JP2011188697A - Motor - Google Patents

Motor Download PDF

Info

Publication number
JP2011188697A
JP2011188697A JP2010054049A JP2010054049A JP2011188697A JP 2011188697 A JP2011188697 A JP 2011188697A JP 2010054049 A JP2010054049 A JP 2010054049A JP 2010054049 A JP2010054049 A JP 2010054049A JP 2011188697 A JP2011188697 A JP 2011188697A
Authority
JP
Japan
Prior art keywords
motor shaft
motor
magnetic
magnetic flux
stator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010054049A
Other languages
Japanese (ja)
Other versions
JP5586275B2 (en
Inventor
Tsutomu Michioka
力 道岡
Rikiya Taniguchi
力也 谷口
Kimihiro Asahata
公宏 麻畠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP2010054049A priority Critical patent/JP5586275B2/en
Publication of JP2011188697A publication Critical patent/JP2011188697A/en
Application granted granted Critical
Publication of JP5586275B2 publication Critical patent/JP5586275B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Abstract

<P>PROBLEM TO BE SOLVED: To prevent deterioration in efficiency of a motor or an increase in temperature of a motor shaft by preventing the occurrence of an eddy current of the motor shaft due to variation in magnetic flux in using a magnetic body to form the motor shaft and utilizing it as a part of a magnetic path. <P>SOLUTION: A conductor part 7a for shielding conduction for a variation of magnetic flux to the motor shaft 2 and a high-permeability low-loss electromagnetic member 8a for forming a bypass magnetic path for the variation which is shielded by the conductor part 7a are provided on the outside of the motor shaft 2. The occurrence of the eddy current of the motor shaft 2 is prevented by the shielding of the conductor part 7a, and the component of variation (ripples) in magnetic flux is made to pass through the bypass magnetic path of the low-loss electromagnetic member 8a to prevent deterioration in efficiency of the axial gap motor 1 or the increase in temperature of the motor shaft 2. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、ステータ、ロータ間の磁束が磁性体のモータ軸を軸方向に通過する磁路構成のモータに関し、詳しくは、モータ軸を通る磁束の脈動(変動)による渦電流の発生を防止する構造に関する。   The present invention relates to a motor having a magnetic path configuration in which a magnetic flux between a stator and a rotor passes through a motor shaft of a magnetic material in an axial direction, and more specifically, generation of eddy current due to pulsation (variation) of magnetic flux passing through a motor shaft is prevented. Concerning structure.

従来、ステータ、ロータ間の磁束の磁路の一部を磁性体のモータ軸により形成したモータとして、ラジアルギャップのモータが提案されている(例えば、特許文献1参照)。   Conventionally, a radial gap motor has been proposed as a motor in which a part of a magnetic path of a magnetic flux between a stator and a rotor is formed by a magnetic motor shaft (see, for example, Patent Document 1).

図8は特許文献1に記載のラジアルギャップ(アウターステータ)モータ(ハイブリッド励磁モータ)100を示し、モータ100のステータ(電機子)101は、鉄心102にコイル(電機子巻線)103を巻回した構造である。鉄心102は、モータ軸方向の一方の片側部分がN極側鉄心102a、他方の片側部分がS極側鉄心102bであり、鉄心102a、102b間にリング状の直流の励磁巻線105が設けられている。   FIG. 8 shows a radial gap (outer stator) motor (hybrid excitation motor) 100 described in Patent Document 1, and a stator (armature) 101 of the motor 100 winds a coil (armature winding) 103 around an iron core 102. This is the structure. The iron core 102 has an N pole side iron core 102a on one side in the motor axis direction and an S pole side iron core 102b on the other side, and a ring-shaped DC exciting winding 105 is provided between the iron cores 102a and 102b. ing.

ステータ101の内側のロータ(回転子)111は、鉄心112と、N極、S極のPM(永久磁石)113とを有し、鉄心112はモータ軸(シャフト)115に連結されたヨーク114、すなわち、モータ軸115の一部であるヨーク114に支持されている。鉄心112は複数のポール(突極状部)112aを形成し、各ポール112aは、ステータ101の鉄心102a、102bに対応して設けられている。その結果、ロータ111は、ポール112a、112bとPM113が周方向に交互に配置された構造になっている。   A rotor (rotor) 111 inside the stator 101 has an iron core 112 and an N pole, S pole PM (permanent magnet) 113, and the iron core 112 is connected to a motor shaft (shaft) 115, a yoke 114, That is, it is supported by a yoke 114 that is a part of the motor shaft 115. The iron core 112 forms a plurality of poles (salient pole portions) 112 a, and each pole 112 a is provided corresponding to the iron cores 102 a and 102 b of the stator 101. As a result, the rotor 111 has a structure in which the poles 112a and 112b and the PM 113 are alternately arranged in the circumferential direction.

そして、励磁巻線105に電流が流れると、図8の矢印実線のように、ヨーク114を含む閉磁路が形成され、この閉磁路をステータ101、ロータ111間の磁束が通る。   When a current flows through the excitation winding 105, a closed magnetic circuit including the yoke 114 is formed as indicated by the solid line in FIG. 8, and the magnetic flux between the stator 101 and the rotor 111 passes through this closed magnetic circuit.

一方、この種のアキシャルギャップのモータとして、本願出願人は、立体的な磁路構成のアキシャルギャップモータを既に出願している(特願2009−0115232号)。   On the other hand, the applicant of the present application has already filed an axial gap motor having a three-dimensional magnetic path configuration as this type of axial gap motor (Japanese Patent Application No. 2009-0115232).

図9は本願出願人の既出願の3相駆動のアキシャルギャップモータ200の概略の分解斜視図であり、モータ200は、モータ軸(図示せず)に軸支されたモータ軸方向の2個のロータ203a、203b間に表裏両面が磁極面の1個のステータ204を設け、さらに、モータ軸に装着した円筒状の磁路形成部材205をステータ204の中心孔に遊挿し、磁路形成部材205の両端面をロータ203a、203bの端面(磁極面)に当接して形成される。磁路形成部材205はロータ203a、203b間の磁路を形成する。なお、図10の実線mはモータ軸を示し、破線矢印は磁束が通る磁路を示す。   FIG. 9 is a schematic exploded perspective view of a three-phase drive axial gap motor 200 of the applicant's previously filed application. The motor 200 includes two motor shafts that are axially supported by a motor shaft (not shown). A single stator 204 having magnetic pole faces on both sides is provided between the rotors 203a and 203b, and a cylindrical magnetic path forming member 205 attached to the motor shaft is loosely inserted into the center hole of the stator 204, thereby magnetic path forming member 205. Are formed in contact with the end surfaces (magnetic pole surfaces) of the rotors 203a and 203b. The magnetic path forming member 205 forms a magnetic path between the rotors 203a and 203b. In addition, the solid line m of FIG. 10 shows a motor shaft, and the broken line arrow shows the magnetic path through which magnetic flux passes.

そして、ロータ203a、203bは、ステータ204に対向する端面(磁極面)に例えば8個のロータ磁極206が周方向に等間隔に配設されている。ステータ4は、例えば、ロータ203aに対向する一方の端面(磁極面)に全てS極に励磁されるA、B、Cの相順の12個のステータ磁極207aが周方向に等間隔に配設され、ロータ203bに対向する他方の端面(磁極面)に全てN極に励磁されるA、B、Cの相順の12個のステータ磁極207bがステータ磁極207aより周方向にずらして等間隔に配設されている。   In the rotors 203a and 203b, for example, eight rotor magnetic poles 206 are arranged at equal intervals in the circumferential direction on the end face (magnetic pole face) facing the stator 204. In the stator 4, for example, twelve stator magnetic poles 207 a in the phase order of A, B, and C, which are excited to the S poles, are arranged at equal intervals in the circumferential direction on one end face (magnetic pole face) facing the rotor 203 a. The 12 stator magnetic poles 207b having the phase sequence of A, B, and C that are all excited to the N pole on the other end face (magnetic pole face) facing the rotor 203b are shifted from the stator magnetic pole 207a in the circumferential direction at equal intervals. It is arranged.

そして、アキシャルギャップモータ200は、3相駆動によってステータ204の各ステータ磁極207a、207bに集中巻きされた各相の励磁コイル(図示せず)がA、B、Cの相順に通電され、このとき、図5の破線矢印に示すように磁束がステータ204の軸方向および周方向に進む立体磁路が形成される。そして、例えばステータ204の裏面の励磁相のN極から出た磁束が上記立体磁路を通ることにより、ロータ203b、磁路形成部材205、ロータ203aを通ってステータ204の表面の励磁相のS極に入り、その磁気的な吸引によりロータ203a、203bが回転してアキシャルギャップモータ200が駆動される。   In the axial gap motor 200, the excitation coils (not shown) concentratedly wound around the stator magnetic poles 207a and 207b of the stator 204 by three-phase driving are energized in the order of phases A, B, and C. 5, a solid magnetic path is formed in which the magnetic flux travels in the axial direction and the circumferential direction of the stator 204 as indicated by broken line arrows. For example, when the magnetic flux emitted from the N pole of the excitation phase on the back surface of the stator 204 passes through the three-dimensional magnetic path, the excitation phase S on the surface of the stator 204 passes through the rotor 203b, the magnetic path forming member 205, and the rotor 203a. The rotor 203a, 203b is rotated by the magnetic attraction and the axial gap motor 200 is driven.

特開平6−351206号公報JP-A-6-351206

図8の従来例のモータ100は、PM113の磁束に界磁巻線105で発生させる磁束を加減することによりモータ100の界磁磁束を調整可能にしたものであるが、過渡的な電流変化やモータ100の回転による磁気抵抗変化等により、炭素鋼等のソリッド(むく)の磁性体で形成されるモータ軸115を通る磁束が変動すると、モータ軸115に渦電流が発生して損失を生じさせる。   The motor 100 of the conventional example of FIG. 8 can adjust the field magnetic flux of the motor 100 by adjusting the magnetic flux generated by the field winding 105 to the magnetic flux of PM 113. When the magnetic flux passing through the motor shaft 115 formed of a solid magnetic material such as carbon steel fluctuates due to a change in magnetic resistance caused by the rotation of the motor 100, an eddy current is generated in the motor shaft 115 to cause a loss. .

この損失は、モータ100の出力効率を低下させる原因となる他、モータ100に制動力(ブレーキ)として作用し、モータ100の軸トルクが低下する。さらに、モータ軸115の温度上昇も引き起こす。   This loss causes a reduction in the output efficiency of the motor 100, and also acts as a braking force (brake) on the motor 100, so that the shaft torque of the motor 100 decreases. Further, the temperature of the motor shaft 115 is increased.

また、図9の既出願のモータ200においても、モータ軸を磁性体で形成して磁路形成部材205を省くようにした場合には磁束がモータ軸を通る。そして、この場合も、過渡的な電流変化やモータ200の回転による磁気抵抗変化等により、前記ソリッドの磁性体で形成されるモータ軸を通る磁束が変動すると、モータ軸に渦電流が発生して損失を生じさせ、モータ200のトルク(軸トルク)が低下して効率が低下し、さらに、モータ軸の温度上昇も引き起こす。   In the motor 200 of the already-filed application in FIG. 9, when the motor shaft is formed of a magnetic material and the magnetic path forming member 205 is omitted, the magnetic flux passes through the motor shaft. Also in this case, if the magnetic flux passing through the motor shaft formed of the solid magnetic material fluctuates due to a transient current change or a magnetoresistive change due to the rotation of the motor 200, an eddy current is generated in the motor shaft. Loss is caused, the torque (shaft torque) of the motor 200 is lowered, the efficiency is lowered, and further, the temperature of the motor shaft is increased.

本発明は、アキシャルギャップモータ、ラジアルギャップモータを問わず、モータ軸を磁性体で形成して磁路の一部として利用する場合に、磁束の変動によるモータ軸の渦電流の発生を防止して効率低下やモータ軸の温度上昇を防止することを目的とする。   The present invention prevents the generation of eddy currents in the motor shaft due to fluctuations in magnetic flux when the motor shaft is formed of a magnetic material and used as a part of a magnetic path regardless of whether it is an axial gap motor or a radial gap motor. The purpose is to prevent a decrease in efficiency and a temperature rise of the motor shaft.

上記した目的を達成するために、本発明のモータは、ステータ、ロータ間の磁束が磁性体のモータ軸を軸方向に通過する磁路構成のモータにおいて、前記モータ軸の外側に、前記磁束の変動分の前記モータ軸への流入を遮蔽する導体部と、前記導体部により遮蔽された前記変動分のバイパス磁路を形成する高透磁率の低損失電磁部材部とを備えることを特徴としている(請求項1)。   In order to achieve the above object, the motor of the present invention is a motor having a magnetic path configuration in which the magnetic flux between the stator and the rotor passes through the magnetic motor shaft in the axial direction. It is characterized by comprising: a conductor part that shields fluctuations from flowing into the motor shaft; and a high-permeability low-loss electromagnetic member part that forms a bypass magnetic path shielded by the conductor parts. (Claim 1).

また、本発明のモータは、前記導体部が、内径側ループとその外側の外径側ループとを有する8の字コイル構造のコイル体により形成され、前記内径側ループはモータ軸を囲み、前記外径側ループは前記導体部を囲むことを特徴としている(請求項2)。   In the motor of the present invention, the conductor portion is formed by a coil body having an 8-shaped coil structure having an inner diameter side loop and an outer diameter side loop outside the inner loop, and the inner diameter side loop surrounds the motor shaft, The outer diameter side loop surrounds the conductor portion (claim 2).

請求項1に係る本発明のモータの場合、磁性体のモータ軸に流入する磁束が変動(脈動)すると、その変動によって導体部にループ電流が発生し、その電流に基づく逆向きの磁束により、モータ軸に流入する磁束の変動が打ち消されて前記磁束の変動分が遮蔽される。そのため、前記変動によるモータ軸の渦電流の発生を防止できる。   In the case of the motor of the present invention according to claim 1, when the magnetic flux flowing into the motor shaft of the magnetic material fluctuates (pulsates), a loop current is generated in the conductor due to the fluctuation, and the reverse magnetic flux based on the current causes The fluctuation of the magnetic flux flowing into the motor shaft is canceled and the fluctuation of the magnetic flux is shielded. Therefore, generation of eddy current in the motor shaft due to the fluctuation can be prevented.

さらに、磁束の変動(脈動)成分を導体部で遮蔽するだけでは、モータ軸を通る磁束が平滑化されてしまうので磁束が大きくなったときに本来発生できるはずのトルクを発生できなくなるが、本発明の場合は、モータ軸の外側の低損失電磁部材が磁束の変動(脈動)分のバイパス磁路を形成し、磁束の変動分が高透磁率の低損失電磁部材のバイパス磁路を通ってモータの駆動に利用され、モータのトルクが落ちることもない。そして、高透磁率の低損失電磁部材は、変動分によって温度上昇が生じることはない。   Furthermore, if the fluctuation (pulsation) component of the magnetic flux is only shielded by the conductor part, the magnetic flux passing through the motor shaft is smoothed, so that it is impossible to generate torque that should be generated when the magnetic flux increases. In the case of the invention, the low loss electromagnetic member outside the motor shaft forms a bypass magnetic path corresponding to the fluctuation (pulsation) of the magnetic flux, and the fluctuation of the magnetic flux passes through the bypass magnetic path of the low loss electromagnetic member having a high permeability. It is used for driving the motor, and the torque of the motor does not drop. And a low-loss electromagnetic member with a high magnetic permeability does not cause a temperature rise due to fluctuations.

したがって、モータ軸を磁性体で形成して磁路の一部として利用する場合に、磁束の変動によるモータ軸の渦電流の発生を防止して効率低下やモータ軸の温度上昇を防止することができ、特性の優れたモータを提供できる。   Therefore, when the motor shaft is formed of a magnetic material and used as a part of a magnetic path, generation of eddy currents in the motor shaft due to fluctuations in magnetic flux can be prevented to prevent a decrease in efficiency and a temperature increase of the motor shaft. And a motor with excellent characteristics can be provided.

請求項2に係る本発明のモータの場合、低損失電磁部材が、導体部を形成する8の字コイル構造のコイル体の内径側ループがモータ軸を囲み、モータ軸を通過する磁束が変動(脈動)すると、内径側ループと外径側ループとを前記磁束の変動に基づく鎖交磁束の誘導電流(ループ電流)が流れ、その誘導電流によって生じる内径側ループの磁束でモータ軸に流入する磁束の変動分が遮蔽されるとともに、誘導電流が外径側ループに流れることによって、磁束を低損失電磁部材のバイパス磁路に導くための起磁力として利用される。   In the case of the motor according to the second aspect of the present invention, the low-loss electromagnetic member has an inner loop on the inner diameter side of the coil body of the 8-shaped coil structure forming the conductor portion, and the magnetic flux passing through the motor shaft varies ( Pulsating), an induction current (loop current) of linkage flux based on the fluctuation of the magnetic flux flows through the inner diameter side loop and the outer diameter side loop, and the magnetic flux flowing into the motor shaft by the magnetic flux of the inner diameter side loop generated by the induction current. Is used as a magnetomotive force for guiding the magnetic flux to the bypass magnetic path of the low-loss electromagnetic member by flowing the induced current through the outer diameter side loop.

したがって、モータ軸を磁性体で形成して磁路の一部として利用する場合に、磁束の変動によるモータ軸の渦電流の発生を防止して一層良好に効率低下やモータ軸の温度上昇を防止することができ、一層特性の優れたモータを提供できる。   Therefore, when the motor shaft is made of a magnetic material and used as part of the magnetic path, generation of eddy currents in the motor shaft due to magnetic flux fluctuations can be prevented to further reduce efficiency and temperature rise of the motor shaft. Thus, a motor with more excellent characteristics can be provided.

本発明の一実施形態のアキシャルギャップモータの組み付け状態の断面図である。It is sectional drawing of the assembly | attachment state of the axial gap motor of one Embodiment of this invention. 図1のアキシャルギャップモータのモータ軸部分の斜視図である。It is a perspective view of the motor shaft part of the axial gap motor of FIG. 図2の低損失電磁部材の拡大した斜視図である。FIG. 3 is an enlarged perspective view of the low-loss electromagnetic member in FIG. 2. 図2の構成に結束バンドを巻回した状態の斜視図である。FIG. 3 is a perspective view of a state in which a binding band is wound around the configuration of FIG. 2. 本発明の他の実施形態のラジアルギャップモータのモータ軸部分の斜視図である。It is a perspective view of the motor shaft part of the radial gap motor of other embodiments of the present invention. 図5の8の字コイル構造の導電部を示し、(a)は斜視図、(b)はループ構造を示す模式図である。The conductive part of the figure 8 coil structure of Drawing 5 is shown, (a) is a perspective view and (b) is a mimetic diagram showing a loop structure. 8の字コイル構造の導電部の他の例を示し、(a)は斜視図、(b)はループ構造を示す模式図である。The other example of the electroconductive part of FIG. 8 coil structure is shown, (a) is a perspective view, (b) is a schematic diagram which shows a loop structure. 従来例の断面図である。It is sectional drawing of a prior art example. 既出願のアキシャルギャップモータの分解状態の斜視図である。It is a perspective view of the disassembled state of the axial gap motor of an existing application.

つぎに、本発明をより詳細に説明するため、実施形態について、図1〜図7を参照して詳述する。なお、それらの図面においては、モータ軸等は適宜省略している。   Next, in order to describe the present invention in more detail, an embodiment will be described in detail with reference to FIGS. In these drawings, the motor shaft and the like are omitted as appropriate.

(一実施形態)
まず、立体磁路構成のアキシャルギャップモータに適用した一実施形態について、図1〜図4を参照して説明する。
(One embodiment)
First, an embodiment applied to an axial gap motor having a three-dimensional magnetic path configuration will be described with reference to FIGS.

図1は本実施形態のアキシャルギャップモータ1を示し、アキシャルギャップモータ1は、概略、モータ軸2に軸支されて回転する円盤状の2個のロータ3a、3b間に、両面磁極構造のステータ4を配置した構成である。   FIG. 1 shows an axial gap motor 1 according to this embodiment. The axial gap motor 1 is roughly a stator having a double-sided pole structure between two disk-shaped rotors 3a and 3b that are supported by a motor shaft 2 and rotate. 4 is arranged.

両ロータ3a、3bは、それぞれ円盤状のヨーク(コア)31のステータ4に対向する端面に例えば8個のロータ磁極(ポール)32が周方向に等間隔に配設される。   In each of the rotors 3a and 3b, for example, eight rotor magnetic poles (poles) 32 are arranged at equal intervals in the circumferential direction on the end surfaces of the disk-shaped yoke (core) 31 facing the stator 4.

ステータ4は、円盤状のヨーク(コア)41の中心の開口にモータ軸2が遊挿され、ヨーク41の例えばロータ3aに対向する一方の端面側(以下、表側という)にN極に励磁される12個(3相それぞれの90度間隔の4個ずつの磁極を形成する)のステータ磁極(ティース)42aが周方向に等間隔に配設され、ヨーク41のロータ3bに対向する他方の端面側(以下、裏側という)にS極に励磁される12個のステータ磁極(ティース)42bが各ステータ磁極42aより周方向にずらして等間隔に配設される。このようにずらして配設することにより、モータ軸2から見たステータ4の磁極数は2倍の24極になる。   In the stator 4, the motor shaft 2 is loosely inserted in the center opening of a disk-shaped yoke (core) 41, and is excited to the N pole on one end face side (hereinafter referred to as the front side) of the yoke 41 facing the rotor 3 a, for example. The other end face of the yoke 41 facing the rotor 3b of the yoke 41 is provided with 12 stator poles (toothes) 42a (forming four magnetic poles at 90 degree intervals for each of the three phases) at equal intervals in the circumferential direction. Twelve stator magnetic poles (teeth) 42b excited on the S pole on the side (hereinafter referred to as the back side) are arranged at equal intervals while being shifted from the stator magnetic poles 42a in the circumferential direction. By disposing in this way, the number of magnetic poles of the stator 4 viewed from the motor shaft 2 is doubled to 24 poles.

ヨーク31、41は積層鋼板または圧粉磁心により形成され、磁極32、42a、42bは圧粉磁心により形成される。   The yokes 31 and 41 are formed of laminated steel plates or dust cores, and the magnetic poles 32, 42a, and 42b are formed of dust cores.

各ステータ磁極42a、42bにはA、B、Cの各相の励磁コイル5が順に集中巻きされ、例えばA相の励磁コイル5が通電されると、ステータ4の表側の90度間隔の4個のA相のステータ磁極42aが全てN極に励磁され、ステータ4の裏側の90度間隔の4個のA相のステータ磁極42aが全てS極に励磁される。B相の励磁コイル5が通電されると、ステータ4の表側の各A相のステータ磁極42aの隣の90度間隔の4個のB相のステータ磁極42aが全てN極に励磁され、ステータ4の裏側の各A相のステータ磁極42bの隣の90度間隔の4個のB相のステータ磁極42aが全てS極に励磁される。さらに、C相の励磁コイル5が通電されると、ステータ4の表側の各B相のステータ磁極42aの隣の90度間隔の4個のC相のステータ磁極42aが全てN極に励磁され、ステータ4の裏側の各B相のステータ磁極42bの隣の90度間隔の4個のC相のステータ磁極42aが全てS極に励磁される。このくり返しにより、ステータ4の表側、裏側の各4個の励磁されるステータ磁極42a、42bが回転するように移動し、励磁されるステータ磁極42a、42bとその近傍のロータ磁極32との磁気的な吸引動作によってロータ3a、3bが回転してアキシャルギャップモータ1が駆動される。   Each of the stator magnetic poles 42a and 42b is concentratedly wound with the exciting coils 5 of the phases A, B, and C in order. For example, when the A-phase exciting coil 5 is energized, All of the A-phase stator magnetic poles 42a are excited to N poles, and all four A-phase stator magnetic poles 42a spaced by 90 degrees on the back side of the stator 4 are excited to S poles. When the B-phase excitation coil 5 is energized, the four B-phase stator magnetic poles 42a spaced 90 degrees adjacent to the A-phase stator magnetic poles 42a on the front side of the stator 4 are all excited to the N-pole. The four B-phase stator magnetic poles 42a at intervals of 90 degrees adjacent to the respective A-phase stator magnetic poles 42b on the back side are excited to the S pole. Further, when the C-phase excitation coil 5 is energized, the four C-phase stator magnetic poles 42a at intervals of 90 degrees adjacent to the respective B-phase stator magnetic poles 42a on the front side of the stator 4 are all excited to the N-pole. All of the four C-phase stator magnetic poles 42a at intervals of 90 degrees adjacent to the respective B-phase stator magnetic poles 42b on the back side of the stator 4 are excited to the S pole. By this repetition, the four excited stator magnetic poles 42a and 42b on the front side and the back side of the stator 4 move so as to rotate, and the excited stator magnetic poles 42a and 42b and the rotor magnetic pole 32 in the vicinity thereof are magnetically coupled. The rotor 3a, 3b is rotated by a simple suction operation, and the axial gap motor 1 is driven.

このとき、ステータ4の表側のN極のステータ磁極42aの磁束は、後述する導体部7、低損失電磁部材8を備えない場合、図1の破線の矢印線に示すように、ロータ3aのロータ磁極32、モータ軸2、ロータ3bのロータ磁極32、ステータ4の裏側のS極のステータ磁極42bを通ってN極のステータ磁極42aに戻る磁路を通る。   At this time, the magnetic flux of the N-pole stator magnetic pole 42a on the front side of the stator 4 is not provided with a conductor 7 and a low-loss electromagnetic member 8, which will be described later. The magnetic path passes through the magnetic pole 32, the motor shaft 2, the rotor magnetic pole 32 of the rotor 3b, and the S-pole stator magnetic pole 42b on the back side of the stator 4 to return to the N-pole stator magnetic pole 42a.

なお、本実施形態の場合、ステータ4のモータ軸2の外側にループコイル状の界磁コイル6が設けられ、界磁コイル6の直流界磁により磁束が増強されてトルクアップが図られる。   In the present embodiment, a loop coil-shaped field coil 6 is provided outside the motor shaft 2 of the stator 4, and the magnetic flux is enhanced by the DC field of the field coil 6 to increase the torque.

ところで、過渡的な電流変化やアキシャルギャップモータ1の回転による磁気抵抗変化等により、炭素鋼(例えば、S45C、S35C)等のソリッド(むく)の磁性体で形成されるモータ軸2を通る磁束が変動(脈動)すると、図1の実線の矢印線に示すように、モータ軸2に渦電流が発生して損失を生じさせる。   By the way, a magnetic flux passing through the motor shaft 2 formed of a solid magnetic material such as carbon steel (for example, S45C, S35C) due to a transient current change or a magnetoresistive change due to the rotation of the axial gap motor 1 or the like. When it fluctuates (pulsates), an eddy current is generated in the motor shaft 2 as shown by a solid arrow line in FIG.

そこで、本実施形態の場合、モータ軸方向の磁路形成部材として、つぎに説明する構成を備える。   Therefore, in the case of the present embodiment, the following configuration is provided as a magnetic path forming member in the motor axial direction.

図2はモータ軸2の部分の斜視図であり、モータ軸方向の前記磁路形成部材として、最内径側(中心部)にモータ軸2を配置し、その外側に磁束の変動分のモータ軸2への流入を遮蔽する導体部7aを備え、その外側に導体部7aにより遮蔽された前記変動分のバイパス磁路を形成する高透磁率の低損失電磁部材8aを備える。   FIG. 2 is a perspective view of a portion of the motor shaft 2. As the magnetic path forming member in the motor shaft direction, the motor shaft 2 is disposed on the innermost diameter side (center portion), and the motor shaft corresponding to the fluctuation of the magnetic flux is disposed outside the motor shaft 2. 2 is provided with a conductor portion 7a that shields the inflow to 2 and a high-permeability low-loss electromagnetic member 8a that forms a bypass magnetic path for the variation shielded by the conductor portion 7a on the outside thereof.

導電部7aは、本実施形態の場合、短絡コイルを形成するスリーブ形状の金属等の電気的な導体であり、モータ軸2を通る磁束が変動(脈動)すると、その変動によって導体部7aにループ電流が発生し、その電流に基づく逆向きの磁束により、モータ軸2を通る磁束の変動が打ち消されてその変動分が遮蔽される。そのため、前記変動によるモータ軸の渦電流の発生を防止し、モータ軸2を磁束の直流分のみが通るようにしてアキシャルギャップモータ1の効率低下やモータ軸2の温度上昇を防止できる。   In the case of this embodiment, the conductive portion 7a is an electrical conductor such as a sleeve-shaped metal that forms a short circuit coil. When the magnetic flux passing through the motor shaft 2 fluctuates (pulsates), the fluctuation causes a loop to the conductor portion 7a. A current is generated, and the fluctuation of the magnetic flux passing through the motor shaft 2 is canceled by the reverse magnetic flux based on the current, and the fluctuation is shielded. Therefore, the generation of the eddy current of the motor shaft due to the fluctuation can be prevented, and only the direct current component of the magnetic flux can pass through the motor shaft 2 to prevent the efficiency of the axial gap motor 1 from decreasing and the temperature of the motor shaft 2 from rising.

なお、導電部7aを、モータ軸2の略ロータ3a、3b間全体を覆うモータ軸方向に長いスリーブ形状に形成しているので、磁束の変動分を遮蔽するための電流経路の十分な断面積を確保し易く、導電部7aを薄くでき、モータ軸方向の磁路形成部材全体の外径を小さくできる利点がある。なお、導電部7aは、モータ軸2の磁路の少なくとも入力側にリング状に設けられていればよく、例えばロータ3a、3bそれぞれ寄りにリングコイルを設けて形成してもよい。   In addition, since the conductive portion 7a is formed in a sleeve shape that is long in the motor shaft direction covering the entire portion between the rotors 3a and 3b of the motor shaft 2, a sufficient cross-sectional area of the current path for shielding the fluctuation of the magnetic flux The conductive portion 7a can be made thin, and the outer diameter of the entire magnetic path forming member in the motor axial direction can be reduced. The conductive portion 7a only needs to be provided in a ring shape at least on the input side of the magnetic path of the motor shaft 2. For example, the conductive portion 7a may be formed by providing ring coils near the rotors 3a and 3b.

つぎに、磁束の変動(脈動)成分を導体部7aで遮蔽するだけでは、モータ軸2を通る磁束が平滑化されてしまうだけなので磁束が大きくなったときに本来発生できるはずのトルクを発生できなくなり、アキシャルギャップモータ1のトルクが低下する。   Next, by simply shielding the fluctuation (pulsation) component of the magnetic flux with the conductor portion 7a, the magnetic flux passing through the motor shaft 2 is only smoothed, so that it is possible to generate torque that should be originally generated when the magnetic flux increases. The torque of the axial gap motor 1 is reduced.

そこで、前記した低損失電磁部材8aを備える。   Therefore, the low-loss electromagnetic member 8a described above is provided.

図3は低損失電磁部材8aを示し、低損失電磁部材8aは例えば電磁鋼帯の巻きコアである。この電磁鋼帯の巻きコアは、巻始めと巻終りが電気的に絶縁されており、短絡コイルを構成しないので、磁束の変動分(脈動成分)を通し易い。そして、この電磁鋼帯の巻きコアは高透磁率であり、磁束の変動分が高透磁率の低損失電磁部材8aのバイパス磁路を通ってアキシャルギャップモータ1の駆動に利用されるので、アキシャルギャップモータ1のトルクが低下することはない。また、高透磁率の低損失電磁部材8aは前記磁束の変動分によって温度上昇が生じることはない。   FIG. 3 shows a low-loss electromagnetic member 8a, and the low-loss electromagnetic member 8a is, for example, a wound core of an electromagnetic steel strip. The winding core of this electromagnetic steel strip is electrically insulated at the beginning and end of winding, and does not constitute a short-circuiting coil, so that it can easily pass magnetic flux variation (pulsation component). The winding core of the electromagnetic steel strip has a high permeability, and the fluctuation of the magnetic flux is used for driving the axial gap motor 1 through the bypass magnetic path of the low-loss electromagnetic member 8a having a high permeability. The torque of the gap motor 1 does not decrease. Further, the low-loss electromagnetic member 8a having a high magnetic permeability does not increase in temperature due to the fluctuation of the magnetic flux.

したがって、本実施形態の場合、モータ軸2を磁性体で形成して磁路の一部として利用するアキシャルギャップモータ1において、磁束の変動によるモータ軸2の渦電流の発生を防止して効率低下やモータ軸2の温度上昇を防止することができ、特性の優れたアキシャルギャップモータ1を提供できる。   Therefore, in the case of the present embodiment, in the axial gap motor 1 in which the motor shaft 2 is formed of a magnetic material and used as a part of the magnetic path, generation of eddy currents in the motor shaft 2 due to fluctuations in magnetic flux is prevented and efficiency is lowered. In addition, the temperature increase of the motor shaft 2 can be prevented, and the axial gap motor 1 having excellent characteristics can be provided.

ところで、低損失電磁部材8aを形成する電磁鋼帯の巻きコアは、巻きコアの軸方向の透磁率が円周方向よりも高い指向性の電磁鋼帯であることが好ましいが、無方向性の電磁鋼帯であってもよい。すなわち、前記指向性の電磁鋼帯の巻きコアの場合は、電磁鋼帯の圧延方向ではな<幅方向に鋼帯を切り取って巻くことになるので、巻厚をあまり大きくできない。そのため、大きな巻厚が必要な場合には、無方向の電磁鋼帯を圧延方向に切り取った巻きコアによって低損失電磁部材8aを形成すればよい。   Incidentally, the wound core of the electromagnetic steel strip forming the low-loss electromagnetic member 8a is preferably a directional electromagnetic steel strip whose axial permeability of the wound core is higher than that in the circumferential direction. An electromagnetic steel strip may be used. That is, in the case of the winding core of the directional electromagnetic steel strip, the steel strip is cut in the width direction rather than the rolling direction of the electromagnetic steel strip, and the winding thickness cannot be increased so much. Therefore, when a large winding thickness is required, the low-loss electromagnetic member 8a may be formed by a winding core obtained by cutting a non-directional electromagnetic steel strip in the rolling direction.

また、低損失電磁部材8aを形成する電磁鋼帯の巻きコアは接着等により貼り合わせて巻回されるが、さらにその外周に補強のために電気抵抗率が比較的高い結束バンド(ステンレススチールバンド等)を巻くことが好ましい。   In addition, the wound core of the electromagnetic steel strip forming the low-loss electromagnetic member 8a is bonded and wound by bonding or the like, and further, a binding band (stainless steel band) having a relatively high electrical resistivity for reinforcement on the outer periphery thereof. Etc.) is preferable.

図4は低損失電磁部材8aの外側にステンレススチールバンド等の結束バンド9を巻き付けた状態を示し、結束バンド9を巻き付けることにより、アキシャルギャップモータ1のの高速回転時にも低損失電磁部材8aや導電部7が巻き解けること等がない。また、結束バンド9も磁束が鎖交するループを形成するので、その電気抵抗を高くしてループに誘導される電流を少なくし、損失を防止するため、結束バンド9は上記したステンレススチールバンド等であることが好ましく、さらには、結束バンド9を、ケブラーコード等の樹脂補強材のバンドで形成することがより好ましい。   4 shows a state in which a binding band 9 such as a stainless steel band is wound around the outside of the low-loss electromagnetic member 8a. By winding the binding band 9, the low-loss electromagnetic member 8a or the like can be obtained even when the axial gap motor 1 rotates at high speed. The conductive portion 7 is not unwound. Further, since the binding band 9 also forms a loop in which magnetic fluxes are linked, the binding band 9 is made of the above-described stainless steel band or the like in order to increase the electrical resistance to reduce the current induced in the loop and prevent loss. Furthermore, it is more preferable that the binding band 9 is formed of a resin reinforcing material band such as a Kevlar cord.

(他の実施形態)
つぎに、前記一実施形態の導電部7aに代えて、8の字コイル構造のコイル体の導電部7bを備えた実施形態について、図1および図5、図6を参照して説明する。
(Other embodiments)
Next, instead of the conductive portion 7a of the above-described embodiment, an embodiment provided with a conductive portion 7b of a coil body having an 8-shaped coil structure will be described with reference to FIG. 1, FIG. 5, and FIG.

本実施形態の場合も図1の立体磁路構造のアキシャルギャップモータ1に適用し、略、その導電部7aを導電部7bに置き代え、低損失電磁部材8aを導電部7bの8の字のクロス個所に切れ目を設けたスリーブ状の低損失電磁部材8bに置き代える。   This embodiment is also applied to the axial gap motor 1 having the three-dimensional magnetic path structure shown in FIG. 1, and substantially replaces the conductive portion 7a with the conductive portion 7b, and replaces the low-loss electromagnetic member 8a with the 8-shaped conductive portion 7b. It replaces with the sleeve-like low-loss electromagnetic member 8b which provided the cut | interruption in the cross location.

図5はモータ軸2の部分の一部を切り欠いた斜視図であり、本実施形態の場合、モータ軸方向の磁路形成部材として、最内径側(中心部)にモータ軸2を配置し、その外側に8の字コイル構造のコイル体の導電部7bを備え、導電部7bの内径側ループ部71によりモータ軸2を囲み、外径側ループ72により低損失電磁部材8bを囲む。さらに、導電部7bの外径側ループ72の外側を、ケブラーコード等の電気的抵抗が大きな素材からなるスリーブ状の補強リング10で覆う。   FIG. 5 is a perspective view in which a part of the motor shaft 2 is cut away. In the case of this embodiment, the motor shaft 2 is arranged on the innermost diameter side (center portion) as a magnetic path forming member in the motor shaft direction. Further, a conductive portion 7b of a coil body having an 8-shaped coil structure is provided on the outside, the motor shaft 2 is surrounded by the inner diameter side loop portion 71 of the conductive portion 7b, and the low loss electromagnetic member 8b is surrounded by the outer diameter side loop 72. Further, the outer side of the outer diameter side loop 72 of the conductive portion 7b is covered with a sleeve-shaped reinforcing ring 10 made of a material having a large electrical resistance such as a Kevlar cord.

図6(a)は導電部7bの斜視図、同図(b)はその正面図であり、導電部7bは、概略、8の字コイルの上部のループを内径側ループ71とし、その外側に変形した下側のループを配置した形状であり、両図の破線で囲んだ個所が8の字のクロス個所である。   6 (a) is a perspective view of the conductive portion 7b, and FIG. 6 (b) is a front view thereof. The conductive portion 7b is schematically shown in FIG. A deformed lower loop is arranged, and a portion surrounded by a broken line in both figures is an 8-shaped cross portion.

低損失電磁部材8bは、例えば断面がC字状の圧粉磁心のスリーブによって形成され、低損失電磁部材8aと同様に高透磁率である。   The low-loss electromagnetic member 8b is formed of a dust core sleeve having a C-shaped cross section, for example, and has a high magnetic permeability like the low-loss electromagnetic member 8a.

そして、モータ軸2に流入する磁束の変動(脈動)成分を低減することを優先するため、導電部7bは、内径側ループ71のコイルがモータ軸2を囲む断面積と、内径側ループ71のコイルのターン数との積が、外径側ループ72のコイルが低損失電磁部材8bを囲む断面積と、外径側ループ72のコイルのターン数との積よりも大きくなるように形成される。   In order to give priority to reducing the fluctuation (pulsation) component of the magnetic flux flowing into the motor shaft 2, the conductive portion 7 b has a cross-sectional area in which the coil of the inner diameter side loop 71 surrounds the motor shaft 2 and the inner diameter side loop 71. The product of the number of turns of the coil is formed to be larger than the product of the cross-sectional area in which the coil of the outer diameter side loop 72 surrounds the low-loss electromagnetic member 8b and the number of turns of the coil of the outer diameter side loop 72. .

この場合、モータ軸2に流入する磁束が変動すると、8の字コイル構造の周知の特性から、導電部7bは、時計回り(CW)のループと反時計回り(CCW)のループに鎖交する磁束変化量(例えば図6(b)のΔφ、Δφ)が同じ大きさとなるように図6(b)の破線の矢印線に示す誘導電流が流れるため、モータ軸2に流入する磁束の変動(脈動)分の磁束密度は小さくなって遮蔽され、モータ軸2の渦電流の発生が抑えられて渦電流損失が低減される。 In this case, when the magnetic flux flowing into the motor shaft 2 fluctuates, the conductive portion 7b is linked to a clockwise (CW) loop and a counterclockwise (CCW) loop due to the well-known characteristic of the figure 8 coil structure. Since the induced current indicated by the broken arrow line in FIG. 6B flows so that the amount of magnetic flux change (for example, Δφ 1 and Δφ 2 in FIG. 6B) becomes the same magnitude, the magnetic flux flowing into the motor shaft 2 The magnetic flux density corresponding to the fluctuation (pulsation) is reduced and shielded, the generation of eddy current in the motor shaft 2 is suppressed, and eddy current loss is reduced.

また、前記一実施形態の導電部7aの短絡コイルでは、磁束の変動(脈動)成分により生じたループ電流は前記短絡コイルの抵抗によりジュール熱として消費されるが、本実施形態の8の字コイル構造の導電部7bでは、磁束の脈動成分により誘導されたループ電流により外径側ループ72に発生する磁束が低損失電磁部材8bのバイパス磁路に磁束を通すための起磁力として活用される。   Further, in the short-circuit coil of the conductive portion 7a of the one embodiment, the loop current generated by the fluctuation (pulsation) component of the magnetic flux is consumed as Joule heat by the resistance of the short-circuit coil. In the conductive portion 7b having the structure, the magnetic flux generated in the outer diameter side loop 72 by the loop current induced by the pulsating component of the magnetic flux is utilized as a magnetomotive force for passing the magnetic flux through the bypass magnetic path of the low-loss electromagnetic member 8b.

すなわち、本実施形態の場合、モータ軸2を通過する磁束が変動(脈動)すると、導体部7bは、周知の8の字コイル構造のコイル体と同様、内径側ループ71と外径側ループ72を前記磁束の変動に基づく鎖交磁束の誘導電流が流れ、その誘導電流によって生じる内径側ループ71の磁束でモータ軸2に流入する磁束の変動分が遮蔽されるとともに、外径側ループ72の磁束が低損失電磁部材8bのバイパス磁路を通るための起磁力として無駄なく利用される。   That is, in the case of the present embodiment, when the magnetic flux passing through the motor shaft 2 fluctuates (pulsates), the conductor portion 7b has an inner diameter side loop 71 and an outer diameter side loop 72 as in the case of the coil body having the known 8-shaped coil structure. Inducted current of the interlinkage magnetic flux based on the fluctuation of the magnetic flux flows, and the magnetic flux fluctuation flowing into the motor shaft 2 is shielded by the magnetic flux of the inner diameter side loop 71 generated by the induced current, and the outer diameter side loop 72 The magnetic flux is used without waste as a magnetomotive force for passing through the bypass magnetic path of the low-loss electromagnetic member 8b.

したがって、本実施形態の場合、モータ軸2を磁性体で形成して磁路の一部として利用する場合に、磁束の変動によるモータ軸2の渦電流の発生を防止してさらに一層良好に効率低下やモータ軸2の温度上昇を防止することができ、一層特性の優れたアキシャルギャップモータ1を提供できる。   Therefore, in the case of this embodiment, when the motor shaft 2 is formed of a magnetic material and used as a part of a magnetic path, generation of eddy currents in the motor shaft 2 due to fluctuations in magnetic flux is prevented, and the efficiency is further improved. The axial gap motor 1 can be prevented from being lowered and the temperature of the motor shaft 2 being raised, and further excellent in characteristics.

そして、本発明は上記した各実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて上述したもの以外に種々の変更を行なうことが可能であり、例えば、前記他の実施形態において、導体部7bに代えて、2重の8の字コイルにより形成し、両方のコイルの内径側ループ71どうし、外径側ループ72どうし、内径側どうしを繋いだ構成の8の字コイル構造の導体部を備えるようにしてもよい。   The present invention is not limited to the above-described embodiments, and various modifications other than those described above can be made without departing from the spirit thereof. For example, in the other embodiments, Instead of the conductor portion 7b, a conductor having an 8-shaped coil structure formed by double 8-shaped coils, in which the inner diameter side loops 71, the outer diameter side loops 72, and the inner diameter side of both coils are connected to each other. You may make it provide a part.

図7(a)は、上記した2重の8の字コイル73、74により形成した導電部7cの斜視図であり、同図(b)はそのコイル構造を示す模式図である。この場合、8の字コイル73、74の内径側ループ部71、外径側ループ部72が内径側、外径側それぞれで繋がる。なお、図7(b)の破線で囲んだ個所が8の字のクロス個所である。   FIG. 7A is a perspective view of the conductive portion 7c formed by the above-described double 8-shaped coils 73 and 74, and FIG. 7B is a schematic diagram showing the coil structure. In this case, the inner diameter side loop portion 71 and the outer diameter side loop portion 72 of the 8-shaped coils 73 and 74 are connected to each other on the inner diameter side and the outer diameter side. In addition, the part enclosed with the broken line of FIG.7 (b) is a cross part of figure 8.

つぎに、導電部7a〜7cは種々の導電材のリングやスリーブで形成してよく、低損失電磁部材8a、8bは種々の高透磁率の電磁部材であってよい。   Next, the conductive portions 7a to 7c may be formed of various conductive material rings and sleeves, and the low-loss electromagnetic members 8a and 8b may be various high-permeability electromagnetic members.

つぎに、本発明は、モータ軸を磁性体で形成して磁路の一部として利用する種々の構成のアキシャルギャップモータに適用できるのは勿論、モータ軸を磁性体で形成して磁路の一部として利用するラジアルギャップモータにも同様に適用することができる。   Next, the present invention can be applied to an axial gap motor having various configurations in which a motor shaft is formed of a magnetic material and used as a part of a magnetic path. The present invention can be similarly applied to a radial gap motor used as a part.

そして、本発明が適用されるモータは、電気自動車の駆動モータ等の種々の用途のアキシャルギャップモータ、ラジアルギャップモータであってよい。   The motor to which the present invention is applied may be an axial gap motor or a radial gap motor for various uses such as a drive motor for an electric vehicle.

1 アキシャルギャップモータ
2 モータ軸
3a、3b ロータ
7a〜7c 導体部
8a、8b 低損失電磁部材
DESCRIPTION OF SYMBOLS 1 Axial gap motor 2 Motor shaft 3a, 3b Rotor 7a-7c Conductor part 8a, 8b Low loss electromagnetic member

Claims (2)

ステータ、ロータ間の磁束が磁性体のモータ軸を軸方向に通過する磁路構成のモータにおいて、
前記モータ軸の外側に、
前記磁束の変動分の前記モータ軸への流入を遮蔽する導体部と、
前記導体部により遮蔽された前記変動分のバイパス磁路を形成する高透磁率の低損失電磁部材とを備えることを特徴とするモータ。
In a motor having a magnetic path configuration in which the magnetic flux between the stator and the rotor passes through the magnetic motor shaft in the axial direction.
Outside the motor shaft,
A conductor portion that shields the flow of the magnetic flux from flowing into the motor shaft;
A motor comprising: a high-permeability low-loss electromagnetic member that forms a bypass magnetic path that is shielded by the conductor portion.
請求項1記載のモータにおいて、
前記導体部は、内径側ループとその外側の外径側ループとを有する8の字コイル構造のコイル体により形成され、
前記内径側ループはモータ軸を囲み、前記外径側ループは前記導体部を囲むことを特徴とするモータ。
The motor according to claim 1, wherein
The conductor portion is formed by a coil body having an 8-shaped coil structure having an inner diameter side loop and an outer diameter side loop outside the inner loop,
The motor, wherein the inner diameter side loop surrounds a motor shaft, and the outer diameter side loop surrounds the conductor portion.
JP2010054049A 2010-03-11 2010-03-11 motor Expired - Fee Related JP5586275B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010054049A JP5586275B2 (en) 2010-03-11 2010-03-11 motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010054049A JP5586275B2 (en) 2010-03-11 2010-03-11 motor

Publications (2)

Publication Number Publication Date
JP2011188697A true JP2011188697A (en) 2011-09-22
JP5586275B2 JP5586275B2 (en) 2014-09-10

Family

ID=44794319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010054049A Expired - Fee Related JP5586275B2 (en) 2010-03-11 2010-03-11 motor

Country Status (1)

Country Link
JP (1) JP5586275B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015154587A (en) * 2014-02-14 2015-08-24 ダイキン工業株式会社 Axial gap type motor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002034182A (en) * 2000-07-17 2002-01-31 Mitsubishi Electric Corp Motor rotor and manufacturing method therefor, induction motor, and synchronous motor
JP2007135327A (en) * 2005-11-11 2007-05-31 Daihatsu Motor Co Ltd Drive motor for vehicle, and motor drive control method
JP2008043099A (en) * 2006-08-08 2008-02-21 Toyota Motor Corp Rotating motor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002034182A (en) * 2000-07-17 2002-01-31 Mitsubishi Electric Corp Motor rotor and manufacturing method therefor, induction motor, and synchronous motor
JP2007135327A (en) * 2005-11-11 2007-05-31 Daihatsu Motor Co Ltd Drive motor for vehicle, and motor drive control method
JP2008043099A (en) * 2006-08-08 2008-02-21 Toyota Motor Corp Rotating motor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015154587A (en) * 2014-02-14 2015-08-24 ダイキン工業株式会社 Axial gap type motor

Also Published As

Publication number Publication date
JP5586275B2 (en) 2014-09-10

Similar Documents

Publication Publication Date Title
JP5491484B2 (en) Switched reluctance motor
EP2448089A1 (en) Axial motor
JP6421926B2 (en) Permanent magnet synchronous machine
JP2005094955A (en) Axial permanent magnet motor
JP2012228104A (en) Permanent magnet-embedded motor
JP5365074B2 (en) Axial gap type rotating electrical machine
JP6668844B2 (en) Rotating electric machine
JP6048191B2 (en) Multi-gap rotating electric machine
JP2011078202A (en) Axial gap motor
JP6432016B2 (en) Rotating electrical machine
JP2013115899A (en) Rotor of permanent magnet type motor, manufacturing method of the same, and permanent magnet type motor
JP5471653B2 (en) Permanent magnet type electric motor
JP5586275B2 (en) motor
JP2007202292A (en) Exciter
JP4192086B2 (en) Exciter, field machine, and electric motor using the same
JP5151183B2 (en) Axial gap type rotating electric machine and compressor
JP2008187863A (en) Axial gap rotary electric machine and compressor
JP2005269693A (en) Permanent magnet motor
JP2006340507A (en) Stator of rotary electric machine
JP5918070B2 (en) IPM motor
JP5740250B2 (en) Permanent magnet rotating electric machine
JP2006025486A (en) Electric electric machine
JP5750995B2 (en) Synchronous motor
JP6525206B2 (en) Rotor and rotating electric machine
JP5793948B2 (en) Synchronous motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140722

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140722

R150 Certificate of patent or registration of utility model

Ref document number: 5586275

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees