JP2011185170A - Control device of internal combustion engine - Google Patents

Control device of internal combustion engine Download PDF

Info

Publication number
JP2011185170A
JP2011185170A JP2010051852A JP2010051852A JP2011185170A JP 2011185170 A JP2011185170 A JP 2011185170A JP 2010051852 A JP2010051852 A JP 2010051852A JP 2010051852 A JP2010051852 A JP 2010051852A JP 2011185170 A JP2011185170 A JP 2011185170A
Authority
JP
Japan
Prior art keywords
hcci
fuel cut
internal combustion
combustion engine
valve opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010051852A
Other languages
Japanese (ja)
Other versions
JP5520641B2 (en
Inventor
Yutaka Tagami
裕 田上
Takuya Yamada
卓也 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2010051852A priority Critical patent/JP5520641B2/en
Publication of JP2011185170A publication Critical patent/JP2011185170A/en
Application granted granted Critical
Publication of JP5520641B2 publication Critical patent/JP5520641B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3076Controlling fuel injection according to or using specific or several modes of combustion with special conditions for selecting a mode of combustion, e.g. for starting, for diagnosing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/12Introducing corrections for particular operating conditions for deceleration
    • F02D41/123Introducing corrections for particular operating conditions for deceleration the fuel injection being cut-off
    • F02D41/126Introducing corrections for particular operating conditions for deceleration the fuel injection being cut-off transitional corrections at the end of the cut-off period
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3017Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
    • F02D41/3035Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the premixed charge compression-ignition mode
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

<P>PROBLEM TO BE SOLVED: To provide a control device of an internal combustion engine, performing HCCI (Homogeneous Charge Compression Ignition) operation as much as possible when releasing a fuel cut. <P>SOLUTION: A valve opening control part 47, when a fuel cut is started during SI (Spark Ignition) operation (cycle 1), fully closes an intake valve 22 and drives an exhaust valve 23 with a small lift to stay EGR gas in a cylinder (cycle 2). Then, the valve opening control part 47 fully closes both intake and exhaust valves 22, 23 to keep the EGR gas remaining in the cylinder (cycles 3-5), and after release of the fuel cut, drives the intake valve 22 with a small lift to introduce fresh air (cycle 6). With this, temperature decrease of the cylinder is suppressed by the heat of the EGR gas, and the EGR gas becoming unnecessary after release of the fuel cut is discharged. Thereafter, the valve opening control part 47 drives the intake and exhaust valves 22, 23 with a small list to start the HCCI operation (cycles 7, 8). <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、自動車等に搭載される内燃機関の制御装置に係り、詳しくは、フュエルカット解除時に極力HCCI運転を実行させやすくする技術に関する。   The present invention relates to a control device for an internal combustion engine mounted on an automobile or the like, and more particularly, to a technique for facilitating HCCI operation as much as possible when releasing a fuel cut.

近年、熱効率の向上や有害排出ガス成分の減少等を図るべく、予混合圧縮着火(Homogeneous Charge Compression Ignition:以下、HCCIと記す)燃焼による運転(以下、HCCI運転と記す)を行う内燃機関の開発が進められている(特許文献1参照)。HCCIエンジンでは、ガソリンやDME(ジメチルエーテル)、n−ブタン等の燃料と空気とを均一に混合した予混合気を燃焼室に導入した後、ピストンにより圧縮することで高温・高圧にして多点同時的に予混合気を自己着火させるが、HCCI燃焼が成立する負荷範囲(成立範囲)が限られているため、運転要求がこの負荷範囲を外れる場合(すなわち、運転要求が成立範囲より高負荷側あるいは低負荷側である場合)には、HCCI運転から火花点火(Spark Ignition: 以下、SIと記す)燃焼による運転(以下、SI運転と記す)に切り換えることが一般的である。   Development of internal combustion engines that operate with premixed compression ignition (hereinafter referred to as HCCI) combustion (hereinafter referred to as HCCI operation) in order to improve thermal efficiency and reduce harmful exhaust gas components in recent years (See Patent Document 1). In the HCCI engine, a premixed gas, which is a homogeneous mixture of gasoline, DME (dimethyl ether), n-butane, etc., and air is introduced into the combustion chamber, and then compressed by a piston to achieve high temperature and high pressure simultaneously. The pre-mixed gas is self-ignited, but the load range (establishment range) in which HCCI combustion is established is limited, so when the operation request is outside this load range (that is, the operation request is higher than the establishment range) In the case of a low load side), it is common to switch from HCCI operation to operation by spark ignition (hereinafter referred to as SI) combustion (hereinafter referred to as SI operation).

一方、内燃機関とモータジェネレータとを並設し、自動車の走行状況や運転者の加減速要求に応じて、内燃機関とモータジェネレータとの少なくとも一方を走行用動力源として用いるハイブリッド車が出現している(特許文献2参照)。ハイブリッド車には、内燃機関とモータジェネレータとを同時に用いることで高い加速性能や登坂能力を得る、モータジェネレータのみを用いることで燃料消費の低減や夜間走行時の静粛性を実現する、制動エネルギをモータジェネレータによって電力エネルギとして回収できる等の種々の特長が存在する。   On the other hand, a hybrid vehicle has appeared in which an internal combustion engine and a motor generator are arranged side by side, and at least one of the internal combustion engine and the motor generator is used as a driving power source in accordance with the driving situation of the automobile and the driver's acceleration / deceleration request. (See Patent Document 2). Hybrid vehicles have high acceleration performance and climbing ability by using an internal combustion engine and a motor generator at the same time, and use only a motor generator to reduce fuel consumption and achieve quietness during night driving. There are various features such as being able to be recovered as electric energy by a motor generator.

特許3936901号公報Japanese Patent No. 3936901 特開2009−292287号公報JP 2009-292287 A

自動車では、赤信号や渋滞で一旦停止した場合のアイドルストップ時や減速走行時等において、燃料消費量の削減(すなわち、燃費の向上)や静粛性の向上を図るべく、燃料供給の中断(フュエルカット)を実行して内燃機関を停止させることが一般的である。フュエルカットは運転者がアクセルペダルを踏み込むことやエンジンの運転状態によって中止され、内燃機関の再始動に伴って燃料供給が開始される。上述したHCCIエンジンでフュエルカットを行った場合、燃費を向上させるためには内燃機関の再始動時にHCCI運転を行うことが望ましいが、内燃機関の停止中に気筒内の温度(筒内温度)が低下してHCCI運転を実行できなくなることがあった。   In automobiles, fuel supply is interrupted (fuel) in order to reduce fuel consumption (ie, improve fuel efficiency) and improve quietness when idling stops or when decelerating when stopped due to a red light or traffic jam. In general, the internal combustion engine is stopped by executing (Cut). The fuel cut is stopped by the driver depressing the accelerator pedal or the operating state of the engine, and fuel supply is started when the internal combustion engine is restarted. When fuel cut is performed with the above-described HCCI engine, it is desirable to perform HCCI operation when the internal combustion engine is restarted in order to improve fuel efficiency. However, the temperature in the cylinder (in-cylinder temperature) is reduced while the internal combustion engine is stopped. The HCCI operation may not be performed due to a decrease.

そこで、特許文献1では、フュエルカットからの復帰時において、HCCI運転を行う負荷条件等であっても、フュエルカットの継続長さに応じた期間にわたってSI運転を行わせるようにしている。しかしながら、単純にフュエルカットの継続長さに基づいてSI運転を行わせた場合、フュエルカットからの復帰時点でHCCI運転が実行される場合が少なくなり、排気浄化触媒中のOやNOxを除去するために燃料をリッチ化する必要が生じることや、SI運転がHCCI運転に較べて熱効率が低いことから燃費が悪化する問題があった。 Therefore, in Patent Document 1, when returning from the fuel cut, the SI operation is performed over a period corresponding to the continuous length of the fuel cut even under a load condition for performing the HCCI operation. However, when the SI operation is simply performed based on the fuel cut duration, the HCCI operation is less likely to be performed when returning from the fuel cut, and O 2 and NOx in the exhaust purification catalyst are removed. Therefore, there is a problem that the fuel consumption is deteriorated because it is necessary to enrich the fuel in order to achieve this, and the SI operation is lower in thermal efficiency than the HCCI operation.

本発明は、このような背景に鑑みなされたもので、フュエルカット解除時に極力HCCI運転を実行するようにした内燃機関の制御装置を提供することを目的とする。   The present invention has been made in view of such a background, and an object of the present invention is to provide a control device for an internal combustion engine that performs HCCI operation as much as possible when fuel cut is canceled.

本発明の第1の側面は、予混合圧縮着火燃焼によるHCCI運転と火花点火燃焼によるSI運転とを選択可能な内燃機関を制御する制御装置であって、フュエルカット開始時点での内燃機関の運転状態に応じ、フュエルカット解除時に前記内燃機関をHCCI運転できるか否かを判定するHCCI可否判定手段を備え、前記HCCI可否判定手段の判定結果が肯定であった場合、フュエルカット解除時から前記内燃機関をHCCI運転することを特徴とする。   A first aspect of the present invention is a control device for controlling an internal combustion engine that can select between HCCI operation by premixed compression ignition combustion and SI operation by spark ignition combustion, and the operation of the internal combustion engine at the start of fuel cut. HCCI availability determination means for determining whether or not the internal combustion engine can be operated in HCCI when the fuel cut is released according to the state, and when the determination result of the HCCI availability determination means is affirmative, It is characterized by operating the engine in HCCI.

また、本発明の第2の側面は、少なくとも排気バルブの開弁特性を変化させることができる開弁特性可変手段を更に備え、前記HCCI可否判定手段の判定結果が肯定であった場合、気筒内に内部EGRガスを多く残留させるべく、フュエルカットを行う燃焼サイクルの排気行程中に排気バルブを閉弁させる時期を早めることを特徴とする。   Further, the second aspect of the present invention further includes a valve opening characteristic varying means capable of changing at least the valve opening characteristic of the exhaust valve, and when the determination result of the HCCI availability determination means is affirmative, In order to leave a large amount of internal EGR gas, the timing for closing the exhaust valve during the exhaust stroke of the combustion cycle for performing fuel cut is advanced.

また、本発明の第3の側面は、内部EGRガスを多く残留させた気筒において、吸気バルブと排気バルブとの少なくとも一方を休止させることを特徴とする。   The third aspect of the present invention is characterized in that at least one of the intake valve and the exhaust valve is deactivated in a cylinder in which a large amount of internal EGR gas remains.

また、本発明の第4の側面は、前記HCCI可否判定手段の判定結果が否定であった場合、気筒内のEGRガスを掃気すべく、フュエルカット中に吸気バルブおよび排気バルブの休止を解除することを特徴とする。   According to a fourth aspect of the present invention, when the determination result of the HCCI availability determination means is negative, the intake valve and the exhaust valve are deactivated during the fuel cut to scavenge the EGR gas in the cylinder. It is characterized by that.

また、本発明の第5の側面は、フュエルカット開始時点での内燃機関の運転状態に応じ、フュエルカット解除時に前記内燃機関をHCCI運転できるHCCI可能期間をフュエルカット開始時点を起点として設定するHCCI期間設定手段を更に備え、フュエルカットの継続期間が前記HCCI可能期間内にあれば、フュエルカット解除時から前記内燃機関をHCCI運転することを特徴とする。   Further, according to a fifth aspect of the present invention, an HCCI in which an HCCI possible period in which the internal combustion engine can be operated in HCCI when the fuel cut is released is set based on the fuel cut start time according to the operating state of the internal combustion engine at the fuel cut start time. Period setting means is further provided, and the internal combustion engine is HCCI-operated from when the fuel cut is canceled if the fuel cut duration is within the HCCI possible period.

また、本発明の第6の側面は、前記内燃機関の筒内温度を推定する筒内温度推定手段を更に備え、前記筒内温度が所定のHCCI可能温度範囲内にあれば、フュエルカットからの復帰時に前記内燃機関をHCCI運転することを特徴とする。   Further, the sixth aspect of the present invention further includes in-cylinder temperature estimating means for estimating an in-cylinder temperature of the internal combustion engine, and if the in-cylinder temperature is within a predetermined HCCI possible temperature range, The internal combustion engine is HCCI-operated at the time of return.

本発明の第1の側面によれば、フュエルカット解除時にHCCI運転が行われる比率が高まることで、熱効率の向上や有害排出ガス成分の減少等が実現される。また、本発明の第2の側面によれば、残留するEGRガスによって筒内温度の低下が緩やかになり、フュエルカット解除時にHCCI運転が行われる比率がより高まる。また、本発明の第3の側面によれば、気筒内に残留させたEGRガスを高温のまま保持することが可能となるために、フュエルカット解除時にHCCI運転が行われる比率がより高まる。また、本発明の第4の側面によれば、フュエルカット解除に先だって気筒内のEGRガスが掃気され、SI運転が行いやすくなる。また、本発明の第5の側面によれば、フュエルカットの継続時間が比較的短ければ、フュエルカット解除時にHCCI運転が行われるようになる。また、本発明の第6の側面によれば、筒内温度の推定結果が比較的高ければ、フュエルカット解除時にHCCI運転が行われるようになる。   According to the first aspect of the present invention, an increase in the rate at which the HCCI operation is performed when the fuel cut is canceled increases the thermal efficiency, reduces harmful exhaust gas components, and the like. Further, according to the second aspect of the present invention, the drop in the in-cylinder temperature is moderated by the remaining EGR gas, and the rate at which the HCCI operation is performed when the fuel cut is released is further increased. In addition, according to the third aspect of the present invention, the EGR gas remaining in the cylinder can be maintained at a high temperature, so that the ratio of performing the HCCI operation when the fuel cut is released is further increased. Further, according to the fourth aspect of the present invention, the EGR gas in the cylinder is scavenged before the fuel cut is released, and the SI operation is facilitated. According to the fifth aspect of the present invention, if the fuel cut duration is relatively short, the HCCI operation is performed when the fuel cut is released. According to the sixth aspect of the present invention, if the estimation result of the in-cylinder temperature is relatively high, the HCCI operation is performed when the fuel cut is released.

実施形態に係るパワーユニットの概略構成図である。It is a schematic block diagram of the power unit which concerns on embodiment. 実施形態に係るPCUの概略構成図である。It is a schematic block diagram of PCU which concerns on embodiment. 実施形態に係る燃焼モード判定の手順を示すフローチャートである。It is a flowchart which shows the procedure of the combustion mode determination which concerns on embodiment. 実施形態に係るフュエルカットカウンタの経時変化を示すグラフである。It is a graph which shows a time-dependent change of the fuel cut counter which concerns on embodiment. 実施形態に係るフュエルカットカウンタの経時変化を示すグラフである。It is a graph which shows a time-dependent change of the fuel cut counter which concerns on embodiment. 実施形態に係る開弁制御の手順を示すフローチャートである。It is a flowchart which shows the procedure of valve opening control which concerns on embodiment. 実施形態に係る第1開弁モードの流れを示すタームチャートである。It is a term chart which shows the flow of the 1st valve opening mode which concerns on embodiment. 実施形態に係る第2開弁モードの流れを示すタームチャートである。It is a term chart which shows the flow of the 2nd valve opening mode which concerns on embodiment. 実施形態に係る第3開弁モードの流れを示すタームチャートである。It is a term chart which shows the flow of the 3rd valve opening mode which concerns on embodiment. 実施形態に係る第4開弁モードの流れを示すタームチャートである。It is a term chart which shows the flow of the 4th valve opening mode which concerns on embodiment. 実施形態に係る第5開弁モードの流れを示すタームチャートである。It is a term chart which shows the flow of the 5th valve opening mode which concerns on embodiment. 実施形態に係るHCCI運転可能負荷領域マップである。It is an HCCI operable load region map according to the embodiment.

以下、図面を参照して、本発明を自動車(ハイブリッド車)のパワーユニット制御に適用した一実施形態を詳細に説明する。   Hereinafter, an embodiment in which the present invention is applied to power unit control of an automobile (hybrid vehicle) will be described in detail with reference to the drawings.

≪実施形態の構成≫
<パワーユニットの概略構成>
図1に示すように、本実施形態のパワーユニット1は、エンジン2と、モータジェネレータ3とから構成されており、ディファレンシャル装置と一体の変速機4を介して図示しない左右前輪に駆動力を与える。
<< Configuration of Embodiment >>
<Schematic configuration of power unit>
As shown in FIG. 1, the power unit 1 according to this embodiment includes an engine 2 and a motor generator 3, and applies driving force to left and right front wheels (not shown) via a transmission 4 integrated with a differential device.

エンジン2は、直列4気筒のHCCIエンジンであり、エアクリーナ11、電動スロットル弁12、サージタンク13、吸気管14等からなる吸気系と、排気マニホールド15、排気浄化触媒16、排気管17等からなる排気系を備えている。エンジン2のシリンダヘッド21には、各気筒ごとに、一対の吸気バルブ22、一対の排気バルブ23、点火プラグ25、吸排気バルブ22,23の開弁特性をそれぞれ変化させる可変動弁機構26,27等が設けられている。また、吸気管14には、各気筒ごとに燃料噴射弁28が設けられている。なお、本実施形態の可変動弁機構26,27は、吸排気バルブ22,23の開弁特性をそれぞれ3段階(休止,小開,大開)で切り換えるべく、カム位相およびリフト量が異なる3種のカムを備えている。   The engine 2 is an inline 4-cylinder HCCI engine, and includes an intake system including an air cleaner 11, an electric throttle valve 12, a surge tank 13, an intake pipe 14, and the like, an exhaust manifold 15, an exhaust purification catalyst 16, an exhaust pipe 17, and the like. It has an exhaust system. The cylinder head 21 of the engine 2 includes a variable valve mechanism 26 that changes the valve opening characteristics of a pair of intake valves 22, a pair of exhaust valves 23, a spark plug 25, and intake and exhaust valves 22, 23 for each cylinder. 27 etc. are provided. The intake pipe 14 is provided with a fuel injection valve 28 for each cylinder. The variable valve mechanisms 26 and 27 of the present embodiment have three types with different cam phases and lift amounts so as to switch the valve opening characteristics of the intake and exhaust valves 22 and 23 in three stages (pause, small open, and large open), respectively. Has a cam.

モータジェネレータ3は、エンジン2に対する駆動力アシストや電動走行に供されるモータ31、エンジン2の出力や自動車の走行エネルギを電力に変換するジェネレータ32を備えており、図示しない変速機やディファレンシャル装置を介して左右前輪に連結されている。モータジェネレータ3は、自動車の車体後部に搭載されたバッテリ33に接続されており、バッテリ33との間で電力の授受を行う。バッテリ33にはDC−DCコンバータ等からなるダウンバータ34が接続されており、このダウンバータ34によって12Vに降圧された電力が各種電動補機(電動エアコンディショナや電動ウォータポンプ等)や電気装置(灯火類や電気ヒータ等)に供給される。   The motor generator 3 includes a motor 31 that is used for driving force assist for the engine 2 and electric running, and a generator 32 that converts the output of the engine 2 and the running energy of the automobile into electric power. A transmission and a differential device (not shown) are provided. Via the left and right front wheels. The motor generator 3 is connected to a battery 33 mounted at the rear of the vehicle body of the automobile, and exchanges power with the battery 33. A downverter 34 composed of a DC-DC converter or the like is connected to the battery 33, and the electric power that has been stepped down to 12V by the downverter 34 is used in various electric auxiliary machines (such as an electric air conditioner and an electric water pump) and an electric device. (Lights, electric heaters, etc.)

自動車の車体にはPCU(パワーコントロールユニット)41が搭載されており、このPCU41がエンジン2やモータジェネレータ3を統括制御する。PCU41には、エンジン2やモータジェネレータ3、バッテリ33等からの情報の他、アクセルセンサ42からのアクセルペダル43の踏込量情報(すなわち、運転者の要求エンジン出力)が入力する。   A PCU (power control unit) 41 is mounted on the body of the automobile, and the PCU 41 controls the engine 2 and the motor generator 3 in an integrated manner. In addition to information from the engine 2, the motor generator 3, the battery 33, and the like, the PCU 41 receives information on the amount of depression of the accelerator pedal 43 from the accelerator sensor 42 (that is, the driver's requested engine output).

<PCUの概略構成>
図2に示すように、PCU41は、エンジン2に対するフュエルカットの可否を車速等に基づき決定するフュエルカット制御部45と、エンジン回転速度や目標エンジン負荷等に基づきエンジン2の燃焼モードを判定する燃焼モード判定部46と、燃焼モード判定部46の判定結果等に基づき吸排気バルブ22,23の開弁制御を行う開弁制御部47とを備えている。
<Schematic configuration of PCU>
As shown in FIG. 2, the PCU 41 is a fuel cut control unit 45 that determines whether or not fuel cut is possible for the engine 2 based on the vehicle speed and the like, and combustion that determines the combustion mode of the engine 2 based on the engine speed, the target engine load, and the like. A mode determination unit 46 and a valve opening control unit 47 that performs valve opening control of the intake and exhaust valves 22 and 23 based on the determination result of the combustion mode determination unit 46 and the like are provided.

≪実施形態の作用≫
アイドルストップ時や減速走行時に燃料カットを行う場合、フュエルカット制御部45は、エンジン2に対するフュエルカットを開始すると同時に、燃焼モード判定部46および開弁制御部47に1としたフュエルカットフラグFfcを出力する。なお、フュエルカットフラグFfcの値は、フュエルカット実行中には1となり、フュエルカットを行っていない場合に0となる。
<< Operation of Embodiment >>
When the fuel cut is performed during idling stop or deceleration, the fuel cut control unit 45 starts the fuel cut for the engine 2 and simultaneously sets the fuel cut flag Ffc to 1 in the combustion mode determination unit 46 and the valve opening control unit 47. Output. The value of the fuel cut flag Ffc is 1 when the fuel cut is being executed, and is 0 when the fuel cut is not being executed.

<燃焼モード判定>
燃焼モード判定部46は、フュエルカット制御部45から入力したフュエルカットフラグFfcが1となった時点で、図3のフローチャートにその手順を示す燃焼モード判定制御を所定の制御間隔(例えば、10msec)で実行し始める。燃焼モード判定制御を開始すると、燃焼モード判定部46は、図3のステップS1でフュエルカットフラグFfcが1であるか否かを判定し、初回の判定は当然にYesとなるため、ステップS2で初期値NのフュエルカットカウンタCfcが0であるか否かを判定する。なお、フュエルカットカウンタCfcは、フュエルカットの解除時にHCCI運転を行えるか否かを判定するためのカウンタであり、その値が0になると(すなわち、所定時間が経過すると)筒内温度が低下してエンジン2の再始動時にSI運転が選択される。ここで、初期値Nは比較的値の大きな自然数である。
<Combustion mode judgment>
When the fuel cut flag Ffc input from the fuel cut control unit 45 becomes 1, the combustion mode determination unit 46 performs the combustion mode determination control whose procedure is shown in the flowchart of FIG. 3 at a predetermined control interval (for example, 10 msec). Start running with. When the combustion mode determination control is started, the combustion mode determination unit 46 determines whether or not the fuel cut flag Ffc is 1 in step S1 of FIG. 3, and the first determination is naturally Yes, so in step S2 It is determined whether or not the fuel cut counter Cfc of the initial value N is zero. The fuel cut counter Cfc is a counter for determining whether or not the HCCI operation can be performed when the fuel cut is released. When the value becomes 0 (that is, when a predetermined time elapses), the cylinder temperature decreases. Thus, the SI operation is selected when the engine 2 is restarted. Here, the initial value N is a natural number having a relatively large value.

フュエルカット開始直後にはステップS2の判定がNoとなるため、燃焼モード判定部46は、ステップS3でHCCI待機フラグFhstbを1とした後、ステップS4でフュエルカットカウンタCfcを1だけデクリメントする。フュエルカットカウンタCfcが0にならないうちにフュエルカットが解除された場合、フュエルカットの解除時点ではHCCI待機フラグFhstbが1となる(図4)。また、フュエルカットが所定時間継続して行われ、フュエルカットカウンタCfcが0になると、燃焼モード判定部46は、ステップS5でHCCI待機フラグFhstbを0とする(図5)。   Immediately after the start of fuel cut, the determination in step S2 is No. Therefore, after setting the HCCI standby flag Fhstb to 1 in step S3, the combustion mode determination unit 46 decrements the fuel cut counter Cfc by 1 in step S4. If the fuel cut is canceled before the fuel cut counter Cfc becomes 0, the HCCI standby flag Fhstb is set to 1 at the time when the fuel cut is canceled (FIG. 4). Further, when the fuel cut is continuously performed for a predetermined time and the fuel cut counter Cfc becomes 0, the combustion mode determination unit 46 sets the HCCI standby flag Fhstb to 0 in step S5 (FIG. 5).

自動車を再発進させるべく運転者がアクセルペダル43を踏み込むと、フュエルカット制御部45は、フュエルカットを解除すると同時に、燃焼モード判定部46に値を0としたフュエルカットフラグFfcを出力する。すると、ステップS1の判定がNoとなるため、燃焼モード判定部46は、ステップS6でHCCI環境条件が成立しているか否かを判定する。そして、この判定がNoであれば、燃焼モード判定部46は、ステップS7でフュエルカットカウンタCfcを0とし、ステップS8でHCCI待機フラグFhstbを0とし、ステップS9でHCCI許可フラグFhcciを0とする。なお、HCCI環境条件の成立は、吸気温度や冷却水温度、吸気圧力等に基づき、図示しないマップや演算式から判定される。   When the driver depresses the accelerator pedal 43 to restart the vehicle, the fuel cut control unit 45 releases the fuel cut and simultaneously outputs a fuel cut flag Ffc having a value of 0 to the combustion mode determination unit 46. Then, since determination of step S1 is No, the combustion mode determination part 46 determines whether HCCI environmental conditions are satisfied by step S6. If this determination is No, the combustion mode determination unit 46 sets the fuel cut counter Cfc to 0 in step S7, sets the HCCI standby flag Fhstb to 0 in step S8, and sets the HCCI permission flag Fhcci to 0 in step S9. . The establishment of the HCCI environmental condition is determined from a map or an arithmetic expression (not shown) based on the intake air temperature, the coolant temperature, the intake air pressure, and the like.

一方、HCCI環境条件が成立してステップS6の判定がYesになると、燃焼モード判定部46は、ステップS10で、エンジン回転速度NEにエンジン負荷LEを乗じることで得られたフュエルカットカウンタCfc(CFCHCCI)によりCFCHCCIマップを検索する。次に、燃焼モード判定部46は、ステップS11でフュエルカットカウンタCfcが0であるか否かを判定し、この判定がYesであればステップS12でHCCI待機フラグFhstbを0し、NoであればステップS13でHCCI待機フラグFhstbを1とする。   On the other hand, when the HCCI environmental condition is satisfied and the determination in step S6 is Yes, the combustion mode determination unit 46 in step S10 obtains the fuel cut counter Cfc (CFCHCCI) obtained by multiplying the engine speed NE by the engine load LE. ) To search the CFCHCCI map. Next, the combustion mode determination unit 46 determines whether or not the fuel cut counter Cfc is 0 in step S11. If this determination is Yes, the combustion mode determination unit 46 sets the HCCI standby flag Fhstb to 0 in step S12. In step S13, the HCCI standby flag Fhstb is set to 1.

次に、燃焼モード判定部46は、ステップS14で、フュエルカットフラグFfcの前回値Ffczが1であったか否かを判定する。そして、ステップS14の判定がYes(すなわち、フュエルカット解除直後)であった場合、燃焼モード判定部46は、ステップS15でHCCI待機フラグFhstbの値が1であるか否かを判定し、この判定がYesであればステップS16でHCCI許可フラグFhcciを1とし、NoであればステップS17でHCCI許可フラグFhcciを0とする。   Next, the combustion mode determination unit 46 determines whether or not the previous value Ffcz of the fuel cut flag Ffc was 1 in step S14. If the determination in step S14 is Yes (that is, immediately after canceling the fuel cut), the combustion mode determination unit 46 determines whether or not the value of the HCCI standby flag Fhstb is 1 in step S15. If Yes, the HCCI permission flag Fhcci is set to 1 in step S16, and if No, the HCCI permission flag Fhcci is set to 0 in step S17.

また、フュエルカットフラグFfcの前回値Ffczが0でステップS14の判定がNoとなった場合、燃焼モード判定部46は、ステップS18でHCCI許可条件が成立しているか否かを判定する。そして、燃焼モード判定部46は、ステップS18の判定がYesであればステップS16に移行してHCCI許可フラグFhcciを1とし、NoであればステップS9に移行してHCCI許可フラグFhcciを0とする。なお、HCCI許可条件の成立は、エンジン回転速度NEとエンジン負荷ELとから、図12のHCCI運転可能負荷領域マップを用いて判定される。   When the previous value Ffcz of the fuel cut flag Ffc is 0 and the determination in step S14 is No, the combustion mode determination unit 46 determines whether or not the HCCI permission condition is satisfied in step S18. And if the determination of step S18 is Yes, the combustion mode determination part 46 will transfer to step S16, and will set the HCCI permission flag Fhcci to 1, if it is No, it will transfer to step S9 and set the HCCI permission flag Fhcci to 0. . The establishment of the HCCI permission condition is determined from the engine speed NE and the engine load EL using the HCCI operable load region map of FIG.

<開弁制御>
開弁制御部47は、フュエルカット制御部45から入力したフュエルカットフラグFfcが1となった時点で、図6のフローチャートにその手順を示す開弁制御を所定の制御間隔(例えば、10msec)で実行し始める。開弁制御を開始すると、開弁制御部47は、図6のステップS21でフュエルカットフラグFfcが1であるか否かを判定し、初回の判定は当然にYesとなるため、ステップS22でHCCI待機フラグFhstbが0であるか否かを判定する。ステップS22の初回の判定は上述した燃焼モード判定でHCCI待機フラグFhstbが1となることでNoとなることから、開弁制御部47は、なんら処理を行わずにスタートに戻る。
<Valve opening control>
When the fuel cut flag Ffc input from the fuel cut control unit 45 becomes 1, the valve opening control unit 47 performs valve opening control whose procedure is shown in the flowchart of FIG. 6 at a predetermined control interval (for example, 10 msec). Start running. When the valve opening control is started, the valve opening control unit 47 determines whether or not the fuel cut flag Ffc is 1 in step S21 of FIG. 6, and the first determination is naturally Yes, so that the HCCI is determined in step S22. It is determined whether or not the standby flag Fhstb is 0. Since the first determination in step S22 is No when the HCCI standby flag Fhstb is 1 in the combustion mode determination described above, the valve opening control unit 47 returns to the start without performing any processing.

自動車を再発進させるべく運転者がアクセルペダル43を踏み込むと、フュエルカット制御部45は、フュエルカットを解除すると同時に、開弁制御部47に値を0としたフュエルカットフラグFfcを出力する。すると、ステップS21の判定がNoとなるため、開弁制御部47は、ステップS23でフュエルカットフラグ条件(F_FC条件)の成立が1回だけであったか否かを判定し、この判定がNoであればなんら処理を行わずにスタートに戻る。なお、F_FC条件の成立は、減速フュエルカット時においてはエンジン回転速度NEやアクセルペダル踏込量等によって判定され、アイドルストップ時においては車速やアクセルペダル踏込量、制動量、エアコン負荷、バッテリ充電状態等によって判定される。   When the driver depresses the accelerator pedal 43 to restart the vehicle, the fuel cut control unit 45 releases the fuel cut and simultaneously outputs a fuel cut flag Ffc having a value of 0 to the valve opening control unit 47. Then, since the determination in step S21 is No, the valve opening control unit 47 determines whether or not the fuel cut flag condition (F_FC condition) is established only once in step S23. Return to the start without any processing. The establishment of the F_FC condition is determined by the engine speed NE, the accelerator pedal depression amount, etc. during deceleration fuel cut, and the vehicle speed, accelerator pedal depression amount, braking amount, air conditioner load, battery charge state, etc. during idle stop Is determined by

フュエルカットフラグ条件の成立が1回だけであり、ステップS23の判定がYesとなった場合、開弁制御部47は、ステップS24でHCCI待機フラグFhstbが1であるか否かを判定し、この判定がYes(すなわち、フュエルカット解除後にHCCI運転が可能な状況)であれば、ステップS25でHCCI許可フラグFhcciが0であるか否かを判定する。そして、この判定がYesとなった場合、開弁制御部47は、ステップS26で第1開弁モードをもって吸排気バルブを駆動制御する。   When the fuel cut flag condition is established only once and the determination in step S23 is Yes, the valve opening control unit 47 determines whether or not the HCCI standby flag Fhstb is 1 in step S24. If the determination is Yes (that is, a situation in which HCCI operation is possible after canceling the fuel cut), it is determined whether or not the HCCI permission flag Fhcci is 0 in step S25. If this determination is Yes, the valve opening control unit 47 drives and controls the intake / exhaust valves in the first valve opening mode in step S26.

(第1開弁モード)
図7に示すように、開弁制御部47は、SI運転時(サイクル1)にフュエルカットが開始されると、吸気バルブ22を全閉とする一方で排気バルブ23を小リフトで駆動してEGRガスを気筒内にとどめる(サイクル2)。次に、開弁制御部47は、吸排気バルブ22,23をともに全閉してEGRガスを気筒内に残留させる(サイクル3〜5)、フュエルカット解除後に吸気バルブ22を小リフトで駆動して新気を導入させる(サイクル6)。これにより、EGRガスの熱によって気筒の温度低下が抑制されるとともに、フュエルカット解除後に不要となったEGRガスが排出される。しかる後、開弁制御部47は、HCCI運転を開始すべく開始吸排気バルブ22,23を小リフトで駆動する(サイクル7,8)。
(First valve opening mode)
As shown in FIG. 7, when fuel cut is started during SI operation (cycle 1), the valve opening control unit 47 drives the exhaust valve 23 with a small lift while closing the intake valve 22 fully. EGR gas is kept in the cylinder (cycle 2). Next, the valve opening control unit 47 fully closes both the intake and exhaust valves 22 and 23 to leave the EGR gas in the cylinder (cycles 3 to 5), and drives the intake valve 22 with a small lift after canceling the fuel cut. To introduce fresh air (cycle 6). Thereby, the temperature drop of the cylinder is suppressed by the heat of the EGR gas, and the EGR gas which becomes unnecessary after the fuel cut is released is discharged. Thereafter, the valve opening control unit 47 drives the start intake and exhaust valves 22 and 23 with a small lift to start the HCCI operation (cycles 7 and 8).

HCCI許可フラグFhcciが1でステップS25の判定がNoとなった場合、開弁制御部47は、ステップS27で第2開弁モードをもって吸排気バルブを駆動制御する   When the HCCI permission flag Fhcci is 1 and the determination in step S25 is No, the valve opening control unit 47 drives and controls the intake / exhaust valves in the second valve opening mode in step S27.

(第2開弁モード)
図8に示すように、開弁制御部47は、HCCI運転時(サイクル1)にフュエルカットが開始されると、吸気バルブ22を全閉とする一方で排気バルブ23を小リフトで駆動してEGRガスを気筒内にとどめる(サイクル2)。次に、開弁制御部47は、吸排気バルブ22,23をともに全閉してEGRガスを気筒内に残留させる(サイクル3〜5)、フュエルカット解除後に吸気バルブ22を小リフトで駆動して新気を導入させる(サイクル6)。これにより、EGRガスの熱によって気筒の温度低下が抑制されるとともに、フュエルカット解除後に不要となったEGRガスが排出される。しかる後、開弁制御部47は、HCCI運転を開始すべく開始吸排気バルブ22,23を小リフトで駆動する(サイクル7,8)。
(Second valve opening mode)
As shown in FIG. 8, when the fuel cut is started during the HCCI operation (cycle 1), the valve opening control unit 47 drives the exhaust valve 23 with a small lift while fully closing the intake valve 22. EGR gas is kept in the cylinder (cycle 2). Next, the valve opening control unit 47 fully closes both the intake and exhaust valves 22 and 23 to leave the EGR gas in the cylinder (cycles 3 to 5), and drives the intake valve 22 with a small lift after canceling the fuel cut. To introduce fresh air (cycle 6). Thereby, the temperature drop of the cylinder is suppressed by the heat of the EGR gas, and the EGR gas which becomes unnecessary after the fuel cut is released is discharged. Thereafter, the valve opening control unit 47 drives the start intake and exhaust valves 22 and 23 with a small lift to start the HCCI operation (cycles 7 and 8).

一方、HCCI待機フラグFhstbが0でステップS24の判定がNoとなると、開弁制御部47は、ステップS28でHCCI許可フラグFhcciが0であるか否かを判定する。そして、この判定がYesとなった場合、開弁制御部47は、ステップS29で第3開弁モードをもって吸排気バルブを駆動制御する。   On the other hand, when the HCCI standby flag Fhstb is 0 and the determination in step S24 is No, the valve opening control unit 47 determines whether or not the HCCI permission flag Fhcci is 0 in step S28. If this determination is Yes, the valve opening control unit 47 drives and controls the intake / exhaust valves in the third valve opening mode in step S29.

(第3開弁モード)
図9に示すように、開弁制御部47は、SI運転時(サイクル1)にフュエルカットが開始されると、吸気バルブ22を全閉とする一方で排気バルブ23を大リフトで駆動してEGRガス(排気ガス)を気筒外に排出させる(サイクル2)。次に、開弁制御部47は、吸排気バルブ22,23をともに全閉し(サイクル3〜5)、フュエルカット解除後に吸気バルブ22を大リフトで駆動して新気を導入させる(サイクル6)。しかる後、開弁制御部47は、SI運転を開始すべく開始吸排気バルブ22,23を大リフトで駆動する(サイクル7,8)。
(Third valve opening mode)
As shown in FIG. 9, when the fuel cut is started during SI operation (cycle 1), the valve opening control unit 47 drives the exhaust valve 23 with a large lift while fully closing the intake valve 22. EGR gas (exhaust gas) is discharged out of the cylinder (cycle 2). Next, the valve opening control unit 47 fully closes both the intake and exhaust valves 22 and 23 (cycles 3 to 5), and after releasing the fuel cut, drives the intake valve 22 with a large lift to introduce fresh air (cycle 6). ). Thereafter, the valve opening control unit 47 drives the start intake / exhaust valves 22 and 23 with a large lift to start the SI operation (cycles 7 and 8).

HCCI許可フラグFhcciが1でステップS28の判定がNoとなった場合、開弁制御部47は、ステップS30で第4開弁モードをもって吸排気バルブを駆動制御する。
(第4開弁モード)
図10に示すように、開弁制御部47は、HCCI運転時(サイクル1)にフュエルカットが開始されると、吸気バルブ22を全閉とする一方で排気バルブ23を小リフトで駆動してEGRガスを気筒内にとどめる(サイクル2)。次に、開弁制御部47は、排気バルブ23を大リフトで駆動してEGRガス(排気ガス)を気筒外に排出させ(サイクル3)、吸排気バルブ22,23をともに全閉する(サイクル4,5)。次に、開弁制御部47は、フュエルカット解除後に吸気バルブ22を大リフトで駆動して新気を導入させ(サイクル6)、SI運転を開始すべく吸排気バルブ22,23を大リフトで駆動する(サイクル7,8)。
When the HCCI permission flag Fhcci is 1 and the determination in step S28 is No, the valve opening control unit 47 drives and controls the intake and exhaust valves in the fourth valve opening mode in step S30.
(4th valve opening mode)
As shown in FIG. 10, when the fuel cut is started during the HCCI operation (cycle 1), the valve opening control unit 47 drives the exhaust valve 23 with a small lift while fully closing the intake valve 22. EGR gas is kept in the cylinder (cycle 2). Next, the valve opening control unit 47 drives the exhaust valve 23 with a large lift to discharge EGR gas (exhaust gas) out of the cylinder (cycle 3), and fully closes both the intake and exhaust valves 22 and 23 (cycle). 4, 5). Next, the valve opening control unit 47 drives the intake valve 22 with a large lift after releasing the fuel cut to introduce fresh air (cycle 6), and opens the intake and exhaust valves 22, 23 with a large lift to start SI operation. Drive (cycles 7 and 8).

また、HCCI待機フラグFhstbが0でステップS22の判定がYesになると、開弁制御部47は、ステップS31でHCCI待機フラグFhstbの前回値Fhstbzが1であるか否かを判定し、この判定がNoであれば(すなわち、HCCI待機フラグFhstbの値に変化が無ければ)、なんら処理を行わずにスタートに戻る。   When the HCCI standby flag Fhstb is 0 and the determination in step S22 is Yes, the valve opening control unit 47 determines whether or not the previous value Fhstbz of the HCCI standby flag Fhstb is 1 in step S31. If No (that is, if the value of the HCCI standby flag Fhstb has not changed), the process returns to the start without performing any processing.

前回値Fhstbzが1でステップS31の判定がYesになると、開弁制御部47は、ステップS32で第5開弁モードをもって吸排気バルブを駆動制御する。
(第5開弁モード)
図11に示すように、開弁制御部47は、SI運転時(サイクル1)にフュエルカットが開始されると、吸気バルブ22を全閉とする一方で排気バルブ23を小リフトで駆動してEGRガスを気筒内にとどめ(サイクル2)、吸排気バルブ22,23をともに全閉してEGRガスを気筒内に残留させる(サイクル3,4)。次に、開弁制御部47は、排気バルブ23を大リフトで駆動してEGRガスを気筒外に排出させ(サイクル5)、吸排気バルブ22,23をともに再び全閉する(サイクル6)。次に、開弁制御部47は、フュエルカット解除後に吸気バルブ22を大リフトで駆動して新気を導入させ(サイクル7)、SI運転を開始すべく吸排気バルブ22,23を大リフトで駆動する(サイクル8)。
When the previous value Fhstbz is 1 and the determination in step S31 is Yes, the valve opening control unit 47 drives and controls the intake and exhaust valves in the fifth valve opening mode in step S32.
(5th valve opening mode)
As shown in FIG. 11, when the fuel cut is started during the SI operation (cycle 1), the valve opening control unit 47 drives the exhaust valve 23 with a small lift while fully closing the intake valve 22. The EGR gas is kept in the cylinder (cycle 2), and both the intake and exhaust valves 22 and 23 are fully closed to leave the EGR gas in the cylinder (cycles 3 and 4). Next, the valve opening control unit 47 drives the exhaust valve 23 with a large lift to discharge the EGR gas out of the cylinder (cycle 5), and fully closes both the intake and exhaust valves 22 and 23 again (cycle 6). Next, the valve opening control unit 47 drives the intake valve 22 with a large lift after releasing the fuel cut to introduce fresh air (cycle 7), and opens the intake and exhaust valves 22, 23 with a large lift to start SI operation. Drive (cycle 8).

本実施形態では、上述した構成を採ったことにより、フュエルカット後にHCCI運転が実行される比率が従来装置に較べて高くなり、熱効率の向上や有害排出ガス成分の減少等を実現できる。   In the present embodiment, by adopting the above-described configuration, the ratio at which the HCCI operation is performed after the fuel cut becomes higher than that of the conventional device, and it is possible to realize improvement in thermal efficiency, reduction in harmful exhaust gas components, and the like.

以上で具体的実施形態の説明を終えるが、本発明はこれら実施形態に限定されることなく幅広く変形実施することができる。例えば、上記実施形態はハイブリッド車に搭載されるHCCIエンジンに本発明を適用したものであるが、通常の自動車に搭載されるHCCIエンジンにも当然に適用可能である。その他、パワーユニットの具体的構成や制御の具体的手順等についても、本発明の趣旨を逸脱しない範囲であれば適宜変更可能である。   Although the description of the specific embodiments is finished as described above, the present invention is not limited to these embodiments and can be widely modified. For example, the above-described embodiment is an application of the present invention to an HCCI engine mounted on a hybrid vehicle, but it is naturally applicable to an HCCI engine mounted on a normal vehicle. In addition, the specific configuration of the power unit, the specific procedure of the control, and the like can be changed as appropriate without departing from the spirit of the present invention.

1 パワーユニット
2 エンジン
22 吸気バルブ
23 排気バルブ
26,27 可変動弁機構(開弁特性可変手段)
41 PCU
45 フュエルカット制御部
46 燃焼モード判定部
47 開弁制御部
DESCRIPTION OF SYMBOLS 1 Power unit 2 Engine 22 Intake valve 23 Exhaust valve 26, 27 Variable valve mechanism (Valve opening characteristic variable means)
41 PCU
45 Fuel Cut Control Unit 46 Combustion Mode Determination Unit 47 Valve Opening Control Unit

Claims (6)

予混合圧縮着火燃焼によるHCCI運転と火花点火燃焼によるSI運転とを選択可能な内燃機関を制御する制御装置であって、
フュエルカット開始時点での内燃機関の運転状態に応じ、フュエルカット解除時に前記内燃機関をHCCI運転できるか否かを判定するHCCI可否判定手段を備え、
前記HCCI可否判定手段の判定結果が肯定であった場合、フュエルカット解除時から前記内燃機関をHCCI運転することを特徴とする内燃機関の制御装置。
A control device for controlling an internal combustion engine capable of selecting HCCI operation by premixed compression ignition combustion and SI operation by spark ignition combustion,
HCCI availability determination means for determining whether or not the internal combustion engine can be operated in HCCI when the fuel cut is released according to the operating state of the internal combustion engine at the start of fuel cut;
A control apparatus for an internal combustion engine, wherein when the determination result of the HCCI availability determination means is affirmative, the internal combustion engine is HCCI-operated from when the fuel cut is released.
少なくとも排気バルブの開弁特性を変化させることができる開弁特性可変手段を更に備え、
前記HCCI可否判定手段の判定結果が肯定であった場合、気筒内に内部EGRガスを多く残留させるべく、フュエルカットを行う燃焼サイクルの排気行程中に排気バルブを閉弁させる時期を早めることを特徴とする、請求項1に記載された内燃機関の制御装置。
It further comprises valve opening characteristic variable means capable of changing at least the valve opening characteristic of the exhaust valve,
When the determination result of the HCCI availability determination means is affirmative, the timing for closing the exhaust valve during the exhaust stroke of the combustion cycle for performing fuel cut is advanced so that a large amount of internal EGR gas remains in the cylinder. The control device for an internal combustion engine according to claim 1.
内部EGRガスを多く残留させた気筒において、吸気バルブと排気バルブとの少なくとも一方を休止させることを特徴とする、請求項2に記載された内燃機関の制御装置。   The control apparatus for an internal combustion engine according to claim 2, wherein at least one of the intake valve and the exhaust valve is deactivated in a cylinder in which a large amount of internal EGR gas remains. 前記HCCI可否判定手段の判定結果が否定であった場合、気筒内のEGRガスを掃気すべく、フュエルカット中に吸気バルブおよび排気バルブの休止を解除することを特徴とする、請求項2または請求項3に記載された内燃機関の制御装置。   3. The suspension of the intake valve and the exhaust valve is released during fuel cut to scavenge the EGR gas in the cylinder when the determination result of the HCCI availability determination means is negative. Item 4. A control device for an internal combustion engine according to Item 3. フュエルカット開始時点での内燃機関の運転状態に応じ、フュエルカット解除時に前記内燃機関をHCCI運転できるHCCI可能期間をフュエルカット開始時点を起点として設定するHCCI期間設定手段を更に備え、
フュエルカットの継続期間が前記HCCI可能期間内にあれば、フュエルカット解除時から前記内燃機関をHCCI運転することを特徴とする、請求項1〜請求項4のいずれか一項に記載された内燃機関の制御装置。
HCCI period setting means for setting an HCCI possible period in which the internal combustion engine can be operated in HCCI when the fuel cut is released, starting from the fuel cut start time, according to the operation state of the internal combustion engine at the fuel cut start time,
5. The internal combustion engine according to claim 1, wherein the internal combustion engine is HCCI-operated from when the fuel cut is canceled if the fuel cut duration is within the HCCI possible period. 6. Engine control device.
前記内燃機関の筒内温度を推定する筒内温度推定手段を更に備え、
前記筒内温度が所定のHCCI可能温度範囲内にあれば、フュエルカットからの復帰時に前記内燃機関をHCCI運転することを特徴とする、請求項1〜請求項5のいずれか一項に記載された内燃機関の制御装置。
In-cylinder temperature estimating means for estimating the in-cylinder temperature of the internal combustion engine is further provided,
The HCCI operation of the internal combustion engine is performed when returning from a fuel cut if the in-cylinder temperature is within a predetermined HCCI allowable temperature range. Control device for internal combustion engine.
JP2010051852A 2010-03-09 2010-03-09 Control device for internal combustion engine Active JP5520641B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010051852A JP5520641B2 (en) 2010-03-09 2010-03-09 Control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010051852A JP5520641B2 (en) 2010-03-09 2010-03-09 Control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2011185170A true JP2011185170A (en) 2011-09-22
JP5520641B2 JP5520641B2 (en) 2014-06-11

Family

ID=44791755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010051852A Active JP5520641B2 (en) 2010-03-09 2010-03-09 Control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP5520641B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014051934A (en) * 2012-09-07 2014-03-20 Mazda Motor Corp Spark ignition type direct-injection engine
CN111734543A (en) * 2020-06-23 2020-10-02 中国第一汽车股份有限公司 Engine fuel injection quantity control method, device and equipment and vehicle

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11754014B2 (en) 2021-05-25 2023-09-12 Fang Shui Apparatus and method for controlling transitions in a multi-combustion mode internal-combustion engine within a hybrid-electric vehicle

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000170562A (en) * 1998-12-02 2000-06-20 Honda Motor Co Ltd Egr control device for cylinder-halted engine
JP2002221052A (en) * 2001-01-22 2002-08-09 Nissan Motor Co Ltd Hydraulic control device of internal combustion engine
JP2003106184A (en) * 2001-09-28 2003-04-09 Hitachi Ltd Control system for compression ignition engine
JP2003343605A (en) * 2002-05-23 2003-12-03 Honda Motor Co Ltd Hybrid vehicle
JP2005098187A (en) * 2003-09-24 2005-04-14 Honda Motor Co Ltd Control device of internal combustion engine
JP2007056772A (en) * 2005-08-25 2007-03-08 Nissan Motor Co Ltd Control device of compression ignition internal combustion engine
JP2008195109A (en) * 2007-02-08 2008-08-28 Toyota Motor Corp Control system for compression ignition type internal combustion engine
JP2009041540A (en) * 2007-08-10 2009-02-26 Mazda Motor Corp Control device of gasoline engine

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000170562A (en) * 1998-12-02 2000-06-20 Honda Motor Co Ltd Egr control device for cylinder-halted engine
JP2002221052A (en) * 2001-01-22 2002-08-09 Nissan Motor Co Ltd Hydraulic control device of internal combustion engine
JP2003106184A (en) * 2001-09-28 2003-04-09 Hitachi Ltd Control system for compression ignition engine
JP2003343605A (en) * 2002-05-23 2003-12-03 Honda Motor Co Ltd Hybrid vehicle
JP2005098187A (en) * 2003-09-24 2005-04-14 Honda Motor Co Ltd Control device of internal combustion engine
JP2007056772A (en) * 2005-08-25 2007-03-08 Nissan Motor Co Ltd Control device of compression ignition internal combustion engine
JP2008195109A (en) * 2007-02-08 2008-08-28 Toyota Motor Corp Control system for compression ignition type internal combustion engine
JP2009041540A (en) * 2007-08-10 2009-02-26 Mazda Motor Corp Control device of gasoline engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014051934A (en) * 2012-09-07 2014-03-20 Mazda Motor Corp Spark ignition type direct-injection engine
CN111734543A (en) * 2020-06-23 2020-10-02 中国第一汽车股份有限公司 Engine fuel injection quantity control method, device and equipment and vehicle

Also Published As

Publication number Publication date
JP5520641B2 (en) 2014-06-11

Similar Documents

Publication Publication Date Title
RU152687U1 (en) HYBRID DRIVE VEHICLE SYSTEM
CN108068788B (en) Method and system for downshifting a transmission
CN105313886B (en) Method and system for being converted between control model when creeping
US8109092B2 (en) Methods and systems for engine control
CN107654305B (en) Method and system for operating an engine
JP5632882B2 (en) Catalyst warm-up control device for hybrid vehicle
US8347855B2 (en) Control system and method for improving engine stop-start response time
US20080078593A1 (en) Hybrid Vehicle with Camless Valve Control
JP5910211B2 (en) Starter for vehicle-mounted engine
JP5708819B2 (en) Vehicle control device
CN105667483B (en) System and method for creating vacuum via engine
JP2009269429A (en) Hybrid vehicle control unit
JP5520641B2 (en) Control device for internal combustion engine
JP5267022B2 (en) Vehicle control method and apparatus
JP5742665B2 (en) Control device for hybrid vehicle
JP2004204747A (en) Engine automatic stopping/starting control device
JP4577260B2 (en) Engine starter
JP2004324442A (en) Control method in starting engine of diesel hybrid vehicle
JP3574120B2 (en) Hybrid vehicle
JP2009001250A (en) Warming-up control method for hybrid car
JP5584282B2 (en) Control device for hybrid vehicle
JP2009209722A (en) Start control device and start control method for engine
JP6310878B2 (en) Vehicle control device
JP2002276411A (en) Control device of driving power source
JP2023112833A (en) Hybrid vehicle

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110917

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130716

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140407

R150 Certificate of patent or registration of utility model

Ref document number: 5520641

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150