JP2011185248A - Internal combustion engine - Google Patents

Internal combustion engine Download PDF

Info

Publication number
JP2011185248A
JP2011185248A JP2010054443A JP2010054443A JP2011185248A JP 2011185248 A JP2011185248 A JP 2011185248A JP 2010054443 A JP2010054443 A JP 2010054443A JP 2010054443 A JP2010054443 A JP 2010054443A JP 2011185248 A JP2011185248 A JP 2011185248A
Authority
JP
Japan
Prior art keywords
pumping loss
valve
internal combustion
combustion engine
failure diagnosis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010054443A
Other languages
Japanese (ja)
Other versions
JP5428960B2 (en
Inventor
Yasuto Imai
康人 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2010054443A priority Critical patent/JP5428960B2/en
Publication of JP2011185248A publication Critical patent/JP2011185248A/en
Application granted granted Critical
Publication of JP5428960B2 publication Critical patent/JP5428960B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a failure diagnosis device of a valve stopping mechanism that can determine a failure of the valve stopping mechanism with good accuracy and small load to a calculator. <P>SOLUTION: Based on a stopping request, the failure diagnosis device of an internal combustion engine can stop an actuation of intake and exhaust valves of an unprescribed cylinder by using solenoids 41 and 42 of the intake and exhaust valves, respectively. The failure diagnosis device assesses a pumping loss state of the cylinder based on a vehicle deceleration assessed by an output of, for example, a vehicle speed sensor 35, and an amount of regenerated power of an MG (motor generator) 21 received from an MG control ECU 2. By comparing the assessed pumping loss state to a pumping loss state when a valve stop is performing normally, the failure diagnosis of the valve stopping mechanism is conducted. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は多気筒内燃機関において、任意の気筒の吸気弁または排気弁を停止要求に応じて停止することができる弁停止機構を備える内燃機関に関し、特に、当該弁停止機構の故障診断を行う故障診断装置を有する内燃機関に関する。   The present invention relates to an internal combustion engine including a valve stop mechanism that can stop an intake valve or an exhaust valve of an arbitrary cylinder in response to a stop request in a multi-cylinder internal combustion engine, and in particular, a failure that performs failure diagnosis of the valve stop mechanism. The present invention relates to an internal combustion engine having a diagnostic device.

多気筒内燃機関において、その一部の気筒について、その吸排気弁の作動を停止することによってその運転を休止する休筒運転モードを備える内燃機関が知られている。こうした内燃機関における吸排気弁の作動状態を判定する作動状態判定装置として特許文献1に開示されている技術が知られている。この装置は、各気筒の燃焼室容積に対する筒内圧力の変化に基づいて各気筒の運転状態、吸排気弁の作動状態を検出するものである。   In a multi-cylinder internal combustion engine, an internal combustion engine having a cylinder resting operation mode in which the operation of some of the cylinders is stopped by stopping the operation of the intake and exhaust valves is known. A technique disclosed in Patent Document 1 is known as an operation state determination device for determining the operation state of an intake / exhaust valve in such an internal combustion engine. This device detects the operating state of each cylinder and the operating state of the intake / exhaust valve based on the change in the cylinder pressure with respect to the combustion chamber volume of each cylinder.

特開2002−256950号公報JP 2002-256950 A

しかしながら、上記判定手法では、筒内圧力の時間的な変化を正確に把握する必要があるため、圧力センサの精度が要求されるとともに、実際の判定はポリトロープ指数に換算したうえで行っているために、判定を行う判定部の計算機負荷が大きくなる。さらに、圧力センサが不良の場合には、これを吸排気弁の故障と判別することが難しいという問題もある。   However, in the above determination method, it is necessary to accurately grasp the temporal change in the in-cylinder pressure, so the accuracy of the pressure sensor is required, and the actual determination is performed after conversion to a polytropic index. Further, the computer load of the determination unit that performs the determination increases. Furthermore, when the pressure sensor is defective, there is a problem that it is difficult to determine this as a failure of the intake / exhaust valve.

そこで本発明は、計算機負荷が小さく、精度よく弁停止機構の故障を判定することを可能とした弁停止機構の故障診断装置を備える内燃機関を提供することを課題とする。   SUMMARY OF THE INVENTION An object of the present invention is to provide an internal combustion engine having a failure diagnosis device for a valve stop mechanism that has a small computer load and can accurately determine a failure of the valve stop mechanism.

上記課題を解決するため、本発明に係る内燃機関は、弁停止要求に応じて特定の気筒の吸気弁または排気弁を閉弁保持する弁停止機構を備える内燃機関において、この特定の気筒のポンピングロスの状態を検出するポンピングロス検出手段と、弁停止要求時において検出したポンピングロス状態に基づいて弁停止機構の故障判定を行う故障診断装置をさらに備えているものである。   In order to solve the above-described problem, an internal combustion engine according to the present invention includes a valve stop mechanism that holds an intake valve or an exhaust valve of a specific cylinder in response to a valve stop request, and pumps the specific cylinder. The apparatus further comprises a pumping loss detecting means for detecting a loss state and a failure diagnosis device for determining a failure of the valve stop mechanism based on the pumping loss state detected at the time of the valve stop request.

ポンピングロスの検出に際しては、車両の減速度を検出する減速度検出手段をさらに備えており、検出した減速度に基づいてポンピングロス状態を判定するとよい。また、車両の運動エネルギーを利用して回生発電を行う発電機を備える車両の場合には、この発電機の発電量を検出する回生発電量検出手段をさらに備え、検出した回生発電量に基づいてポンピングロス状態を判定するとよい。   When detecting the pumping loss, it is preferable to further include deceleration detecting means for detecting the deceleration of the vehicle, and to determine the pumping loss state based on the detected deceleration. Further, in the case of a vehicle including a generator that performs regenerative power generation using the kinetic energy of the vehicle, the vehicle further includes a regenerative power generation amount detecting unit that detects the power generation amount of the generator, and based on the detected regenerative power generation amount. It is good to determine the pumping loss state.

この特定の気筒の筒内圧力を検出する筒内圧センサをさらに備えている場合、故障診断装置はさらに、検出した弁停止要求時のポンピングロス状態と筒内圧力に基づいて筒内圧センサの異常を検出するとよい。この場合、故障診断装置は、検出した筒内圧力を加味して弁停止機構の故障診断を行ってもよい。   When the in-cylinder pressure sensor for detecting the in-cylinder pressure of the specific cylinder is further provided, the failure diagnosis device further detects an abnormality in the in-cylinder pressure sensor based on the pumping loss state and the in-cylinder pressure at the time of the detected valve stop request. It is good to detect. In this case, the failure diagnosis device may perform failure diagnosis of the valve stop mechanism in consideration of the detected in-cylinder pressure.

休筒運転を行う場合に、弁停止が正常に行われていれば、弁停止が正常に行われていない場合に比較して吸排気のポンピングロスが低減されるので、正常時とポンピングロスを比較することで弁停止機構の故障判定を行うことができる。これにより、簡易な手法で弁停止機構の故障を精度よく判定することができる。   If the valve is stopped normally when the cylinder is closed, the pumping loss of intake and exhaust is reduced compared to when the valve is not stopped normally. The failure determination of the valve stop mechanism can be performed by comparison. Thereby, the failure of the valve stop mechanism can be accurately determined by a simple method.

ポンピングロスが低減されると、他の条件が同一であれば、エンジンブレーキ力が低下するため、車両の減速度が小さくなる。したがって、車両の減速度を比較することにより、ポンピングロスを判定できる。同様に、回生発電機を備える車両の場合には、ポンピングロスが低減されると、回生発電力が大きくなることから、回生発電力に基づいてポンピングロスを判定できる。   When the pumping loss is reduced, if the other conditions are the same, the engine braking force is reduced, so that the deceleration of the vehicle is reduced. Therefore, the pumping loss can be determined by comparing the deceleration of the vehicle. Similarly, in the case of a vehicle equipped with a regenerative generator, when the pumping loss is reduced, the regenerative power increases, so that the pumping loss can be determined based on the regenerative power.

本発明に係る弁停止機構の故障診断装置のブロック図である。It is a block diagram of a failure diagnosis device for a valve stop mechanism according to the present invention. 図1の装置における故障診断処理の第1の実施形態を示すフローチャートである。2 is a flowchart illustrating a first embodiment of a failure diagnosis process in the apparatus of FIG. 1. 図1の装置における故障診断処理の第2の実施形態を示すフローチャートである。It is a flowchart which shows 2nd Embodiment of the failure diagnosis process in the apparatus of FIG. 弁停止機構が正常に機能している場合と、故障状態それぞれの筒内圧変化を比較して示すグラフである。It is a graph which compares and shows the case where the valve stop mechanism is functioning normally, and the cylinder pressure change of each failure state.

以下、添付図面を参照して本発明の好適な実施の形態について詳細に説明する。説明の理解を容易にするため、各図面において同一の構成要素に対しては可能な限り同一の参照番号を附し、重複する説明は省略する。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of the invention will be described in detail with reference to the accompanying drawings. In order to facilitate the understanding of the description, the same reference numerals are given to the same components in the drawings as much as possible, and duplicate descriptions are omitted.

図1に、本発明に係る弁停止機構の故障診断装置のブロック図を示す。本実施携帯における当該故障診断装置は、エンジンの制御を行うエンジン制御ECU(Electronic Control Unit)1の一部としてソフトウェアにより提供される。このエンジン制御ECU1は、入力アナログ信号をデジタル信号へと変換するADC(Analog Digital Converter)10、計算処理を行うCPU(Central Processing Unit)11、記憶装置であるRAM(Randam Access Memory)12、ROM(Read only memory)13から構成される。入力信号の全てがデジタル信号である場合には、ADC10は不要であり、アナログ信号の変換用に外部にAD変換機を備え、そのデジタル出力信号をECUに入力する構成としてもよい。また、故障診断装置をエンジン制御ECU1から独立して設けてもよく、その他のECUと統合することも可能である。   FIG. 1 shows a block diagram of a failure diagnosis device for a valve stop mechanism according to the present invention. The failure diagnosis apparatus in this embodiment is provided by software as part of an engine control ECU (Electronic Control Unit) 1 that controls the engine. The engine control ECU 1 includes an ADC (Analog Digital Converter) 10 that converts an input analog signal into a digital signal, a CPU (Central Processing Unit) 11 that performs calculation processing, a RAM (Randam Access Memory) 12 that is a storage device, a ROM ( Read only memory) 13. When all of the input signals are digital signals, the ADC 10 is unnecessary, and an AD converter may be provided outside for analog signal conversion, and the digital output signal may be input to the ECU. Further, the failure diagnosis device may be provided independently of the engine control ECU 1 and can be integrated with other ECUs.

エンジン制御ECU1には、アクセルペダルの操作量を検出するアクセル開度センサ31、トランスミッションのシフト状態を検出するシフトセンサ32、気筒それぞれに設けられ、各気筒の筒内圧を検出する筒内圧センサ33、クランク角度を検出するクランク角センサ34、車速を検出する車速センサ35の各出力が入力される。   The engine control ECU 1 includes an accelerator opening sensor 31 that detects an operation amount of an accelerator pedal, a shift sensor 32 that detects a shift state of the transmission, an in-cylinder pressure sensor 33 that detects an in-cylinder pressure of each cylinder, Outputs of a crank angle sensor 34 that detects the crank angle and a vehicle speed sensor 35 that detects the vehicle speed are input.

一方、エンジン制御ECU1は、各気筒の吸気弁、排気弁それぞれを停止要求に応じてその作動を停止するための吸気弁ソレノイド41、排気弁ソレノイド42と燃料供給を行うインジェクタ43の作動を制御するための制御信号を出力する。   On the other hand, the engine control ECU 1 controls the operation of the intake valve solenoid 41 and the exhaust valve solenoid 42 for stopping the operation of the intake valve and the exhaust valve of each cylinder in response to a stop request, and the operation of the injector 43 for supplying fuel. Control signal for output.

エンジン制御ECU1は、また、回生発電機としても機能する電動機であるMG(Motor Generator)21を制御するMG制御ECU2と相互に通信を行う機能を有している。   The engine control ECU 1 also has a function of communicating with an MG control ECU 2 that controls an MG (Motor Generator) 21 that is an electric motor that also functions as a regenerative generator.

次に、本実施形態による故障診断処理について説明する。図2は、その第1の実施形態の処理フローを示すフローチャートである。図2に示される処理は、上記エンジン制御ECU1により、エンジンが作動している間、所定のタイミングで繰り返し実行される。   Next, failure diagnosis processing according to the present embodiment will be described. FIG. 2 is a flowchart showing the processing flow of the first embodiment. The processing shown in FIG. 2 is repeatedly executed by the engine control ECU 1 at a predetermined timing while the engine is operating.

まず、弁停止要求中か否かを判定する(ステップS1)。弁停止要求中ではない場合には、後述の手法による故障診断処理を行うことができないため、その後の処理をスキップして終了する。この弁停止要求は、減速時など、特定の気筒について燃料の噴射を停止する「フューエルカット運転」を行う条件下で実行される。弁停止要求中の場合には、ステップS4へと移行して、車速センサ35の出力に基づいて車両減速度aを算出するとともに、MG21の回生発電量gをMG制御ECU2から受信する。   First, it is determined whether or not a valve stop request is being made (step S1). If the valve stop request is not being issued, failure diagnosis processing by the method described later cannot be performed, and the subsequent processing is skipped and the processing ends. This valve stop request is executed under conditions such as “fuel cut operation” in which fuel injection is stopped for a specific cylinder, such as during deceleration. When the valve stop request is being made, the process proceeds to step S4, where the vehicle deceleration a is calculated based on the output of the vehicle speed sensor 35, and the regenerative power generation amount g of the MG 21 is received from the MG control ECU 2.

ステップS5では、算出した車両減速度a、回生発電量gをROM13内に格納されている正常な休筒運転時の車両減速度a1、回生発電量g1と比較する。a1、g1は、アクセル開度センサ31で取得したアクセル開度、シフトセンサ32で取得したシフト状態、クランク角センサ34で取得したクランク角度に応じた数値をそれぞれROM13内に格納するか、これらの影響を補正して算出できるようにしておくとよい。   In step S5, the calculated vehicle deceleration a and the regenerative power generation amount g are compared with the vehicle deceleration a1 and the regenerative power generation amount g1 that are stored in the ROM 13 during normal idle cylinder operation. For a1 and g1, numerical values corresponding to the accelerator opening obtained by the accelerator opening sensor 31, the shift state obtained by the shift sensor 32, and the crank angle obtained by the crank angle sensor 34 are stored in the ROM 13, respectively. It is desirable to be able to calculate by correcting the influence.

aがa1より一定のしきい値βを超えて大きいか、gがg1より一定のしきい値γを超えて大きい場合には、ステップS6へと移行して、弁停止機構の故障と判定する。一方、ステップS5において、aがa1+β以下で、かつ、gがg1+γ以内の場合には、弁停止機構は正常に作動していると判定し、処理を終了する。ここでは、正常時に特別な処理を行っていないが、例えば、正常値を示すフラグ値を設定してもよい。   If a is larger than a1 by a certain threshold value β or g is larger than g1 by a certain threshold value γ, the process proceeds to step S6, where it is determined that the valve stop mechanism has failed. . On the other hand, in step S5, when a is a1 + β or less and g is within g1 + γ, it is determined that the valve stop mechanism is operating normally, and the process ends. Here, no special processing is performed at the normal time, but a flag value indicating a normal value may be set, for example.

ここで、吸気弁/排気弁のいずれかまたは双方の弁停止機構が故障した場合には、エンジンの作動に伴い、弁停止機構が正常に作動していない弁側は、開弁動作が行われるため、これを通じて筒内への空気の吸い込みと排出が行われる。その結果、弁停止が正常に行われている場合に比較してポンピングロスが増大してしまう。そして、当該気筒を空転させるために用いられる動力が増加してしまう。つまり、正常に休筒運転を行っている場合に比較して、フューエルカット時の減速度が増大し、また、回生発電量は小さくなってしまう。本発明においては、車両減速度と回生発電量を用いてこのポンピングロス状態を判定することで、弁停止機構の故障を精度よく判定することができる。さらに、車両減速度、回生発電量の正常時との差分の大きさにより、故障している弁の数を検出することもできる。   Here, when one or both of the valve stop mechanisms of the intake valve / exhaust valve fails, a valve opening operation is performed on the valve side where the valve stop mechanism is not operating normally with the operation of the engine. Therefore, air is sucked into and discharged from the cylinder through this. As a result, the pumping loss increases as compared with the case where the valve is stopped normally. As a result, the power used to idle the cylinder increases. That is, the deceleration at the time of fuel cut increases and the amount of regenerative power generation becomes smaller than when the cylinder resting operation is normally performed. In the present invention, the failure of the valve stop mechanism can be accurately determined by determining the pumping loss state using the vehicle deceleration and the regenerative power generation amount. Furthermore, the number of failed valves can be detected based on the magnitude of the difference between the vehicle deceleration and the normal amount of regenerative power generation.

次に、判定処理の第2の実施形態を図3の処理フローを参照して説明する。この処理も第1の実施形態と同様に、上記エンジン制御ECU1により、エンジンが作動している間、所定のタイミングで繰り返し実行される。   Next, a second embodiment of the determination process will be described with reference to the process flow of FIG. Similar to the first embodiment, this process is also repeatedly executed by the engine control ECU 1 at a predetermined timing while the engine is operating.

まず、第1の実施形態と同様に、弁停止要求中か否かを判定する(ステップS1)。弁停止要求中ではない場合には、後述の手法による故障診断処理を行うことができないため、その後の処理をスキップして終了する。   First, as in the first embodiment, it is determined whether or not a valve stop request is being made (step S1). If the valve stop request is not being issued, failure diagnosis processing by the method described later cannot be performed, and the subsequent processing is skipped and the processing ends.

弁停止要求中の場合には、ステップS2へと移行して、ADC10により、筒内圧センサ33から取得した筒内圧値をサンプリングし、クランク角センサ34から取得したクランク角度に基づいてその一定角度周期でAD変換する。続くステップS3では、サンプリングした筒内圧値Pと、ROM13内に格納されている正常な休筒運転時の筒内圧値P1とを比較する。この筒内圧値P1は、クランク角センサ34から取得したクランク角に対応してROM13内に格納されている。両者の差(絶対値)が一定のしきい値α以内の場合には、正常状態と判定し、ステップS1へと戻ることでその後の処理をスキップする。一方、両者の差(絶対値)がしきい値αを超えている場合には、ステップS4へと移行して、第1の実施形態と同様に、車速センサ35の出力に基づいて車両減速度aを算出するとともに、MG21の回生発電量gをMG制御ECU2から受信する。   When the valve stop request is being made, the process proceeds to step S2 where the in-cylinder pressure value acquired from the in-cylinder pressure sensor 33 is sampled by the ADC 10 and the constant angular period is determined based on the crank angle acquired from the crank angle sensor 34. AD conversion with. In the subsequent step S3, the sampled in-cylinder pressure value P is compared with the in-cylinder pressure value P1 stored in the ROM 13 during normal cylinder resting operation. The in-cylinder pressure value P1 is stored in the ROM 13 corresponding to the crank angle acquired from the crank angle sensor 34. When the difference (absolute value) between the two is within a certain threshold value α, it is determined that the state is normal, and the subsequent processing is skipped by returning to step S1. On the other hand, if the difference (absolute value) between the two exceeds the threshold value α, the process proceeds to step S4, and the vehicle deceleration is based on the output of the vehicle speed sensor 35, as in the first embodiment. While calculating a, the regenerative electric power generation amount g of MG21 is received from MG control ECU2.

ステップS5、S6の処理は、第1の実施形態と同様である。これにより、筒内圧力とポンピングロス状態の両方を考慮して弁停止機構の故障を精度よく判定することができる。一方、ステップS5において、aがa1+β以下で、かつ、gがg1+γ以内の場合には、ステップS7へと移行して、筒内圧センサ33の故障であると判定する。   The processes in steps S5 and S6 are the same as in the first embodiment. Thereby, it is possible to accurately determine the failure of the valve stop mechanism in consideration of both the in-cylinder pressure and the pumping loss state. On the other hand, in step S5, when a is a1 + β or less and g is within g1 + γ, the process proceeds to step S7, and it is determined that the in-cylinder pressure sensor 33 is out of order.

上記処理フローは一例であって、例えば、ポンピングロス状態を先に判定し、筒内圧力の判定を行うようにしてもよく、両者を同時に判定するようにしてもよい。   The above processing flow is an example. For example, the pumping loss state may be determined first to determine the in-cylinder pressure, or both may be determined simultaneously.

ここで、弁停止要求に基づいて正常に吸気弁/排気弁の双方の作動が停止している場合には、図4(a)に示されるような圧力−容積変化を示す。双方の弁停止機構が開き固着故障を起こしている場合(この場合は、通常の吸排気タイミングに基づいて吸排気弁各々の開閉が行われる)には、図4(b)に示されるような圧力−容積変化を示す。また、吸気弁は正常に作動を停止しているが、排気弁が開き固着故障を起こしている場合には、図4(c)に示されるような圧力−容積変化を示す。本発明によれば、筒内圧センサのみを利用して故障判定を行う場合に比較して、精度よく判定を行うことができるうえ、センサの故障判定も同時に行うことが可能である。   Here, when the operations of both the intake valve and the exhaust valve are normally stopped based on the valve stop request, a pressure-volume change as shown in FIG. When both valve stop mechanisms are open and a sticking failure has occurred (in this case, the intake and exhaust valves are opened and closed based on the normal intake and exhaust timing), as shown in FIG. Pressure-volume change is shown. In addition, when the intake valve has stopped operating normally, but the exhaust valve is open and a sticking failure has occurred, a change in pressure-volume as shown in FIG. 4C is shown. According to the present invention, it is possible to perform the determination with higher accuracy than when performing the failure determination using only the in-cylinder pressure sensor, and it is also possible to perform the failure determination of the sensor at the same time.

ここでは、車両減速度と回生発電量の双方を用いてポンピングロス状態を判定する例を説明したが、いずれか一方のみを用いて判定することもできる。回生発電機を備えない車両においても車両減速度を用いて判定を行うことで本発明は好適に適用できる。ポンピングロス状態はそのほかにもエンジン回転数の変動に基づいて判定することができる。以上の説明では、車速から車両減速度を判定する例を説明したが、加速度センサを用いて車両減速度を直接測定してもよい。   Here, an example in which the pumping loss state is determined using both the vehicle deceleration and the regenerative power generation amount has been described, but it is also possible to determine using only one of them. The present invention can be suitably applied to a vehicle that does not include a regenerative generator by making a determination using vehicle deceleration. In addition, the pumping loss state can be determined based on fluctuations in engine speed. In the above description, the example in which the vehicle deceleration is determined from the vehicle speed has been described. However, the vehicle deceleration may be directly measured using an acceleration sensor.

1…エンジン制御ECU、2…MG制御ECU、10…ADC、11…CPU、12…RAM、13…ROM、21…MG、31…アクセル開度センサ、32…シフトセンサ、33…筒内圧センサ、34…クランク角センサ、35…車速センサ、41…吸気弁ソレノイド、42…排気弁ソレノイド、43…インジェクタ。   DESCRIPTION OF SYMBOLS 1 ... Engine control ECU, 2 ... MG control ECU, 10 ... ADC, 11 ... CPU, 12 ... RAM, 13 ... ROM, 21 ... MG, 31 ... Accelerator opening sensor, 32 ... Shift sensor, 33 ... In-cylinder pressure sensor, 34 ... Crank angle sensor, 35 ... Vehicle speed sensor, 41 ... Intake valve solenoid, 42 ... Exhaust valve solenoid, 43 ... Injector.

Claims (5)

弁停止要求に応じて特定の気筒の吸気弁または排気弁を閉弁保持する弁停止機構を備える内燃機関において、
前記特定の気筒のポンピングロスの状態を検出するポンピングロス検出手段と、
弁停止要求時において検出したポンピングロス状態に基づいて前記弁停止機構の故障判定を行う故障診断装置をさらに備えている内燃機関。
In an internal combustion engine comprising a valve stop mechanism that holds an intake valve or an exhaust valve of a specific cylinder closed in response to a valve stop request,
A pumping loss detecting means for detecting a pumping loss state of the specific cylinder;
An internal combustion engine further comprising a failure diagnosis device that performs failure determination of the valve stop mechanism based on a pumping loss state detected at the time of a valve stop request.
車両の減速度を検出する減速度検出手段をさらに備えており、
前記ポンピングロス検出手段は、検出した減速度に基づいてポンピングロス状態を判定する請求項1記載の内燃機関。
The vehicle further comprises deceleration detection means for detecting the deceleration of the vehicle,
The internal combustion engine according to claim 1, wherein the pumping loss detecting means determines a pumping loss state based on the detected deceleration.
車両の運動エネルギーを利用して回生発電を行う発電機と、
前記発電機の発電量を検出する回生発電量検出手段をさらに備えており、
前記ポンピングロス検出手段は、検出した回生発電量に基づいてポンピングロス状態を判定する請求項1または2のいずれかに記載の内燃機関。
A generator for generating regenerative power using the kinetic energy of the vehicle;
It further comprises regenerative power generation amount detection means for detecting the power generation amount of the generator,
The internal combustion engine according to claim 1, wherein the pumping loss detection means determines a pumping loss state based on the detected amount of regenerative power generation.
前記特定の気筒の筒内圧力を検出する筒内圧センサをさらに備えており、前記故障診断装置はさらに、検出した弁停止要求時のポンピングロス状態と筒内圧力に基づいて筒内圧センサの異常を検出する請求項1〜3のいずれかに記載の内燃機関。 The in-cylinder pressure sensor for detecting the in-cylinder pressure of the specific cylinder is further provided, and the failure diagnosis device further detects an abnormality in the in-cylinder pressure sensor based on the detected pumping loss state and the in-cylinder pressure when the valve stop request is detected. The internal combustion engine according to claim 1 to be detected. 前記故障診断装置は、検出した筒内圧力を加味して前記弁停止機構の故障診断を行う請求項4記載の内燃機関。 The internal combustion engine according to claim 4, wherein the failure diagnosis device performs failure diagnosis of the valve stop mechanism in consideration of the detected in-cylinder pressure.
JP2010054443A 2010-03-11 2010-03-11 Internal combustion engine Expired - Fee Related JP5428960B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010054443A JP5428960B2 (en) 2010-03-11 2010-03-11 Internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010054443A JP5428960B2 (en) 2010-03-11 2010-03-11 Internal combustion engine

Publications (2)

Publication Number Publication Date
JP2011185248A true JP2011185248A (en) 2011-09-22
JP5428960B2 JP5428960B2 (en) 2014-02-26

Family

ID=44791815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010054443A Expired - Fee Related JP5428960B2 (en) 2010-03-11 2010-03-11 Internal combustion engine

Country Status (1)

Country Link
JP (1) JP5428960B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101852592B1 (en) * 2016-07-21 2018-04-27 에이치엘비 주식회사 Seawater inflow preventing device of marine engine

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0763097A (en) * 1993-08-20 1995-03-07 Mitsubishi Motors Corp Fuel controller of engine
JP2000224713A (en) * 1999-02-03 2000-08-11 Toyota Motor Corp Hybrid vehicle and its controlling method
JP2002256950A (en) * 2001-02-26 2002-09-11 Honda Motor Co Ltd Operating condition determining device of internal combustion engine
JP2003169405A (en) * 2001-11-30 2003-06-13 Honda Motor Co Ltd Hybrid vehicle controller
JP2004100487A (en) * 2002-09-05 2004-04-02 Toyota Motor Corp Engine control device
JP2004153996A (en) * 2003-12-19 2004-05-27 Honda Motor Co Ltd Control equipment of hybrid vehicle
JP2006044582A (en) * 2004-08-06 2006-02-16 Toyota Motor Corp Control device of driving device for vehicle
JP2007315194A (en) * 2006-05-23 2007-12-06 Toyota Motor Corp Energy recovery device
JP2009270492A (en) * 2008-05-08 2009-11-19 Denso Corp Failure diagnosis device of cylinder deactivation system

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0763097A (en) * 1993-08-20 1995-03-07 Mitsubishi Motors Corp Fuel controller of engine
JP2000224713A (en) * 1999-02-03 2000-08-11 Toyota Motor Corp Hybrid vehicle and its controlling method
JP2002256950A (en) * 2001-02-26 2002-09-11 Honda Motor Co Ltd Operating condition determining device of internal combustion engine
JP2003169405A (en) * 2001-11-30 2003-06-13 Honda Motor Co Ltd Hybrid vehicle controller
JP2004100487A (en) * 2002-09-05 2004-04-02 Toyota Motor Corp Engine control device
JP2004153996A (en) * 2003-12-19 2004-05-27 Honda Motor Co Ltd Control equipment of hybrid vehicle
JP2006044582A (en) * 2004-08-06 2006-02-16 Toyota Motor Corp Control device of driving device for vehicle
JP2007315194A (en) * 2006-05-23 2007-12-06 Toyota Motor Corp Energy recovery device
JP2009270492A (en) * 2008-05-08 2009-11-19 Denso Corp Failure diagnosis device of cylinder deactivation system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101852592B1 (en) * 2016-07-21 2018-04-27 에이치엘비 주식회사 Seawater inflow preventing device of marine engine

Also Published As

Publication number Publication date
JP5428960B2 (en) 2014-02-26

Similar Documents

Publication Publication Date Title
US9863356B2 (en) Fuel rail pressure sensor diagnostic techniques
US6305757B1 (en) Brake booster negative pressure controller
US20100222980A1 (en) Method for checking the function of a brake system with a brake booster
US20170102291A1 (en) Method and functional monitoring apparatus for functional monitoring of an apparatus for variable setting of a cylinder compression in a reciprocating-piston internal combustion engine
JP2013072375A (en) Pressure sensor diagnosing method and common rail fuel injection control apparatus
JP2005155384A (en) Failure diagnosis device for internal combustion engine provided with turbocharger
JP4476494B2 (en) Method and apparatus for monitoring calculation element in automobile
JP5370329B2 (en) Sensor diagnostic device
JPWO2013065400A1 (en) Knock sensor failure diagnosis apparatus and failure diagnosis method
US7200508B2 (en) Method and device for monitoring a control unit of an internal combustion engine
JP5221983B2 (en) Fault diagnosis system
JP5428960B2 (en) Internal combustion engine
JP4612039B2 (en) Method and control apparatus for checking intake pipe length setting in a combustion engine
US20080209992A1 (en) Pressure sensor and pressure control system
JP5333157B2 (en) Vehicle control system
JP3971510B2 (en) Method for monitoring the function of an intake pipe valve for switching an intake pipe of an internal combustion engine
JP2014084754A (en) Rail pressure sensor output characteristic diagnostic method, and common rail-type fuel injection control device
US7305872B2 (en) Method for operating an internal combustion engine
JP4178146B2 (en) Method and computer program for identifying engine failure
US7801670B2 (en) Temporary suspension of oxygen sensor monitoring during braking operations
JP3552473B2 (en) Vehicle brake system
US7997066B2 (en) Method for monitoring the functionality of the heating of a catalytic converter situated in an exhaust system of an internal combustion engine
JP4340577B2 (en) In-cylinder pressure sensor temperature detection device, in-cylinder pressure detection device using the same, and control device for internal combustion engine
CN112282922B (en) Method and device for detecting faults of pressure release valve
US20130080029A1 (en) Fail safe electronic throttle control pedal sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130813

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131008

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131118

R151 Written notification of patent or utility model registration

Ref document number: 5428960

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees