名著、圧電アクチュエータを用いた進行波型バルブレスマイクロポンプの開発、日本AEM 学会誌、第13巻第4号、 2005年、第310頁から第315頁。Takaaki Suzuki, 4 other authors, Development of traveling wave type valveless micro pump using piezoelectric actuator, Journal of AEM Society of Japan, Vol. 13, No. 4, 2005, pp. 310-315. 長谷川健著、超音波ポンプの小型高性能化に関する研究、東京工業大学大学院総合理工学研究科平成16 年度修士論文。Takeshi Hasegawa, research on miniaturization and performance improvement of ultrasonic pumps, master's thesis in 2004, Graduate School of Science and Engineering, Tokyo Institute of Technology.

構造が極めて簡単で、駆動液体を選ばない、超小型化、長寿命を容易に実現できる新規な構成の超音波マイクロポンプを提供する。   Provided is an ultrasonic micropump having a novel structure that has an extremely simple structure, can be used in any driving liquid, can be easily miniaturized, and can have a long service life.

本発明は、KHz帯の超音波放射手段を用いて、液体中にマイクロキャビテーションの発生しきい値を超える強度の超音波定在波を形成させ、この定在波の最大圧力変動点に超音波の波長より十分に小さい内径の吐出管の導入口を設置し、吐出管の導入口から吐出管の吐出口へ連続的に揚液することを最も主要な特徴とする。   The present invention uses an ultrasonic radiation means in the KHz band to form an ultrasonic standing wave having an intensity exceeding the microcavitation generation threshold in a liquid, and at the maximum pressure fluctuation point of the standing wave, an ultrasonic wave is generated. The main feature is that an inlet of a discharge pipe having an inner diameter sufficiently smaller than the wavelength of the nozzle is installed, and liquid is continuously pumped from the inlet of the discharge pipe to the outlet of the discharge pipe.

構造が極めて簡単で、超音波による微小振動以外の可動部を持たず、超小型化が容易な超音波ポンプを提供することができる。   It is possible to provide an ultrasonic pump that has an extremely simple structure, does not have a movable part other than minute vibrations by ultrasonic waves, and can be easily miniaturized.

本発明の第1実施形態の超音波ポンプの断面図である。It is sectional drawing of the ultrasonic pump of 1st Embodiment of this invention. 本発明の第1実施形態の超音波ポンプの吐出管内径と最大吐出圧の関係図である。It is a related figure of the discharge pipe internal diameter and maximum discharge pressure of the ultrasonic pump of a 1st embodiment of the present invention. 本発明の第2実施形態の超音波ポンプの断面図である。It is sectional drawing of the ultrasonic pump of 2nd Embodiment of this invention. 本発明の吐出管の断面図である。It is sectional drawing of the discharge pipe of this invention. 他の変形例としての吐出管の断面図である。It is sectional drawing of the discharge pipe as another modification. 他の変形例としての吐出管の断面図である。It is sectional drawing of the discharge pipe as another modification. 他の変形例としての吐出管の断面図である。It is sectional drawing of the discharge pipe as another modification. 集積型吐出管の断面図である。It is sectional drawing of an integrated discharge pipe.

図1に本発明の第1実施形態の超音波ポンプの断面図を示す。この超音波ポンプ1aは、容器2と、容器底面に形成されたKHz帯の超音波放射手段3と、容器の横壁を貫通して底面に近い位置に取り付けられた吸込管4と、容器の上面から超音波放射手段に対向し最大圧力変動点まで挿入した内径(d)が液中超音波の波長(λ)の1/20を越えない吐出管5を有して構成されている。このポンプは、容器内壁の底面から上面までの高さが液中超音波の半波長(λ/2)に等しくもしくはそれより若干大きくなるように作られ、液体を容器の底面から液中超音波の半波長(λ/2)の高さまで満たされた状態で運転される。   FIG. 1 shows a cross-sectional view of the ultrasonic pump according to the first embodiment of the present invention. The ultrasonic pump 1a includes a container 2, an ultrasonic radiation means 3 in the KHz band formed on the bottom surface of the container, a suction pipe 4 penetrating the lateral wall of the container and attached to a position close to the bottom surface, and an upper surface of the container. The discharge pipe 5 is configured so that the inner diameter (d) inserted to the ultrasonic pressure radiation means to the maximum pressure fluctuation point does not exceed 1/20 of the wavelength (λ) of the ultrasonic wave in the liquid. This pump is made so that the height from the bottom surface to the top surface of the inner wall of the container is equal to or slightly larger than the half wavelength (λ / 2) of ultrasonic waves in liquid, and the liquid is removed from the bottom surface of the container. It is operated in a state filled up to the height of the wavelength (λ / 2).

液中超音波定在波の変位の節は理論的に、発振壁面から超音波放射方向に1/4波長(λ/4)の距離の位置にある。液中超音波定在波の変位の節では圧力変動が最大となる。超音波放射手段の出力をある一定のレベル以上に高めると、最大圧力変動点を中心にマイクロキャビテーションが間歇的に発生する。吐出管をその位置に挿入すると、吐出管の先端でマイクロキャビテーションが周期的に発生し、それによるクラスタ状のマイクロバブルが吐出管の導入口に近寄ったり離れたりする。吐出管の先端も超音波およびマイクロキャビテーションによる圧力変動で励振される。圧力が負の半周期では、マイクロキャビテーションの効果により、最大負圧が制限される。一方、圧力が正の半周期では、このような制限がない。その結果、圧力変動の一周期で一定量の流体が吐出管先端の導入口5aに押し込まれる。吐出管の内径が超音波の波長より十分に小さい場合、前記の圧力変動が吐出管内流路に沿う方向の流れに効率的に変換される。実際に、吐出管を設置すると、管と液中超音波が干渉し合い、最大圧力変動点が変化する。本発明では、吐出管の先端がもっとも激しく励振される点を最大圧力変動点として捉える。以上のことから、液体が吐出管の導入口5aから吐出口5bへ連続的に送られる。なお、形成される液中超音波定在波が1/4波長または1/4波長の整数倍長のときに、最大の吐出圧が得られる。   The displacement node of the ultrasonic standing wave in the liquid is theoretically located at a distance of 1/4 wavelength (λ / 4) in the ultrasonic radiation direction from the oscillation wall surface. In the displacement section of the ultrasonic standing wave in liquid, the pressure fluctuation becomes the maximum. When the output of the ultrasonic radiation means is increased above a certain level, microcavitation occurs intermittently around the maximum pressure fluctuation point. When the discharge pipe is inserted at that position, microcavitation is periodically generated at the tip of the discharge pipe, and the resulting cluster-like microbubbles approach or leave the inlet of the discharge pipe. The tip of the discharge pipe is also excited by pressure fluctuations due to ultrasonic waves and microcavitation. In the negative half cycle, the maximum negative pressure is limited by the effect of microcavitation. On the other hand, there is no such limitation in the positive half cycle. As a result, a certain amount of fluid is pushed into the inlet 5a at the tip of the discharge pipe in one cycle of pressure fluctuation. When the inner diameter of the discharge pipe is sufficiently smaller than the wavelength of the ultrasonic wave, the pressure fluctuation is efficiently converted into a flow in a direction along the flow path in the discharge pipe. In fact, when the discharge pipe is installed, the pipe and the ultrasonic wave in the liquid interfere with each other, and the maximum pressure fluctuation point changes. In the present invention, the point at which the tip of the discharge pipe is excited most intensely is regarded as the maximum pressure fluctuation point. From the above, the liquid is continuously sent from the introduction port 5a of the discharge pipe to the discharge port 5b. The maximum discharge pressure can be obtained when the ultrasonic standing wave in the liquid to be formed is 1/4 wavelength or an integral multiple of 1/4 wavelength.

図1の構成による一実施例として、42KHzの超音波放射手段を使用した場合の吐出管内径と最大吐出圧の関係を図2に示す。吐出管の内径が1mm以下で最大吐出圧が吐出管の内径に反比例して上昇し、数KPaに達することを確認した。得られた流量の目安は約6ml/minであった。なお、印加電圧の波形は、正弦波よりも方形波の方がより高い吐出圧と流量が得られた。   FIG. 2 shows the relationship between the inner diameter of the discharge pipe and the maximum discharge pressure when an ultrasonic radiation means of 42 KHz is used as an example of the configuration of FIG. It was confirmed that when the inner diameter of the discharge pipe was 1 mm or less, the maximum discharge pressure increased in inverse proportion to the inner diameter of the discharge pipe and reached several KPa. The estimated flow rate was about 6 ml / min. As for the waveform of the applied voltage, a higher discharge pressure and flow rate were obtained for the square wave than for the sine wave.

図3に第2実施形態の超音波ポンプ1bの断面図を示す。容器2の内壁の底面から上面までの高さを液中超音波の1/4波長に等しく、容器内壁の上面に超音波放射手段3に対向して吐出管の導入口5aを設置していることを特徴としている。   FIG. 3 shows a cross-sectional view of the ultrasonic pump 1b of the second embodiment. The height from the bottom surface to the top surface of the inner wall of the container 2 is equal to a quarter wavelength of the ultrasonic wave in liquid, and the inlet 5a of the discharge pipe is installed on the upper surface of the container inner wall so as to face the ultrasonic radiation means 3. It is characterized by.

吐出管の導入口5aは、図4から図7のいずれの形状に加工される。図4と図5ではそれぞれ、管の先端を内側から円錐または半球を切り取った形状となっている。図6と図7ではそれぞれ、管の先端を管の中心軸に対して斜めまたは垂直な平面に加工したものである。内径の比較的大きい吐出管を使用した場合、図4と図5の形状ではより正の圧力を保持することができ、他の形状に比べ高い吐出圧が得られる。図7の形状では最大吐出圧が不安定になる欠点を持つ。吐出管の内径が小さくなるにつれ、前記の違いがほぼ解消される。図8には流量を増やすための集積管の構造の一例を示している。   The inlet 5a of the discharge pipe is processed into any shape shown in FIGS. 4 and 5, each has a shape in which the tip of the tube is cut from a cone or a hemisphere from the inside. 6 and 7, the tip of the tube is processed into a plane that is oblique or perpendicular to the central axis of the tube. When a discharge pipe having a relatively large inner diameter is used, the shape shown in FIGS. 4 and 5 can maintain a more positive pressure, and a higher discharge pressure can be obtained compared to other shapes. The shape of FIG. 7 has a drawback that the maximum discharge pressure becomes unstable. As the inner diameter of the discharge pipe becomes smaller, the above difference is almost eliminated. FIG. 8 shows an example of the structure of the collecting tube for increasing the flow rate.

1 超音波定在波駆動マイクロポンプ
2 容器
3 KHz帯の超音波放射手段
4 吸込管
4a 吸込管の流入口
4b 吸込管の流出口
5 吐出管
5a 吐出管の導入口
5b 吐出管の吐出口
DESCRIPTION OF SYMBOLS 1 Ultrasonic standing wave drive micro pump 2 Container 3 Ultrasonic radiation means of KHz band 4 Suction pipe 4a Suction pipe inlet 4b Suction pipe outlet 5 Discharge pipe 5a Discharge pipe inlet 5b Discharge pipe outlet

Claims (5)

KHz帯の超音波放射手段を用いて、液体中にマイクロキャビテーションの発生しきい値を超える強度の超音波定在波を形成させ、この定在波の最大圧力変動点の位置に、内径が液中超音波の波長の1/20を越えない吐出管の導入口を設置し、吐出管の導入口から吐出口へ連続的に揚液することを特徴とするポンプ。なお、最大圧力変動点は理論上、発振壁面から超音波放射方向に1/4波長および1/4波長の奇数倍長の位置にあるが、本発明では吐出管の先端がもっとも激しく励振される位置として捉える。   Using ultrasonic radiation means in the KHz band, an ultrasonic standing wave having a strength exceeding the microcavitation generation threshold is formed in the liquid, and the inner diameter is liquid at the position of the maximum pressure fluctuation point of this standing wave. A pump characterized by installing a discharge pipe inlet that does not exceed 1/20 of the wavelength of medium ultrasonic waves, and continuously pumping liquid from the discharge pipe inlet to the outlet. The maximum pressure fluctuation point is theoretically located at 1/4 wavelength and an odd multiple of 1/4 wavelength in the ultrasonic radiation direction from the oscillation wall surface. In the present invention, the tip of the discharge pipe is excited most intensely. Take it as a position. 容器と、容器底面に形成されたKHz帯の超音波放射手段と、容器の壁を貫通して容器内液体の底に近い位置に取り付けた吸込口と、容器の上面から超音波放射手段に対向し最大圧力変動点の位置に設置した内径が液中超音波の波長の1/20を越えない吐出管の導入口を有し、容器の内部空間の高さが液中超音波の1/4波長または1/4波長の整数倍長に等しく、容器内部を液体で満たされた状態で運転されることを特徴とするポンプ。   The container, the ultrasonic radiation means in the KHz band formed on the bottom surface of the container, the suction port installed near the bottom of the liquid inside the container through the wall of the container, and the ultrasonic radiation means from the top surface of the container However, it has a discharge pipe inlet that has an inner diameter set at the position of the maximum pressure fluctuation point and does not exceed 1/20 of the wavelength of ultrasonic waves in liquid, and the height of the inner space of the container is 1/4 wavelength of ultrasonic waves in liquid or A pump that is equal to an integral multiple of a quarter wavelength and is operated in a state where the inside of the container is filled with a liquid. 請求項1から2記載のポンプにおいて、超音波放射手段は、前記定在波の振幅を変える振幅変更手段を有し、または、印加電圧の波形は、正弦波、方形波または三角波の何れかであることを特徴とするポンプ。   3. The pump according to claim 1, wherein the ultrasonic radiation means includes amplitude changing means for changing the amplitude of the standing wave, or the waveform of the applied voltage is any one of a sine wave, a square wave, and a triangular wave. A pump characterized by being. 請求項1から3記載のポンプにおいて、吐出管が下記いずれの形状に該当するポンプ。吐出管の導入口を内側から円錐または半球を切り取った形である。吐出管の導入口を管の中心軸に対して斜めまたは垂直な平面に加工した形である。吐出管を、内径が液中超音波の波長の1/20を越えない管を複数集めることによって構成されている。吐出管の流路断面を円形から、楕円や矩形などの形に単純に変更したものである。   4. The pump according to claim 1, wherein the discharge pipe corresponds to any of the following shapes. The inlet of the discharge pipe is formed by cutting a cone or a hemisphere from the inside. This is a shape in which the inlet of the discharge pipe is machined into a plane that is oblique or perpendicular to the central axis of the pipe. The discharge pipe is constituted by collecting a plurality of pipes whose inner diameter does not exceed 1/20 of the wavelength of ultrasonic waves in liquid. The flow passage section of the discharge pipe is simply changed from a circular shape to an ellipse or a rectangle. 請求項2から4記載のポンプにおいて、底面から上面へ向かう方向を水平または任意の角度に変更したことを特徴とするポンプ。   5. The pump according to claim 2, wherein the direction from the bottom surface to the top surface is changed to a horizontal or arbitrary angle.
JP2010056917A 2010-03-15 2010-03-15 Ultrasonic standing wave-driven micropump Pending JP2011190733A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010056917A JP2011190733A (en) 2010-03-15 2010-03-15 Ultrasonic standing wave-driven micropump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010056917A JP2011190733A (en) 2010-03-15 2010-03-15 Ultrasonic standing wave-driven micropump

Publications (1)

Publication Number Publication Date
JP2011190733A true JP2011190733A (en) 2011-09-29

Family

ID=44795907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010056917A Pending JP2011190733A (en) 2010-03-15 2010-03-15 Ultrasonic standing wave-driven micropump

Country Status (1)

Country Link
JP (1) JP2011190733A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104405624A (en) * 2014-10-11 2015-03-11 北京联合大学 Valveless piezoelectric pump with segmentation different-diameter asymmetric arc-shaped pipe
CN115163465A (en) * 2022-08-02 2022-10-11 江苏大学 Pulse type miniature valveless diaphragm pump based on cavitation effect

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104405624A (en) * 2014-10-11 2015-03-11 北京联合大学 Valveless piezoelectric pump with segmentation different-diameter asymmetric arc-shaped pipe
CN104405624B (en) * 2014-10-11 2016-05-11 北京联合大学 The asymmetric curved pipe Valveless piezoelectric pump of segmentation reducing
CN115163465A (en) * 2022-08-02 2022-10-11 江苏大学 Pulse type miniature valveless diaphragm pump based on cavitation effect
CN115163465B (en) * 2022-08-02 2024-03-19 江苏大学 Pulse miniature valveless diaphragm pump based on cavitation effect

Similar Documents

Publication Publication Date Title
JP4795428B2 (en) pump
Olsson et al. Micromachined flat-walled valveless diffuser pumps
US10598192B2 (en) Acoustic-resonance fluid pump
US10975855B2 (en) Fluid pump including a pressure oscillation with at least one nodal diameter
RU2010141978A (en) PUMP
US8821134B2 (en) Fluid disc pump
RU2011154213A (en) HYDRAULIC DISK PUMP
US20030063985A1 (en) Ultrasonic pump and methods
GB2554293A (en) Pump
CN114992098A (en) Resonance excitation piezoelectric pump
CN104153978A (en) Piezoelectric-vibration type micro fluid pumping device
JP2011190733A (en) Ultrasonic standing wave-driven micropump
CN217976535U (en) Resonance excitation piezoelectric pump
Wang et al. The effect of surface wettability on the performance of a piezoelectric membrane pump
US20210199106A1 (en) Microblower
Fu et al. A magnetic micropump based on ferrofluidic actuation
CN112963326A (en) Acoustic fluid micropump based on micro electro mechanical technology
Chandrasekaran et al. Experimental investigation of cavitation behavior in valveless micropumps
Hasegawa et al. Characteristics of ultrasonic suction pump without moving parts
US8353689B2 (en) Vibratory cavitation pump lishanski
RU2565171C1 (en) Device for vibrojet magnetic activation of fluids and solutions
RU2476261C1 (en) Method of exciting acoustic vibrations in fluid medium and apparatus (versions) for realising said method
CN105673462B (en) Side draught pipe liquid blending transportation Valveless piezoelectric pump
RU2269386C1 (en) Generator of hydrodynamic vibrations
CN202991416U (en) Valve-less micro-pump driven by acoustic standing wave