JP2011189314A - Method and apparatus for manufacturing alternate adsorption membrane by spray method - Google Patents

Method and apparatus for manufacturing alternate adsorption membrane by spray method Download PDF

Info

Publication number
JP2011189314A
JP2011189314A JP2010059140A JP2010059140A JP2011189314A JP 2011189314 A JP2011189314 A JP 2011189314A JP 2010059140 A JP2010059140 A JP 2010059140A JP 2010059140 A JP2010059140 A JP 2010059140A JP 2011189314 A JP2011189314 A JP 2011189314A
Authority
JP
Japan
Prior art keywords
film
spray
forming material
solution
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010059140A
Other languages
Japanese (ja)
Other versions
JP5498824B2 (en
Inventor
Tokiaki Shiratori
世明 白鳥
Nanae Fukao
七恵 深尾
Gyuhon Kyon
ギュホン キョン
Junichiro Abe
純一郎 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SNT Co
Original Assignee
SNT Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SNT Co filed Critical SNT Co
Priority to JP2010059140A priority Critical patent/JP5498824B2/en
Publication of JP2011189314A publication Critical patent/JP2011189314A/en
Application granted granted Critical
Publication of JP5498824B2 publication Critical patent/JP5498824B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and apparatus for forming by a spray method an alternate adsorption membrane which has denseness equal to that obtained by a dipping method. <P>SOLUTION: When the alternate adsorption membrane having a multi-layer structure is manufactured by alternately spraying a positive charge-contained solution and a negative charge-contained solution on a surface of a film deposition material by a finely atomizing spray means, a crystal oscillator is fixed near the end of the film deposition material, the each solution is uniformly sprayed on the surface of the crystal oscillator and the film deposition material by moving either the spray means or the film deposition material, to form the film while the film thickness is precisely controlled on the basis of the oscillation frequency of the crystal oscillator, or variation Δf of impedance or change in velocity v thereof. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、スプレー法による交互吸着膜の製造方法及び製造装置に関する。   The present invention relates to a method and an apparatus for producing an alternating adsorption film by a spray method.

複合有機薄膜を作成する方法として、交互吸着(Layer-by-Layer Electrostatic Self-Assembly)を利用した方法が、1992年にG.デッカーらによって発表された(非特許文献1)。この方法では、正の電解質ポリマー(カチオン)の水溶液と、負の電解質ポリマー(アニオン)の水溶液とを別々の容器に用意し、これらの容器に、初期表面電荷を与えた基板(被成膜材料)を交互に浸すことにより、基板上に多層構造を有する複合有機超薄膜(交互吸着膜)を得ることができる。   As a method for producing a composite organic thin film, a method using layer-by-layer electrostatic self-assembly is described in 1992 by G.C. Announced by Decker et al. In this method, an aqueous solution of a positive electrolyte polymer (cation) and an aqueous solution of a negative electrolyte polymer (anion) are prepared in separate containers, and an initial surface charge is applied to these containers (film forming material). ) Alternately, a composite organic ultrathin film (alternate adsorption film) having a multilayer structure on the substrate can be obtained.

また、水晶振動子を利用して上記交互吸着膜の膜厚を精密に制御する方法が提案された(特許文献1)。この方法では、各溶液に被成膜材料を出し入れする際に、水晶振動子を同時に出し入れすることによって、水晶振動子上の成膜量を水晶振動子の振動周波数の変化量Δfで監視しながら成膜するものである。この方法を利用すれば、膜厚制御を正確に
行いながら成膜することができるので、精密な電子デバイスなどへの応用が可能となった。
In addition, there has been proposed a method for precisely controlling the film thickness of the alternating adsorption film using a crystal resonator (Patent Document 1). In this method, when the material to be deposited is taken in and out of each solution, the amount of film formation on the crystal resonator is monitored by the change amount Δf of the vibration frequency of the crystal resonator by simultaneously putting in and out the crystal resonator. A film is formed. If this method is used, it is possible to form a film while accurately controlling the film thickness, so that it can be applied to a precise electronic device.

このように交互吸着膜は、導電膜や発光素子をはじめとする種々の電子デバイスへの利用が期待されており、また、表面に交互吸着膜を形成することにより親水性を制御することが可能になるため、コンタクトレンズや眼鏡表面へのコーティング技術への応用や生体関連材料への応用、さらには自動車や建築物、窓表面への利用など、幅広い分野から注目を集めている。   In this way, the alternate adsorption film is expected to be used in various electronic devices including conductive films and light emitting elements, and the hydrophilicity can be controlled by forming the alternate adsorption film on the surface. Therefore, it is attracting attention from a wide range of fields, such as application to coating technology for contact lenses and spectacle surfaces, application to biomaterials, and further application to automobiles, buildings and window surfaces.

しかし、従来の方法は、基本的に浸漬槽を必要とするので、大型の部材を処理するためには設備も大型化し、コスト高は避けられず、また、面の表と裏の塗膜は同一とすることに限定され、面内の薄膜は均一同質なものに限定されていた。
さらに、既設の建造物の表面など、取り外しができない部所への成膜は不可能であった。
However, the conventional method basically requires a dipping bath, so that the equipment is increased in size to process large members, and the cost is unavoidable. It was limited to be the same, and the in-plane thin film was limited to a uniform homogeneous material.
Furthermore, it was impossible to form a film on a place where it cannot be removed, such as the surface of an existing building.

広範囲の表面上に交互吸着膜を成膜する方法としては、正の電解質ポリマー(カチオン)の水溶液と、負の電解質ポリマー(アニオン)の水溶液とを別々のスプレー(缶)を利用して吹き付ける方法が提案されている(非特許文献2,3)。
しかし、スプレー法では、浸漬法と比べ均一な塗布が難しいだけでなく、表面に凝集物が形成し易く、透明性を維持した緻密な薄膜を形成することが困難であるという問題があった。
As a method of forming alternating adsorption films on a wide range of surfaces, a method of spraying an aqueous solution of a positive electrolyte polymer (cation) and an aqueous solution of a negative electrolyte polymer (anion) using separate sprays (cans) Has been proposed (Non-Patent Documents 2 and 3).
However, the spray method has a problem that not only uniform coating is difficult compared with the dipping method, but also an aggregate is easily formed on the surface and it is difficult to form a dense thin film maintaining transparency.

特許第4302321号公報Japanese Patent No. 4302321

Decher.G, Hong.J.D. and J.Schmit: Thin Solid Films, 210/211, p.831(1992)Decher.G, Hong.J.D. and J.Schmit: Thin Solid Films, 210/211, p.831 (1992) Anindarupa Chunder, Kenneth Etcheverry, Samuel Wadsworth, Glenn D.Boreman, Lei Zhai: Fabrication of anti-reflection coatings on plastics using the spraying layer-by-layer self-assembly technique, Journal of the SID, 17/4, p.389-395, 2009Anindarupa Chunder, Kenneth Etcheverry, Samuel Wadsworth, Glenn D. Boreman, Lei Zhai: Fabrication of anti-reflection coatings on plastics using the spraying layer-by-layer self-assembly technique, Journal of the SID, 17/4, p.389 -395, 2009 Joseph B. Schlenoff, Stephan T. Dubas, and Tarek Farhat: Sprayed Polyelectrolyte Multilayers, Langmuir, vol.16, No.26, 2000, p.9968-9969Joseph B. Schlenoff, Stephan T. Dubas, and Tarek Farhat: Sprayed Polyelectrolyte Multilayers, Langmuir, vol. 16, No. 26, 2000, p. 9968-9969

本件発明は、上記した従来技術の問題点を解決するもので、スプレー法により浸漬法と同等に緻密な交互吸着膜を成膜する方法及び装置を提供することである。   The present invention solves the above-mentioned problems of the prior art, and is to provide a method and an apparatus for forming an alternating adsorption film as dense as a dipping method by a spray method.

本発明者らは、正の電解質ポリマー(カチオン)の水溶液と、負の電解質ポリマー(アニオン)の水溶液をスプレーするに当たり、二流体式スプレーのように、高圧で液体を微細な液滴として吹き付ける手段を使用し、被成膜材料又は該吹き付け手段の何れか一方を二次元的に任意の速度で移動させることのできる手段とを組み合わせれば、被成膜物の表面に各水溶液を均一に塗布することができ、また、前述した特許文献1に記載される水晶振動子を利用すればスプレー法でも膜の厚さを制御することができ、浸漬法に精密に交互吸着膜を成膜することができることを見出し、本発明に至った。   When spraying an aqueous solution of a positive electrolyte polymer (cation) and an aqueous solution of a negative electrolyte polymer (anion), the present inventors spray a liquid as fine droplets at a high pressure like a two-fluid spray. , And any one of the film forming material or the spraying means can be combined with a means capable of moving two-dimensionally at an arbitrary speed to uniformly apply each aqueous solution to the surface of the film forming object. In addition, if the crystal resonator described in Patent Document 1 described above is used, the thickness of the film can be controlled even by the spray method, and the alternate adsorption film can be precisely formed by the dipping method. Has been found to be possible to achieve the present invention.

また、本発明者らは、種々の実験を行なった結果、水溶液を特定の圧力以上で吹き付ければ、被成膜材料表面に凝集物が生成しにくくなり、透明な交互吸着膜を成膜することができること、水溶液の吹き付け後のリンスに、純水の流水又は純水のスプレーを併用すれば、表面に生成した凝集物を容易に除去することができること、さらに、スプレー手段の噴霧圧力や送液流量を制御することにより膜厚だけでなく膜のナノ構造が変化することも突き止めた。   In addition, as a result of various experiments, the present inventors have found that if an aqueous solution is sprayed at a specific pressure or higher, aggregates are less likely to be formed on the surface of the film forming material, and a transparent alternating adsorption film is formed. If the rinse after spraying the aqueous solution is used together with running pure water or a spray of pure water, the aggregates formed on the surface can be easily removed, and the spraying pressure of the spray means and It was also found that by controlling the liquid flow rate, not only the film thickness but also the nanostructure of the film changed.

本発明の態様は以下のとおりである。
(1)正の荷電を含む溶液と負の荷電を含む溶液とを、微細なミスト状にするスプレー手段により被成膜材料の表面に交互にスプレーすることにより、多層構造を有する交互吸着膜を製造するに当たり、スプレー手段又は被成膜材料のいずれかを移動させて前記各溶液を前記水晶振動子及び被成膜材料表面に、同一条件で均一にスプレーし、前記水晶振動子の発振周波数又はインピーダンスの変化量Δfまたはその変化速度vに基づき膜厚を精密に制御しながら成膜することを特徴とする交互吸着膜の製造方法。
(2)水晶振動子を被成膜材料の近傍に固定し、前記溶液を前記水晶振動子及び被成膜材料表面に同時にスプレーすることを特徴とする(1)記載の交互吸着膜の製造方法。
(3)前記各溶液を前記水晶振動子と被成膜材料表面に均一にスプレーした後、前記水晶振動子の発振周波数又はインピーダンスの変化量Δfまたはその変化速度vに基づき当該スプレーにより得られる膜厚を計測し、この膜厚値から所定の膜厚とするために必要な追加噴霧量を求め、該噴霧量が均一に被成膜材料表面に塗布されるように噴霧回数及び/又は噴霧量を調整することを特徴とする(2)記載の交互吸着膜の製造方法。
(4)スプレー手段の噴霧圧力を制御して噴霧量を調整することを特徴とする(3)記載の交互吸着膜の製造方法。
(5)噴霧圧力を制御することにより、被成膜材料表面に成膜させる薄膜の屈折率を調整することを特徴とする(4)記載の交互吸着膜の製造方法。
(6)スプレー手段の送液流量又は送液時間を制御して噴霧量を調整することを特徴とする(3)記載の交互吸着膜の製造方法。
(7)各溶液をスプレーする毎に、被成膜材料の表面を純水の流水又は純水のスプレーによりリンスすることを特徴とする(1)〜(6)の何れかに記載の交互吸着膜の製造方法。
(8)平面又は立体の被成膜材料の各面ごと又は部分ごとに異なる溶液をスプレーし、機能の異なる薄膜を成膜する(1)〜(7)のいずれかに記載の交互吸着膜の製造方法。
(9)正の荷電ポリマーを含む溶液と負の荷電ポリマーを含む溶液とを、微細なミスト状にするスプレー手段により被成膜材料の表面に交互にスプレーすることにより、多層構造を有する交互吸着膜を製造装置であって、
正の荷電ポリマーを含む溶液と負の荷電ポリマーを含む溶液とを、微細なミスト状にするスプレー手段と、
被成膜材料の端部近傍に水晶振動子を固定し、前記各溶液を前記水晶振動子と被成膜材料表面に均一に吹き付けられるように、スプレー手段又は被成膜材料のいずれかを移動させる移動手段と、
前記水晶振動子の発振周波数又はインピーダンスを検出する検出部と、
前記周波数検出部が検出した周波数又はインピーダンスに基づいて、前記移動手段を制御する制御部と、
を備えることを特徴とする交互吸着膜の製造装置。
(10)移動手段の移動範囲内に、純水の流水手段又は純水のスプレー手段からなる、被成膜材料のリンス手段を設けたことを特徴とする(9)記載の交互吸着膜の製造装置。
Aspects of the present invention are as follows.
(1) By alternately spraying a solution containing a positive charge and a solution containing a negative charge on the surface of the film-forming material by spray means for making a fine mist, an alternate adsorption film having a multilayer structure is obtained. In manufacturing, either the spray means or the film forming material is moved to spray each solution uniformly on the surface of the crystal resonator and the film forming material under the same conditions, and the oscillation frequency of the crystal resonator or A method for producing an alternating adsorption film, characterized in that the film is formed while the film thickness is precisely controlled based on an impedance change amount Δf or a change speed v thereof.
(2) The method for producing an alternately adsorbing film according to (1), wherein the crystal resonator is fixed in the vicinity of the film forming material, and the solution is sprayed simultaneously on the surface of the crystal resonator and the film forming material. .
(3) After each solution is uniformly sprayed on the surface of the crystal resonator and the film forming material, a film obtained by spraying based on the change amount Δf of the oscillation frequency or impedance of the crystal resonator or the change speed v Measure the thickness, obtain the additional spray amount necessary to obtain the predetermined film thickness from this film thickness value, and spray the number and / or spray amount so that the spray amount is evenly applied to the film forming material surface. (2) The method for producing an alternating adsorption film according to (2), wherein
(4) The method for producing an alternating adsorption film according to (3), wherein the spray amount is adjusted by controlling the spray pressure of the spray means.
(5) The method for producing an alternating adsorption film according to (4), wherein the refractive index of a thin film formed on the surface of the film forming material is adjusted by controlling the spray pressure.
(6) The method for producing an alternately adsorbing film according to (3), wherein the spraying amount is adjusted by controlling the liquid feeding flow rate or the liquid feeding time of the spray means.
(7) The alternate adsorption according to any one of (1) to (6), wherein the surface of the film forming material is rinsed by flowing pure water or spraying pure water every time each solution is sprayed. A method for producing a membrane.
(8) The alternating adsorption film according to any one of (1) to (7), in which a different solution is sprayed for each surface or each part of a planar or three-dimensional film forming material to form a thin film having a different function. Production method.
(9) Alternate adsorption having a multilayer structure by spraying a solution containing a positively charged polymer and a solution containing a negatively charged polymer alternately on the surface of a film-forming material by means of a spraying means for forming a fine mist. A membrane production device,
Spray means for making a solution containing a positively charged polymer and a solution containing a negatively charged polymer into a fine mist;
A quartz crystal is fixed near the edge of the film-forming material, and either the spray means or the film-forming material is moved so that each solution can be sprayed uniformly on the surface of the crystal and the film-forming material. Moving means to cause
A detection unit for detecting an oscillation frequency or impedance of the crystal unit;
Based on the frequency or impedance detected by the frequency detection unit, a control unit for controlling the moving means,
An apparatus for producing an alternating adsorption film, comprising:
(10) The production of the alternately adsorbing film according to (9), characterized in that a rinsing means for the film forming material is provided in the moving range of the moving means, comprising pure water flowing means or pure water spray means. apparatus.

本発明における「微細なミスト状にするスプレー手段」とは、正の荷電を含む溶液や負の荷電を含む溶液を、ミクロンオーダーのミスト状にして吹き付けることができる噴霧装置のことをいい、空気により液をミスト化し、空気の圧力により噴霧量を調整できる二流体式噴霧装置が好適に使用できる。ミストの粒径は、細かいほど緻密な膜が形成されるので、数μm、好ましくは0.1〜1μm程度のミストが形成される噴霧装置を用いることが望ましい。
均一で微細なミストを噴霧するために、噴霧圧力は少なくとも0.01MPa必要であり、好ましくは0.05MPa以上の噴霧圧力とすることが望ましく、これらの圧力を確保できるコンプレッサーを使用する必要がある。
なお、噴霧用の高圧空気を使用しない一流体式噴霧装置でも微細なミストが形成されるものであれば成膜することは可能であるが、一般的に二流体の方が基板に対する噴霧圧力が確保できる点及び、より微細なミストが形成される点で製膜速度および製膜の均一性に優れる。
The “spray means for forming a fine mist” in the present invention refers to a spray device capable of spraying a solution containing a positive charge or a solution containing a negative charge in the form of a mist of micron order. Thus, a two-fluid spraying device that can mist the liquid and adjust the spraying amount by the pressure of air can be suitably used. As the mist particle size becomes finer, a finer film is formed. Therefore, it is desirable to use a spray device that forms mist of several μm, preferably about 0.1 to 1 μm.
In order to spray uniform and fine mist, the spray pressure needs to be at least 0.01 MPa, preferably 0.05 MPa or more, and it is necessary to use a compressor that can secure these pressures. .
In addition, even with a one-fluid spray device that does not use high-pressure air for spraying, it is possible to form a film as long as a fine mist can be formed. The film forming speed and film forming uniformity are excellent in that it can be secured and a finer mist is formed.

なお、同一のスプレー手段で、2種類の溶液をスプレーする場合には、それぞれの溶液のスプレーが終了した時点で、スプレー手段の内部を洗浄する必要があるので、夫々別のスプレー手段でスプレーすることが望ましい。   In addition, when spraying two types of solutions with the same spraying means, it is necessary to clean the inside of the spraying means when the spraying of each solution is completed, so spraying with different spraying means, respectively. It is desirable.

本発明における「スプレー手段又は被成膜材料のいずれかを移動させる移動手段」とは、被成膜材料の表面に溶液を均一に塗布するように、例えば、スプレー手段と被成膜材料とを一定の間隔を保ったまま、x軸とy軸方向に自由に移動することが可能な装置のことを言う。
このような装置を使用して被成膜材料の表面に溶液を均一に吹き付けるには、予め使用する噴霧装置の噴霧パターンを調べておき、そのパターンに基づき、被成膜材料の表面に溶液を均一に吹き付ける噴霧装置の周回移動軌跡を決定すればよい。
このようにして決定された噴霧装置の周回移動は、コンピューター上でプログラムしておけば、周回移動を任意の回数で反復させることができる。
In the present invention, the “moving means for moving either the spray means or the film forming material” means, for example, that the spray means and the film forming material are applied so that the solution is uniformly applied to the surface of the film forming material. An apparatus that can move freely in the x-axis and y-axis directions while maintaining a constant interval.
In order to spray the solution uniformly on the surface of the film formation material using such an apparatus, the spray pattern of the spray device to be used is examined in advance, and the solution is applied to the surface of the film formation material based on the pattern. What is necessary is just to determine the circular movement locus | trajectory of the spraying apparatus sprayed uniformly.
If the circulation movement of the spraying device determined in this way is programmed on a computer, the circulation movement can be repeated an arbitrary number of times.

本発明の「被成膜材料の端部近傍に水晶振動子を固定」における「端部近傍」とは、水晶振動子が被成膜材料と同一の条件で溶液の吹き付けがなされる位置のことであり、被成膜材料の形状に合わせて適宜決定すればよい。   In the present invention, “the vicinity of the end” in “fixing the crystal unit near the edge of the film forming material” means the position where the crystal unit is sprayed with the solution under the same conditions as the film forming material. Therefore, it may be determined appropriately according to the shape of the film forming material.

本発明において、各溶液のスプレーの制御は、水晶振動子の発振周波数又はインピーダンスの変化量、または発振周波数又はインピーダンスの変化速度に基づいて行われる。
すなわち、水晶振動子に付着した薄膜の厚さ(付着量)と水晶振動子の発振周波数又はインピーダンスの変化量、または発振周波数又はインピーダンスの変化速度の関係を予め求めておき、被成膜材料表面の膜が所定の膜厚となったことを、水晶振動子の発振周波数又はインピーダンスの変化量、または発振周波数又はインピーダンスの変化速度の測定値で感知し、その時点で被成膜材料又はスプレー手段の周回移動を終了させてもよいが、各溶液の最初の均一噴霧によって形成される膜厚を計測し、その計測値に基づいて、追加のスプレー回数及び/又は1回の噴霧量を調整すれば、より精密に制御することができる。
また、同じ条件で水晶振動子表面に多層膜を形成しスプレー回数と膜厚との関係を求めておけば、リアルタイムで水晶振動子の周波数をモニターすることなく、スプレー回数により膜厚を制御することも可能である。
In the present invention, spray control of each solution is performed based on the amount of change in the oscillation frequency or impedance of the crystal resonator, or the rate of change in the oscillation frequency or impedance.
That is, the relationship between the thickness (attachment amount) of the thin film attached to the crystal unit and the change amount of the oscillation frequency or impedance of the crystal unit or the change rate of the oscillation frequency or impedance is obtained in advance, and the surface of the film forming material The film thickness of the predetermined film thickness is sensed by the measured value of the change in the oscillation frequency or impedance of the crystal resonator, or the change rate of the oscillation frequency or impedance, and at that time, the film forming material or spray means Measure the film thickness formed by the first uniform spray of each solution, and adjust the number of additional sprays and / or the amount of spray per time based on the measured value. Therefore, it can be controlled more precisely.
In addition, if a multilayer film is formed on the surface of the crystal unit under the same conditions and the relationship between the number of sprays and the film thickness is obtained, the film thickness is controlled by the number of sprays without monitoring the frequency of the crystal unit in real time. It is also possible.

本発明の方法においては各溶液のスプレー毎に純水によるリンスを行う。リンスは、純水中に溶液塗布物を浸漬させる方法、純水の流水に溶液塗布面を接触させる流水法、純水を溶液塗布面にスプレーするスプレー法のいずれでもよいが、短時間でリンス効果が期待できる点で流水法又はスプレー法が好ましい。   In the method of the present invention, rinsing with pure water is performed for each spray of each solution. Rinsing may be carried out by either immersing the solution coating in pure water, flowing water in which the solution coating surface is brought into contact with flowing pure water, or spraying in which pure water is sprayed onto the solution coating surface. The flowing water method or the spray method is preferable in that an effect can be expected.

本発明の方法及び装置によれば、従来の浸漬法では不可能であった大型部材や、既存設備の外表面などに交互吸着膜の成膜が可能となる。特に、既に建築された建築物や組み立て済みの自動車の窓ガラスなどに、透明性を維持したままその表面の物理的な特性や光学的特性、例えば、赤外線の反射能や吸収能などを付与させることができる。
本発明の高圧噴霧手段によるスプレー法によれば、浸漬法のように拡散ではなく物理的に異種の有機物もしくは無機材料が接触するので、浸漬法と比べ成膜時間が短く、多層光学薄膜の作成も容易にできる。
また、本発明のスプレー法によれば、水槽が不要となるので省スペースであり、必要な溶液も少量で済む。
さらに、スプレーの噴霧圧力を高めることにより、従来の浸漬法では実現できなかった高屈折率などの異なる物性を同じ材料で実現でき、マスキングなしに片面ずつ成膜できるので、基材の両面に異なる機能を付与することも容易にできる。
According to the method and apparatus of the present invention, it is possible to form an alternating adsorption film on a large member, an outer surface of an existing facility, or the like, which is impossible with the conventional immersion method. In particular, the physical and optical properties of the surface, such as infrared reflectivity and absorption ability, are imparted to already constructed buildings and assembled automobile window glass while maintaining transparency. be able to.
According to the spraying method using the high-pressure spraying means of the present invention, since organic materials or inorganic materials that are physically different from each other are not in contact with each other as in the dipping method, the film formation time is shorter than in the dipping method, and a multilayer optical thin film is produced Can also be easily done.
Moreover, according to the spray method of the present invention, a water tank is not required, so that space is saved and a small amount of solution is required.
Furthermore, by increasing the spraying pressure of the spray, different physical properties such as high refractive index that could not be realized by the conventional dipping method can be realized with the same material, and it can be formed on each side without masking, so it differs on both sides of the substrate Functions can be easily added.

自動スプレー装置の制御概念図Control concept diagram of automatic spray equipment 動作系の接続図Operating system connection diagram スプレー基板距離と噴霧幅Spray board distance and spray width 基材表面を均一に塗布するための周回移動の例Example of circular movement to uniformly coat the substrate surface スプレー式交互吸着膜製造装置の動作フロー図Flow chart of spray type alternate adsorption film manufacturing equipment 低屈折率膜(n=30)の低反射効果を示すグラフGraph showing low reflection effect of low refractive index film (n = 30) 膜数と透過率ピーク波長の関係を示すグラフGraph showing the relationship between the number of films and the peak transmittance wavelength スプレー回数と膜厚の関係を示すグラフGraph showing the relationship between the number of sprays and the film thickness スプレーの流速及び流量を変化させたときの膜構造Membrane structure when changing spray flow rate and flow rate

<自動スプレー式交互吸着膜製造装置>
本発明の一例として、スプレー手段を固定し、2cm×7cmのスライドガラス基板(被成膜材料)を移動させる装置を図で説明する。
スプレー手段として、図1に示すように、二流体式の自動ガンを2基用意し、夫々カチオン及びアニオンの荷電ポリマー溶液用とし、夫々のスプレー手段には、噴霧用の高圧空気を供給するためのコンプレッサー、ピストン作動用空気に圧力を供給するトリガー用コンプレッサー(3,5)、溶液を供給するための送液用ポンプ(4,6)を接続する。
スプレー手段の制御においては、トリガー用コンプレッサー及び溶液を供給するための送液用ポンプのON/OFFを同時に行い、噴霧用のコンプレッサーは別に制御できるようにした。
被成膜材料の移動手段としては、図2に示すように、アクチュエータを2基用意し、夫々縦軸用(2)と横軸用(1)(EZS4S:縦軸用、EZS6S:横軸用)として、図示されない木枠に取り付けた。また、各アクチュエータには、センサーを取り付け、限界まで作動しないよう、ある一定距離に達するか負荷がかかった場合にアクチュエータの作動を停止させるようにしてある。
アクチュエータの動作制御はパソコン上で行い、移動量は1mm単位で、移動速度は0.01mm単位で設定可能とした。
また、移動手段に近接して基材をリンスするための超純水を収納した容器を設置し、アクチュエータの動作によりスプレー後の基材を該容器中の超純水に所定時間浸漬させるように構成した。
基板の端部近傍には水晶振動子(図1の○印)を固定し、その発振周波数の変化量Δf又はその変化速度vが測定できるよう周波数カウンタを介してパソコンに接続した。
<Automatic spray type alternate adsorption film manufacturing equipment>
As an example of the present invention, an apparatus for fixing a spray means and moving a 2 cm × 7 cm glass slide substrate (film forming material) will be described with reference to the drawings.
As the spray means, as shown in FIG. 1, two two-fluid type automatic guns are prepared for charged polymer solutions of cation and anion, respectively, for supplying high-pressure air for spraying to each spray means. , A compressor for trigger (3, 5) for supplying pressure to the piston operating air, and a liquid feeding pump (4, 6) for supplying solution are connected.
In controlling the spraying means, the trigger compressor and the solution pump for supplying the solution were simultaneously turned ON / OFF, and the spraying compressor could be controlled separately.
As shown in FIG. 2, two actuators are prepared as means for moving the film-forming material. For the vertical axis (2) and horizontal axis (1) (EZS4S: vertical axis, EZS6S: horizontal axis) ) And attached to a wooden frame not shown. In addition, a sensor is attached to each actuator so that the operation of the actuator is stopped when a certain distance is reached or a load is applied so as not to operate to the limit.
Actuator operation control is performed on a personal computer, and the amount of movement can be set in units of 1 mm and the moving speed can be set in units of 0.01 mm.
Also, a container containing ultrapure water for rinsing the base material is installed near the moving means, and the sprayed base material is immersed in the ultrapure water in the container for a predetermined time by the operation of the actuator. Configured.
A quartz crystal resonator (marked with a circle in FIG. 1) is fixed near the end of the substrate, and connected to a personal computer through a frequency counter so that the change amount Δf of the oscillation frequency or the change speed v can be measured.

<基礎データの取得>
スプレーのノズルから基板が離れたときの噴霧範囲を調べた。基板固定位置にキムタオルを貼り付け、80mm/sの移動速度で縦軸に移動し、そのスプレー跡を測った。スプレーからの距離を変えて測定した結果を図3に示す。
距離が3〜9cmの時には噴霧位置の中心に当る部分とその外側で色が異なり、噴霧が一様でない様子がみてとれたが、11〜13cmでは大体一様に噴霧されていたため、本装置では、基板とスプレーのノズルとの距離を13cmに設定した。
しかし、それでも中心部分からの不均一さが予想されたため、基板のうちアクチュエータに固定するための保持部となる上部の約1cm巾を除いた部分に均一に溶液が塗布されるよう図4のような周回移動で噴霧する動作をプログラムし、その繰り返し回数で噴霧量を設定できるようにした。この場合、1周の時間は1.5秒であるが、上記移動速度を調整すれば一周にかかる時間も変化させることができる。
<Acquisition of basic data>
The spray range when the substrate was separated from the spray nozzle was examined. Kim towel was affixed to the substrate fixing position, moved to the vertical axis at a moving speed of 80 mm / s, and the spray trace was measured. FIG. 3 shows the measurement results obtained by changing the distance from the spray.
When the distance is 3 to 9 cm, the color is different between the part that hits the center of the spray position and the outside, and it can be seen that the spray is not uniform, but at 11 to 13 cm, it was sprayed almost uniformly, so in this device The distance between the substrate and the spray nozzle was set to 13 cm.
However, since the non-uniformity from the central portion is still expected, the solution is uniformly applied to the portion of the substrate excluding the width of about 1 cm at the upper portion that becomes the holding portion for fixing to the actuator as shown in FIG. The operation of spraying with a round motion is programmed, and the spray amount can be set by the number of repetitions. In this case, the time for one round is 1.5 seconds, but the time taken for one round can be changed by adjusting the moving speed.

<成膜のための動作>
上記の自動スプレー式交互吸着膜製造装置の動作フローの例を図5に示す。まず、基板を3回、周回移動させてカチオンポリマー溶液を均一に塗布した後、超純水の水槽内に5秒間浸漬させてリンスを行い、次いでアニオンポリマー溶液についても同様に塗布し、これを1サイクルとした。各サイクルが終了した時点で、水晶振動子の特性変化に基づき、膜厚を計測し、所定の膜厚となったら、基材を原位置まで移動させて動作を停止する。
以上のフローによれば、多層膜の膜厚を精密に制御することができる。
さらに、水晶振動子からの信号に基づき、移動手段による周回移動の回数及び/又は噴霧圧や送液量などのスプレーの噴霧条件を調整してもよい。
<Operation for film formation>
An example of the operation flow of the automatic spray type alternating adsorption film manufacturing apparatus is shown in FIG. First, the substrate was moved around three times to uniformly apply the cationic polymer solution, and then immersed in an ultrapure water tank for 5 seconds for rinsing, and then the anionic polymer solution was applied in the same manner. One cycle was used. At the end of each cycle, the film thickness is measured based on the change in characteristics of the crystal resonator. When the predetermined film thickness is reached, the substrate is moved to the original position and the operation is stopped.
According to the above flow, the thickness of the multilayer film can be precisely controlled.
Furthermore, based on the signal from the crystal oscillator, the number of times of circular movement by the moving means and / or the spray conditions of the spray such as the spray pressure and the liquid feeding amount may be adjusted.

<吸着方法による膜特性の違い>
層数を20に固定し、浸漬法(4秒浸漬)、スプレー法(噴霧圧力:0.05MPa及び0.075MPa)の両方法で、カチオン物質にポリアリルアミン塩酸塩(PAH)、アニオン性溶液にポリアクリル酸(PAA)を使用して、スライドガラスに成膜し、その際、以下の3種類の方法によりリンスを行い、夫々の表面構造と膜厚を評価した。
(1)3分純水の浸漬、
(2)5秒純水に浸漬、
(3)5秒純水に浸漬後、流水をかける
なお、スプレー法は、実施例1の装置に、流水によるリンス用に純水スプレー手段を追加したものを使用し、(3)のリンスは、基板を純水槽内に移動し、5秒間浸漬させた後、純水を常時流下させる位置に移動し、20秒間純水と接触させることにより行った。
スプレー法における噴霧圧力以外の条件は、スプレー・基板間距離:10cm、周回移動:3回、送液量:9.2ml/minである。
(1)3分浸漬によるリンスでは、すべての膜において比較的きれいな膜を作ることができたが、スプレー法では、噴霧圧が高くなるほど白濁が生じた。これは、スプレー法では、吸着過程において、静電引力だけでなく、噴霧圧が加わったことにより、純水の浸漬だけでは除去し切れない凝集が生じたためと考えられる。
(2)5秒浸漬によるリンスでは、すべての方法で白濁が生じ、5秒の浸漬では不十分であることが判った。
(3)5秒純水に浸漬後、流水をかけるリンスでは、すべてのサンプルで白濁が見られず、透明であった。これは、流水により凝集が流されたためと考えられる。
さらに、SEM像を観察したところ、噴霧圧の高い0.075MPaの表面の凝集が小さく、表面が綺麗であった。これは、噴霧圧が強いと、膜表面に付着しなかった分子が除去されやすかったので平滑となったものと考えられる。
また、(1)と(3)のスプレー法で得られた膜の屈折率を測定したところ、(3)のものは、0.05MPaが1.45であったのに対し、0.075MPaでは1.48と増加していたが、(1)では、1.43とほぼ同じであった。これは、噴霧圧が強いと、膜は圧縮され密になったので屈折率が上昇するが、リンス時間が長いと分子鎖が膨潤し元に戻るからと考えられる。
以上の実験によれば、スプレー法では流水による短時間のリンスが有効であり、噴霧圧を調整することにより、膜の物性を変更できることがわかった。
<Difference in membrane characteristics by adsorption method>
The number of layers is fixed to 20, and polyallylamine hydrochloride (PAH) is used as the cationic substance and polyacrylic is used as the anionic solution by both the dipping method (4 sec dipping) and spraying method (spraying pressure: 0.05 MPa and 0.075 MPa). A film was formed on a slide glass using acid (PAA). At that time, rinsing was performed by the following three methods to evaluate the surface structure and film thickness of each.
(1) 3 minutes pure water immersion,
(2) Immerse in pure water for 5 seconds,
(3) Applying running water after immersion in pure water for 5 seconds Note that the spray method uses the apparatus of Example 1 with an addition of pure water spray means for rinsing with running water. The substrate was moved into a pure water tank, immersed for 5 seconds, then moved to a position where pure water was always allowed to flow, and contacted with pure water for 20 seconds.
Conditions other than the spraying pressure in the spray method are: distance between spray and substrate: 10 cm, circular movement: 3 times, liquid feeding amount: 9.2 ml / min.
(1) Rinse by immersion for 3 minutes was able to produce relatively clean films in all films, but in the spray method, white turbidity occurred as the spray pressure increased. This is presumably because, in the spray method, not only electrostatic attractive force but also spray pressure was applied in the adsorption process, and aggregation that could not be removed by pure water immersion alone occurred.
(2) It was found that rinsing by immersion for 5 seconds caused white turbidity in all methods, and immersion for 5 seconds was insufficient.
(3) In the case of rinsing with running water after immersion in pure water for 5 seconds, no cloudiness was observed in all samples and the sample was transparent. This is presumably because the agglomeration was washed away by running water.
Furthermore, when the SEM image was observed, the aggregation of the surface of 0.075 MPa with a high spray pressure was small, and the surface was clean. This is presumably because when the spray pressure was strong, molecules that did not adhere to the film surface were easily removed, and thus smoothened.
In addition, when the refractive index of the film obtained by the spray method of (1) and (3) was measured, 0.05 (MPa) was 1.45 for (3) and 1.48 at 0.075 MPa. However, in (1), it was almost the same as 1.43. This is thought to be because when the spray pressure is strong, the film is compressed and becomes dense and the refractive index increases, but when the rinse time is long, the molecular chain swells and returns.
According to the above experiment, it was found that a short time rinse with running water is effective in the spray method, and the physical properties of the film can be changed by adjusting the spray pressure.

<反射防止膜の作成>
(1)光学基材の表面に作成される反射防止膜の設計
反射防止する対象の波長を、人間の目で最も強く感知する550nmと定め、浸漬法によって作られた高屈折率層の上に低屈折率層を本発明のスプレー法により作成した。
高屈折率膜の作成には、カチオンポリマーとして、ポリジアリルジメチルアンモニウムクリライド(PDDA)を、アニオンにはチタニアの前駆体として、チタニウム(IV)ビス乳酸アンモニウム二水塩(TALH)を使用した。
基板としては、スライドガラス(S-1111、松浪硝子工業製)を、超純水で5分間超音波洗浄した後、超純水と2−プロパノールを体積比で2:3に混合した溶媒に水酸化カリウムを1wt%溶解させた溶液中で2分間超音波洗浄し、その後再度超純水で5分間の超音波洗浄を2回行なったものを使用した。
低屈折率膜の作成には、カチオン物質にポリアリルアミン塩酸塩(PAH)、アニオン性溶液にポリアクリル酸(PAA)を使用した。シュミレーションソフトを使用し、550nmの波長における高屈折率層の屈折率を1.77、低屈折率層の屈折率を1.43として、垂直入射における透過特性を計算したところ、低屈折率層の厚さ96nmで550nmの光がほぼ100%透過することがわかった。
(2)浸漬法による高屈折率膜の作成
PDDA(分子量200,000〜350,000、Aldrich社製)の20wt%水溶液とTALH(Aldrich社製)の50wt%水溶液を、PDDAについてはpH5.5に、TALHについてはpH3.5になるよう、塩酸(純正化学)あるいは水酸化ナトリウム(和光純薬工業)で調整し、十分に攪拌してから膜作成に使用した。
各水槽中に20回交互に浸漬したところ膜厚85nm、屈折率1.77の高屈折膜が成膜された。
(3)スプレー法による低屈折率膜の作成
実施例2の装置を使用し、スプレー・基板間距離:10cm、周回移動:3回、送液量:9.2ml/min、噴霧圧力:0.05MPa、リンス:5秒浸漬+純水による流水、という条件で図5のフローチャートに従い、高屈折率膜の上面にPAH/PAAを成膜したところ、n=30で膜厚96nmの低屈折率膜が成膜された。さらに比較のため、n=50の低屈折率膜も成膜した。
成膜していないスライドガラス、高屈折率膜を成膜したもの、高屈折率膜の上面に低屈折率膜を成膜したものの、波長と透過率の関係を図6に示す。基板上に高屈折率膜を作成したものでは反射が強まって大きく透過率が減少しているが、その上面に低屈折率膜を成膜すると大きく透過率が上昇し、480〜780nmでは基板自体より透過率が向上している。
図7は、高屈折率膜のみ成膜したもの、高屈折率膜の上面に低屈折率膜をn=30とn=50成膜したものの、波長と透過率の関係を示している。このグラフから明らかなように、膜厚を増加させると、ピーク波長が長波長側に移動する。
<Creation of antireflection film>
(1) Design of the anti-reflection film created on the surface of the optical substrate The wavelength of the object to be anti-reflective is set to 550 nm, which is most strongly detected by the human eye, on the high refractive index layer made by the immersion method. A low refractive index layer was prepared by the spray method of the present invention.
For preparation of the high refractive index film, polydiallyldimethylammonium chloride (PDDA) was used as the cationic polymer, and titanium (IV) bis ammonium lactate dihydrate (TALH) was used as the titania precursor for the anion.
As a substrate, slide glass (S-1111, manufactured by Matsunami Glass Industrial Co., Ltd.) was ultrasonically washed with ultrapure water for 5 minutes and then mixed with a solvent in which ultrapure water and 2-propanol were mixed at a volume ratio of 2: 3. Ultrasonic cleaning was performed for 2 minutes in a solution in which 1 wt% of potassium oxide was dissolved, and then ultrasonic cleaning was again performed twice for 5 minutes with ultra pure water.
For the production of the low refractive index film, polyallylamine hydrochloride (PAH) was used as a cationic substance, and polyacrylic acid (PAA) was used as an anionic solution. Using the simulation software, the refractive index of the high refractive index layer at a wavelength of 550 nm was 1.77, the refractive index of the low refractive index layer was 1.43, and the transmission characteristics at normal incidence were calculated. The thickness of the low refractive index layer was 96 nm. It was found that 550 nm light was transmitted almost 100%.
(2) Preparation of high refractive index film by immersion method
Hydrochloric acid (pure chemistry) so that a 20 wt% aqueous solution of PDDA (molecular weight 200,000-350,000, manufactured by Aldrich) and a 50 wt% aqueous solution of TALH (manufactured by Aldrich) are pH 5.5 for PDDA and pH 3.5 for TALH. ) Or sodium hydroxide (Wako Pure Chemical Industries, Ltd.).
When alternately immersed in each water tank 20 times, a high refractive film having a film thickness of 85 nm and a refractive index of 1.77 was formed.
(3) Preparation of low refractive index film by spraying method Using the apparatus of Example 2, spray-to-substrate distance: 10 cm, circular movement: 3 times, liquid feeding amount: 9.2 ml / min, spraying pressure: 0.05 MPa, Rinsing: PAH / PAA was formed on the top surface of the high refractive index film according to the flow chart of FIG. 5 under the condition of 5 seconds immersion + flowing water with pure water. A low refractive index film with a thickness of 96 nm was formed with n = 30. Was filmed. For comparison, an n = 50 low refractive index film was also formed.
FIG. 6 shows the relationship between the wavelength and transmittance of a glass slide not formed, a film with a high refractive index film formed, and a film with a low refractive index film formed on the upper surface of the high refractive index film. In the case where a high refractive index film is formed on the substrate, the reflection is increased and the transmittance is greatly reduced, but when the low refractive index film is formed on the upper surface, the transmittance is greatly increased, and at 480 to 780 nm, the substrate itself is increased. The transmittance is further improved.
FIG. 7 shows the relationship between the wavelength and the transmittance of the case where only the high refractive index film is formed and the low refractive index film is formed on the upper surface of the high refractive index film with n = 30 and n = 50. As is apparent from this graph, when the film thickness is increased, the peak wavelength moves to the long wavelength side.

<スプレー回数と膜厚の関係>
実施例1の装置を使用し、実施例3と同じ方法で低屈折膜を水晶振動子の表面に形成した場合の水晶振動子の周波数変化を測定した結果を図8に示す。
膜形成による周波数変化と重量増加量の計測から、周波数1Hzの変化は、1ngの膜の堆積量に相当することがわかった。したがって、水晶振動子の周波数変化を測定することにより、膜の形成量が推定でき、水晶振動子の表面積と膜物質の比重から膜厚を計算することができる。
また、図8に示されるような、膜の層数、すなわちスプレー回数と膜厚との関係を予め求めておけば、同一の条件で溶液を被成膜材料にスプレーし、そのスプレー回数で膜厚を制御することが可能である。
比較のため高圧空気を使用せずにスプレーした結果(図8の■印)も示す。図から明らかなように、膜の形成速度が著しく劣る。また、薄膜の固化が遅いため、液ダレが生じやすくなり、噴霧条件が限定される。
<Relationship between number of sprays and film thickness>
FIG. 8 shows the result of measuring the frequency change of the crystal resonator when the apparatus of Example 1 is used and the low refractive film is formed on the surface of the crystal resonator by the same method as in Example 3.
From the change in frequency and the increase in weight due to film formation, it was found that a change in frequency of 1 Hz corresponds to the amount of film deposited in 1 ng. Therefore, the amount of film formation can be estimated by measuring the frequency change of the crystal resonator, and the film thickness can be calculated from the surface area of the crystal resonator and the specific gravity of the film substance.
Further, if the relationship between the number of layers of the film, that is, the number of sprays and the film thickness is obtained in advance as shown in FIG. 8, the solution is sprayed onto the film-forming material under the same conditions, and the film is formed at the number of sprays. It is possible to control the thickness.
For comparison, the result of spraying without using high-pressure air (marked with ■ in FIG. 8) is also shown. As is apparent from the figure, the film formation rate is remarkably inferior. Further, since the thin film is slowly solidified, liquid sag is likely to occur, and spray conditions are limited.

<スプレーされる溶液の流速及び流量による膜の性状の変化>
実施例1の装置を使用し、実施例3の低屈折膜を、スプレーの流速、流量を変化させて製造した。その膜表面を原子間力顕微鏡(AFM)で撮影した写真(5μm×5μm)を図9に示す。
図9から明らかなように、流速が大きく、流量が少ないほど平滑は表面となることがわかる。したがって、スプレーする溶液の流速と流量を調整することにより、平滑な表面の厚膜や粗面の薄膜などをその使用目的に応じて作成することができる。
<Changes in membrane properties depending on the flow rate and flow rate of the solution to be sprayed>
Using the apparatus of Example 1, the low refractive film of Example 3 was produced by changing the flow rate and flow rate of the spray. A photograph (5 μm × 5 μm) of the film surface taken with an atomic force microscope (AFM) is shown in FIG.
As is clear from FIG. 9, it can be seen that the smoother the surface, the higher the flow rate and the smaller the flow rate. Therefore, by adjusting the flow rate and flow rate of the solution to be sprayed, a thick film with a smooth surface, a thin film with a rough surface, and the like can be prepared according to the purpose of use.

<親水膜(防曇膜)の作成>
実施例1の装置を使用し、スライドガラス基材の表面にPAH/PAAを20回交互にスプレーして成膜し、裏面にアミノポリマー/フルオロポリマーを交互にスプレーして成膜したところ、表面は防曇性、裏面は撥水性という面ごとに異なる性質を付与できた。このような基材を眼鏡や光学レンズ、カメラ・電子機器ディスプレイ表面に適用すれば曇り止めや汚れ防止という効果を奏することができる。
<Creation of hydrophilic film (antifogging film)>
Using the apparatus of Example 1, a film was formed by alternately spraying PAH / PAA 20 times on the surface of the slide glass substrate and alternately spraying amino polymer / fluoropolymer on the back surface. The antifogging property and the back surface were water repellent. If such a base material is applied to the surface of glasses, an optical lens, a camera / electronic device display, the effect of preventing fogging and preventing dirt can be obtained.

<面内パターニングに形成>
実施例1の装置を使用し、スライドガラス基材の表面一部分をマスキングした状態で、アミノポリマー/フルオロポリマーを20回交互にスプレーして成膜し、ついで、前記成膜した部分をマスキングし、残りの部分にPAH/PAA20回交互にスプレーして成膜することにより、同一面内の一部に撥水膜、一部に親水膜といった面内パターニングを形成できた。このような基材をガラス基材や金属基材、プラスチックに適用すれば、基材の一部にのみ流路を形成可能という効果を奏することができる。

さらに、溶液として(PEDOT−PSS)/PAH、及びPAH/PAAを同様にスプレーすることにより、同一面内の一部に導電膜、他の一部に絶縁膜といった面内パターニングを形成することができた。このような基材を印刷物やプリント基材に適用すればフレキシブルプリント基板やICタグをはじめとする回路部品を容易に作製できるという効果を奏することができる。
<Forming in-plane patterning>
Using the apparatus of Example 1, with a portion of the surface of the slide glass substrate masked, the amino polymer / fluoropolymer was sprayed alternately 20 times to form a film, and then the formed portion was masked. By spraying the remaining portion alternately by PAH / PAA 20 times, in-plane patterning such as a water repellent film on a part of the same surface and a hydrophilic film on a part of the surface could be formed. If such a base material is applied to a glass base material, a metal base material, or a plastic, an effect that a flow path can be formed only on a part of the base material can be achieved.

Furthermore, by spraying (PEDOT-PSS) / PAH and PAH / PAA in the same manner as a solution, in-plane patterning such as a conductive film on one part of the same plane and an insulating film on the other part can be formed. did it. If such a base material is applied to a printed matter or a printed base material, it is possible to easily produce a circuit component such as a flexible printed circuit board or an IC tag.

本発明によれば、従来の浸漬法と同等な交互吸着膜を短時間で成膜することが可能となり、噴霧条件を変更することにより膜の物性も調整することができ、従来法では成膜が困難であるか不可能であった箇所へも成膜が可能となり、産業上の利用可能性が広がった。   According to the present invention, it is possible to form an alternating adsorption film equivalent to the conventional immersion method in a short time, and the physical properties of the film can be adjusted by changing the spraying conditions. This makes it possible to form a film at a place where it is difficult or impossible, and the industrial applicability has expanded.

Claims (10)

正の荷電を含む溶液と負の荷電を含む溶液とを、微細なミスト状にするスプレー手段により被成膜材料の表面に交互にスプレーすることにより、多層構造を有する交互吸着膜を製造するに当たり、スプレー手段又は被成膜材料のいずれかを移動させて前記各溶液を前記水晶振動子及び被成膜材料表面に、同じ条件で均一にスプレーし、前記水晶振動子の発振周波数又はインピーダンスの変化量Δfまたはその変化速度vに基づき膜厚を精密に制御しながら成膜することを特徴とする交互吸着膜の製造方法。   In producing an alternately adsorbing film having a multilayer structure, a solution containing a positive charge and a solution containing a negative charge are alternately sprayed on the surface of a film-forming material by a fine mist spraying means. Then, either the spray means or the film forming material is moved to spray each solution uniformly on the surface of the crystal resonator and the film forming material under the same conditions, and the change in the oscillation frequency or impedance of the crystal resonator A method for producing an alternating adsorption film, characterized in that the film is formed while the film thickness is precisely controlled based on the amount Δf or the rate of change v thereof. 水晶振動子を被成膜材料の近傍に固定し、前記溶液を前記水晶振動子及び被成膜材料表面に同時にスプレーすることを特徴とする請求項1記載の交互吸着膜の製造方法。   2. The method of manufacturing an alternately adsorbing film according to claim 1, wherein a quartz resonator is fixed in the vicinity of the film forming material, and the solution is sprayed simultaneously on the surface of the crystal resonator and the film forming material. 前記各溶液を前記水晶振動子と被成膜材料表面に均一にスプレーした後、前記水晶振動子の発振周波数又はインピーダンスの変化量Δfまたはその変化速度vに基づき当該スプレーにより得られる膜厚を計測し、この膜厚値から所定の膜厚とするために必要な追加噴霧量を求め、該噴霧量が均一に被成膜材料表面に塗布されるように噴霧回数及び/又は噴霧量を調整することを特徴とする請求項2記載の交互吸着膜の製造方法。   After each solution is uniformly sprayed on the surface of the crystal resonator and the film forming material, the film thickness obtained by the spray is measured based on the change amount Δf of the oscillation frequency or impedance of the crystal resonator or the change speed v. Then, an additional spray amount necessary to obtain a predetermined film thickness is obtained from the film thickness value, and the number of sprays and / or the spray amount is adjusted so that the spray amount is uniformly applied to the film forming material surface. The method for producing an alternately adsorbing film according to claim 2. スプレー手段の噴霧圧力を制御して噴霧量を調整することを特徴とする請求項3記載の交互吸着膜の製造方法。   4. The method for producing an alternating adsorption film according to claim 3, wherein the spray amount is adjusted by controlling the spray pressure of the spray means. 噴霧圧力を制御することにより、被成膜材料表面に成膜させる薄膜の屈折率を調整することを特徴とする請求項4記載の交互吸着膜の製造方法。   5. The method for producing an alternating adsorption film according to claim 4, wherein the refractive index of the thin film formed on the film forming material surface is adjusted by controlling the spray pressure. スプレー手段の送液量又は送液時間または送液速度(流量)を制御して噴霧量を調整することを特徴とする請求項3記載の交互吸着膜の製造方法。   4. The method for producing an alternating adsorption film according to claim 3, wherein the spray amount is adjusted by controlling the liquid feed amount, the liquid feed time, or the liquid feed speed (flow rate) of the spray means. 各溶液をスプレーする毎に、被成膜材料の表面を純水の流水又は純水のスプレーにより洗浄することを特徴とする請求項1ないし6の何れかに記載の交互吸着膜の製造方法。   The method for producing an alternating adsorption film according to any one of claims 1 to 6, wherein the surface of the film forming material is washed by flowing pure water or spraying pure water each time each solution is sprayed. 平面又は立体の被成膜材料の各面ごと又は部分ごとに異なる溶液をスプレーし、機能の異なる薄膜を成膜する請求項1ないし7のいずれかに記載の交互吸着膜の製造方法。   The method for producing an alternating adsorption film according to any one of claims 1 to 7, wherein a thin film having a different function is formed by spraying a different solution for each surface or each part of a planar or three-dimensional film forming material. 正の荷電を含む溶液と負の荷電を含む溶液とを、微細なミスト状にするスプレー手段により被成膜材料の表面に交互にスプレーすることにより、多層構造を有する交互吸着膜を製造装置であって、
正の荷電を含む溶液と負の荷電を含む溶液とを、微細なミスト状にするスプレー手段と、
被成膜材料の端部近傍に水晶振動子を固定し、前記各溶液を前記水晶振動子と被成膜材料表面に均一に吹き付けられるように、スプレー手段又は被成膜材料のいずれかを移動させる移動手段と、
前記水晶振動子の発振周波数又はインピーダンスを検出する検出部と、
前記周波数検出部が検出した周波数又はインピーダンスに基づいて、前記移動手段及び/又はスプレー手段の噴霧量を制御する制御部と、
を備えることを特徴とする交互吸着膜の製造装置。
By alternately spraying a solution containing a positive charge and a solution containing a negative charge on the surface of the film-forming material by means of a fine mist spraying means, an alternating adsorption film having a multilayer structure is produced by a manufacturing apparatus. There,
Spray means for making a solution containing a positive charge and a solution containing a negative charge into a fine mist;
A quartz crystal is fixed near the edge of the film-forming material, and either the spray means or the film-forming material is moved so that each solution can be sprayed uniformly on the surface of the crystal and the film-forming material. Moving means to cause
A detection unit for detecting an oscillation frequency or impedance of the crystal unit;
Based on the frequency or impedance detected by the frequency detection unit, a control unit for controlling the spray amount of the moving unit and / or spray unit;
An apparatus for producing an alternating adsorption film, comprising:
移動手段の移動範囲内に、純水の流水手段又は純水のスプレー手段からなる、被成膜材料のリンス手段を設けたことを特徴とする請求項9記載の交互吸着膜の製造装置。   10. The apparatus for producing an alternately adsorbing film according to claim 9, wherein a rinsing means for the film forming material is provided in the moving range of the moving means, comprising pure water flowing means or pure water spray means.
JP2010059140A 2010-03-16 2010-03-16 Method and apparatus for producing alternating adsorption film by spray method Active JP5498824B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010059140A JP5498824B2 (en) 2010-03-16 2010-03-16 Method and apparatus for producing alternating adsorption film by spray method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010059140A JP5498824B2 (en) 2010-03-16 2010-03-16 Method and apparatus for producing alternating adsorption film by spray method

Publications (2)

Publication Number Publication Date
JP2011189314A true JP2011189314A (en) 2011-09-29
JP5498824B2 JP5498824B2 (en) 2014-05-21

Family

ID=44794801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010059140A Active JP5498824B2 (en) 2010-03-16 2010-03-16 Method and apparatus for producing alternating adsorption film by spray method

Country Status (1)

Country Link
JP (1) JP5498824B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013250265A (en) * 2012-06-04 2013-12-12 Leica Mikrosysteme Gmbh Device for preparing, covering in particular, sample
JP2014023991A (en) * 2012-07-25 2014-02-06 Nippon Pillar Packing Co Ltd Fluid cleaning filter and method for manufacturing the same
JP2018021897A (en) * 2016-05-02 2018-02-08 ロッキード マーティン コーポレイションLockheed Martin Corporation Dynamic coating thickness measurement and control
US9939412B2 (en) 2013-02-06 2018-04-10 Empire Technology Development Llc Devices, systems, and methods for detecting odorants

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000013806A1 (en) * 1998-09-04 2000-03-16 Seimei Shiratori Method and apparatus for forming film by alternate deposition, and film-coated structure
JP2005185909A (en) * 2003-12-25 2005-07-14 Snt Co Coating method and coating apparatus
JP2005254152A (en) * 2004-03-12 2005-09-22 Hitachi Chem Co Ltd Manufacturing method for electrolyte laminated film and its manufacturing apparatus
JP2010502433A (en) * 2006-09-08 2010-01-28 マサチューセッツ・インスティテュート・オブ・テクノロジー Automatic layer-by-layer spraying technology

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000013806A1 (en) * 1998-09-04 2000-03-16 Seimei Shiratori Method and apparatus for forming film by alternate deposition, and film-coated structure
JP2005185909A (en) * 2003-12-25 2005-07-14 Snt Co Coating method and coating apparatus
JP2005254152A (en) * 2004-03-12 2005-09-22 Hitachi Chem Co Ltd Manufacturing method for electrolyte laminated film and its manufacturing apparatus
JP2010502433A (en) * 2006-09-08 2010-01-28 マサチューセッツ・インスティテュート・オブ・テクノロジー Automatic layer-by-layer spraying technology

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013250265A (en) * 2012-06-04 2013-12-12 Leica Mikrosysteme Gmbh Device for preparing, covering in particular, sample
JP2014023991A (en) * 2012-07-25 2014-02-06 Nippon Pillar Packing Co Ltd Fluid cleaning filter and method for manufacturing the same
US9939412B2 (en) 2013-02-06 2018-04-10 Empire Technology Development Llc Devices, systems, and methods for detecting odorants
JP2018021897A (en) * 2016-05-02 2018-02-08 ロッキード マーティン コーポレイションLockheed Martin Corporation Dynamic coating thickness measurement and control
JP7251911B2 (en) 2016-05-02 2023-04-04 ロッキード マーティン コーポレイション Dynamic coating thickness measurement and control

Also Published As

Publication number Publication date
JP5498824B2 (en) 2014-05-21

Similar Documents

Publication Publication Date Title
US9387505B2 (en) Methods, materials and apparatus for improving control and efficiency of layer-by-layer processes
Izquierdo et al. Dipping versus spraying: exploring the deposition conditions for speeding up layer-by-layer assembly
Yokoi et al. Optically transparent superhydrophobic surfaces with enhanced mechanical abrasion resistance enabled by mesh structure
Xu et al. Oil-repellent antifogging films with water-enabled functional and structural healing ability
Syafiq et al. Superhydrophilic smart coating for self-cleaning application on glass substrate
JP5498824B2 (en) Method and apparatus for producing alternating adsorption film by spray method
JP5744720B2 (en) Coating a substrate with a polymer film stable in a liquid medium
Zhao et al. Superhydrophobic polyimide films with a hierarchical topography: combined replica molding and layer-by-layer assembly
Cao et al. Fabrication of highly antireflective silicon surfaces with superhydrophobicity
Fukao et al. Automatic spray-LBL machine based on in-situ QCM monitoring
WO2008123955A1 (en) Articles with super-hydrophobic and-or super hydrophilic surfaces and method of formation
US20120082831A1 (en) Nano-Porous Coatings and Making Methods
CN107405861A (en) Antifog antifouling layered product and its manufacture method, article and its manufacture method and anti-fouling method
US10625489B2 (en) Optical member and method for producing optical member
WO2018209098A1 (en) Self-cleanable transparent conductive surface/film
JP2007086774A (en) Sheet-like optical member and manufacturing method thereof
JP4747653B2 (en) Low refractive index thin film and manufacturing method thereof
JP5286632B2 (en) Porous membrane and method for producing the same
KR101869192B1 (en) Method of manufacturing a super hydrophobic surface with an enhanced durability and permiability
JP2006301126A (en) Low refractive index film
Tang et al. Combination of universal chemical deposition and unique liquid etching for the design of superhydrophobic aramid paper with bioinspired multiscale hierarchical dendritic structure
Xu et al. Fabrication of flexible superhydrophobic biomimic surfaces
KR20170120275A (en) ultrasonic spraying apparatus for forming layer-by-layer electrostatic self-assembly film and method for forming layer-by-layer electrostatic self-assembly film
Kwon et al. Uniform anti-reflective films fabricated by layer-by-layer ultrasonic spray method
CN103728675A (en) Super-hydrophobic self-cleaning resin lens and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120919

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130321

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130423

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140310

R150 Certificate of patent or registration of utility model

Ref document number: 5498824

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250