JP2011186161A - Variable power optical system, optical device, and method for manufacturing variable power optical system - Google Patents

Variable power optical system, optical device, and method for manufacturing variable power optical system Download PDF

Info

Publication number
JP2011186161A
JP2011186161A JP2010050804A JP2010050804A JP2011186161A JP 2011186161 A JP2011186161 A JP 2011186161A JP 2010050804 A JP2010050804 A JP 2010050804A JP 2010050804 A JP2010050804 A JP 2010050804A JP 2011186161 A JP2011186161 A JP 2011186161A
Authority
JP
Japan
Prior art keywords
lens group
end state
lens
focal length
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010050804A
Other languages
Japanese (ja)
Other versions
JP5736651B2 (en
Inventor
Norikazu Yokoi
規和 横井
Akihiko Kohama
昭彦 小濱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2010050804A priority Critical patent/JP5736651B2/en
Priority to CN201110058604.8A priority patent/CN102193175B/en
Priority to US13/042,493 priority patent/US8913327B2/en
Priority to CN201510918838.3A priority patent/CN105487210B/en
Publication of JP2011186161A publication Critical patent/JP2011186161A/en
Priority to US14/270,270 priority patent/US9513471B2/en
Application granted granted Critical
Publication of JP5736651B2 publication Critical patent/JP5736651B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a variable power optical system for suppressing aberration variation and having high optical performance, and also to provide an optical device having it, and a method for manufacturing the variable power optical system. <P>SOLUTION: The variable power optical system has: a first lens group G1 of positive reflective power; a second lens group G2 of negative reflective power; a third lens group G3 of positive refractive power; and a fourth lens group G4 of negative refractive power; a fifth lens group G5 of positive refractive power in order from an object side along an optical axis, and also has an aperture diaphragm S on an image side from the second lens group G2. In variable power from a wide angle end state W to a telephoto end state T, an interval between the first lens group G1 and the second lens group G2 is increased, an interval between the second lens group G2 and the third lens group G3 is decreased, an interval between the third lens group G3 and the fourth lens group G4 is changed, and an interval between the fourth lens group G4 and the fifth lens group G5 is changed, and the variable power optical system satisfies prescribed conditional inequalities. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、変倍光学系とこれを有する光学装置、変倍光学系の製造方法に関する。   The present invention relates to a variable magnification optical system, an optical apparatus having the variable magnification optical system, and a method for manufacturing the variable magnification optical system.

従来、一眼レフカメラ用交換レンズなどに用いられる変倍光学系として、最も物体側のレンズ群が正屈折力を有する光学系が数多く提案されている(例えば、特許文献1を参照)。   Conventionally, as a variable magnification optical system used for an interchangeable lens for a single-lens reflex camera or the like, many optical systems in which the lens group closest to the object side has a positive refractive power have been proposed (for example, see Patent Document 1).

特開2008−3195号公報JP 2008-3195 A

従来の変倍光学系をさらに高変倍化しようとすると、収差変動が増大し、十分に高い光学性能を得ることが困難であった。   If the conventional variable magnification optical system is further increased in magnification, aberration fluctuations increase, making it difficult to obtain sufficiently high optical performance.

本発明は、上記問題に鑑みてなされたものであり、収差変動を抑え、高い光学性能を有する変倍光学系とこれを有する光学装置、変倍光学系の製造方法を提供することを目的とする。   The present invention has been made in view of the above problems, and an object thereof is to provide a variable magnification optical system that suppresses aberration fluctuation and has high optical performance, an optical apparatus having the same, and a method for manufacturing the variable magnification optical system. To do.

上記課題を解決するために、本発明は、光軸に沿って物体側から順に、正屈折力の第1レンズ群と、負屈折力の第2レンズ群と、正屈折力の第3レンズ群と、負屈折力の第4レンズ群と、正屈折力の第5レンズ群とを有し、前記第2レンズ群より像側に開口絞りを有し、広角端状態から望遠端状態への変倍に際し、前記第1レンズ群と前記第2レンズ群との間隔は増大し、前記第2レンズ群と前記第3レンズ群との間隔は減少し、前記第3レンズ群と前記第4レンズ群との間隔は変化し、前記第4レンズ群と前記第5レンズ群との間隔は変化し、以下の条件式を満足することを特徴とする変倍光学系を提供する。
0.17 < f1/fT < 0.60
1.03 < φT/φW < 1.70
但し、
fT:望遠端状態における全系の焦点距離
f1:前記第1レンズ群の焦点距離
φW:広角端状態における前記開口絞りの最大開口径
φT:望遠端状態における前記開口絞りの最大開口径
In order to solve the above-described problems, the present invention provides a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a third lens group having a positive refractive power in order from the object side along the optical axis. A fourth lens group having a negative refractive power and a fifth lens group having a positive refractive power, and having an aperture stop closer to the image side than the second lens group, and changing from the wide-angle end state to the telephoto end state. At the time of magnification, the distance between the first lens group and the second lens group increases, the distance between the second lens group and the third lens group decreases, and the third lens group and the fourth lens group. And the distance between the fourth lens group and the fifth lens group varies, and the zoom lens system satisfies the following conditional expression.
0.17 <f1 / fT <0.60
1.03 <φT / φW <1.70
However,
fT: focal length of the entire system in the telephoto end state f1: focal length φW of the first lens group: maximum aperture diameter of the aperture stop in the wide angle end state φT: maximum aperture diameter of the aperture stop in the telephoto end state

また、本発明は、前記変倍光学系を有することを特徴とする光学装置を提供する。   The present invention also provides an optical apparatus comprising the variable magnification optical system.

また、本発明は、光軸に沿って物体側から順に、正屈折力の第1レンズ群と、負屈折力の第2レンズ群と、正屈折力の第3レンズ群と、負屈折力の第4レンズ群と、正屈折力の第5レンズ群とを有する変倍光学系の製造方法であって、開口絞りを前記第2レンズ群より像側に配置し、前記第1レンズ群と前記第2レンズ群と前記第3レンズ群と前記第4レンズ群と前記第5レンズ群とを、広角端状態から望遠端状態への変倍に際し、前記第1レンズ群と前記第2レンズ群との間隔が増大可能、前記第2レンズ群と前記第3レンズ群との間隔が減少可能、前記第3レンズ群と前記第4レンズ群との間隔が変化可能、前記第4レンズ群と前記第5レンズ群との間隔が変化可能に配置し、以下の条件式を満足するようにすることを特徴とする変倍光学系の製造方法を提供する。
0.17 < f1/fT < 0.60
1.03 < φT/φW < 1.70
但し、
fT:望遠端状態における全系の焦点距離
f1:前記第1レンズ群の焦点距離
φW:広角端状態における前記開口絞りの最大開口径
φT:望遠端状態における前記開口絞りの最大開口径
Further, according to the present invention, in order from the object side along the optical axis, a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, and a negative refractive power. A variable magnification optical system manufacturing method having a fourth lens group and a fifth lens group having a positive refractive power, wherein an aperture stop is disposed on the image side of the second lens group, and the first lens group and the When changing the second lens group, the third lens group, the fourth lens group, and the fifth lens group from the wide-angle end state to the telephoto end state, the first lens group, the second lens group, The distance between the second lens group and the third lens group can be decreased, the distance between the third lens group and the fourth lens group can be changed, and the fourth lens group and the fourth lens group can be changed. A variable magnification light characterized by being arranged so that the distance from the five lens groups can be changed and satisfying the following conditional expression: To provide a process for the preparation of the system.
0.17 <f1 / fT <0.60
1.03 <φT / φW <1.70
However,
fT: focal length of the entire system in the telephoto end state f1: focal length φW of the first lens group: maximum aperture diameter of the aperture stop in the wide angle end state φT: maximum aperture diameter of the aperture stop in the telephoto end state

本発明によれば、収差変動を抑え、高い光学性能を有する変倍光学系とこれを有する光学装置、変倍光学系の製造方法を提供することができる。   According to the present invention, it is possible to provide a variable magnification optical system that suppresses aberration fluctuation and has high optical performance, an optical apparatus having the variable magnification optical system, and a method for manufacturing the variable magnification optical system.

第1実施例に係る変倍光学系の構成を示す断面図である。It is sectional drawing which shows the structure of the variable magnification optical system which concerns on 1st Example. 第1実施例に係る変倍光学系の無限遠合焦状態での諸収差図を示し、(a)は広角端状態、(b)は第1中間焦点距離状態、(c)は第2中間焦点距離状態をそれぞれ示す。FIG. 4A illustrates various aberration diagrams of the variable magnification optical system according to Example 1 in an infinitely focused state, where (a) is a wide-angle end state, (b) is a first intermediate focal length state, and (c) is a second intermediate state. Each focal length state is shown. 第1実施例に係る変倍光学系の無限遠合焦状態での諸収差図を示し、(a)は第3中間焦点距離状態、(b)は第4中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。FIG. 5A illustrates various aberration diagrams of the zoom optical system according to the first example in an infinitely focused state, where (a) is a third intermediate focal length state, (b) is a fourth intermediate focal length state, and (c) is Each telephoto end state is shown. 第2実施例に係る変倍光学系の構成を示す断面図である。It is sectional drawing which shows the structure of the variable magnification optical system which concerns on 2nd Example. 第2実施例に係る変倍光学系の無限遠合焦状態での諸収差図を示し、(a)は広角端状態、(b)は第1中間焦点距離状態、(c)は第2中間焦点距離状態をそれぞれ示す。The aberration diagrams in the infinite focus state of the variable magnification optical system according to the second example are shown, (a) is a wide-angle end state, (b) is a first intermediate focal length state, and (c) is a second intermediate state. Each focal length state is shown. 第2実施例に係る変倍光学系の無限遠合焦状態での諸収差図を示し、(a)は第3中間焦点距離状態、(b)は第4中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。The aberration diagrams in the infinite focus state of the variable magnification optical system according to the second example are shown, (a) is the third intermediate focal length state, (b) is the fourth intermediate focal length state, (c) is Each telephoto end state is shown. 第3実施例に係る変倍光学系の構成を示す断面図である。It is sectional drawing which shows the structure of the variable magnification optical system which concerns on 3rd Example. 第3実施例に係る変倍光学系の無限遠合焦状態での諸収差図を示し、(a)は広角端状態、(b)は第1中間焦点距離状態、(c)は第2中間焦点距離状態をそれぞれ示す。The aberration diagrams in the infinite focus state of the variable magnification optical system according to the third example are shown, (a) is a wide-angle end state, (b) is a first intermediate focal length state, and (c) is a second intermediate state. Each focal length state is shown. 第3実施例に係る変倍光学系の無限遠合焦状態での諸収差図を示し、(a)は第3中間焦点距離状態、(b)は第4中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。The aberration diagrams in the infinite focus state of the variable magnification optical system according to the third example are shown, (a) is the third intermediate focal length state, (b) is the fourth intermediate focal length state, (c) is Each telephoto end state is shown. 第4実施例に係る変倍光学系の構成を示す断面図である。It is sectional drawing which shows the structure of the variable magnification optical system which concerns on 4th Example. 第4実施例に係る変倍光学系の無限遠合焦状態での諸収差図を示し、(a)は広角端状態、(b)は第1中間焦点距離状態、(c)は第2中間焦点距離状態をそれぞれ示す。FIG. 6A shows various aberration diagrams of the zoom optical system according to Example 4 in the infinitely focused state, where (a) is a wide-angle end state, (b) is a first intermediate focal length state, and (c) is a second intermediate state. Each focal length state is shown. 第4実施例に係る変倍光学系の無限遠合焦状態での諸収差図を示し、(a)は第3中間焦点距離状態、(b)は第4中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。The aberration diagrams in the infinite focus state of the variable magnification optical system according to the fourth example are shown, (a) is the third intermediate focal length state, (b) is the fourth intermediate focal length state, (c) is Each telephoto end state is shown. 第5実施例に係る変倍光学系の構成を示す断面図である。It is sectional drawing which shows the structure of the variable magnification optical system which concerns on 5th Example. 第5実施例に係る変倍光学系の無限遠合焦状態での諸収差図を示し、(a)は広角端状態、(b)は第1中間焦点距離状態、(c)は第2中間焦点距離状態をそれぞれ示す。FIG. 6A shows various aberration diagrams of the variable magnification optical system according to Example 5 in the infinitely focused state, where (a) is a wide-angle end state, (b) is a first intermediate focal length state, and (c) is a second intermediate state. Each focal length state is shown. 第5実施例に係る変倍光学系の無限遠合焦状態での諸収差図を示し、(a)は第3中間焦点距離状態、(b)は第4中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。The aberration diagrams in the infinite focus state of the variable magnification optical system according to the fifth example are shown, (a) is the third intermediate focal length state, (b) is the fourth intermediate focal length state, (c) is Each telephoto end state is shown. 第1実施例に係る変倍光学系を備えたカメラの構成を示す図である。It is a figure which shows the structure of the camera provided with the variable magnification optical system which concerns on 1st Example. 本願の変倍光学系の製造方法を示す図である。It is a figure which shows the manufacturing method of the variable magnification optical system of this application.

以下、本願の一実施形態に係る変倍光学系について説明する。   Hereinafter, a variable magnification optical system according to an embodiment of the present application will be described.

本実施形態に係る変倍光学系は、光軸に沿って物体側から順に、正屈折力の第1レンズ群と、負屈折力の第2レンズ群と、正屈折力の第3レンズ群と、負屈折力の第4レンズ群と、正屈折力の第5レンズ群とを有し、第2レンズ群より像側に開口絞りを有し、広角端状態から望遠端状態への変倍に際し、第1レンズ群と第2レンズ群との間隔は増大し、第2レンズ群と第3レンズ群との間隔は減少し、第3レンズ群と第4レンズ群との間隔は変化し、第4レンズ群と第5レンズ群との間隔は変化する構成とすることで、変倍可能な光学系を実現し、広角端状態から望遠端状態まで適度に歪曲収差を補正している。   The variable magnification optical system according to this embodiment includes, in order from the object side along the optical axis, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a third lens group having a positive refractive power. A fourth lens group having a negative refractive power and a fifth lens group having a positive refractive power, an aperture stop on the image side of the second lens group, and zooming from the wide-angle end state to the telephoto end state. The distance between the first lens group and the second lens group increases, the distance between the second lens group and the third lens group decreases, the distance between the third lens group and the fourth lens group changes, and By adopting a configuration in which the distance between the fourth lens group and the fifth lens group is changed, an optical system capable of zooming is realized, and distortion is appropriately corrected from the wide-angle end state to the telephoto end state.

また、本実施形態に係る変倍光学系は、以下の条件式(1)、(2)を満足する。
(1) 0.17 < f1/fT < 0.60
(2) 1.03 < φT/φW < 1.70
但し、fTは望遠端状態における全系の焦点距離、f1は第1レンズ群の焦点距離、φWは広角端状態における開口絞りの最大開口径、φTは望遠端状態における開口絞りの最大開口径である。
In addition, the variable magnification optical system according to the present embodiment satisfies the following conditional expressions (1) and (2).
(1) 0.17 <f1 / fT <0.60
(2) 1.03 <φT / φW <1.70
Where fT is the focal length of the entire system in the telephoto end state, f1 is the focal length of the first lens group, φW is the maximum aperture diameter of the aperture stop in the wide-angle end state, and φT is the maximum aperture diameter of the aperture stop in the telephoto end state is there.

条件式(1)は、変倍光学系で発生する球面収差と像面湾曲を良好に補正し、高い光学性能を得るための条件式である。   Conditional expression (1) is a conditional expression for satisfactorily correcting spherical aberration and curvature of field generated in the variable magnification optical system and obtaining high optical performance.

条件式(1)の下限値を下回った場合、即ち第1レンズ群の屈折力が過度に大きくなると、望遠端状態における負の球面収差と、広角端状態において負の像面湾曲が大きく発生し、高い光学性能を得ることができない。   When the lower limit value of conditional expression (1) is not satisfied, that is, when the refractive power of the first lens unit becomes excessively large, negative spherical aberration at the telephoto end state and negative field curvature at the wide-angle end state are greatly generated. High optical performance cannot be obtained.

条件式(1)の上限値を上回った場合、即ち第1レンズ群の屈折力が過度に小さくなると、変倍率を維持するためには第1レンズ群を像面に対して大きく移動させる必要があり、望遠端状態における周辺光量の確保が困難となり、また望遠端状態において第2レンズ群で発生する正の球面収差補正が困難となり、高い光学性能を得ることができない。   If the upper limit of conditional expression (1) is exceeded, that is, if the refractive power of the first lens group becomes excessively small, it is necessary to move the first lens group with respect to the image plane to maintain the variable magnification. In addition, it is difficult to secure the amount of peripheral light in the telephoto end state, and it becomes difficult to correct positive spherical aberration generated in the second lens group in the telephoto end state, and high optical performance cannot be obtained.

なお、実施形態の効果を確実にするために、条件式(1)の下限値を0.23とすることが好ましい。また、実施形態の効果を更に確実にするために、条件式(1)の下限値を0.25とすることが更に好ましい。また、実施形態の効果を更に確実にするために、条件式(1)の下限値を0.28とすることが更に好ましい。   In order to secure the effect of the embodiment, it is preferable to set the lower limit of conditional expression (1) to 0.23. In order to further secure the effect of the embodiment, it is more preferable to set the lower limit of conditional expression (1) to 0.25. In order to further secure the effect of the embodiment, it is more preferable to set the lower limit of conditional expression (1) to 0.28.

また、実施形態の効果を確実にするために、条件式(1)の上限値を0.53とすることが好ましい。また、実施形態の効果を更に確実にするために、条件式(1)の上限値を0.48とすることが更に好ましい。また、実施形態の効果を更に確実にするために、条件式(1)の上限値を0.43とすることが更に好ましい。   In order to secure the effect of the embodiment, it is preferable to set the upper limit of conditional expression (1) to 0.53. In order to further secure the effect of the embodiment, it is more preferable to set the upper limit value of conditional expression (1) to 0.48. In order to further secure the effect of the embodiment, it is more preferable to set the upper limit of conditional expression (1) to 0.43.

条件式(2)は、望遠端状態におけるFナンバーを適度に小さく、球面収差やコマ収差を良好に補正し、高い光学性能を得るための条件式である。条件式(2)を満足することで、広角端状態から望遠端状態まで変倍する際に変化するFナンバーの変化量を最適化し、変倍範囲全域に亘って球面収差やコマ収差の変動を抑えることが可能になる。   Conditional expression (2) is a conditional expression for obtaining a high optical performance by appropriately correcting the spherical aberration and the coma aberration in the telephoto end state with an appropriately small F number. By satisfying conditional expression (2), the amount of change in the F-number that changes when zooming from the wide-angle end state to the telephoto end state is optimized, and fluctuations in spherical aberration and coma aberration over the entire zoom range. It becomes possible to suppress.

条件式(2)の下限値を下回った場合、望遠端状態における開口絞りの最大開口径が小さくなりすぎる。すると、望遠端状態におけるFナンバーが大きくなりすぎ、広角端状態において球面収差やコマ収差が大きく発生し、高い光学性能を実現できない。   When the lower limit of conditional expression (2) is not reached, the maximum aperture diameter of the aperture stop in the telephoto end state becomes too small. Then, the F number in the telephoto end state becomes too large, and spherical aberration and coma aberration are greatly generated in the wide-angle end state, so that high optical performance cannot be realized.

条件式(2)の上限値を上回った場合、望遠端状態において球面収差やコマ収差が大きく発生し、高い光学性能を実現できない。   If the upper limit of conditional expression (2) is exceeded, large spherical aberration and coma occur in the telephoto end state, and high optical performance cannot be realized.

なお、実施形態の効果を確実にするために、条件式(2)の下限値を1.05とすることが好ましい。また、実施形態の効果を更に確実にするために、条件式(2)の下限値を1.08とすることが更に好ましい。また、実施形態の効果を更に確実にするために、条件式(2)の下限値を1.12とすることが更に好ましい。   In order to secure the effect of the embodiment, it is preferable to set the lower limit of conditional expression (2) to 1.05. In order to further secure the effect of the embodiment, it is more preferable to set the lower limit of conditional expression (2) to 1.08. In order to further secure the effect of the embodiment, it is more preferable to set the lower limit of conditional expression (2) to 1.12.

また、実施形態の効果を確実にするために、条件式(2)の上限値を1.58とすることが好ましい。また、実施形態の効果を更に確実にするために、条件式(2)の上限値を1.45とすることが更に好ましい。   In order to secure the effect of the embodiment, it is preferable to set the upper limit of conditional expression (2) to 1.58. In order to further secure the effect of the embodiment, it is more preferable to set the upper limit of conditional expression (2) to 1.45.

また、本実施形態に係る変倍光学系は、以下の条件式(3)を満足することが望ましい。
(3) 1.02 < φM10/φW < 1.70
但し、φM10は広角端状態における全系の焦点距離をfWとするとき、全系の焦点距離がfWの10倍以上の中間焦点距離状態での開口絞りの最大開口径である。
In addition, it is desirable that the variable magnification optical system according to the present embodiment satisfies the following conditional expression (3).
(3) 1.02 <φM10 / φW <1.70
However, φM10 is the maximum aperture diameter of the aperture stop in the intermediate focal length state where the focal length of the entire system is 10 times or more of fW, where fW is the focal length of the entire system in the wide-angle end state.

条件式(3)は、変倍光学系全系の焦点距離がfWの10倍以上の中間焦点距離状態の変倍領域において、変倍光学系に十分なF値を持たせ、高い光学性能を実現するための条件式である。   Conditional expression (3) indicates that the variable power optical system has a sufficient F value in the variable power region in the intermediate focal length state where the focal length of the entire variable power optical system is 10 times or more of fW, and has high optical performance. It is a conditional expression for realizing.

条件式(3)の下限値を下回った場合、変倍光学系全系の焦点距離がfWの10倍以上の中間焦点距離状態の変倍領域において、開口絞りの最大開口径が小さくなりすぎる。すると、この変倍領域におけるFナンバーが大きくなりすぎ、広角端状態において球面収差やコマ収差が大きく発生し、高い光学性能を実現できない。   When the lower limit value of conditional expression (3) is not reached, the maximum aperture diameter of the aperture stop becomes too small in the variable magnification region in the intermediate focal length state where the focal length of the entire variable magnification optical system is 10 times or more of fW. Then, the F number in this variable magnification region becomes too large, and spherical aberration and coma aberration are greatly generated in the wide-angle end state, so that high optical performance cannot be realized.

条件式(3)の上限値を上回った場合、変倍光学系全系の焦点距離がfWの10倍以上の中間焦点距離状態の変倍領域において、球面収差やコマ収差が大きく発生し、高い光学性能を実現できない。   When the upper limit of conditional expression (3) is exceeded, spherical aberration and coma are greatly generated and high in the variable magnification region in the intermediate focal length state where the focal length of the entire variable magnification optical system is 10 times or more of fW. Optical performance cannot be realized.

なお、実施形態の効果を確実にするために、条件式(3)の下限値を1.03とすることが好ましい。また、実施形態の効果を更に確実にするために、条件式(3)の下限値を1.06とすることが更に好ましい。   In order to secure the effect of the embodiment, it is preferable to set the lower limit of conditional expression (3) to 1.03. In order to further secure the effect of the embodiment, it is more preferable to set the lower limit of conditional expression (3) to 1.06.

また、実施形態の効果を確実にするために、条件式(3)の上限値を1.60とすることが好ましい。また、実施形態の効果を更に確実にするために、条件式(3)の上限値を1.55とすることが更に好ましい。また、実施形態の効果を更に確実にするために、条件式(3)の上限値を1.40とすることが更に好ましい。   In order to secure the effect of the embodiment, it is preferable to set the upper limit of conditional expression (3) to 1.60. In order to further secure the effect of the embodiment, it is more preferable to set the upper limit of conditional expression (3) to 1.55. In order to further secure the effect of the embodiment, it is more preferable to set the upper limit of conditional expression (3) to 1.40.

また、本実施形態に係る変倍光学系は、以下の条件式(4)を満足することが望ましい。
(4) 1.02 < φM15/φW < 1.70
但し、φM15は広角端状態における全系の焦点距離をfWとするとき、全系の焦点距離がfWの15倍以上の中間焦点距離状態での開口絞りの最大開口径である。
In addition, it is desirable that the variable magnification optical system according to the present embodiment satisfies the following conditional expression (4).
(4) 1.02 <φM15 / φW <1.70
However, φM15 is the maximum aperture diameter of the aperture stop in the intermediate focal length state where the focal length of the entire system is 15 times or more of fW, where fW is the focal length of the entire system in the wide-angle end state.

条件式(4)は、変倍光学系全系の焦点距離がfWの15倍以上の中間焦点距離状態の変倍領域において、変倍光学系に十分なF値を持たせ、高い光学性能を実現するための条件式である。   Conditional expression (4) gives a high optical performance by giving the variable magnification optical system a sufficient F value in the variable magnification region in the intermediate focal length state where the focal length of the entire variable magnification optical system is 15 times or more of fW. It is a conditional expression for realizing.

条件式(4)の下限値を下回った場合、変倍光学系全系の焦点距離がfWの15倍以上の中間焦点距離状態の変倍領域において、開口絞りの最大開口径が小さくなりすぎる。すると、この変倍領域におけるFナンバーが大きくなりすぎ、広角端状態において球面収差やコマ収差が大きく発生し、高い光学性能を実現できない。   When the lower limit of conditional expression (4) is not reached, the maximum aperture diameter of the aperture stop becomes too small in the variable magnification region in the intermediate focal length state where the focal length of the entire variable magnification optical system is 15 times or more of fW. Then, the F number in this variable magnification region becomes too large, and spherical aberration and coma aberration are greatly generated in the wide-angle end state, so that high optical performance cannot be realized.

条件式(4)の上限値を上回った場合、変倍光学系全系の焦点距離がfWの15倍以上の中間焦点距離状態の変倍領域において、球面収差やコマ収差が大きく発生し、高い光学性能を実現できない。   When the upper limit of conditional expression (4) is exceeded, large spherical aberration and coma occur in the variable magnification region in the intermediate focal length state where the focal length of the entire variable magnification optical system is 15 times or more of fW, which is high. Optical performance cannot be realized.

なお、実施形態の効果を確実にするために、条件式(4)の下限値を1.04とすることが好ましい。また、実施形態の効果を更に確実にするために、条件式(4)の下限値を1.07とすることが更に好ましい。   In order to secure the effect of the embodiment, it is preferable to set the lower limit of conditional expression (4) to 1.04. In order to further secure the effect of the embodiment, it is more preferable to set the lower limit of conditional expression (4) to 1.07.

また、実施形態の効果を確実にするために、条件式(4)の上限値を1.60とすることが好ましい。また、実施形態の効果を更に確実にするために、条件式(4)の上限値を1.55とすることが更に好ましい。また、実施形態の効果を更に確実にするために、条件式(4)の上限値を1.40とすることが更に好ましい。   In order to secure the effect of the embodiment, it is preferable to set the upper limit of conditional expression (4) to 1.60. In order to further secure the effect of the embodiment, it is more preferable to set the upper limit of conditional expression (4) to 1.55. In order to further secure the effect of the embodiment, it is more preferable to set the upper limit of conditional expression (4) to 1.40.

また、本実施形態に係る変倍光学系は、以下の条件式(5)を満足することが望ましい。
(5) 1.00 ≦ φM5/φW < 1.40
但し、φM5は広角端状態における全系の焦点距離をfWとするとき、全系の焦点距離がfWの5倍以上8倍以下の中間焦点距離状態での開口絞りの最大開口径である。
In addition, it is desirable that the variable magnification optical system according to the present embodiment satisfies the following conditional expression (5).
(5) 1.00 ≦ φM5 / φW <1.40
However, φM5 is the maximum aperture diameter of the aperture stop in the intermediate focal length state where the focal length of the entire system is 5 to 8 times fW when the focal length of the entire system in the wide-angle end state is fW.

条件式(5)は、全系の焦点距離がfWの5倍以上8倍以下の中間焦点距離の変倍領域において、高い光学性能を実現するための条件式である。   Conditional expression (5) is a conditional expression for realizing high optical performance in a variable magnification region of the intermediate focal length where the focal length of the entire system is not less than 5 times and not more than 8 times fW.

条件式(5)の下限値を下回った場合、全系の焦点距離がfWの5倍以上8倍以下の中間焦点距離の変倍領域において、開口絞りの最大開口径が小さくなりすぎる。すると、この変倍領域におけるFナンバーが大きくなりすぎ、広角端状態において球面収差やコマ収差が大きく発生し、高い光学性能を実現できない。   When the lower limit value of conditional expression (5) is not reached, the maximum aperture diameter of the aperture stop becomes too small in the variable range of the intermediate focal length where the focal length of the entire system is 5 to 8 times fW. Then, the F number in this variable magnification region becomes too large, and spherical aberration and coma aberration are greatly generated in the wide-angle end state, so that high optical performance cannot be realized.

条件式(5)の上限値を上回った場合、全系の焦点距離がfWの5倍以上8倍以下の中間焦点距離の変倍領域において、球面収差やコマ収差が大きく発生し、高い光学性能を実現できない。   When the upper limit value of conditional expression (5) is exceeded, large spherical aberration and coma aberration occur in the variable focal range of the intermediate focal length where the focal length of the entire system is 5 to 8 times fW, and high optical performance Cannot be realized.

なお、実施形態の効果を確実にするために、条件式(5)の下限値を1.01とすることが好ましい。また、実施形態の効果を更に確実にするために、条件式(5)の下限値を1.03とすることが更に好ましい。   In order to secure the effect of the embodiment, it is preferable to set the lower limit of conditional expression (5) to 1.01. In order to further secure the effect of the embodiment, it is more preferable to set the lower limit of conditional expression (5) to 1.03.

また、実施形態の効果を確実にするために、条件式(5)の上限値を1.32とすることが好ましい。また、実施形態の効果を更に確実にするために、条件式(5)の上限値を1.25とすることが更に好ましい。   In order to secure the effect of the embodiment, it is preferable to set the upper limit of conditional expression (5) to 1.32. In order to further secure the effect of the embodiment, it is more preferable to set the upper limit of conditional expression (5) to 1.25.

また、本実施形態に係る変倍光学系は、広角端状態から望遠端状態への変倍に際し、開口絞りは、広角端状態から全系の焦点距離fMの中間焦点距離状態まで広角端状態の最大開口径を維持し、以下の条件式(6)を満足することが望ましい。
(6) 1.50 < fM/fW < 15.00
但し、fWは広角端状態における全系の焦点距離である。
In the zoom optical system according to the present embodiment, the aperture stop is in the wide-angle end state from the wide-angle end state to the intermediate focal length state of the focal length fM of the entire system when zooming from the wide-angle end state to the telephoto end state. It is desirable to maintain the maximum opening diameter and satisfy the following conditional expression (6).
(6) 1.50 <fM / fW <15.00
However, fW is the focal length of the entire system in the wide-angle end state.

条件式(6)は、任意の中間焦点距離の変倍領域において、高い光学性能を実現するための条件式である。   Conditional expression (6) is a conditional expression for realizing high optical performance in a variable magnification region of any intermediate focal length.

条件式(6)の下限値を下回った場合、任意の中間焦点距離の変倍領域において、球面収差やコマ収差が大きく発生し、高い光学性能を実現できない。   If the lower limit value of conditional expression (6) is not reached, spherical aberration and coma are greatly generated in a variable magnification region of any intermediate focal length, and high optical performance cannot be realized.

条件式(6)の上限値を上回った場合、任意の中間焦点距離の変倍領域において、Fナンバーが大きくなりすぎ、また広角端状態において球面収差やコマ収差が大きく発生し、高い光学性能を実現できない。   If the upper limit value of conditional expression (6) is exceeded, the F number becomes too large in the variable focal region of any intermediate focal length, and spherical aberration and coma aberration occur at the wide-angle end state, resulting in high optical performance. Cannot be realized.

なお、実施形態の効果を確実にするために、条件式(6)の下限値を1.80とすることが好ましい。また、実施形態の効果を更に確実にするために、条件式(6)の下限値を2.30とすることが更に好ましい。   In order to secure the effect of the embodiment, it is preferable to set the lower limit of conditional expression (6) to 1.80. In order to further secure the effect of the embodiment, it is more preferable to set the lower limit of conditional expression (6) to 2.30.

また、実施形態の効果を確実にするために、条件式(6)の上限値を12.00とすることが好ましい。また、実施形態の効果を更に確実にするために、条件式(6)の上限値を8.50とすることが更に好ましい。   In order to secure the effect of the embodiment, it is preferable to set the upper limit of conditional expression (6) to 12.00. In order to further secure the effect of the embodiment, it is more preferable to set the upper limit of conditional expression (6) to 8.50.

また、本実施形態に係る変倍光学系は、前記焦点距離fMの中間焦点距離状態から望遠端状態への変倍に際し、開口絞りの最大開口径は単調に増大することが望ましい。なお、開口絞りの最大開口径とは、各焦点距離状態における最大の開口絞り径である。   In the zoom optical system according to the present embodiment, it is desirable that the maximum aperture diameter of the aperture stop monotonously increases when the focal length fM is changed from the intermediate focal length state to the telephoto end state. The maximum aperture diameter of the aperture stop is the maximum aperture stop diameter in each focal length state.

この構成とすることで、変倍光学系のメカニカルな構成を簡略化でき、また前記焦点距離fMの中間焦点距離状態から望遠端状態までの変倍領域において、球面収差の変動を抑えることが可能となり、高い光学性能を実現できる。   With this configuration, it is possible to simplify the mechanical configuration of the variable magnification optical system, and to suppress variations in spherical aberration in the variable magnification region from the intermediate focal length state to the telephoto end state with the focal length fM. Thus, high optical performance can be realized.

また、本実施形態に係る変倍光学系は、以下の条件式(7)を満足することが望ましい。
(7) 0.032 < −f2/fT < 0.064
但し、f2は第2レンズ群の焦点距離である。
In addition, it is desirable that the variable magnification optical system according to the present embodiment satisfies the following conditional expression (7).
(7) 0.032 <−f2 / fT <0.064
Here, f2 is the focal length of the second lens group.

条件式(7)は、広角端状態から望遠端状態への変倍に際し、第2レンズ群で発生する収差変動を抑え、高い光学性能を実現するための条件式である。   Conditional expression (7) is a conditional expression for realizing high optical performance by suppressing aberration fluctuations occurring in the second lens group upon zooming from the wide-angle end state to the telephoto end state.

条件式(7)の下限値を下回った場合、第2レンズ群の屈折力が過度に大きくなる。すると広角端状態から望遠端状態への変倍時、球面収差や非点収差の変動が大きく発生し、高い光学性能を実現できない。   When the lower limit value of conditional expression (7) is not reached, the refractive power of the second lens group becomes excessively large. As a result, during zooming from the wide-angle end state to the telephoto end state, variations in spherical aberration and astigmatism occur greatly, and high optical performance cannot be realized.

条件式(7)の上限値を上回った場合、第2レンズ群の屈折力が過度に小さくなり、第2レンズ群の移動量が増大する。すると広角端状態から望遠端状態への変倍時、第2レンズ群で発生する球面収差や非点収差変動を抑えることが困難となり、高い光学性能を実現できない。   When the upper limit of conditional expression (7) is exceeded, the refractive power of the second lens group becomes excessively small, and the amount of movement of the second lens group increases. Then, at the time of zooming from the wide-angle end state to the telephoto end state, it becomes difficult to suppress spherical aberration and astigmatism fluctuations that occur in the second lens group, and high optical performance cannot be realized.

なお、実施形態の効果を確実にするために、条件式(7)の下限値を0.038とすることが好ましい。また、実施形態の効果を更に確実にするために、条件式(7)の下限値を0.042とすることが更に好ましい。   In order to secure the effect of the embodiment, it is preferable to set the lower limit of conditional expression (7) to 0.038. In order to further secure the effect of the embodiment, it is more preferable to set the lower limit of conditional expression (7) to 0.042.

また、実施形態の効果を確実にするために、条件式(7)の上限値を0.061とすることが好ましい。また、実施形態の効果を更に確実にするために、条件式(7)の上限値を0.057とすることが更に好ましい。   In order to secure the effect of the embodiment, it is preferable to set the upper limit of conditional expression (7) to 0.061. In order to further secure the effect of the embodiment, it is more preferable to set the upper limit of conditional expression (7) to 0.057.

また、本実施形態に係る変倍光学系は、広角端状態から望遠端状態への変倍に際し、全系のFナンバーは単調に増大することが望ましい。   In the zoom optical system according to the present embodiment, it is desirable that the F number of the entire system increases monotonously when zooming from the wide-angle end state to the telephoto end state.

この構成とすることで、広角端状態から望遠端状態への変倍に際して、絞り近傍のレンズ群、例えば第3レンズ群などを通る軸上光線高の過度な増大を抑え、これに伴って球面収差などの変動を抑えることが可能となり、高い光学性能を実現できる。   With this configuration, when zooming from the wide-angle end state to the telephoto end state, an excessive increase in the axial ray height passing through the lens group in the vicinity of the stop, for example, the third lens group, is suppressed, and the spherical surface is accordingly accompanied. It becomes possible to suppress fluctuations such as aberration, and high optical performance can be realized.

また、本実施形態に係る変倍光学系は、広角端状態から望遠端状態への変倍に際し、第1レンズ群は像面に対して物体側に移動することが望ましい。   In the zoom optical system according to the present embodiment, it is desirable that the first lens unit moves toward the object side with respect to the image plane when zooming from the wide-angle end state to the telephoto end state.

この構成とすることで、第1レンズ群の径を小型化でき、また広角端状態における第1レンズ群を通過する軸外光束の光軸からの高さを抑えて像面湾曲や非点収差などの変倍時における変動を抑えることができる。   With this configuration, the diameter of the first lens group can be reduced, and the height of the off-axis light beam passing through the first lens group in the wide-angle end state from the optical axis can be suppressed to suppress field curvature and astigmatism. The fluctuation at the time of zooming can be suppressed.

また、本実施形態に係る変倍光学系は、広角端状態から望遠端状態への変倍に際し、開口絞りは、第3レンズ群の少なくとも一部と一体に移動することが望ましい。   In the zoom optical system according to the present embodiment, it is desirable that the aperture stop moves integrally with at least a part of the third lens group when zooming from the wide-angle end state to the telephoto end state.

この構成とすることで、変倍光学系のメカニカルな構成を簡略化でき、また球面収差の変動を抑えることが可能となり、高い光学性能を実現できる。   With this configuration, the mechanical configuration of the variable magnification optical system can be simplified, and fluctuations in spherical aberration can be suppressed, thereby realizing high optical performance.

また、本実施形態に係る変倍光学系は、開口絞りは、第3レンズ群の物体側に配置されることが望ましい。   In the variable magnification optical system according to this embodiment, it is desirable that the aperture stop be disposed on the object side of the third lens group.

この構成とすることで、第1レンズ群の径を小型化でき、また広角端状態における第1レンズ群を通過する軸外光束の光軸からの高さを抑えて像面湾曲や非点収差などの変倍時における変動を抑えることができる。   With this configuration, the diameter of the first lens group can be reduced, and the height of the off-axis light beam passing through the first lens group in the wide-angle end state from the optical axis can be suppressed to suppress field curvature and astigmatism. The fluctuation at the time of zooming can be suppressed.

また、本実施形態に係る変倍光学系は、広角端状態から望遠端状態への変倍に際し、第3レンズ群と第5レンズ群は一体で移動することが望ましい。   In the zoom optical system according to the present embodiment, it is desirable that the third lens unit and the fifth lens unit move together when zooming from the wide-angle end state to the telephoto end state.

この構成とすることで、第3レンズ群と第5レンズ群は一体で構成できるようになり、製造誤差による第3レンズ群から第5レンズ群間の相互偏心量を抑え、第3レンズ群から第5レンズ群間で発生する偏心コマ収差の発生を抑えることが可能になり高い光学性能を実現できる。   With this configuration, the third lens group and the fifth lens group can be configured integrally, and the amount of mutual eccentricity between the third lens group and the fifth lens group due to manufacturing errors is suppressed, and the third lens group It is possible to suppress the occurrence of decentration coma that occurs between the fifth lens groups, thereby realizing high optical performance.

(実施例)
以下、本実施形態に係る各実施例について図面を参照しつつ説明する。
(Example)
Hereinafter, each example according to the present embodiment will be described with reference to the drawings.

(第1実施例)
図1は、第1実施例に係る変倍光学系の構成を示す断面図である。
(First embodiment)
FIG. 1 is a cross-sectional view showing a configuration of a variable magnification optical system according to the first example.

図1に示すように、第1実施例に係る変倍光学系は、光軸に沿って物体側から順に、正屈折力の第1レンズ群G1と、負屈折力の第2レンズ群G2と、正屈折力の第3レンズ群G3と、負屈折力の第4レンズ群G4と、正屈折力の第5レンズ群G5とから構成される。   As shown in FIG. 1, the variable magnification optical system according to the first example includes a first lens group G1 having a positive refractive power and a second lens group G2 having a negative refractive power in order from the object side along the optical axis. The third lens group G3 having positive refractive power, the fourth lens group G4 having negative refractive power, and the fifth lens group G5 having positive refractive power.

広角端状態Wから望遠端状態Tへの変倍に際し、第1レンズ群G1と第2レンズ群G2との間隔は増大し、第2レンズ群G2と第3レンズ群G3との間隔は減少するように、像面Iに対して、第1レンズ群G1は単調に物体側へ移動し、第2レンズ群G2は第1中間焦点距離状態M1まで像側へ移動し、第1中間焦点距離状態M1から望遠端状態Tまでは物体側へ移動し、第3レンズ群G3は単調に物体側へ移動する。さらに、第3レンズ群G3と第4レンズ群G4との間隔は増大し、第4レンズ群G4と第5レンズ群G5との間隔は減少するように、第4レンズ群G4と第5レンズ群G5は像面Iに対して単調に物体側へ移動する。また、第3レンズ群G3と第5レンズ群G5は、像面Iに対して一体で移動する。   When zooming from the wide-angle end state W to the telephoto end state T, the distance between the first lens group G1 and the second lens group G2 increases, and the distance between the second lens group G2 and the third lens group G3 decreases. Thus, with respect to the image plane I, the first lens group G1 moves monotonously to the object side, and the second lens group G2 moves to the image side up to the first intermediate focal length state M1, and the first intermediate focal length state From M1 to the telephoto end state T, the lens moves toward the object side, and the third lens group G3 monotonously moves toward the object side. Furthermore, the distance between the third lens group G3 and the fourth lens group G4 increases, and the distance between the fourth lens group G4 and the fifth lens group G5 decreases so that the fourth lens group G4 and the fifth lens group. G5 moves to the object side monotonously with respect to the image plane I. Further, the third lens group G3 and the fifth lens group G5 move integrally with the image plane I.

開口絞りSは、第2レンズ群G2の像側にある第3レンズ群G3の最も物体側に配置され、第3レンズ群G3と一体で構成される。また、広角端状態Wから望遠端状態Tへの変倍に際し、開口絞りSは、広角端状態Wから第2中間焦点距離状態M2まで広角端状態Wの最大開口径を維持し、第2中間焦点距離状態M2から望遠端状態Tまでは最大開口径が単調に増大する。   The aperture stop S is disposed on the most object side of the third lens group G3 on the image side of the second lens group G2, and is configured integrally with the third lens group G3. Further, upon zooming from the wide-angle end state W to the telephoto end state T, the aperture stop S maintains the maximum aperture diameter of the wide-angle end state W from the wide-angle end state W to the second intermediate focal length state M2, and the second intermediate From the focal length state M2 to the telephoto end state T, the maximum aperture diameter increases monotonously.

第1レンズ群G1は、光軸に沿って物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と両凸レンズL12との接合レンズと、両凸レンズL13とから構成されている。   The first lens group G1 includes, in order from the object side along the optical axis, a cemented lens of a negative meniscus lens L11 having a convex surface facing the object side and a biconvex lens L12, and a biconvex lens L13.

第2レンズ群G2は、光軸に沿って物体側から順に、物体側に凸面を向けた負メニスカスレンズL21と、両凹レンズL22と、両凸レンズL23と、両凹レンズL24と両凸レンズL25との接合レンズとから構成されている。第2レンズ群G2の最も物体側に位置する負メニスカスレンズL21は、物体側のレンズ面に樹脂層を設けて非球面を形成した複合型非球面レンズである。   The second lens group G2 includes, in order from the object side along the optical axis, a negative meniscus lens L21 having a convex surface directed toward the object side, a biconcave lens L22, a biconvex lens L23, a biconcave lens L24, and a biconvex lens L25. It consists of a lens. The negative meniscus lens L21 located closest to the object side in the second lens group G2 is a composite aspherical lens in which an aspherical surface is formed by providing a resin layer on the object-side lens surface.

第3レンズ群G3は、光軸に沿って物体側から順に、両凸レンズL31と、両凸レンズL32と、両凸レンズL33と物体側に凹面を向けた負メニスカスレンズL34との接合レンズとから構成されている。   The third lens group G3 includes, in order from the object side along the optical axis, a biconvex lens L31, a biconvex lens L32, and a cemented lens of a biconvex lens L33 and a negative meniscus lens L34 having a concave surface facing the object side. ing.

第4レンズ群G4は、光軸に沿って物体側から順に、両凹レンズL41と物体側に凸面を向けた正メニスカスレンズL42との接合レンズと、物体側に凹面を向けた負メニスカスレンズL43とから構成されている。第4レンズ群G4の最も物体側に位置する両凹レンズL41は、物体側のレンズ面を非球面形状としたガラスモールド非球面レンズである。   The fourth lens group G4 includes, in order from the object side along the optical axis, a cemented lens of a biconcave lens L41 and a positive meniscus lens L42 having a convex surface facing the object side, and a negative meniscus lens L43 having a concave surface facing the object side. It is composed of The biconcave lens L41 located closest to the object side in the fourth lens group G4 is a glass mold aspheric lens having an aspheric lens surface on the object side.

第5レンズ群G5は、光軸に沿って物体側から順に、物体側に凹面を向けた正メニスカスレンズL51と、両凸レンズL52と、両凹レンズL53と両凸レンズL54との接合レンズとから構成されている。第5レンズ群G5の最も物体側に位置する正メニスカスレンズL51は、物体側のレンズ面を非球面形状としたガラスモールド非球面レンズである。両凸レンズL54から射出した光線は像面Iに結像する。   The fifth lens group G5 includes, in order from the object side along the optical axis, a positive meniscus lens L51 having a concave surface directed toward the object side, a biconvex lens L52, and a cemented lens of a biconcave lens L53 and a biconvex lens L54. ing. The positive meniscus lens L51 located closest to the object side in the fifth lens group G5 is a glass mold aspheric lens having an aspheric lens surface on the object side. Light rays emitted from the biconvex lens L54 form an image on the image plane I.

像面Iは、不図示の撮像素子上に形成され、該撮像素子はCCDやCMOS等から構成されている(以降の実施例についても同様である)。   The image plane I is formed on an image sensor (not shown), and the image sensor is composed of a CCD, a CMOS, or the like (the same applies to the following embodiments).

以下の表1に第1実施例に係る変倍光学系の諸元値を掲げる。   Table 1 below lists specifications of the variable magnification optical system according to the first example.

表中の(面データ)において、物面は物体面、面番号は物体側からのレンズ面の番号、rは曲率半径、dは面間隔、ndはd線(波長λ=587.6nm)における屈折率、νdはd線(波長λ=587.6nm)におけるアッベ数、(可変)は可変面間隔、(絞り)は開口絞りS、像面は像面Iをそれぞれ表している。なお、空気の屈折率nd=1.000000は記載を省略している。また、曲率半径r欄の「∞」は平面を示している。   In (surface data) in the table, the object surface is the object surface, the surface number is the lens surface number from the object side, r is the radius of curvature, d is the surface spacing, and nd is the d-line (wavelength λ = 587.6 nm). Refractive index, νd represents the Abbe number in the d-line (wavelength λ = 587.6 nm), (variable) represents the variable surface interval, (diaphragm) represents the aperture stop S, and the image surface represents the image surface I. Note that the refractive index of air nd = 1.000 000 is omitted. Further, “∞” in the radius of curvature r column indicates a plane.

(非球面データ)において、非球面は以下の式で表される。
X(y)=(y/r)/[1+[1−κ(y/r)]1/2
+A4×y+A6×y+A8×y+A10×y10
ここで、光軸に垂直な方向の高さをy、高さyにおける光軸方向の変位量(各非球面の頂点の接平面から各非球面までの光軸に沿った距離)をX(y)、基準球面の曲率半径(近軸曲率半径)をr、円錐係数をκ、n次の非球面係数をAnとする。なお、「E-n」は「×10−n」を示し、例えば「1.234E-05」は「1.234×10−5」を示す。また、各非球面は、(面データ)において、面番号の右側に「*」を付して示している。
In (Aspheric data), the aspheric surface is expressed by the following equation.
X (y) = (y 2 / r) / [1+ [1-κ (y 2 / r 2 )] 1/2 ]
+ A4 × y 4 + A6 × y 6 + A8 × y 8 + A10 × y 10
Here, the height in the direction perpendicular to the optical axis is y, and the amount of displacement in the optical axis direction at the height y (the distance along the optical axis from the tangential plane of each aspheric surface to each aspheric surface) is X ( y) Let r be the radius of curvature (paraxial radius of curvature) of the reference sphere, κ be the conic coefficient, and An be the n-th aspherical coefficient. “En” represents “× 10 −n ”, for example “1.234E-05” represents “1.234 × 10 −5 ”. Each aspherical surface is indicated with “*” on the right side of the surface number in (surface data).

(各種データ)において、ズーム比は変倍光学系の変倍比、Wは広角端状態、M1は第1中間焦点距離状態、M2は第2中間焦点距離状態、M3は第3中間焦点距離状態、M4は第4中間焦点距離状態、Tは望遠端状態、fは全系の焦点距離、FNOはFナンバー、ωは半画角(単位:「°」)、Yは像高、TLは無限遠合焦状態における第1レンズ群G1の最も物体側の面から像面Iまでのレンズ系全長、Bfはバックフォーカス、φは最大の開口絞り径、diは面番号iでの可変面間隔値をそれぞれ表している。第4中間焦点距離状態M4は、広角端状態Wの焦点距離の15倍を越えた焦点距離を有している。   In (various data), the zoom ratio is the zoom ratio of the zoom optical system, W is the wide-angle end state, M1 is the first intermediate focal length state, M2 is the second intermediate focal length state, and M3 is the third intermediate focal length state. , M4 is the fourth intermediate focal length state, T is the telephoto end state, f is the focal length of the entire system, FNO is the F number, ω is the half field angle (unit: “°”), Y is the image height, and TL is infinite. The entire length of the lens system from the most object-side surface of the first lens group G1 to the image plane I in the far-focus state, Bf is the back focus, φ is the maximum aperture stop diameter, and di is the variable surface interval value at surface number i. Respectively. The fourth intermediate focal length state M4 has a focal length that exceeds 15 times the focal length of the wide-angle end state W.

(ズームレンズ群データ)は、各レンズ群の始面番号とレンズ群の焦点距離をそれぞれ示す。   (Zoom lens group data) indicates the start surface number of each lens group and the focal length of the lens group.

(条件式対応値)は、各条件式の対応値をそれぞれ示す。   (Conditional expression corresponding value) indicates the corresponding value of each conditional expression.

なお、以下の全ての諸元値において、掲載されている焦点距離f、曲率半径r、面間隔dその他の長さ等は、特記の無い場合一般に「mm」が使われるが、光学系は比例拡大または比例縮小しても同等の光学性能が得られるので、これに限られるものではない。また、単位は「mm」に限定されること無く他の適当な単位を用いることもできる。さらに、これらの記号の説明は、以降の他の実施例においても同様とし説明を省略する。   In all the following specification values, “mm” is generally used as the focal length f, radius of curvature r, surface interval d and other lengths, etc. unless otherwise specified, but the optical system is proportional. Even if it is enlarged or proportionally reduced, the same optical performance can be obtained. Further, the unit is not limited to “mm”, and other appropriate units may be used. Further, the explanation of these symbols is the same in the other embodiments, and the explanation is omitted.

(表1)

(面データ)
面番号 r d nd νd
物面 ∞ ∞
1 205.09180 2.00000 1.882997 40.76
2 67.52420 9.07190 1.456000 91.20
3 -361.42710 0.10000
4 70.10040 6.86700 1.603001 65.46
5 -2470.83790 (可変)

6* 84.76870 0.15000 1.553890 38.09
7 73.93750 1.20000 1.834807 42.72
8 17.03670 6.46970
9 -49.48220 1.00000 1.816000 46.62
10 52.14060 0.15000
11 31.61490 5.45080 1.761820 26.56
12 -44.44820 1.19350
13 -25.13580 1.00000 1.816000 46.62
14 64.50360 2.42190 1.808090 22.79
15 -166.54310 (可変)

16(絞り) ∞ 1.00000
17 63.10220 3.49130 1.593190 67.87
18 -50.22150 0.10000
19 58.68260 2.72200 1.487490 70.41
20 -121.43450 0.10000
21 48.64320 4.10420 1.487490 70.41
22 -34.50080 1.00000 1.808090 22.79
23 -205.15990 (可変)

24* -66.96860 1.00000 1.693501 53.20
25 26.57120 2.15810 1.761820 26.56
26 63.33840 4.78730
27 -24.70410 1.00000 1.729157 54.66
28 -74.86360 (可変)

29* -569.79420 3.96090 1.589130 61.16
30 -23.53500 0.10000
31 37.14850 5.00600 1.487490 70.41
32 -45.19690 1.71640
33 -107.03630 1.00000 1.882997 40.76
34 23.36210 4.50160 1.548141 45.79
35 -637.55850 (Bf)
像面 ∞

(非球面データ)
第6面
κ = 1.0000
A4 = 3.61880E-06
A6 = -6.10680E-09
A8 = -4.67380E-12
A10 = 5.77660E-14
第24面
κ = 1.0000
A4 = 3.81940E-06
A6 = -1.72450E-09
A8 = 0.00000E+00
A10 = 0.00000E+00
第29面
κ = 1.0000
A4 = -1.63630E-05
A6 = 8.94380E-09
A8 = -2.98150E-11
A10 = 2.87630E-14

(各種データ)
ズーム比 15.71
W M1 M2 M3 M4 T
f = 18.56080 27.61236 50.16122 104.15546 280.42469 291.57422
FNO = 3.60018 4.14587 5.56795 5.60084 5.86110 5.87404
ω = 38.95554 26.62942 15.36461 7.45367 2.81770 2.71157
Y = 14.20 14.20 14.20 14.20 14.20 14.20
TL = 163.30 170.24 188.45 255.60 252.27 252.97
Bf = 39.15242 46.48061 63.58078 70.61280 82.17689 82.77641
φ = 16.20 16.20 16.20 18.00 19.80 19.90

d5 2.14670 11.21590 21.46790 55.86030 79.96320 80.53690
d15 34.33830 24.88030 15.73730 11.46250 2.46860 2.00000
d23 3.38750 5.60850 9.43760 10.66930 11.77830 11.83690
d28 9.44940 7.22840 3.39920 2.16760 1.05860 1.00000

(ズームレンズ群データ)
群 始面 焦点距離
1 1 122.10406
2 6 −15.86654
3 16 26.56694
4 24 −24.00147
5 29 33.81791

(条件式対応値)
(1) f1/fT=0.419
(2) φT/φW=1.228
(3) φM10/φW=1.222 (φM10は第4中間焦点距離状態M4の値)
(4) φM15/φW=1.222 (φM15は第4中間焦点距離状態M4の値)
(5) φM5/φW=1.111 (φM5は第3中間焦点距離状態M3の値)
(6) fM/fW=2.703 (fMは第2中間焦点距離状態M2の値)
(7) −f2/fT=0.0544
(Table 1)

(Surface data)
Surface number rd nd νd
Object ∞ ∞
1 205.09180 2.00000 1.882997 40.76
2 67.52420 9.07190 1.456000 91.20
3 -361.42710 0.10000
4 70.10040 6.86700 1.603001 65.46
5 -2470.83790 (variable)

6 * 84.76870 0.15000 1.553890 38.09
7 73.93750 1.20000 1.834807 42.72
8 17.03670 6.46970
9 -49.48220 1.00000 1.816000 46.62
10 52.14060 0.15000
11 31.61490 5.45080 1.761820 26.56
12 -44.44820 1.19350
13 -25.13580 1.00000 1.816000 46.62
14 64.50360 2.42190 1.808090 22.79
15 -166.54310 (variable)

16 (Aperture) ∞ 1.00000
17 63.10220 3.49130 1.593190 67.87
18 -50.22150 0.10000
19 58.68260 2.72200 1.487490 70.41
20 -121.43450 0.10000
21 48.64320 4.10420 1.487490 70.41
22 -34.50080 1.00000 1.808090 22.79
23 -205.15990 (variable)

24 * -66.96860 1.00000 1.693501 53.20
25 26.57120 2.15810 1.761820 26.56
26 63.33840 4.78730
27 -24.70410 1.00000 1.729157 54.66
28 -74.86360 (variable)

29 * -569.79420 3.96090 1.589130 61.16
30 -23.53500 0.10000
31 37.14850 5.00600 1.487490 70.41
32 -45.19690 1.71640
33 -107.03630 1.00000 1.882997 40.76
34 23.36210 4.50160 1.548141 45.79
35 -637.55850 (Bf)
Image plane ∞

(Aspheric data)
6th surface κ = 1.0000
A4 = 3.61880E-06
A6 = -6.10680E-09
A8 = -4.67380E-12
A10 = 5.77660E-14
24th surface κ = 1.0000
A4 = 3.81940E-06
A6 = -1.72450E-09
A8 = 0.00000E + 00
A10 = 0.00000E + 00
29th surface κ = 1.0000
A4 = -1.63630E-05
A6 = 8.94380E-09
A8 = -2.98150E-11
A10 = 2.87630E-14

(Various data)
Zoom ratio 15.71
W M1 M2 M3 M4 T
f = 18.56080 27.61236 50.16122 104.15546 280.42469 291.57422
FNO = 3.60018 4.14587 5.56795 5.60084 5.86110 5.87404
ω = 38.95554 26.62942 15.36461 7.45367 2.81770 2.71157
Y = 14.20 14.20 14.20 14.20 14.20 14.20
TL = 163.30 170.24 188.45 255.60 252.27 252.97
Bf = 39.15242 46.48061 63.58078 70.61280 82.17689 82.77641
φ = 16.20 16.20 16.20 18.00 19.80 19.90

d5 2.14670 11.21590 21.46790 55.86030 79.96320 80.53690
d15 34.33830 24.88030 15.73730 11.46250 2.46860 2.00000
d23 3.38750 5.60850 9.43760 10.66930 11.77830 11.83690
d28 9.44940 7.22840 3.39920 2.16760 1.05860 1.00000

(Zoom lens group data)
Group Start surface Focal length 1 1 122.10406
2 6-15.86654
3 16 26.56694
4 24-24.00147
5 29 33.81791

(Values for conditional expressions)
(1) f1 / fT = 0.419
(2) φT / φW = 1.228
(3) φM10 / φW = 1.222 (φM10 is the value of the fourth intermediate focal length state M4)
(4) φM15 / φW = 1.222 (φM15 is the value of the fourth intermediate focal length state M4)
(5) φM5 / φW = 1.111 (φM5 is the value of the third intermediate focal length state M3)
(6) fM / fW = 2.703 (fM is the value of the second intermediate focal length state M2)
(7) -f2 / fT = 0.0544

図2は、第1実施例に係る変倍光学系の無限遠合焦状態での諸収差図を示し、(a)は広角端状態、(b)は第1中間焦点距離状態、(c)は第2中間焦点距離状態をそれぞれ示す。   2A and 2B are graphs showing various aberrations of the variable magnification optical system according to the first example in the infinitely focused state, where FIG. 2A is a wide-angle end state, FIG. 2B is a first intermediate focal length state, and FIG. Indicates the second intermediate focal length state.

図3は、第1実施例に係る変倍光学系の無限遠合焦状態での諸収差図を示し、(a)は第3中間焦点距離状態、(b)は第4中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。   FIGS. 3A and 3B are graphs showing various aberrations in the infinitely focused state of the variable magnification optical system according to the first example. FIG. 3A is a third intermediate focal length state, and FIG. 3B is a fourth intermediate focal length state. (C) shows a telephoto end state, respectively.

各収差図において、FNOはFナンバー、Aは半画角(単位:「°」)を示す。また、dはd線(波長587.6nm)、gはg線(波長435.8nm)に対する諸収差、記載のないものはd線に対する諸収差をそれぞれ表す。非点収差図において、実線はサジタル像面、破線はメリディオナル像面を示す。   In each aberration diagram, FNO represents an F number, and A represents a half angle of view (unit: “°”). Further, d represents d-line (wavelength 587.6 nm), g represents various aberrations with respect to g-line (wavelength 435.8 nm), and those not described represent various aberrations with respect to d-line. In the astigmatism diagram, the solid line indicates the sagittal image plane, and the broken line indicates the meridional image plane.

なお、以降の実施例においても同様の記号を使用し、以降の説明を省略する。   In the following examples, the same symbols are used, and the following description is omitted.

各収差図から、第1実施例に係る変倍光学系は、諸収差が良好に補正され、高い光学性能を有していることがわかる。   From each aberration diagram, it is understood that the variable magnification optical system according to the first example has various optical aberrations corrected and high optical performance.

(第2実施例)
図4は、第2実施例に係る変倍光学系の構成を示す断面図である。
(Second embodiment)
FIG. 4 is a cross-sectional view showing the configuration of the variable magnification optical system according to the second example.

図4に示すように、第2実施例に係る変倍光学系は、光軸に沿って物体側から順に、正屈折力の第1レンズ群G1と、負屈折力の第2レンズ群G2と、正屈折力の第3レンズ群G3と、負屈折力の第4レンズ群G4と、正屈折力の第5レンズ群G5とから構成される。   As shown in FIG. 4, the variable magnification optical system according to the second example includes, in order from the object side along the optical axis, a first lens group G1 having a positive refractive power and a second lens group G2 having a negative refractive power. The third lens group G3 having positive refractive power, the fourth lens group G4 having negative refractive power, and the fifth lens group G5 having positive refractive power.

広角端状態Wから望遠端状態Tへの変倍に際し、第1レンズ群G1と第2レンズ群G2との間隔は増大し、第2レンズ群G2と第3レンズ群G3との間隔は減少するように、像面Iに対して、第1レンズ群G1は単調に物体側へ移動し、第2レンズ群G2は第1中間焦点距離状態M1まで像側へ移動し、第1中間焦点距離状態M1から望遠端状態Tまでは物体側へ移動し、第3レンズ群G3は単調に物体側へ移動する。さらに、第3レンズ群G3と第4レンズ群G4との間隔は増大し、第4レンズ群G4と第5レンズ群G5との間隔は減少するように、第4レンズ群G4と第5レンズ群G5は像面Iに対して単調に物体側へ移動する。また、第3レンズ群G3と第5レンズ群G5は、像面Iに対して一体で移動する。   When zooming from the wide-angle end state W to the telephoto end state T, the distance between the first lens group G1 and the second lens group G2 increases, and the distance between the second lens group G2 and the third lens group G3 decreases. Thus, with respect to the image plane I, the first lens group G1 moves monotonously to the object side, and the second lens group G2 moves to the image side up to the first intermediate focal length state M1, and the first intermediate focal length state From M1 to the telephoto end state T, the lens moves toward the object side, and the third lens group G3 monotonously moves toward the object side. Furthermore, the distance between the third lens group G3 and the fourth lens group G4 increases, and the distance between the fourth lens group G4 and the fifth lens group G5 decreases so that the fourth lens group G4 and the fifth lens group. G5 moves to the object side monotonously with respect to the image plane I. Further, the third lens group G3 and the fifth lens group G5 move integrally with the image plane I.

開口絞りSは、第2レンズ群G2の像側にある第3レンズ群G3の最も物体側に配置され、第3レンズ群G3と一体で構成される。また、広角端状態Wから望遠端状態Tへの変倍に際し、開口絞りSは、広角端状態Wから第2中間焦点距離状態M2まで広角端状態Wの最大開口径を維持し、第2中間焦点距離状態M2から望遠端状態Tまでは最大開口径が単調に増大する。   The aperture stop S is disposed on the most object side of the third lens group G3 on the image side of the second lens group G2, and is configured integrally with the third lens group G3. Further, upon zooming from the wide-angle end state W to the telephoto end state T, the aperture stop S maintains the maximum aperture diameter of the wide-angle end state W from the wide-angle end state W to the second intermediate focal length state M2, and the second intermediate From the focal length state M2 to the telephoto end state T, the maximum aperture diameter increases monotonously.

第1レンズ群G1は、光軸に沿って物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と両凸レンズL12との接合レンズと、物体側に凸面を向けた正メニスカスレンズL13とから構成されている。   The first lens group G1 includes, in order from the object side along the optical axis, a cemented lens of a negative meniscus lens L11 having a convex surface facing the object side and a biconvex lens L12, and a positive meniscus lens L13 having a convex surface facing the object side. It is composed of

第2レンズ群G2は、光軸に沿って物体側から順に、物体側に凸面を向けた負メニスカスレンズL21と、両凹レンズL22と、両凸レンズL23と、両凹レンズL24と両凸レンズL25との接合レンズとから構成されている。第2レンズ群G2の最も物体側に位置する負メニスカスレンズL21は、物体側のレンズ面に樹脂層を設けて非球面を形成した複合型非球面レンズである。   The second lens group G2 includes, in order from the object side along the optical axis, a negative meniscus lens L21 having a convex surface directed toward the object side, a biconcave lens L22, a biconvex lens L23, a biconcave lens L24, and a biconvex lens L25. It consists of a lens. The negative meniscus lens L21 located closest to the object side in the second lens group G2 is a composite aspherical lens in which an aspherical surface is formed by providing a resin layer on the object-side lens surface.

第3レンズ群G3は、光軸に沿って物体側から順に、両凸レンズL31と、両凸レンズL32と、両凸レンズL33と物体側に凹面を向けた負メニスカスレンズL34との接合レンズとから構成されている。   The third lens group G3 includes, in order from the object side along the optical axis, a biconvex lens L31, a biconvex lens L32, and a cemented lens of a biconvex lens L33 and a negative meniscus lens L34 having a concave surface facing the object side. ing.

第4レンズ群G4は、光軸に沿って物体側から順に、両凹レンズL41と物体側に凸面を向けた正メニスカスレンズL42との接合レンズと、物体側に凹面を向けた負メニスカスレンズL43とから構成されている。第4レンズ群G4の最も物体側に位置する両凹レンズL41は、物体側のレンズ面に樹脂層を設けて非球面を形成した複合型非球面レンズである。   The fourth lens group G4 includes, in order from the object side along the optical axis, a cemented lens of a biconcave lens L41 and a positive meniscus lens L42 having a convex surface facing the object side, and a negative meniscus lens L43 having a concave surface facing the object side. It is composed of The biconcave lens L41 located closest to the object side in the fourth lens group G4 is a composite aspheric lens in which an aspheric surface is formed by providing a resin layer on the lens surface on the object side.

第5レンズ群G5は、光軸に沿って物体側から順に、物体側に凹面を向けた正メニスカスレンズL51と、両凸レンズL52と、両凹レンズL53と両凸レンズL54との接合レンズとから構成されている。第5レンズ群G5の最も物体側に位置する正メニスカスレンズL51は、物体側のレンズ面を非球面形状としたガラスモールド非球面レンズである。両凸レンズL54から射出した光線は像面Iに結像する。   The fifth lens group G5 includes, in order from the object side along the optical axis, a positive meniscus lens L51 having a concave surface directed toward the object side, a biconvex lens L52, and a cemented lens of a biconcave lens L53 and a biconvex lens L54. ing. The positive meniscus lens L51 located closest to the object side in the fifth lens group G5 is a glass mold aspheric lens having an aspheric lens surface on the object side. Light rays emitted from the biconvex lens L54 form an image on the image plane I.

以下の表2に第2実施例に係る変倍光学系の諸元値を掲げる。   Table 2 below lists specifications of the variable magnification optical system according to the second example.

(表2)

(面データ)
面番号 r d nd νd
物面 ∞ ∞
1 186.59960 2.20000 1.834000 37.17
2 69.08900 8.80000 1.497820 82.56
3 -494.44545 0.10000
4 73.40222 6.45000 1.593190 67.87
5 2016.71160 (可変)

6* 84.85000 0.10000 1.553890 38.09
7 74.02192 1.20000 1.834810 42.72
8 17.09747 6.95000
9 -37.97970 1.00000 1.816000 46.63
10 77.67127 0.15000
11 36.26557 5.30000 1.784720 25.68
12 -36.26557 0.80000
13 -25.69642 1.00000 1.816000 46.63
14 66.08300 2.05000 1.808090 22.79
15 -666.70366 (可変)

16(絞り) ∞ 1.00000
17 68.30727 3.40000 1.593190 67.87
18 -47.99596 0.10000
19 68.52367 2.45000 1.487490 70.45
20 -136.98392 0.10000
21 46.52671 4.20000 1.487490 70.45
22 -36.16400 1.00000 1.808090 22.79
23 -202.95328 (可変)

24* -55.09840 0.20000 1.553890 38.09
25 -57.24715 0.90000 1.696800 55.52
26 28.15100 2.15000 1.728250 28.46
27 87.70856 4.35000
28 -26.69877 1.00000 1.729160 54.66
29 -76.47707 (可変)

30* -333.89500 4.65000 1.589130 61.18
31 -24.64395 0.10000
32 31.19625 5.85000 1.487490 70.45
33 -43.38887 1.45000
34 -109.71645 1.00000 1.883000 40.77
35 20.29920 5.30000 1.548140 45.79
36 -808.81321 (Bf)
像面 ∞

(非球面データ)
第6面
κ = 1.0000
A4 = 3.13350E-06
A6 = 4.73080E-10
A8 = -3.40500E-11
A10 = 1.16620E-13
第24面
κ = 1.0000
A4 = 5.24030E-06
A6 = -2.00730E-09
A8 = 0.00000E+00
A10 = 0.00000E+00
第30面
κ = 1.0000
A4 = -1.54020E-05
A6 = 1.69500E-09
A8 = 1.34490E-11
A10 = -2.07220E-13

(各種データ)
ズーム比 15.72
W M1 M2 M3 M4 T
f = 18.52363 27.14081 48.93259 104.52143 279.97293 291.21725
FNO = 3.60558 4.11071 5.47222 5.69344 5.89216 5.89616
ω = 38.89095 26.92688 15.68138 7.41882 2.81880 2.71146
Y = 14.20 14.20 14.20 14.20 14.20 14.20
TL = 164.74 171.75 188.90 225.49 250.78 251.39
Bf = 39.44250 46.21988 62.15925 71.57530 82.59962 83.10134
φ = 15.80 15.80 15.80 17.50 19.50 19.60

d5 2.15700 11.18630 21.31960 53.25650 76.35561 76.94960
d15 33.80140 24.99560 16.07940 11.31350 2.48461 2.00000
d23 3.45650 5.73730 9.97480 11.60170 12.99717 13.04330
d29 10.58680 8.30600 4.06850 2.44160 1.04613 1.00000

(ズームレンズ群データ)
群 始面 焦点距離
1 1 118.96910
2 6 −15.62542
3 16 27.17463
4 24 −25.41506
5 30 34.39022

(条件式対応値)
(1) f1/fT=0.409
(2) φT/φW=1.241
(3) φM10/φW=1.234 (φM10は第4中間焦点距離状態M4の値)
(4) φM15/φW=1.234 (φM15は第4中間焦点距離状態M4の値)
(5) φM5/φW=1.108 (φM5は第3中間焦点距離状態M3の値)
(6) fM/fW=2.642 (fMは第2中間焦点距離状態M2の値)
(7) −f2/fT=0.0537
(Table 2)

(Surface data)
Surface number rd nd νd
Object ∞ ∞
1 186.59960 2.20000 1.834000 37.17
2 69.08900 8.80000 1.497820 82.56
3 -494.44545 0.10000
4 73.40222 6.45000 1.593190 67.87
5 2016.71160 (variable)

6 * 84.85000 0.10000 1.553890 38.09
7 74.02192 1.20000 1.834810 42.72
8 17.09747 6.95000
9 -37.97970 1.00000 1.816000 46.63
10 77.67127 0.15000
11 36.26557 5.30000 1.784720 25.68
12 -36.26557 0.80000
13 -25.69642 1.00000 1.816000 46.63
14 66.08300 2.05000 1.808090 22.79
15 -666.70366 (variable)

16 (Aperture) ∞ 1.00000
17 68.30727 3.40000 1.593190 67.87
18 -47.99596 0.10000
19 68.52367 2.45000 1.487490 70.45
20 -136.98392 0.10000
21 46.52671 4.20000 1.487490 70.45
22 -36.16400 1.00000 1.808090 22.79
23 -202.95328 (variable)

24 * -55.09840 0.20000 1.553890 38.09
25 -57.24715 0.90000 1.696800 55.52
26 28.15100 2.15000 1.728250 28.46
27 87.70856 4.35000
28 -26.69877 1.00000 1.729160 54.66
29 -76.47707 (variable)

30 * -333.89500 4.65000 1.589130 61.18
31 -24.64395 0.10000
32 31.19625 5.85000 1.487490 70.45
33 -43.38887 1.45000
34 -109.71645 1.00000 1.883000 40.77
35 20.29920 5.30000 1.548140 45.79
36 -808.81321 (Bf)
Image plane ∞

(Aspheric data)
6th surface κ = 1.0000
A4 = 3.13350E-06
A6 = 4.73080E-10
A8 = -3.40500E-11
A10 = 1.16620E-13
24th surface κ = 1.0000
A4 = 5.24030E-06
A6 = -2.00730E-09
A8 = 0.00000E + 00
A10 = 0.00000E + 00
30th surface κ = 1.0000
A4 = -1.54020E-05
A6 = 1.69500E-09
A8 = 1.34490E-11
A10 = -2.07220E-13

(Various data)
Zoom ratio 15.72
W M1 M2 M3 M4 T
f = 18.52363 27.14081 48.93259 104.52143 279.97293 291.21725
FNO = 3.60558 4.11071 5.47222 5.69344 5.89216 5.89616
ω = 38.89095 26.92688 15.68138 7.41882 2.81880 2.71146
Y = 14.20 14.20 14.20 14.20 14.20 14.20
TL = 164.74 171.75 188.90 225.49 250.78 251.39
Bf = 39.44250 46.21988 62.15925 71.57530 82.59962 83.10134
φ = 15.80 15.80 15.80 17.50 19.50 19.60

d5 2.15700 11.18630 21.31960 53.25650 76.35561 76.94960
d15 33.80140 24.99560 16.07940 11.31350 2.48461 2.00000
d23 3.45650 5.73730 9.97480 11.60170 12.99717 13.04330
d29 10.58680 8.30600 4.06850 2.44160 1.04613 1.00000

(Zoom lens group data)
Group Start surface Focal length 1 1 118.96910
2 6-15.5622
3 16 27.17463
4 24-25.4506
5 30 34.39022

(Values for conditional expressions)
(1) f1 / fT = 0.409
(2) φT / φW = 1.241
(3) φM10 / φW = 1.234 (φM10 is the value of the fourth intermediate focal length state M4)
(4) φM15 / φW = 1.234 (φM15 is the value of the fourth intermediate focal length state M4)
(5) φM5 / φW = 1.108 (φM5 is the value of the third intermediate focal length state M3)
(6) fM / fW = 2.642 (fM is the value of the second intermediate focal length state M2)
(7) -f2 / fT = 0.0537

図5は、第2実施例に係る変倍光学系の無限遠合焦状態での諸収差図を示し、(a)は広角端状態、(b)は第1中間焦点距離状態、(c)は第2中間焦点距離状態をそれぞれ示す。   FIG. 5 shows various aberration diagrams of the zoom optical system according to the second example in the infinite focus state, where (a) is a wide-angle end state, (b) is a first intermediate focal length state, and (c). Indicates the second intermediate focal length state.

図6は、第2実施例に係る変倍光学系の無限遠合焦状態での諸収差図を示し、(a)は第3中間焦点距離状態、(b)は第4中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。   FIG. 6 shows various aberration diagrams of the zoom optical system according to the second example in an infinitely focused state, where (a) is a third intermediate focal length state, (b) is a fourth intermediate focal length state, (C) shows a telephoto end state, respectively.

各収差図から、第2実施例に係る変倍光学系は、諸収差が良好に補正され、高い光学性能を有していることがわかる。   From the respective aberration diagrams, it can be seen that the variable magnification optical system according to the second example has various optical aberrations corrected and high optical performance.

(第3実施例)
図7は、第3実施例に係る変倍光学系の構成を示す断面図である。
(Third embodiment)
FIG. 7 is a cross-sectional view showing the configuration of the variable magnification optical system according to the third example.

図7に示すように、第3実施例に係る変倍光学系は、光軸に沿って物体側から順に、正屈折力の第1レンズ群G1と、負屈折力の第2レンズ群G2と、正屈折力の第3レンズ群G3と、負屈折力の第4レンズ群G4と、正屈折力の第5レンズ群G5とから構成される。   As shown in FIG. 7, the variable magnification optical system according to the third example includes a first lens group G1 having a positive refractive power and a second lens group G2 having a negative refractive power in order from the object side along the optical axis. The third lens group G3 having positive refractive power, the fourth lens group G4 having negative refractive power, and the fifth lens group G5 having positive refractive power.

広角端状態Wから望遠端状態Tへの変倍に際し、第1レンズ群G1と第2レンズ群G2との間隔は増大し、第2レンズ群G2と第3レンズ群G3との間隔は減少するように、像面Iに対して、第1レンズ群G1は単調に物体側へ移動し、第2レンズ群G2は第1中間焦点距離状態M1まで像側へ移動し、第1中間焦点距離状態M1から望遠端状態Tまでは物体側へ移動し、第3レンズ群G3は単調に物体側へ移動する。さらに、第3レンズ群G3と第4レンズ群G4との間隔は増大し、第4レンズ群G4と第5レンズ群G5との間隔は減少するように、第4レンズ群G4と第5レンズ群G5は像面Iに対して単調に物体側へ移動する。また、第3レンズ群G3と第5レンズ群G5は、像面Iに対して一体で移動する。   When zooming from the wide-angle end state W to the telephoto end state T, the distance between the first lens group G1 and the second lens group G2 increases, and the distance between the second lens group G2 and the third lens group G3 decreases. Thus, with respect to the image plane I, the first lens group G1 moves monotonously to the object side, and the second lens group G2 moves to the image side up to the first intermediate focal length state M1, and the first intermediate focal length state From M1 to the telephoto end state T, the lens moves toward the object side, and the third lens group G3 monotonously moves toward the object side. Furthermore, the distance between the third lens group G3 and the fourth lens group G4 increases, and the distance between the fourth lens group G4 and the fifth lens group G5 decreases so that the fourth lens group G4 and the fifth lens group. G5 moves to the object side monotonously with respect to the image plane I. Further, the third lens group G3 and the fifth lens group G5 move integrally with the image plane I.

開口絞りSは、第2レンズ群G2の像側にある第3レンズ群G3の最も物体側に配置され、第3レンズ群G3と一体で構成される。また、広角端状態Wから望遠端状態Tへの変倍に際し、開口絞りSは、広角端状態Wから第3中間焦点距離状態M3まで広角端状態Wの最大開口径を維持し、第3中間焦点距離状態M3から望遠端状態Tまでは最大開口径が単調に増大する。   The aperture stop S is disposed on the most object side of the third lens group G3 on the image side of the second lens group G2, and is configured integrally with the third lens group G3. When zooming from the wide-angle end state W to the telephoto end state T, the aperture stop S maintains the maximum aperture diameter of the wide-angle end state W from the wide-angle end state W to the third intermediate focal length state M3. From the focal length state M3 to the telephoto end state T, the maximum aperture diameter increases monotonously.

第1レンズ群G1は、光軸に沿って物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と両凸レンズL12との接合レンズと、物体側に凸面を向けた正メニスカスレンズL13とから構成されている。   The first lens group G1 includes, in order from the object side along the optical axis, a cemented lens of a negative meniscus lens L11 having a convex surface facing the object side and a biconvex lens L12, and a positive meniscus lens L13 having a convex surface facing the object side. It is composed of

第2レンズ群G2は、光軸に沿って物体側から順に、物体側に凸面を向けた負メニスカスレンズL21と、両凹レンズL22と、両凸レンズL23と、両凹レンズL24と両凸レンズL25との接合レンズとから構成されている。第2レンズ群G2の最も物体側に位置する負メニスカスレンズL21は、物体側のレンズ面に樹脂層を設けて非球面を形成した複合型非球面レンズである。   The second lens group G2 includes, in order from the object side along the optical axis, a negative meniscus lens L21 having a convex surface directed toward the object side, a biconcave lens L22, a biconvex lens L23, a biconcave lens L24, and a biconvex lens L25. It consists of a lens. The negative meniscus lens L21 located closest to the object side in the second lens group G2 is a composite aspherical lens in which an aspherical surface is formed by providing a resin layer on the object-side lens surface.

第3レンズ群G3は、光軸に沿って物体側から順に、両凸レンズL31と、両凸レンズL32と、両凸レンズL33と物体側に凹面を向けた負メニスカスレンズL34との接合レンズとから構成されている。   The third lens group G3 includes, in order from the object side along the optical axis, a biconvex lens L31, a biconvex lens L32, and a cemented lens of a biconvex lens L33 and a negative meniscus lens L34 having a concave surface facing the object side. ing.

第4レンズ群G4は、光軸に沿って物体側から順に、両凹レンズL41と物体側に凸面を向けた正メニスカスレンズL42との接合レンズと、物体側に凹面を向けた負メニスカスレンズL43とから構成されている。第4レンズ群G4の中央に位置する正メニスカスレンズL42は、像面側のレンズ面を非球面形状としたガラスモールド非球面レンズである。   The fourth lens group G4 includes, in order from the object side along the optical axis, a cemented lens of a biconcave lens L41 and a positive meniscus lens L42 having a convex surface facing the object side, and a negative meniscus lens L43 having a concave surface facing the object side. It is composed of The positive meniscus lens L42 located at the center of the fourth lens group G4 is a glass mold aspheric lens having an aspheric lens surface on the image side.

第5レンズ群G5は、光軸に沿って物体側から順に、物体側に凹面を向けた正メニスカスレンズL51と、両凸レンズL52と、両凹レンズL53と両凸レンズL54との接合レンズとから構成されている。第5レンズ群G5の最も物体側に位置する正メニスカスレンズL51は、物体側のレンズ面を非球面形状としたガラスモールド非球面レンズである。両凸レンズL54から射出した光線は像面Iに結像する。   The fifth lens group G5 includes, in order from the object side along the optical axis, a positive meniscus lens L51 having a concave surface directed toward the object side, a biconvex lens L52, and a cemented lens of a biconcave lens L53 and a biconvex lens L54. ing. The positive meniscus lens L51 located closest to the object side in the fifth lens group G5 is a glass mold aspheric lens having an aspheric lens surface on the object side. Light rays emitted from the biconvex lens L54 form an image on the image plane I.

以下の表3に第3実施例に係る変倍光学系の諸元値を掲げる。   Table 3 below lists specifications of the variable magnification optical system according to the third example.

(表3)

(面データ)
面番号 r d nd νd
物面 ∞ ∞
1 192.86460 2.20000 1.834000 37.16
2 71.04740 9.00410 1.497820 82.52
3 -459.57820 0.10000
4 73.87410 6.67930 1.593190 67.87
5 1334.48060 (可変)

6* 84.76870 0.10000 1.553890 38.09
7 73.93750 1.25000 1.834807 42.72
8 16.85860 6.41100
9 -43.47510 1.00000 1.816000 46.62
10 57.52320 0.15000
11 33.20000 5.23710 1.784723 25.68
12 -42.33520 1.08530
13 -25.03850 1.00000 1.816000 46.62
14 74.32200 2.14790 1.808090 22.79
15 -196.76990 (可変)

16(絞り) ∞ 1.00000
17 70.66380 3.23230 1.593190 67.87
18 -52.37330 0.10000
19 73.76600 2.71810 1.487490 70.41
20 -83.31450 0.10000
21 45.54460 4.17150 1.487490 70.41
22 -35.11250 1.00000 1.808090 22.79
23 -188.15270 (可変)

24 -63.85980 1.00000 1.696797 55.52
25 31.67440 1.86210 1.804855 24.73
26* 64.32250 4.66290
27 -26.08000 1.00000 1.729157 54.66
28 -73.30510 (可変)

29* -227.36510 4.17540 1.589130 61.16
30 -24.31080 0.10000
31 31.50890 5.72340 1.487490 70.41
32 -46.90920 1.38940
33 -141.28220 1.00000 1.882997 40.76
34 20.03510 5.37700 1.548141 45.79
35 -602.91670 (Bf)
像面 ∞

(非球面データ)
第6面
κ = 1.0000
A4 = 3.84520E-06
A6 = -3.19400E-09
A8 = -2.44510E-11
A10 = 1.16080E-13
第26面
κ = 1.0000
A4 = -3.46580E-06
A6 = 6.73460E-10
A8 = 0.00000E+00
A10 = 0.00000E+00
第29面
κ = 1.0000
A4 = -1.44010E-05
A6 = 5.94450E-09
A8 = -3.11020E-11
A10 = -4.07130E-14

(各種データ)
ズーム比 15.72
W M1 M2 M3 M4 T
f = 18.53645 27.58219 49.59390 104.29638 280.11936 291.48464
FNO = 3.48547 4.01900 5.38724 5.99810 6.59072 6.59436
ω = 39.03040 26.66707 15.52780 7.42798 2.81545 2.70726
Y = 14.20 14.20 14.20 14.20 14.20 14.20
TL = 163.55 170.26 187.72 224.86 250.69 251.38
Bf = 39.23508 46.33384 63.02959 70.07809 81.49952 82.08045
φ = 16.40 16.40 16.40 16.40 17.20 17.30

d5 2.13850 10.94060 20.49340 54.83910 78.05500 78.64320
d15 33.51210 24.32490 15.53470 11.28210 2.48000 2.00000
d23 3.41920 5.91090 10.06530 11.33700 12.63700 12.68280
d28 10.26360 7.77190 3.61750 2.34580 1.04580 1.00000

(ズームレンズ群データ)
群 始面 焦点距離
1 1 120.82876
2 6 −15.52570
3 16 26.72858
4 24 −25.10440
5 29 34.49933

(条件式対応値)
(1) f1/fT=0.415
(2) φT/φW=1.055
(3) φM10/φW=1.049 (φM10は第4中間焦点距離状態M4の値)
(4) φM15/φW=1.049 (φM15は第4中間焦点距離状態M4の値)
(5) φM5/φW=1.000 (φM5は第3中間焦点距離状態M3の値)
(6) fM/fW=5.627 (fMは第3中間焦点距離状態M3の値)
(7) −f2/fT=0.0533
(Table 3)

(Surface data)
Surface number rd nd νd
Object ∞ ∞
1 192.86460 2.20000 1.834000 37.16
2 71.04740 9.00410 1.497820 82.52
3 -459.57820 0.10000
4 73.87410 6.67930 1.593190 67.87
5 1334.48060 (variable)

6 * 84.76870 0.10000 1.553890 38.09
7 73.93750 1.25000 1.834807 42.72
8 16.85860 6.41100
9 -43.47510 1.00000 1.816000 46.62
10 57.52320 0.15000
11 33.20000 5.23710 1.784723 25.68
12 -42.33520 1.08530
13 -25.03850 1.00000 1.816000 46.62
14 74.32200 2.14790 1.808090 22.79
15 -196.76990 (variable)

16 (Aperture) ∞ 1.00000
17 70.66380 3.23230 1.593190 67.87
18 -52.37330 0.10000
19 73.76600 2.71810 1.487490 70.41
20 -83.31450 0.10000
21 45.54460 4.17150 1.487490 70.41
22 -35.11250 1.00000 1.808090 22.79
23 -188.15270 (variable)

24 -63.85980 1.00000 1.696797 55.52
25 31.67440 1.86210 1.804855 24.73
26 * 64.32250 4.66290
27 -26.08000 1.00000 1.729157 54.66
28 -73.30510 (variable)

29 * -227.36510 4.17540 1.589130 61.16
30 -24.31080 0.10000
31 31.50890 5.72340 1.487490 70.41
32 -46.90920 1.38940
33 -141.28220 1.00000 1.882997 40.76
34 20.03510 5.37700 1.548141 45.79
35 -602.91670 (Bf)
Image plane ∞

(Aspheric data)
6th surface κ = 1.0000
A4 = 3.84520E-06
A6 = -3.19400E-09
A8 = -2.44510E-11
A10 = 1.16080E-13
26th surface κ = 1.0000
A4 = -3.46580E-06
A6 = 6.73460E-10
A8 = 0.00000E + 00
A10 = 0.00000E + 00
29th surface κ = 1.0000
A4 = -1.44010E-05
A6 = 5.94450E-09
A8 = -3.11020E-11
A10 = -4.07130E-14

(Various data)
Zoom ratio 15.72
W M1 M2 M3 M4 T
f = 18.53645 27.58219 49.59390 104.29638 280.11936 291.48464
FNO = 3.48547 4.01900 5.38724 5.99810 6.59072 6.59436
ω = 39.03040 26.66707 15.52780 7.42798 2.81545 2.70726
Y = 14.20 14.20 14.20 14.20 14.20 14.20
TL = 163.55 170.26 187.72 224.86 250.69 251.38
Bf = 39.23508 46.33384 63.02959 70.07809 81.49952 82.08045
φ = 16.40 16.40 16.40 16.40 17.20 17.30

d5 2.13850 10.94060 20.49340 54.83910 78.05500 78.64320
d15 33.51210 24.32490 15.53470 11.28210 2.48000 2.00000
d23 3.41920 5.91090 10.06530 11.33700 12.63700 12.68280
d28 10.26360 7.77190 3.61750 2.34580 1.04580 1.00000

(Zoom lens group data)
Group Start surface Focal length 1 1 120.82876
2 6-15.55570
3 16 26.728858
4 24-25.10440
5 29 34.4993

(Values for conditional expressions)
(1) f1 / fT = 0.415
(2) φT / φW = 1.055
(3) φM10 / φW = 1.049 (φM10 is the value of the fourth intermediate focal length state M4)
(4) φM15 / φW = 1.049 (φM15 is the value of the fourth intermediate focal length state M4)
(5) φM5 / φW = 1.000 (φM5 is the value of the third intermediate focal length state M3)
(6) fM / fW = 5.627 (fM is the value of the third intermediate focal length state M3)
(7) -f2 / fT = 0.0533

図8は、第3実施例に係る変倍光学系の無限遠合焦状態での諸収差図を示し、(a)は広角端状態、(b)は第1中間焦点距離状態、(c)は第2中間焦点距離状態をそれぞれ示す。   FIG. 8 shows various aberration diagrams of the zoom optical system according to the third example in the infinitely focused state, where (a) is a wide-angle end state, (b) is a first intermediate focal length state, and (c). Indicates the second intermediate focal length state.

図9は、第3実施例に係る変倍光学系の無限遠合焦状態での諸収差図を示し、(a)は第3中間焦点距離状態、(b)は第4中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。   FIG. 9 shows various aberration diagrams of the zoom optical system according to the third example in the infinitely focused state, where (a) is a third intermediate focal length state, (b) is a fourth intermediate focal length state, (C) shows a telephoto end state, respectively.

各収差図から、第3実施例に係る変倍光学系は、諸収差が良好に補正され、高い光学性能を有していることがわかる。   From each aberration diagram, it can be seen that the variable magnification optical system according to the third example has various optical aberrations corrected and high optical performance.

(第4実施例)
図10は、第4実施例に係る変倍光学系の構成を示す断面図である。
(Fourth embodiment)
FIG. 10 is a cross-sectional view showing the configuration of the variable magnification optical system according to the fourth example.

図10に示すように、第4実施例に係る変倍光学系は、光軸に沿って物体側から順に、正屈折力の第1レンズ群G1と、負屈折力の第2レンズ群G2と、正屈折力の第3レンズ群G3と、負屈折力の第4レンズ群G4と、正屈折力の第5レンズ群G5とから構成される。   As shown in FIG. 10, the zoom optical system according to the fourth example includes a first lens group G1 having a positive refractive power and a second lens group G2 having a negative refractive power in order from the object side along the optical axis. The third lens group G3 having positive refractive power, the fourth lens group G4 having negative refractive power, and the fifth lens group G5 having positive refractive power.

広角端状態Wから望遠端状態Tへの変倍に際し、第1レンズ群G1と第2レンズ群G2との間隔は増大し、第2レンズ群G2と第3レンズ群G3との間隔は減少するように、像面Iに対して、第1レンズ群G1は単調に物体側へ移動し、第2レンズ群G2は第1中間焦点距離状態M1まで像側へ移動し、第1中間焦点距離状態M1から望遠端状態Tまでは物体側へ移動し、第3レンズ群G3は単調に物体側へ移動する。さらに、第3レンズ群G3と第4レンズ群G4との間隔は増大し、第4レンズ群G4と第5レンズ群G5との間隔は減少するように、第4レンズ群G4と第5レンズ群G5は像面Iに対して単調に物体側へ移動する。また、第3レンズ群G3と第5レンズ群G5は、像面Iに対して一体で移動する。   When zooming from the wide-angle end state W to the telephoto end state T, the distance between the first lens group G1 and the second lens group G2 increases, and the distance between the second lens group G2 and the third lens group G3 decreases. Thus, with respect to the image plane I, the first lens group G1 moves monotonously to the object side, and the second lens group G2 moves to the image side up to the first intermediate focal length state M1, and the first intermediate focal length state From M1 to the telephoto end state T, the lens moves toward the object side, and the third lens group G3 monotonously moves toward the object side. Furthermore, the distance between the third lens group G3 and the fourth lens group G4 increases, and the distance between the fourth lens group G4 and the fifth lens group G5 decreases so that the fourth lens group G4 and the fifth lens group. G5 moves to the object side monotonously with respect to the image plane I. Further, the third lens group G3 and the fifth lens group G5 move integrally with the image plane I.

開口絞りSは、第2レンズ群G2の像側にある第3レンズ群G3の最も物体側に配置され、第3レンズ群G3と一体で構成される。また、広角端状態Wから望遠端状態Tへの変倍に際し、開口絞りSは、広角端状態Wから第1中間焦点距離状態M1まで広角端状態Wの最大開口径を維持し、第1中間焦点距離状態M1から望遠端状態Tまでは最大開口径が単調に増大する。   The aperture stop S is disposed on the most object side of the third lens group G3 on the image side of the second lens group G2, and is configured integrally with the third lens group G3. When zooming from the wide-angle end state W to the telephoto end state T, the aperture stop S maintains the maximum aperture diameter of the wide-angle end state W from the wide-angle end state W to the first intermediate focal length state M1. From the focal length state M1 to the telephoto end state T, the maximum aperture diameter increases monotonously.

第1レンズ群G1は、光軸に沿って物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と両凸レンズL12との接合レンズと、物体側に凸面を向けた正メニスカスレンズL13とから構成されている。   The first lens group G1 includes, in order from the object side along the optical axis, a cemented lens of a negative meniscus lens L11 having a convex surface facing the object side and a biconvex lens L12, and a positive meniscus lens L13 having a convex surface facing the object side. It is composed of

第2レンズ群G2は、光軸に沿って物体側から順に、物体側に凸面を向けた負メニスカスレンズL21と、両凹レンズL22と、両凸レンズL23と、両凹レンズL24と両凸レンズL25との接合レンズとから構成されている。第2レンズ群G2の最も物体側に位置する負メニスカスレンズL21は、物体側のレンズ面に樹脂層を設けて非球面を形成した複合型非球面レンズである。   The second lens group G2 includes, in order from the object side along the optical axis, a negative meniscus lens L21 having a convex surface directed toward the object side, a biconcave lens L22, a biconvex lens L23, a biconcave lens L24, and a biconvex lens L25. It consists of a lens. The negative meniscus lens L21 located closest to the object side in the second lens group G2 is a composite aspherical lens in which an aspherical surface is formed by providing a resin layer on the object-side lens surface.

第3レンズ群G3は、光軸に沿って物体側から順に、両凸レンズL31と、両凸レンズL32と、両凸レンズL33と物体側に凹面を向けた負メニスカスレンズL34との接合レンズとから構成されている。   The third lens group G3 includes, in order from the object side along the optical axis, a biconvex lens L31, a biconvex lens L32, and a cemented lens of a biconvex lens L33 and a negative meniscus lens L34 having a concave surface facing the object side. ing.

第4レンズ群G4は、光軸に沿って物体側から順に、両凹レンズL41と物体側に凸面を向けた正メニスカスレンズL42との接合レンズと、物体側に凹面を向けた負メニスカスレンズL43とから構成されている。第4レンズ群G4の最も物体側に位置する両凹レンズL41は、物体側のレンズ面を非球面形状としたガラスモールド非球面レンズである。   The fourth lens group G4 includes, in order from the object side along the optical axis, a cemented lens of a biconcave lens L41 and a positive meniscus lens L42 having a convex surface facing the object side, and a negative meniscus lens L43 having a concave surface facing the object side. It is composed of The biconcave lens L41 located closest to the object side in the fourth lens group G4 is a glass mold aspheric lens having an aspheric lens surface on the object side.

第5レンズ群G5は、光軸に沿って物体側から順に、物体側に凹面を向けた正メニスカスレンズL51と、両凸レンズL52と、両凹レンズL53と両凸レンズL54との接合レンズとから構成されている。第5レンズ群G5の最も物体側に位置する正メニスカスレンズL51は、物体側のレンズ面を非球面形状としたガラスモールド非球面レンズである。両凸レンズL54から射出した光線は像面Iに結像する。   The fifth lens group G5 includes, in order from the object side along the optical axis, a positive meniscus lens L51 having a concave surface directed toward the object side, a biconvex lens L52, and a cemented lens of a biconcave lens L53 and a biconvex lens L54. ing. The positive meniscus lens L51 located closest to the object side in the fifth lens group G5 is a glass mold aspheric lens having an aspheric lens surface on the object side. Light rays emitted from the biconvex lens L54 form an image on the image plane I.

以下の表4に第4実施例に係る変倍光学系の諸元値を掲げる。   Table 4 below lists various values of the variable magnification optical system according to the fourth example.

(表4)

(面データ)
面番号 r d nd νd
物面 ∞ ∞
1 185.24410 2.20000 1.834000 37.16
2 68.75480 8.80000 1.497820 82.52
3 -497.29190 0.10000
4 71.28350 6.45000 1.593190 67.87
5 1172.32230 (可変)

6* 84.76870 0.10000 1.553890 38.09
7 73.93750 1.20000 1.834807 42.72
8 16.75000 6.90150
9 -39.27190 1.00000 1.816000 46.62
10 66.81930 0.15000
11 34.96200 5.30000 1.784723 25.68
12 -38.10160 0.85100
13 -25.92810 1.00000 1.816000 46.62
14 73.51020 2.05000 1.808090 22.79
15 -287.76490 (可変)

16(絞り) ∞ 1.00000
17 67.56430 3.40000 1.593190 67.87
18 -48.87440 0.10000
19 67.50290 2.45000 1.487490 70.41
20 -148.37490 0.10000
21 48.80470 4.10000 1.487490 70.41
22 -34.96390 1.00000 1.808090 22.79
23 -151.08370 (可変)

24* -60.11270 1.00000 1.693500 53.31
25 28.34580 2.15000 1.728250 28.46
26 78.30380 4.62360
27 -25.31330 1.00000 1.729157 54.66
28 -74.02640 (可変)

29* -258.20790 4.30000 1.589130 61.18
30 -24.20710 0.10000
31 31.58110 5.85000 1.487490 70.41
32 -43.77790 1.99120
33 -117.57770 1.00000 1.882997 40.76
34 20.29060 5.20000 1.548141 45.79
35 -725.37280 (Bf)
像面 ∞

(非球面データ)
第6面
κ = 1.0000
A4 = 3.04550E-06
A6 = -3.32430E-09
A8 = -1.97490E-11
A10 = 7.65670E-14
第24面
κ = 1.0000
A4 = 3.99640E-06
A6 = -1.46410E-09
A8 = 0.00000E+00
A10 = 0.00000E+00
第29面
κ = 1.0000
A4 = -1.52760E-05
A6 = 3.24870E-09
A8 = -4.79200E-12
A10 = -1.47520E-13

(各種データ)
ズーム比 15.72
W M1 M2 M3 M4 T
f = 18.53407 28.28311 49.61061 104.44333 280.42014 291.31408
FNO = 4.19822 4.84518 5.60962 5.63139 5.64795 5.65065
ω = 39.09871 25.91447 15.52706 7.44054 2.81841 2.71459
Y = 14.20 14.20 14.20 14.20 14.20 14.20
TL = 163.83 172.73 188.63 224.05 249.11 249.82
Bf = 39.11654 46.29035 62.64242 69.74259 81.54926 82.19687
φ = 13.60 13.60 15.70 17.60 20.35 20.50

d5 2.15320 13.04850 21.16970 53.87340 76.26610 76.78310
d15 33.72460 24.55710 15.98250 11.59370 2.46300 2.00000
d23 3.38090 5.75490 9.65610 11.06770 12.30820 12.36930
d28 9.98840 7.61440 3.71320 2.30160 1.06110 1.00000

(ズームレンズ群データ)
群 始面 焦点距離
1 1 118.41983
2 6 −15.62139
3 16 27.10600
4 24 −24.65991
5 29 33.56757

(条件式対応値)
(1) f1/fT=0.407
(2) φT/φW=1.507
(3) φM10/φW=1.496 (φM10は第4中間焦点距離状態M4の値)
(4) φM15/φW=1.496 (φM15は第4中間焦点距離状態M4の値)
(5) φM5/φW=1.294 (φM5は第3中間焦点距離状態M3の値)
(6) fM/fW=1.526 (fMは第1中間焦点距離状態M1の値)
(7) −f2/fT=0.0536
(Table 4)

(Surface data)
Surface number rd nd νd
Object ∞ ∞
1 185.24410 2.20000 1.834000 37.16
2 68.75480 8.80000 1.497820 82.52
3 -497.29190 0.10000
4 71.28350 6.45000 1.593190 67.87
5 1172.32230 (variable)

6 * 84.76870 0.10000 1.553890 38.09
7 73.93750 1.20000 1.834807 42.72
8 16.75000 6.90150
9 -39.27190 1.00000 1.816000 46.62
10 66.81930 0.15000
11 34.96200 5.30000 1.784723 25.68
12 -38.10160 0.85100
13 -25.92810 1.00000 1.816000 46.62
14 73.51020 2.05000 1.808090 22.79
15 -287.76490 (variable)

16 (Aperture) ∞ 1.00000
17 67.56430 3.40000 1.593190 67.87
18 -48.87440 0.10000
19 67.50290 2.45000 1.487490 70.41
20 -148.37490 0.10000
21 48.80470 4.10000 1.487490 70.41
22 -34.96390 1.00000 1.808090 22.79
23 -151.08370 (variable)

24 * -60.11270 1.00000 1.693500 53.31
25 28.34580 2.15000 1.728250 28.46
26 78.30380 4.62360
27 -25.31330 1.00000 1.729157 54.66
28 -74.02640 (variable)

29 * -258.20790 4.30000 1.589130 61.18
30 -24.20710 0.10000
31 31.58110 5.85000 1.487490 70.41
32 -43.77790 1.99120
33 -117.57770 1.00000 1.882997 40.76
34 20.29060 5.20000 1.548141 45.79
35 -725.37280 (Bf)
Image plane ∞

(Aspheric data)
6th surface κ = 1.0000
A4 = 3.04550E-06
A6 = -3.32430E-09
A8 = -1.97490E-11
A10 = 7.65670E-14
24th surface κ = 1.0000
A4 = 3.99640E-06
A6 = -1.46410E-09
A8 = 0.00000E + 00
A10 = 0.00000E + 00
29th surface κ = 1.0000
A4 = -1.52760E-05
A6 = 3.24870E-09
A8 = -4.79200E-12
A10 = -1.47520E-13

(Various data)
Zoom ratio 15.72
W M1 M2 M3 M4 T
f = 18.53407 28.28311 49.61061 104.44333 280.42014 291.31408
FNO = 4.19822 4.84518 5.60962 5.63139 5.64795 5.65065
ω = 39.09871 25.91447 15.52706 7.44054 2.81841 2.71459
Y = 14.20 14.20 14.20 14.20 14.20 14.20
TL = 163.83 172.73 188.63 224.05 249.11 249.82
Bf = 39.11654 46.29035 62.64242 69.74259 81.54926 82.19687
φ = 13.60 13.60 15.70 17.60 20.35 20.50

d5 2.15320 13.04850 21.16970 53.87340 76.26610 76.78310
d15 33.72460 24.55710 15.98250 11.59370 2.46300 2.00000
d23 3.38090 5.75490 9.65610 11.06770 12.30820 12.36930
d28 9.98840 7.61440 3.71320 2.30160 1.06110 1.00000

(Zoom lens group data)
Group Start surface Focal length 1 1 118.41983
2 6-15.62139
3 16 27.10600
4 24 -24.659991
5 29 33.5757

(Values for conditional expressions)
(1) f1 / fT = 0.407
(2) φT / φW = 1.507
(3) φM10 / φW = 1.396 (φM10 is the value of the fourth intermediate focal length state M4)
(4) φM15 / φW = 1.396 (φM15 is the value of the fourth intermediate focal length state M4)
(5) φM5 / φW = 1.294 (φM5 is the value of the third intermediate focal length state M3)
(6) fM / fW = 1.526 (fM is the value of the first intermediate focal length state M1)
(7) -f2 / fT = 0.0536

図11は、第4実施例に係る変倍光学系の無限遠合焦状態での諸収差図を示し、(a)は広角端状態、(b)は第1中間焦点距離状態、(c)は第2中間焦点距離状態をそれぞれ示す。   FIG. 11 shows various aberration diagrams of the zoom optical system according to the fourth example in the infinitely focused state, where (a) is the wide-angle end state, (b) is the first intermediate focal length state, and (c). Indicates the second intermediate focal length state.

図12は、第4実施例に係る変倍光学系の無限遠合焦状態での諸収差図を示し、(a)は第3中間焦点距離状態、(b)は第4中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。   FIG. 12 shows various aberration diagrams of the zoom optical system according to the fourth example in the infinitely focused state, where (a) is a third intermediate focal length state, (b) is a fourth intermediate focal length state, (C) shows a telephoto end state, respectively.

各収差図から、第4実施例に係る変倍光学系は、諸収差が良好に補正され、高い光学性能を有していることがわかる。   From the respective aberration diagrams, it can be seen that the variable magnification optical system according to the fourth example has various aberrations corrected well and high optical performance.

(第5実施例)
図13は、第5実施例に係る変倍光学系の構成を示す断面図である。
(5th Example)
FIG. 13 is a cross-sectional view showing the configuration of the variable magnification optical system according to the fifth example.

図13に示すように、第5実施例に係る変倍光学系は、光軸に沿って物体側から順に、正屈折力の第1レンズ群G1と、負屈折力の第2レンズ群G2と、正屈折力の第3レンズ群G3と、負屈折力の第4レンズ群G4と、正屈折力の第5レンズ群G5とから構成される。   As shown in FIG. 13, the variable magnification optical system according to the fifth example includes a first lens group G1 having a positive refractive power and a second lens group G2 having a negative refractive power in order from the object side along the optical axis. The third lens group G3 having positive refractive power, the fourth lens group G4 having negative refractive power, and the fifth lens group G5 having positive refractive power.

広角端状態Wから望遠端状態Tへの変倍に際し、第1レンズ群G1と第2レンズ群G2との間隔は増大し、第2レンズ群G2と第3レンズ群G3との間隔は減少するように、像面Iに対して、第1レンズ群G1は単調に物体側へ移動し、第2レンズ群G2は第1中間焦点距離状態M1まで像側へ移動し、第1中間焦点距離状態M1から望遠端状態Tまでは物体側へ移動し、第3レンズ群G3は単調に物体側へ移動する。さらに、第3レンズ群G3と第4レンズ群G4との間隔は増大し、第4レンズ群G4と第5レンズ群G5との間隔は減少するように、第4レンズ群G4と第5レンズ群G5は像面Iに対して単調に物体側へ移動する。   When zooming from the wide-angle end state W to the telephoto end state T, the distance between the first lens group G1 and the second lens group G2 increases, and the distance between the second lens group G2 and the third lens group G3 decreases. Thus, with respect to the image plane I, the first lens group G1 moves monotonously to the object side, and the second lens group G2 moves to the image side up to the first intermediate focal length state M1, and the first intermediate focal length state From M1 to the telephoto end state T, the lens moves toward the object side, and the third lens group G3 monotonously moves toward the object side. Furthermore, the distance between the third lens group G3 and the fourth lens group G4 increases, and the distance between the fourth lens group G4 and the fifth lens group G5 decreases so that the fourth lens group G4 and the fifth lens group. G5 moves to the object side monotonously with respect to the image plane I.

開口絞りSは、第2レンズ群G2の像側にある第3レンズ群G3の最も物体側に配置され、第3レンズ群G3と一体で構成される。また、広角端状態Wから望遠端状態Tへの変倍に際し、開口絞りSは、広角端状態Wから第2中間焦点距離状態M2まで広角端状態Wの最大開口径を維持し、第2中間焦点距離状態M2から望遠端状態Tまでは最大開口径が単調に増大する。   The aperture stop S is disposed on the most object side of the third lens group G3 on the image side of the second lens group G2, and is configured integrally with the third lens group G3. Further, upon zooming from the wide-angle end state W to the telephoto end state T, the aperture stop S maintains the maximum aperture diameter of the wide-angle end state W from the wide-angle end state W to the second intermediate focal length state M2, and the second intermediate From the focal length state M2 to the telephoto end state T, the maximum aperture diameter increases monotonously.

第1レンズ群G1は、光軸に沿って物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と両凸レンズL12との接合レンズと、物体側に凸面を向けた正メニスカスレンズL13とから構成されている。   The first lens group G1 includes, in order from the object side along the optical axis, a cemented lens of a negative meniscus lens L11 having a convex surface facing the object side and a biconvex lens L12, and a positive meniscus lens L13 having a convex surface facing the object side. It is composed of

第2レンズ群G2は、光軸に沿って物体側から順に、物体側に凸面を向けた負メニスカスレンズL21と、両凹レンズL22と、両凸レンズL23と、両凹レンズL24と両凸レンズL25との接合レンズとから構成されている。第2レンズ群G2の最も物体側に位置する負メニスカスレンズL21は、物体側のレンズ面に樹脂層を設けて非球面を形成した複合型非球面レンズである。   The second lens group G2 includes, in order from the object side along the optical axis, a negative meniscus lens L21 having a convex surface directed toward the object side, a biconcave lens L22, a biconvex lens L23, a biconcave lens L24, and a biconvex lens L25. It consists of a lens. The negative meniscus lens L21 located closest to the object side in the second lens group G2 is a composite aspherical lens in which an aspherical surface is formed by providing a resin layer on the object-side lens surface.

第3レンズ群G3は、光軸に沿って物体側から順に、両凸レンズL31と、両凸レンズL32と、両凸レンズL33と物体側に凹面を向けた負メニスカスレンズL34との接合レンズとから構成されている。   The third lens group G3 includes, in order from the object side along the optical axis, a biconvex lens L31, a biconvex lens L32, and a cemented lens of a biconvex lens L33 and a negative meniscus lens L34 having a concave surface facing the object side. ing.

第4レンズ群G4は、光軸に沿って物体側から順に、両凹レンズL41と物体側に凸面を向けた正メニスカスレンズL42との接合レンズと、物体側に凹面を向けた負メニスカスレンズL43とから構成されている。第4レンズ群G4の最も物体側に位置する両凹レンズL41は、物体側のレンズ面に樹脂層を設けて非球面を形成した複合型非球面レンズである。   The fourth lens group G4 includes, in order from the object side along the optical axis, a cemented lens of a biconcave lens L41 and a positive meniscus lens L42 having a convex surface facing the object side, and a negative meniscus lens L43 having a concave surface facing the object side. It is composed of The biconcave lens L41 located closest to the object side in the fourth lens group G4 is a composite aspheric lens in which an aspheric surface is formed by providing a resin layer on the lens surface on the object side.

第5レンズ群G5は、光軸に沿って物体側から順に、両凸レンズL51と、両凸レンズL52と、両凹レンズL53と両凸レンズL54との接合レンズとから構成されている。第5レンズ群G5の最も物体側に位置する両凸レンズL51は、物体側のレンズ面を非球面形状としたガラスモールド非球面レンズである。両凸レンズL54から射出した光線は像面Iに結像する。   The fifth lens group G5 includes, in order from the object side along the optical axis, a biconvex lens L51, a biconvex lens L52, and a cemented lens of a biconcave lens L53 and a biconvex lens L54. The biconvex lens L51 located closest to the object side in the fifth lens group G5 is a glass mold aspheric lens having an aspheric lens surface on the object side. Light rays emitted from the biconvex lens L54 form an image on the image plane I.

以下の表5に第5実施例に係る変倍光学系の諸元値を掲げる。   Table 5 below provides specification values of the variable magnification optical system according to the fifth example.

(表5)

(面データ)
面番号 r d nd νd
物面 ∞ ∞
1 175.60560 2.20000 1.834000 37.16
2 67.43020 8.80000 1.497820 82.52
3 -587.78480 0.10000
4 72.27100 6.45000 1.593190 67.87
5 1826.13880 (可変)

6* 84.76870 0.10000 1.553890 38.09
7 73.93750 1.20000 1.834807 42.72
8 17.18730 6.95000
9 -36.98220 1.00000 1.816000 46.62
10 77.92630 0.15000
11 36.63460 5.30000 1.784723 25.68
12 -36.63460 0.80000
13 -26.19910 1.00000 1.816000 46.62
14 63.73960 2.05000 1.808090 22.79
15 -643.27060 (可変)

16(絞り) ∞ 1.00000
17 65.83650 3.40000 1.593190 67.87
18 -50.15460 0.10000
19 65.68170 2.45000 1.487490 70.41
20 -154.97430 0.10000
21 46.73330 4.20000 1.487490 70.41
22 -35.78330 1.00000 1.808090 22.79
23 -191.93180 (可変)

24* -57.29660 0.20000 1.553890 38.09
25 -59.72500 0.90000 1.696797 55.52
26 28.51000 2.15000 1.728250 28.46
27 91.99760 4.14020
28 -32.89540 1.00000 1.729157 54.66
29 -144.33150 (可変)

30* 6427.19190 4.65000 1.589130 61.18
31 -27.38180 0.10000
32 31.47760 5.85000 1.487490 70.41
33 -43.75390 1.45000
34 -113.58970 1.00000 1.882997 40.76
35 20.34810 5.30000 1.548141 45.79
36 -709.14530 (Bf)
像面 ∞

(非球面データ)
第6面
κ = 1.0000
A4 = 2.88220E-06
A6 = -2.29350E-11
A8 = -2.35280E-11
A10 = 9.21570E-14
第24面
κ = 1.0000
A4 = 4.32780E-06
A6 = 1.88460E-09
A8 = 0.00000E+00
A10 = 0.00000E+00
第30面
κ = 1.0000
A4 = -1.36170E-05
A6 = -3.55860E-10
A8 = 1.83080E-11
A10 = -1.86790E-13

(各種データ)
ズーム比 15.70
W M1 M2 M3 M4 T
f = 18.56060 27.94799 48.95245 104.65150 280.18763 291.42454
FNO = 3.57565 4.13253 5.36204 5.62482 5.80434 5.81064
ω = 38.80191 26.18802 15.68652 7.44205 2.82863 2.72113
Y = 14.20 14.20 14.20 14.20 14.20 14.20
TL = 164.76 171.03 189.45 225.29 249.99 250.61
Bf = 38.84705 44.06807 62.50183 73.57929 86.00428 86.64770
φ = 15.80 15.80 15.80 17.50 19.50 19.60

d5 2.15700 11.13190 22.22690 53.01000 75.67850 76.25220
d15 33.36360 23.94380 15.96870 11.30360 2.48130 2.00000
d23 3.46820 7.42730 8.95240 9.64300 9.67390 9.62460
d29 11.83830 9.36420 4.70680 2.66290 1.06600 1.00000

(ズームレンズ群データ)
群 始面 焦点距離
1 1 117.72937
2 6 −15.60945
3 16 27.35473
4 24 −26.50041
5 30 35.20423

(条件式対応値)
(1) f1/fT=0.404
(2) φT/φW=1.241
(3) φM10/φW=1.234 (φM10は第4中間焦点距離状態M4の値)
(4) φM15/φW=1.234 (φM15は第4中間焦点距離状態M4の値)
(5) φM5/φW=1.108 (φM5は第3中間焦点距離状態M3の値)
(6) fM/fW=2.637 (fMは第2中間焦点距離状態M2の値)
(7) −f2/fT=0.0536
(Table 5)

(Surface data)
Surface number rd nd νd
Object ∞ ∞
1 175.60560 2.20000 1.834000 37.16
2 67.43020 8.80000 1.497820 82.52
3 -587.78480 0.10000
4 72.27100 6.45000 1.593190 67.87
5 1826.13880 (variable)

6 * 84.76870 0.10000 1.553890 38.09
7 73.93750 1.20000 1.834807 42.72
8 17.18730 6.95000
9 -36.98220 1.00000 1.816000 46.62
10 77.92630 0.15000
11 36.63460 5.30000 1.784723 25.68
12 -36.63460 0.80000
13 -26.19910 1.00000 1.816000 46.62
14 63.73960 2.05000 1.808090 22.79
15 -643.27060 (variable)

16 (Aperture) ∞ 1.00000
17 65.83650 3.40000 1.593190 67.87
18 -50.15460 0.10000
19 65.68170 2.45000 1.487490 70.41
20 -154.97430 0.10000
21 46.73330 4.20000 1.487490 70.41
22 -35.78330 1.00000 1.808090 22.79
23 -191.93180 (variable)

24 * -57.29660 0.20000 1.553890 38.09
25 -59.72500 0.90000 1.696797 55.52
26 28.51000 2.15000 1.728250 28.46
27 91.99760 4.14020
28 -32.89540 1.00000 1.729157 54.66
29 -144.33150 (variable)

30 * 6427.19190 4.65000 1.589130 61.18
31 -27.38180 0.10000
32 31.47760 5.85000 1.487490 70.41
33 -43.75390 1.45000
34 -113.58970 1.00000 1.882997 40.76
35 20.34810 5.30000 1.548141 45.79
36 -709.14530 (Bf)
Image plane ∞

(Aspheric data)
6th surface κ = 1.0000
A4 = 2.88220E-06
A6 = -2.29350E-11
A8 = -2.35280E-11
A10 = 9.21570E-14
24th surface κ = 1.0000
A4 = 4.32780E-06
A6 = 1.88460E-09
A8 = 0.00000E + 00
A10 = 0.00000E + 00
30th surface κ = 1.0000
A4 = -1.36170E-05
A6 = -3.55860E-10
A8 = 1.83080E-11
A10 = -1.86790E-13

(Various data)
Zoom ratio 15.70
W M1 M2 M3 M4 T
f = 18.56060 27.94799 48.95245 104.65150 280.18763 291.42454
FNO = 3.57565 4.13253 5.36204 5.62482 5.80434 5.81064
ω = 38.80191 26.18802 15.68652 7.44205 2.82863 2.72113
Y = 14.20 14.20 14.20 14.20 14.20 14.20
TL = 164.76 171.03 189.45 225.29 249.99 250.61
Bf = 38.84705 44.06807 62.50183 73.57929 86.00428 86.64770
φ = 15.80 15.80 15.80 17.50 19.50 19.60

d5 2.15700 11.13190 22.22690 53.01000 75.67850 76.25220
d15 33.36360 23.94380 15.96870 11.30360 2.48130 2.00000
d23 3.46820 7.42730 8.95240 9.64300 9.67390 9.62460
d29 11.83830 9.36420 4.70680 2.66290 1.06600 1.00000

(Zoom lens group data)
Group Start surface Focal length 1 1 117.7729
2 6 -15.60945
3 16 27.35473
4 24-26.50041
5 30 35.423

(Values for conditional expressions)
(1) f1 / fT = 0.404
(2) φT / φW = 1.241
(3) φM10 / φW = 1.234 (φM10 is the value of the fourth intermediate focal length state M4)
(4) φM15 / φW = 1.234 (φM15 is the value of the fourth intermediate focal length state M4)
(5) φM5 / φW = 1.108 (φM5 is the value of the third intermediate focal length state M3)
(6) fM / fW = 2.636 (fM is the value of the second intermediate focal length state M2)
(7) -f2 / fT = 0.0536

図14は、第5実施例に係る変倍光学系の無限遠合焦状態での諸収差図を示し、(a)は広角端状態、(b)は第1中間焦点距離状態、(c)は第2中間焦点距離状態をそれぞれ示す。   FIGS. 14A and 14B show various aberration diagrams of the zoom optical system according to the fifth example in the infinitely focused state, where FIG. 14A is a wide-angle end state, FIG. 14B is a first intermediate focal length state, and FIG. Indicates the second intermediate focal length state.

図15は、第5実施例に係る変倍光学系の無限遠合焦状態での諸収差図を示し、(a)は第3中間焦点距離状態、(b)は第4中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。   FIG. 15 shows various aberration diagrams of the zoom optical system according to Example 5 in the infinitely focused state, where (a) is the third intermediate focal length state, (b) is the fourth intermediate focal length state, (C) shows a telephoto end state, respectively.

各収差図から、第5実施例に係る変倍光学系は、諸収差が良好に補正され、高い光学性能を有していることがわかる。   From each aberration diagram, it can be seen that the variable magnification optical system according to the fifth example has various optical aberrations corrected and high optical performance.

以上のように、本実施形態によれば、収差変動を抑え、高い光学性能を有する変倍光学系を提供することができる。   As described above, according to the present embodiment, it is possible to provide a variable magnification optical system that suppresses aberration fluctuation and has high optical performance.

次に、本実施形態に係る変倍光学系を搭載したカメラについて説明する。なお、第1実施例に係る変倍光学系を搭載した場合について説明するが、他の実施例でも同様である。   Next, a camera equipped with the variable magnification optical system according to the present embodiment will be described. Although the case where the variable magnification optical system according to the first example is mounted will be described, the same applies to other examples.

図16は、第1実施例に係る変倍光学系を備えたカメラの構成を示す図である。   FIG. 16 is a diagram illustrating a configuration of a camera including the variable magnification optical system according to the first example.

図16において、カメラ1は、撮影レンズ2として第1実施例に係る変倍光学系を備えたデジタル一眼レフカメラである。カメラ1において、不図示の物体(被写体)からの光は、撮影レンズ2で集光されて、クイックリターンミラー3を介して焦点板4に結像される。そして焦点板4に結像されたこの光は、ペンタプリズム5中で複数回反射されて接眼レンズ6へ導かれる。これにより撮影者は、被写体像を接眼レンズ6を介して正立像として観察することができる。   In FIG. 16, a camera 1 is a digital single-lens reflex camera provided with a variable magnification optical system according to the first example as a photographing lens 2. In the camera 1, light from an object (subject) (not shown) is collected by the taking lens 2 and is focused on the focusing screen 4 via the quick return mirror 3. The light imaged on the focusing screen 4 is reflected in the pentaprism 5 a plurality of times and guided to the eyepiece lens 6. Thus, the photographer can observe the subject image as an erect image through the eyepiece 6.

また、撮影者によって不図示のレリーズボタンが押されると、クイックリターンミラー3が光路外へ退避し、不図示の被写体からの光は撮像素子7へ到達する。これにより被写体からの光は、撮像素子7によって撮像されて、被写体画像として不図示のメモリに記録される。このようにして、撮影者はカメラ1による被写体の撮影を行うことができる。   When the release button (not shown) is pressed by the photographer, the quick return mirror 3 is retracted out of the optical path, and light from the subject (not shown) reaches the image sensor 7. As a result, light from the subject is picked up by the image sensor 7 and recorded as a subject image in a memory (not shown). In this way, the photographer can shoot the subject with the camera 1.

カメラ1に撮影レンズ2として第1実施例に係る変倍光学系を搭載することにより、高い性能を有するカメラを実現することができる。   By mounting the zoom optical system according to the first example as the photographing lens 2 on the camera 1, a camera having high performance can be realized.

以下、本願の変倍光学系の製造方法の概略を説明する。   The outline of the manufacturing method of the variable magnification optical system of the present application will be described below.

図17は、本願の変倍光学系の製造方法を示す図である。   FIG. 17 is a diagram showing a manufacturing method of the variable magnification optical system of the present application.

本願の変倍光学系の製造方法は、光軸に沿って物体側から順に、正屈折力の第1レンズ群と、負屈折力の第2レンズ群と、正屈折力の第3レンズ群と、負屈折力の第4レンズ群と、正屈折力の第5レンズ群とを有する変倍光学系の製造方法であって、図17に示すステップS1,S2,S3を含むものである。   The variable magnification optical system manufacturing method of the present application includes, in order from the object side along the optical axis, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a third lens group having a positive refractive power. , A method for manufacturing a variable magnification optical system having a fourth lens group having negative refractive power and a fifth lens group having positive refractive power, and includes steps S1, S2, and S3 shown in FIG.

ステップS1:開口絞りを第2レンズ群より像側に配置する。   Step S1: An aperture stop is disposed on the image side from the second lens group.

ステップS2:第1レンズ群と第2レンズ群と第3レンズ群と第4レンズ群と第5レンズ群とを、広角端状態から望遠端状態への変倍に際し、第1レンズ群と第2レンズ群との間隔が増大可能、第2レンズ群と第3レンズ群との間隔が減少可能、第3レンズ群と第4レンズ群との間隔が変化可能、第4レンズ群と第5レンズ群との間隔が変化可能に配置する。   Step S2: When the first lens group, the second lens group, the third lens group, the fourth lens group, and the fifth lens group are changed from the wide-angle end state to the telephoto end state, the first lens group and the second lens group The distance between the lens group can be increased, the distance between the second lens group and the third lens group can be decreased, the distance between the third lens group and the fourth lens group can be changed, the fourth lens group and the fifth lens group It arranges so that the interval with can be changed.

ステップS3:以下の条件式(1)、(2)を満足するようにする。
(1) 0.17 < f1/fT < 0.60
(2) 1.03 < φT/φW < 1.70
但し、fTは望遠端状態における全系の焦点距離、f1は第1レンズ群の焦点距離、φWは広角端状態における開口絞りの最大開口径、φTは望遠端状態における開口絞りの最大開口径である。
Step S3: The following conditional expressions (1) and (2) are satisfied.
(1) 0.17 <f1 / fT <0.60
(2) 1.03 <φT / φW <1.70
Where fT is the focal length of the entire system in the telephoto end state, f1 is the focal length of the first lens group, φW is the maximum aperture diameter of the aperture stop in the wide-angle end state, and φT is the maximum aperture diameter of the aperture stop in the telephoto end state is there.

本願の変倍光学系の製造方法によれば、収差変動を抑え、高い光学性能を有する変倍光学系を製造することができる。   According to the manufacturing method of the variable magnification optical system of the present application, it is possible to manufacture a variable magnification optical system that suppresses aberration fluctuation and has high optical performance.

なお、以下に記載の内容は、光学性能を損なわない範囲で適宜採用可能である。   The contents described below can be appropriately adopted as long as the optical performance is not impaired.

実施例では、5群構成を示したが、6群等の他の群構成にも適用可能である。また、最も物体側にレンズまたはレンズ群を追加した構成や、最も像側にレンズまたはレンズ群を追加した構成でも構わない。また、レンズ群とは、変倍時に変化する空気間隔で分離された、少なくとも1枚のレンズを有する部分を示す。   Although the five-group configuration is shown in the embodiment, the present invention can be applied to other group configurations such as a six-group configuration. Further, a configuration in which a lens or a lens group is added to the most object side, or a configuration in which a lens or a lens group is added to the most image side may be used. The lens group refers to a portion having at least one lens separated by an air interval that changes during zooming.

単独または複数のレンズ群、または部分レンズ群を光軸方向に移動させて、無限遠物体から近距離物体への合焦を行う合焦レンズ群としても良い。前記合焦レンズ群は、オートフォーカスにも適用でき、オートフォーカス用の(超音波モータ等を用いた)モータ駆動にも適している。特に、第2レンズ群の少なくとも一部を合焦レンズ群とするのが好ましい。   A single lens group, a plurality of lens groups, or a partial lens group may be moved in the optical axis direction to be a focusing lens group that performs focusing from an object at infinity to a near object. The focusing lens group can be applied to autofocus, and is also suitable for driving a motor for autofocus (using an ultrasonic motor or the like). In particular, it is preferable that at least a part of the second lens group is a focusing lens group.

また、レンズ群または部分レンズ群を光軸に垂直な方向の成分を持つように移動させ、または、光軸を含む面内方向に回転移動(揺動)させて、手ブレによって生じる像ブレを補正する防振レンズ群としても良い。特に、第4レンズ群の少なくとも一部を防振レンズ群とするのが好ましい。   In addition, the lens group or the partial lens group is moved so as to have a component in a direction perpendicular to the optical axis, or is rotated (swayed) in the in-plane direction including the optical axis to reduce image blur caused by camera shake. A vibration-proof lens group to be corrected may be used. In particular, it is preferable that at least a part of the fourth lens group is an anti-vibration lens group.

また、レンズ面は、球面または平面で形成されても、非球面で形成されても構わない。   Further, the lens surface may be formed as a spherical surface, a flat surface, or an aspheric surface.

レンズ面が球面または平面の場合、レンズ加工及び組立調整が容易になり、加工及び組立調整の誤差による光学性能の劣化を防げるので好ましい。また、像面がずれた場合でも描写性能の劣化が少ないので好ましい。   When the lens surface is a spherical surface or a flat surface, lens processing and assembly adjustment are facilitated, and optical performance deterioration due to errors in processing and assembly adjustment can be prevented. Further, even when the image plane is deviated, it is preferable because there is little deterioration in drawing performance.

レンズ面が非球面の場合、非球面は、研削加工による非球面、ガラスを型で非球面形状に形成したガラスモールド非球面、ガラスの表面に樹脂を非球面形状に形成した複合型非球面のいずれの非球面でも構わない。また、レンズ面は回折面としても良く、レンズを屈折率分布型レンズ(GRINレンズ)あるいはプラスチックレンズとしても良い。   When the lens surface is an aspheric surface, the aspheric surface is an aspheric surface by grinding, a glass mold aspheric surface made of glass with an aspheric shape, or a composite aspheric surface made of resin with an aspheric shape on the glass surface. Any aspherical surface may be used. The lens surface may be a diffractive surface, and the lens may be a gradient index lens (GRIN lens) or a plastic lens.

また、各レンズ面には、フレアやゴーストを軽減し高コントラストの高い光学性能を達成するために、広い波長域で高い透過率を有する反射防止膜を施しても良い。   Further, each lens surface may be provided with an antireflection film having a high transmittance in a wide wavelength region in order to reduce flare and ghost and achieve high optical performance with high contrast.

また、本実施形態の変倍光学系は、変倍比が7〜25程度である。   The variable magnification optical system of the present embodiment has a variable magnification ratio of about 7 to 25.

また、本実施形態の変倍光学系は、第1レンズ群が正のレンズ成分を2つ有するのが好ましい。また、第1レンズ群は、物体側から順に、正正の順番にレンズ成分を、空気間隔を介在させて配置するのが好ましい。   In the variable magnification optical system of the present embodiment, it is preferable that the first lens group has two positive lens components. In the first lens group, it is preferable that lens components are arranged in order of positive and negative in order from the object side with an air gap interposed therebetween.

また、本実施形態の変倍光学系は、第2レンズ群が正のレンズ成分を1つと負のレンズ成分を3つ有するのが好ましい。また、第2レンズ群は、物体側から順に、負負正負の順番にレンズ成分を、空気間隔を介在させて配置するのが好ましい。   In the variable power optical system of the present embodiment, it is preferable that the second lens group has one positive lens component and three negative lens components. In the second lens group, it is preferable that the lens components are arranged in order of negative, positive and negative in order from the object side with an air gap interposed therebetween.

また、本実施形態の変倍光学系は、第3レンズ群が正のレンズ成分を3つ有するのが好ましい。   In the variable magnification optical system of the present embodiment, it is preferable that the third lens group has three positive lens components.

また、本実施形態の変倍光学系は、第4レンズ群が負のレンズ成分を2つ有するのが好ましい。   In the variable power optical system of the present embodiment, it is preferable that the fourth lens group has two negative lens components.

また、本実施形態の変倍光学系は、第5レンズ群が正のレンズ成分を2つ有するのが好ましい。また、第5レンズ群は、物体側から順に、正正の順番にレンズ成分を、空気間隔を介在させて配置するのが好ましい。   In the variable magnification optical system of the present embodiment, it is preferable that the fifth lens group has two positive lens components. In the fifth lens group, it is preferable that lens components are arranged in order of positive and negative in order from the object side with an air gap interposed therebetween.

なお、本発明を分かり易く説明するために実施形態の構成要件を付して説明したが、本発明はこれに限定されるものではない。   In addition, in order to explain the present invention in an easy-to-understand manner, the configuration requirements of the embodiment have been described, but the present invention is not limited to this.

G1 第1レンズ群
G2 第2レンズ群
G3 第3レンズ群
G4 第4レンズ群
G5 第5レンズ群
S 開口絞り
I 像面
1 カメラ
G1 1st lens group G2 2nd lens group G3 3rd lens group G4 4th lens group G5 5th lens group S Aperture stop I Image surface 1 Camera

Claims (14)

光軸に沿って物体側から順に、正屈折力の第1レンズ群と、負屈折力の第2レンズ群と、正屈折力の第3レンズ群と、負屈折力の第4レンズ群と、正屈折力の第5レンズ群とを有し、
前記第2レンズ群より像側に開口絞りを有し、
広角端状態から望遠端状態への変倍に際し、前記第1レンズ群と前記第2レンズ群との間隔は増大し、前記第2レンズ群と前記第3レンズ群との間隔は減少し、前記第3レンズ群と前記第4レンズ群との間隔は変化し、前記第4レンズ群と前記第5レンズ群との間隔は変化し、
以下の条件式を満足することを特徴とする変倍光学系。
0.17 < f1/fT < 0.60
1.03 < φT/φW < 1.70
但し、
fT:望遠端状態における全系の焦点距離
f1:前記第1レンズ群の焦点距離
φW:広角端状態における前記開口絞りの最大開口径
φT:望遠端状態における前記開口絞りの最大開口径
A first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, and a fourth lens group having a negative refractive power in order from the object side along the optical axis. A fifth lens unit having positive refractive power,
An aperture stop on the image side of the second lens group;
Upon zooming from the wide-angle end state to the telephoto end state, the distance between the first lens group and the second lens group increases, the distance between the second lens group and the third lens group decreases, The interval between the third lens group and the fourth lens group changes, the interval between the fourth lens group and the fifth lens group changes,
A zoom optical system characterized by satisfying the following conditional expression:
0.17 <f1 / fT <0.60
1.03 <φT / φW <1.70
However,
fT: focal length of the entire system in the telephoto end state f1: focal length φW of the first lens group: maximum aperture diameter of the aperture stop in the wide angle end state φT: maximum aperture diameter of the aperture stop in the telephoto end state
以下の条件式を満足することを特徴とする請求項1に記載の変倍光学系。
1.02 < φM10/φW < 1.70
但し、
φM10:広角端状態における全系の焦点距離をfWとするとき、全系の焦点距離がfWの10倍以上の中間焦点距離状態での前記開口絞りの最大開口径
The variable magnification optical system according to claim 1, wherein the following conditional expression is satisfied.
1.02 <φM10 / φW <1.70
However,
φM10: When the focal length of the entire system in the wide-angle end state is fW, the maximum aperture diameter of the aperture stop in the intermediate focal length state where the focal length of the entire system is 10 times or more of fW
以下の条件式を満足することを特徴とする請求項1に記載の変倍光学系。
1.02 < φM15/φW < 1.70
但し、
φM15:広角端状態における全系の焦点距離をfWとするとき、全系の焦点距離がfWの15倍以上の中間焦点距離状態での前記開口絞りの最大開口径
The variable magnification optical system according to claim 1, wherein the following conditional expression is satisfied.
1.02 <φM15 / φW <1.70
However,
φM15: Maximum aperture diameter of the aperture stop in an intermediate focal length state where the focal length of the whole system is 15 times or more of fW when the focal length of the whole system in the wide-angle end state is fW
以下の条件式を満足することを特徴とする請求項1から3のいずれか1項に記載の変倍光学系。
1.00 ≦ φM5/φW < 1.40
但し、
φM5:広角端状態における全系の焦点距離をfWとするとき、全系の焦点距離がfWの5倍以上8倍以下の中間焦点距離状態での前記開口絞りの最大開口径
4. The variable magnification optical system according to claim 1, wherein the following conditional expression is satisfied: 5.
1.00 ≦ φM5 / φW <1.40
However,
φM5: When the focal length of the entire system in the wide-angle end state is fW, the maximum aperture diameter of the aperture stop in the intermediate focal length state where the focal length of the entire system is 5 to 8 times fW
広角端状態から望遠端状態への変倍に際し、前記開口絞りは、広角端状態から全系の焦点距離fMの中間焦点距離状態まで広角端状態の最大開口径を維持し、
以下の条件式を満足することを特徴とする請求項1から4のいずれか1項に記載の変倍光学系。
1.50 < fM/fW < 15.00
但し、
fW:広角端状態における全系の焦点距離
During zooming from the wide-angle end state to the telephoto end state, the aperture stop maintains the maximum aperture diameter in the wide-angle end state from the wide-angle end state to the intermediate focal length state of the focal length fM of the entire system.
5. The variable magnification optical system according to claim 1, wherein the following conditional expression is satisfied.
1.50 <fM / fW <15.00
However,
fW: focal length of the entire system in the wide-angle end state
前記焦点距離fMの中間焦点距離状態から望遠端状態への変倍に際し、前記開口絞りの最大開口径は単調に増大することを特徴とする請求項5に記載の変倍光学系。   6. The variable magnification optical system according to claim 5, wherein the maximum aperture diameter of the aperture stop monotonously increases when the focal length fM is changed from the intermediate focal length state to the telephoto end state. 以下の条件式を満足することを特徴とする請求項1から6のいずれか1項に記載の変倍光学系。
0.032 < −f2/fT < 0.064
但し、
f2:前記第2レンズ群の焦点距離
The variable power optical system according to claim 1, wherein the following conditional expression is satisfied.
0.032 <−f2 / fT <0.064
However,
f2: Focal length of the second lens group
広角端状態から望遠端状態への変倍に際し、全系のFナンバーは単調に増大することを特徴とする請求項1から7のいずれか1項に記載の変倍光学系。   8. The variable magnification optical system according to claim 1, wherein the F number of the entire system monotonously increases upon zooming from the wide-angle end state to the telephoto end state. 広角端状態から望遠端状態への変倍に際し、前記第1レンズ群は像面に対して物体側に移動することを特徴とする請求項1から8のいずれか1項に記載の変倍光学系。   9. The zoom optical system according to claim 1, wherein the first lens unit moves toward the object side with respect to the image plane during zooming from the wide-angle end state to the telephoto end state. system. 広角端状態から望遠端状態への変倍に際し、前記開口絞りは、前記第3レンズ群の少なくとも一部と一体に移動することを特徴とする請求項1から9のいずれか1項に記載の変倍光学系。   10. The zoom lens according to claim 1, wherein the aperture stop moves integrally with at least a part of the third lens group during zooming from the wide-angle end state to the telephoto end state. Variable magnification optical system. 前記開口絞りは、前記第3レンズ群の物体側に配置されることを特徴とする請求項1から10のいずれか1項に記載の変倍光学系。   11. The zoom optical system according to claim 1, wherein the aperture stop is disposed on the object side of the third lens group. 11. 広角端状態から望遠端状態への変倍に際し、前記第3レンズ群と前記第5レンズ群は一体で移動することを特徴とする請求項1から11のいずれか1項に記載の変倍光学系。   12. The variable power optical system according to claim 1, wherein the third lens unit and the fifth lens unit move together when zooming from the wide-angle end state to the telephoto end state. system. 請求項1から12のいずれか1項に記載の変倍光学系を有することを特徴とする光学装置。   An optical apparatus comprising the variable magnification optical system according to claim 1. 光軸に沿って物体側から順に、正屈折力の第1レンズ群と、負屈折力の第2レンズ群と、正屈折力の第3レンズ群と、負屈折力の第4レンズ群と、正屈折力の第5レンズ群とを有する変倍光学系の製造方法であって、
開口絞りを前記第2レンズ群より像側に配置し、
前記第1レンズ群と前記第2レンズ群と前記第3レンズ群と前記第4レンズ群と前記第5レンズ群とを、広角端状態から望遠端状態への変倍に際し、前記第1レンズ群と前記第2レンズ群との間隔が増大可能、前記第2レンズ群と前記第3レンズ群との間隔が減少可能、前記第3レンズ群と前記第4レンズ群との間隔が変化可能、前記第4レンズ群と前記第5レンズ群との間隔が変化可能に配置し、
以下の条件式を満足するようにすることを特徴とする変倍光学系の製造方法。
0.17 < f1/fT < 0.60
1.03 < φT/φW < 1.70
但し、
fT:望遠端状態における全系の焦点距離
f1:前記第1レンズ群の焦点距離
φW:広角端状態における前記開口絞りの最大開口径
φT:望遠端状態における前記開口絞りの最大開口径
A first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, and a fourth lens group having a negative refractive power in order from the object side along the optical axis. A method of manufacturing a variable magnification optical system having a fifth lens unit having positive refractive power,
An aperture stop is disposed on the image side from the second lens group,
When changing the first lens group, the second lens group, the third lens group, the fourth lens group, and the fifth lens group from the wide-angle end state to the telephoto end state, the first lens group The distance between the second lens group and the second lens group can be increased, the distance between the second lens group and the third lens group can be decreased, the distance between the third lens group and the fourth lens group can be changed, The distance between the fourth lens group and the fifth lens group is arranged to be variable,
A variable magnification optical system manufacturing method characterized by satisfying the following conditional expression:
0.17 <f1 / fT <0.60
1.03 <φT / φW <1.70
However,
fT: focal length of the entire system in the telephoto end state f1: focal length φW of the first lens group: maximum aperture diameter of the aperture stop in the wide angle end state φT: maximum aperture diameter of the aperture stop in the telephoto end state
JP2010050804A 2010-03-08 2010-03-08 Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method Active JP5736651B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2010050804A JP5736651B2 (en) 2010-03-08 2010-03-08 Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method
CN201110058604.8A CN102193175B (en) 2010-03-08 2011-03-08 Zoom lens system and optical device
US13/042,493 US8913327B2 (en) 2010-03-08 2011-03-08 Zoom lens system, optical apparatus and method for manufacturing zoom lens system
CN201510918838.3A CN105487210B (en) 2010-03-08 2011-03-08 Zoom lens system and optical device
US14/270,270 US9513471B2 (en) 2010-03-08 2014-05-05 Zoom lens system, optical apparatus and method for manufacturing zoom lens system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010050804A JP5736651B2 (en) 2010-03-08 2010-03-08 Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method

Publications (2)

Publication Number Publication Date
JP2011186161A true JP2011186161A (en) 2011-09-22
JP5736651B2 JP5736651B2 (en) 2015-06-17

Family

ID=44792516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010050804A Active JP5736651B2 (en) 2010-03-08 2010-03-08 Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method

Country Status (1)

Country Link
JP (1) JP5736651B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014006653A1 (en) * 2012-07-04 2014-01-09 パナソニック株式会社 Zoom lens system, image capturing device and camera

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04146407A (en) * 1990-10-08 1992-05-20 Minolta Camera Co Ltd High variable power zoom lens
JPH11258506A (en) * 1998-03-12 1999-09-24 Canon Inc Zoom lens
JP2000231050A (en) * 1999-02-10 2000-08-22 Canon Inc Rear focus type zoom lens
JP2000347102A (en) * 1999-06-04 2000-12-15 Konica Corp Zoom lens
JP2002131642A (en) * 2000-10-25 2002-05-09 Canon Inc Zoom lens and optical apparatus having the same
JP2006099130A (en) * 2005-11-15 2006-04-13 Sony Corp Zoom lens
JP2008216440A (en) * 2007-03-01 2008-09-18 Canon Inc Zoom lens with image stabilization function
JP2009047785A (en) * 2007-08-15 2009-03-05 Sony Corp Zoom lens and imaging apparatus
JP2009128620A (en) * 2007-11-22 2009-06-11 Ricoh Co Ltd Zoom lens, camera device, and personal digital assistant
JP2009139770A (en) * 2007-12-07 2009-06-25 Ricoh Co Ltd Zoom lens, imaging apparatus and personal digital assistant
JP2009175324A (en) * 2008-01-23 2009-08-06 Canon Inc Zoom lens and imaging apparatus having the same
JP2009251280A (en) * 2008-04-07 2009-10-29 Canon Inc Zoom lens and imaging apparatus including the same
JP2009265656A (en) * 2008-04-02 2009-11-12 Panasonic Corp Zoom lens system, interchangeable lens device and camera system
JP2009282398A (en) * 2008-05-23 2009-12-03 Canon Inc Zoom lens and image pickup apparatus including the same
JP2009294513A (en) * 2008-06-06 2009-12-17 Canon Inc Zoom lens and imaging apparatus having the same
JP2010032700A (en) * 2008-07-28 2010-02-12 Nikon Corp Zoom lens, optical device having the same and method for varying power
JP2010032701A (en) * 2008-07-28 2010-02-12 Nikon Corp Zoom lens, optical device having the same and method for varying magnification
JP2011008234A (en) * 2009-05-22 2011-01-13 Hoya Corp High zoom-ratio zoom lens system
JP2011039091A (en) * 2009-08-06 2011-02-24 Canon Inc Zoom lens and imaging apparatus including the same
JP2011075975A (en) * 2009-10-01 2011-04-14 Canon Inc Zoom lens and imaging apparatus having the same

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04146407A (en) * 1990-10-08 1992-05-20 Minolta Camera Co Ltd High variable power zoom lens
JPH11258506A (en) * 1998-03-12 1999-09-24 Canon Inc Zoom lens
JP2000231050A (en) * 1999-02-10 2000-08-22 Canon Inc Rear focus type zoom lens
JP2000347102A (en) * 1999-06-04 2000-12-15 Konica Corp Zoom lens
JP2002131642A (en) * 2000-10-25 2002-05-09 Canon Inc Zoom lens and optical apparatus having the same
JP2006099130A (en) * 2005-11-15 2006-04-13 Sony Corp Zoom lens
JP2008216440A (en) * 2007-03-01 2008-09-18 Canon Inc Zoom lens with image stabilization function
JP2009047785A (en) * 2007-08-15 2009-03-05 Sony Corp Zoom lens and imaging apparatus
JP2009128620A (en) * 2007-11-22 2009-06-11 Ricoh Co Ltd Zoom lens, camera device, and personal digital assistant
JP2009139770A (en) * 2007-12-07 2009-06-25 Ricoh Co Ltd Zoom lens, imaging apparatus and personal digital assistant
JP2009175324A (en) * 2008-01-23 2009-08-06 Canon Inc Zoom lens and imaging apparatus having the same
JP2009265656A (en) * 2008-04-02 2009-11-12 Panasonic Corp Zoom lens system, interchangeable lens device and camera system
JP2009251280A (en) * 2008-04-07 2009-10-29 Canon Inc Zoom lens and imaging apparatus including the same
JP2009282398A (en) * 2008-05-23 2009-12-03 Canon Inc Zoom lens and image pickup apparatus including the same
JP2009294513A (en) * 2008-06-06 2009-12-17 Canon Inc Zoom lens and imaging apparatus having the same
JP2010032700A (en) * 2008-07-28 2010-02-12 Nikon Corp Zoom lens, optical device having the same and method for varying power
JP2010032701A (en) * 2008-07-28 2010-02-12 Nikon Corp Zoom lens, optical device having the same and method for varying magnification
JP2011008234A (en) * 2009-05-22 2011-01-13 Hoya Corp High zoom-ratio zoom lens system
JP2011039091A (en) * 2009-08-06 2011-02-24 Canon Inc Zoom lens and imaging apparatus including the same
JP2011075975A (en) * 2009-10-01 2011-04-14 Canon Inc Zoom lens and imaging apparatus having the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014006653A1 (en) * 2012-07-04 2014-01-09 パナソニック株式会社 Zoom lens system, image capturing device and camera
JPWO2014006653A1 (en) * 2012-07-04 2016-06-02 パナソニックIpマネジメント株式会社 Zoom lens system, imaging device and camera
US9513472B2 (en) 2012-07-04 2016-12-06 Panasonic Intellectual Property Management Co., Ltd. Zoom lens system, imaging device and camera

Also Published As

Publication number Publication date
JP5736651B2 (en) 2015-06-17

Similar Documents

Publication Publication Date Title
JP5544959B2 (en) Variable-magnification optical system, optical apparatus, and variable-magnification optical system manufacturing method
JP5742100B2 (en) Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method
JP2011107269A (en) Lens system, optical equipment, and method of manufacturing lens system
JP5724189B2 (en) Variable magnification optical system, optical device
JP5273167B2 (en) Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method
JP6182868B2 (en) Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method
WO2014112176A1 (en) Variable magnification optical system, optical device, and method for manufacturing variable magnification optical system
JP2010117677A (en) Zoom lens, optical apparatus, and method for manufacturing zoom lens
JP2017107067A (en) Zoom lens, optical apparatus and method for manufacturing zoom lens
JP5609386B2 (en) Variable magnification optical system, optical device
WO2016194774A1 (en) Variable-power optical system, optical device, and method for manufacturing variable-power optical system
JP6102269B2 (en) Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method
JP5459587B2 (en) Zoom lens, optical apparatus including the same, and manufacturing method
JP5333530B2 (en) Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method
JP5736651B2 (en) Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method
JP5333915B2 (en) Zoom lens and optical equipment
JP5505770B2 (en) Zoom lens, optical equipment
JP6269714B2 (en) Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method
JP5338865B2 (en) Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method
JP6451074B2 (en) Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method
JP6424414B2 (en) Variable magnification optical system, optical device
JP5488061B2 (en) Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method
JP6119953B2 (en) Variable magnification optical system, optical apparatus having the variable magnification optical system, and method of manufacturing the variable magnification optical system
JP5115871B2 (en) Zoom lens, optical device, and method of manufacturing zoom lens
JP5115870B2 (en) Zoom lens, optical device, and method of manufacturing zoom lens

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120703

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140430

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140916

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141113

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150227

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150324

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150406

R150 Certificate of patent or registration of utility model

Ref document number: 5736651

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250