JP5584282B2 - Control device for hybrid vehicle - Google Patents

Control device for hybrid vehicle Download PDF

Info

Publication number
JP5584282B2
JP5584282B2 JP2012502997A JP2012502997A JP5584282B2 JP 5584282 B2 JP5584282 B2 JP 5584282B2 JP 2012502997 A JP2012502997 A JP 2012502997A JP 2012502997 A JP2012502997 A JP 2012502997A JP 5584282 B2 JP5584282 B2 JP 5584282B2
Authority
JP
Japan
Prior art keywords
valve opening
engine
opening mode
output
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012502997A
Other languages
Japanese (ja)
Other versions
JPWO2011108226A1 (en
Inventor
記吉 浅見
学 仁木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2012502997A priority Critical patent/JP5584282B2/en
Publication of JPWO2011108226A1 publication Critical patent/JPWO2011108226A1/en
Application granted granted Critical
Publication of JP5584282B2 publication Critical patent/JP5584282B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N5/00Exhaust or silencing apparatus combined or associated with devices profiting from exhaust energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0616Position of fuel or air injector
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0644Engine speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0666Engine torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0694Engine exhaust temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/083Torque
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Description

本発明は、ハイブリッド車の制御装置に係り、詳しくは、運転フィーリングの変化等を伴うことなく、触媒暖機中における有害排出ガス成分の低減や触媒暖機完了後における燃費の向上を図る技術に関する。   The present invention relates to a control device for a hybrid vehicle, and more particularly, a technique for reducing harmful exhaust gas components during catalyst warm-up and improving fuel consumption after completion of catalyst warm-up without changing driving feeling or the like. About.

4サイクルガソリンエンジン(以下、単にエンジンと記す)では、出力および燃費の向上や有害排出ガス成分の低減等を図るべく、種々の可変動弁装置を搭載したものが多くなっている。可変動弁装置としては、低速型カムと高速型カムとを用いてカム位相とバルブリフトとを同時に変化させるものが一般的であるが、カム位相可変機構とバルブリフト可変機構とを用いてカム位相とバルブリフトとを個別に可変制御するものも出現している(特許文献1参照)。   Many 4-cycle gasoline engines (hereinafter simply referred to as engines) are equipped with various variable valve gears in order to improve output and fuel consumption, reduce harmful exhaust gas components, and the like. As a variable valve operating device, a low-speed cam and a high-speed cam are generally used to change the cam phase and the valve lift at the same time, but the cam phase variable mechanism and the variable valve lift mechanism are used to change the cam phase. There are also those that individually variably control the phase and the valve lift (see Patent Document 1).

可変動弁装置を備えたエンジンでは、始動後に排気ガス浄化触媒(以下、単に触媒と記す)が活性温度となるまでは触媒の昇温に適したバルブ開弁モード(以下、EM開弁モードと記す)で運転し、触媒の暖機が完了した後に燃料消費量を抑えるバルブ開弁モード(以下、燃費開弁モードと記す)で運転することがある。例えば、運転状態に応じて予混合圧縮着火(Homogeneous Charge Compression Ignition:以下、HCCIと記す)と火花点火(Spark Ignition: 以下、SIと記す)とを切り換えるHCCIエンジンにおいて、HCCI(燃費開弁モード)とSIとの間に空気過剰率λを1.0として火花点火を行うTSI(移行期火花点火)を設定し、冷間始動時や触媒暖機時においては、TSIを暖機モードとして本来はHCCIで運転する領域の一部に適用するものが提案されている(特許文献2参照)。   In an engine equipped with a variable valve device, a valve opening mode (hereinafter referred to as EM valve opening mode) suitable for raising the temperature of the catalyst until the exhaust gas purification catalyst (hereinafter simply referred to as catalyst) reaches an activation temperature after starting. May be operated in a valve opening mode (hereinafter referred to as a fuel consumption opening mode) that suppresses fuel consumption after the warm-up of the catalyst is completed. For example, in an HCCI engine that switches between premixed compression ignition (hereinafter referred to as HCCI) and spark ignition (hereinafter referred to as SI) according to the operating state, HCCI (fuel consumption valve opening mode) TSI (transitional spark ignition) for spark ignition with an excess air ratio λ of 1.0 is set between A and SI, and TSI is originally set as a warm-up mode during cold start or catalyst warm-up. One that is applied to a part of the region operated by HCCI has been proposed (see Patent Document 2).

一方、内燃機関と電気モータとを並設し、自動車の走行状況や運転者の意志に応じて、内燃機関と電気モータとの少なくとも一方を走行用動力源として用いるハイブリッド車が出現している(特許文献3参照)。ハイブリッド車には、内燃機関と電気モータとを同時に用いることで高い加速性能や登坂能力を得る、電気モータのみを用いることで燃料消費の低減や夜間走行時における静粛性を実現する、減速時に電気モータを発電機として用いることで走行エネルギを電力エネルギとして回収できる等の種々の特長が存在する。   On the other hand, a hybrid vehicle has appeared in which an internal combustion engine and an electric motor are provided side by side, and at least one of the internal combustion engine and the electric motor is used as a driving power source in accordance with the traveling state of the automobile and the will of the driver ( (See Patent Document 3). Hybrid vehicles use an internal combustion engine and an electric motor at the same time to obtain high acceleration performance and climbing ability, and use only an electric motor to reduce fuel consumption and quietness during night driving. There are various features such as the ability to recover travel energy as electric energy by using a motor as a generator.

特開2008−163768号公報JP 2008-163768 A 特許3936901号公報Japanese Patent No. 3936901 特開2009−292287号公報JP 2009-292287 A

上述した特許文献2のエンジンでは、触媒の暖機完了時点で内燃機関の運転がTSIからHCCIに移行することで、アクセルペダルの踏込量が同一であるにもかかわらず内燃機関の発生トルクが急変することがあった。これにより、運転者が運転フィーリングに違和感を憶えるとともに、ドライバビリティの低下がもたらされる問題があった。また、本来はHCCIである領域の一部でTSIによる運転が行われるため、HCCIによる有害排出ガス成分の低減効果が得られ難くなる問題もあった。   In the engine disclosed in Patent Document 2 described above, when the operation of the internal combustion engine shifts from TSI to HCCI when the warm-up of the catalyst is completed, the generated torque of the internal combustion engine changes suddenly even though the amount of accelerator pedal depression is the same. There was something to do. As a result, there is a problem that the driver feels uncomfortable with the driving feeling and the drivability is lowered. Moreover, since the operation by TSI is performed in a part of the region that is originally HCCI, there is a problem that it is difficult to obtain the effect of reducing harmful exhaust gas components by HCCI.

本発明は、このような背景に鑑みなされたもので、運転フィーリングの変化等を伴うことなく触媒暖機運転中における有害排出ガス成分の低減を実現したハイブリッド車の制御装置を提供することを目的とする。   The present invention has been made in view of such a background, and provides a control device for a hybrid vehicle that realizes reduction of harmful exhaust gas components during catalyst warm-up operation without any change in driving feeling or the like. Objective.

発明は、第1の走行用駆動源としての内燃機関(2)と、回生ブレーキとしても機能する第2の走行用駆動源としてのモータジェネレータ(3)と、前記内燃機関の吸気バルブ(22)と排気バルブ(23)との少なくとも一方の開弁特性を可変制御する開弁特性可変装置(26,27)と、前記内燃機関の排気ガスを浄化する排気浄化装置(16)と、前記モータジェネレータとの間で電力の授受を行うバッテリ(33)と、運転者の要求エンジン出力を検出する要求エンジン出力検出装置(42)とを有するハイブリッド車の制御装置(41)であって、エンジン回転速度とエンジントルクとをパラメータとして、前記排気ガス中の有害排出ガス成分を抑制すべく吸気量を増大させるように前記開弁特性可変装置を駆動するEM開弁モードを実行する領域と、前記内燃機関の燃料消費量を抑制すべく吸気量を減少させるように前記開弁特性可変装置を駆動する燃費開弁モードを実行する領域と、燃料消費率が最も低くなる目標動作ラインとが設定されたモードマップを有し、前記排気浄化装置の暖機が完了するまでの間、前記要求エンジン出力と前記モードマップの前記目標動作ラインとからは前記燃費開弁モードとなる場合の少なくとも一部で前記EM開弁モードにより前記開弁特性可変装置を駆動制御し、前記EM開弁モードの実行によって前記内燃機関の発生出力と前記要求エンジン出力との間に差が生じた場合に、当該出力差を補償するように前記モータジェネレータを作動させる。また、上記の発明において、前記内燃機関が1気筒当たり2つの吸気バルブを備え、前記開弁特性可変装置は、前記燃費開弁モードを実行する領域において各気筒の吸気バルブの一方を閉弁するとよい。
The present invention includes an internal combustion engine (2) as a first travel drive source, a motor generator (3) as a second travel drive source that also functions as a regenerative brake, and an intake valve (22) of the internal combustion engine. ) And the exhaust valve (23), the valve opening characteristic variable device (26, 27) for variably controlling the valve opening characteristic, the exhaust purification device (16) for purifying the exhaust gas of the internal combustion engine, and the motor A hybrid vehicle control device (41) having a battery (33) for transmitting and receiving electric power to and from a generator, and a requested engine output detection device (42) for detecting a requested engine output of a driver, the engine rotation the speed and engine torque as parameters, said driving said valve opening characteristic changing device so as to increase the intake air amount so as to suppress the harmful exhaust gas components in the exhaust gas EM Hirakibenmo A region for executing de, said the region for executing the fuel valve opening mode to drive the valve opening characteristic changing device so as to decrease the intake air amount to suppress the fuel consumption of the internal combustion engine, the fuel consumption rate is lowest becomes the target operating line has is set mode map, the exhaust until the warm-up completion of the purifying apparatus, wherein the fuel valve opening mode and a target operating line of the mode map and the required engine output The valve opening characteristic variable device is driven and controlled by the EM valve opening mode in at least a part of the EM valve opening mode, and there is a difference between the generated output of the internal combustion engine and the required engine output by executing the EM valve opening mode. When it occurs, the motor generator is operated to compensate for the output difference. Further, in the above invention, the internal combustion engine includes two intake valves per cylinder, and the valve opening characteristic variable device closes one of the intake valves of each cylinder in a region where the fuel consumption valve opening mode is executed. Good.

また、上記の発明において、前記排気浄化装置の暖機が完了するまでの間、前記エンジン回転速度および前記エンジントルクを前記目標動作ライン上に設定するとともに、当該エンジン回転速度が前記燃費開弁モードを実行する領域に移行することを禁止するとよい
In the above invention , the engine speed and the engine torque are set on the target operation line until the exhaust purification device is warmed up, and the engine speed is set to the fuel consumption valve opening mode. it may prohibit to migrate to the region of the run.

また、上記の発明において、前記排気浄化装置の暖機が完了するまでの間、前記燃費開弁モードとなる場合の少なくとも一部で前記EM開弁モードにより前記開弁特性可変装置を駆動制御する場合、前記要求エンジン出力と前記目標動作ラインとによって設定されたエンジン回転速度を変えないようにするとよい
In the above invention , the valve opening characteristic variable device is driven and controlled by the EM valve opening mode in at least a part of the fuel economy valve opening mode until the exhaust purification device is warmed up. In this case , it is preferable not to change the engine speed set by the required engine output and the target operation line.

また、上記の発明において、前記排気浄化装置の暖機完了後は、前記要求エンジン出力と前記モードマップの前記目標動作ラインとから前記EM開弁モードとなる場合の少なくとも一部で前記開弁特性可変装置を前記燃費開弁モードで駆動制御するとともに、当該燃費開弁モードの実行によって前記内燃機関の発生出力と前記要求エンジン出力との間にが生じた場合に、当該出力差を補償するように前記モータジェネレータを作動させるとよい
Further, in the above invention, after completion of the warm-up of the exhaust emission control device, the valve opening characteristic in at least some cases from said target operating line of the mode map and the required engine output becomes the EM valve opening mode The variable device is driven and controlled in the fuel consumption valve opening mode, and the output difference is compensated when a difference occurs between the generated output of the internal combustion engine and the required engine output by executing the fuel consumption valve opening mode. The motor generator may be operated as described above.

本発明によれば、排気浄化装置の暖機が完了するまではEM開弁モードで運転されやすくなり、内燃機関からの有害排出ガス成分が減少する一方、EM開弁モードを実行することによる内燃機関の出力減少や出力増大がモータジェネレータによって補償され、運転者が運転フィーリングに違和感を憶え難くなる。また、暖機完了後には内燃機関が燃費開弁モードで運転されやすくするものでは、燃費の向上が実現できる一方、燃費開弁モードを実行することによる内燃機関の出力増減がモータジェネレータをモータまたは回生ブレーキとして作動させることによって補償され、運転者が運転フィーリングに違和感を憶え難くなる。   According to the present invention, the exhaust emission control device is easily operated in the EM valve opening mode until the warm-up of the exhaust gas purification apparatus is completed, and harmful exhaust gas components from the internal combustion engine are reduced, while the internal combustion engine by executing the EM valve opening mode is reduced. The decrease in engine output and the increase in output are compensated by the motor generator, making it difficult for the driver to feel uncomfortable with the driving feeling. In addition, if the internal combustion engine is easily operated in the fuel consumption valve opening mode after the warm-up is completed, the fuel consumption can be improved, while the output increase / decrease of the internal combustion engine by executing the fuel consumption valve opening mode causes the motor generator to It is compensated by operating as a regenerative brake, and it becomes difficult for the driver to feel uncomfortable in driving feeling.

実施形態に係るパワーユニットを示す模式図である。It is a schematic diagram which shows the power unit which concerns on embodiment. 第1実施形態に係る出力制御の手順を示すフローチャートである。It is a flowchart which shows the procedure of the output control which concerns on 1st Embodiment. 実施形態に係るエンジン回転速度−エンジントルクマップである。It is an engine speed-engine torque map concerning an embodiment. 実施形態に係る開弁モードマップである。It is a valve opening mode map concerning an embodiment. 第1実施形態の作用説明図である。It is operation | movement explanatory drawing of 1st Embodiment. 第2実施形態に係る出力制御の手順を示すフローチャートである。It is a flowchart which shows the procedure of the output control which concerns on 2nd Embodiment. 実施形態に係る暖機時開弁モードマップである。It is a valve opening mode map at the time of warming-up which concerns on embodiment. 第3実施形態に係る出力制御の手順を示すフローチャートである。It is a flowchart which shows the procedure of the output control which concerns on 3rd Embodiment. 第3実施形態の作用説明図である。It is operation | movement explanatory drawing of 3rd Embodiment.

以下、図面を参照して、本発明を自動車(ハイブリッド車)のパワーユニット制御に適用したいくつかの実施形態を詳細に説明する。   Hereinafter, some embodiments in which the present invention is applied to power unit control of an automobile (hybrid vehicle) will be described in detail with reference to the drawings.

[第1実施形態]
≪第1実施形態の構成≫
図1に示すように、本実施形態のパワーユニット1は、エンジン2と、モータジェネレータ3とから構成されており、ディファレンシャル装置と一体の変速機4を介して図示しない左右前輪に駆動力を与える。
[First Embodiment]
<< Configuration of First Embodiment >>
As shown in FIG. 1, the power unit 1 according to this embodiment includes an engine 2 and a motor generator 3, and applies driving force to left and right front wheels (not shown) via a transmission 4 integrated with a differential device.

エンジン2は、直列4気筒のHCCIエンジンであり、エアクリーナ11、電動スロットル弁12、サージタンク13、吸気管14等からなる吸気系と、排気マニホールド15、排気浄化触媒16、排気管17等からなる排気系を備えている。エンジン2のシリンダヘッド21には、各気筒ごとに、一対の吸気バルブ22、一対の排気バルブ23、筒内噴射用の燃料噴射弁24、点火プラグ25、吸排気バルブ22,23の開弁特性をそれぞれ変化させる可変動弁機構26,27等が設けられている。また、吸気管14には、各気筒ごとに吸気管噴射用の燃料噴射弁28が設けられている。なお、本実施形態の可変動弁機構26,27は、吸排気バルブ22,23の開弁特性をそれぞれ3段階で切り換えるべく、カム位相およびリフト量が異なる3種のカムを備えている。   The engine 2 is an inline 4-cylinder HCCI engine, and includes an intake system including an air cleaner 11, an electric throttle valve 12, a surge tank 13, an intake pipe 14, and the like, an exhaust manifold 15, an exhaust purification catalyst 16, an exhaust pipe 17, and the like. It has an exhaust system. The cylinder head 21 of the engine 2 includes a pair of intake valves 22, a pair of exhaust valves 23, a fuel injection valve 24 for in-cylinder injection, a spark plug 25, and intake and exhaust valves 22, 23 for each cylinder. Are provided with variable valve mechanisms 26, 27, etc. The intake pipe 14 is provided with an intake pipe injection fuel injection valve 28 for each cylinder. The variable valve mechanisms 26 and 27 of the present embodiment include three types of cams having different cam phases and lift amounts so that the valve opening characteristics of the intake and exhaust valves 22 and 23 can be switched in three stages.

モータジェネレータ3は、エンジン2に対する駆動力アシストや電動走行に供されるモータ31、エンジン2の出力や自動車の走行エネルギを電力に変換するジェネレータ32を備えており、図示しない変速機やディファレンシャル装置を介して左右前輪に連結されている。モータジェネレータ3は、自動車の車体後部に搭載されたバッテリ33に接続されており、バッテリ33との間で電力の授受を行う。バッテリ33にはDC−DCコンバータ等からなるダウンバータ34が接続されており、このダウンバータ34によって12Vに降圧された電力が各種電動補機(電動エアコンディショナや電動ウォータポンプ等)や電気装置(灯火類や電気ヒータ等)に供給される。   The motor generator 3 includes a motor 31 that is used for driving force assist for the engine 2 and electric running, and a generator 32 that converts the output of the engine 2 and the running energy of the automobile into electric power. A transmission and a differential device (not shown) are provided. Via the left and right front wheels. The motor generator 3 is connected to a battery 33 mounted at the rear of the vehicle body of the automobile, and exchanges power with the battery 33. A downverter 34 composed of a DC-DC converter or the like is connected to the battery 33, and the electric power that has been stepped down to 12V by the downverter 34 is used in various electric auxiliary machines (such as an electric air conditioner and an electric water pump) and an electric device. (Lights, electric heaters, etc.)

自動車の車体にはPCU(パワーコントロールユニット)41が搭載されており、このPCU41がエンジン2やモータジェネレータ3を統括制御する。PCU41には、エンジン2やモータジェネレータ3、バッテリ33等からの情報の他、アクセルセンサ42からのアクセルペダル43の踏込量情報(すなわち、運転者の要求エンジン出力)が入力する。   A PCU (power control unit) 41 is mounted on the body of the automobile, and the PCU 41 controls the engine 2 and the motor generator 3 in an integrated manner. In addition to information from the engine 2, the motor generator 3, the battery 33, and the like, the PCU 41 receives information on the amount of depression of the accelerator pedal 43 from the accelerator sensor 42 (that is, the driver's requested engine output).

≪第1実施形態の作用≫
自動車の運転が開始されると、PCU41は、図2のフローチャートにその手順を示す出力制御を所定の制御間隔(例えば、10msec)で繰り返し実行する。
出力制御を開始すると、PCU41は、ステップS1で図示しない排気温センサの検出信号等に基づいて排気浄化触媒16が暖機中であるか否かを判定し、この判定がNoであればステップS2でエンジン2の目標エンジン出力PEtgtを下式(1)により算出する。下式において、PEddはアクセルセンサ42の検出信号に基づいて得られた運転者の要求エンジン出力であり、Pdvはダウンバータ34の消費電力である。
PEtgt=PEdd+Pdv・・・・・(1)
<< Operation of First Embodiment >>
When driving of the automobile is started, the PCU 41 repeatedly executes output control whose procedure is shown in the flowchart of FIG. 2 at a predetermined control interval (for example, 10 msec).
When the output control is started, the PCU 41 determines in step S1 whether or not the exhaust purification catalyst 16 is warming up based on a detection signal of an exhaust temperature sensor (not shown). If this determination is No, step S2 is performed. The target engine output PEtgt of the engine 2 is calculated by the following equation (1). In the following equation, PEdd is the driver's requested engine output obtained based on the detection signal of the accelerator sensor 42, and Pdv is the power consumption of the downverter 34.
PEtgt = PEdd + Pdv (1)

次に、PCU41は、ステップS3で、図3の開弁モードマップの目標動作ライン(エンジン2の燃料消費/発生出力が最も小さくなるライン)上で、現在の目標エンジン出力PEtgtがEM開弁モードVM1(排気浄化触媒16を昇温させるために、吸気量を増大させる開弁モード)と燃費開弁モードVM2(燃費を向上させるために、例えば、一方の吸気バルブ22を閉弁させてスワールを強める開弁モード)とのどちらに存在するのか(図4では、燃費開弁モードVM2に存在)を判定する。   Next, in step S3, the PCU 41 sets the current target engine output PEtgt to the EM valve opening mode on the target operation line (the line where the fuel consumption / generated output of the engine 2 becomes the smallest) in the valve opening mode map of FIG. VM1 (a valve opening mode for increasing the intake air amount to raise the temperature of the exhaust purification catalyst 16) and a fuel consumption valve opening mode VM2 (for example, to improve fuel efficiency, one of the intake valves 22 is closed and swirl is performed. (In FIG. 4, it exists in the fuel efficiency valve opening mode VM2).

次に、PCU41は、ステップS4で、図4のエンジン回転速度−エンジントルクマップに基づき、目標エンジン出力PEtgtと目標動作ラインとから目標エンジン回転速度NEtgtと目標エンジントルクTEtgtとを設定する。しかる後、PCU41は、ステップS5で、ステップS3,S4の処理結果に基づき、エンジン2(すなわち、燃料噴射弁24,28や点火プラグ25、可変動弁機構26,27等)を駆動制御する。   Next, in step S4, the PCU 41 sets the target engine speed NEtgt and the target engine torque TEtgt from the target engine output PEtgt and the target operation line based on the engine speed-engine torque map of FIG. Thereafter, in step S5, the PCU 41 drives and controls the engine 2 (that is, the fuel injection valves 24 and 28, the spark plug 25, the variable valve mechanisms 26 and 27, etc.) based on the processing results of steps S3 and S4.

一方、エンジン2の始動直後等でステップS1の判定がYesとなった場合、PCU41は、ステップS6でエンジン2の目標エンジン出力PEtgtを前述の式(1)により算出する。次に、PCU41は、ステップS7で、図5の開弁モードマップに基づき、現在の目標エンジン回転速度NEtgtおよび目標エンジントルクTEtgtから、目標エンジン出力PEtgtがEM開弁モードVM1に存在しているか否かを判定する。そして、この判定がYesであれば、PCU41は、ステップS4,S5に移行してEM開弁モードVM1でエンジン2を駆動制御する。   On the other hand, if the determination in step S1 is Yes, such as immediately after the engine 2 is started, the PCU 41 calculates the target engine output PEtgt of the engine 2 by the above-described equation (1) in step S6. Next, in step S7, the PCU 41 determines whether the target engine output PEtgt is present in the EM valve opening mode VM1 from the current target engine speed NEtgt and the target engine torque TEtgt based on the valve opening mode map of FIG. Determine whether. And if this determination is Yes, PCU41 will transfer to step S4, S5, and will drive-control the engine 2 by EM valve opening mode VM1.

目標エンジン出力PEtgtが燃費開弁モードVM2に存在していてステップS7の判定がNoとなった場合、PCU41は、ステップS8で、図5中に矢印で示すように、EM開弁モードVM1に移行させるべく、目標エンジン出力PEtgtを目標動作ラインに沿って低減させた補正エンジン出力PE'を算出した後、ステップS9で補正目標エンジン回転速度NEtgt'および補正目標エンジントルクTEtgt'を設定する。次に、PCU41は、ステップS10で、ステップS9の処理結果に基づき燃料噴射弁24,28や点火プラグ25等を駆動制御するとともに、EM開弁モードVM1で可変動弁機構26,27を駆動制御する。   If the target engine output PEtgt exists in the fuel efficiency valve opening mode VM2 and the determination in step S7 is No, the PCU 41 shifts to the EM valve opening mode VM1 in step S8 as indicated by an arrow in FIG. Therefore, after calculating the corrected engine output PE ′ obtained by reducing the target engine output PEtgt along the target operation line, the corrected target engine speed NEtgt ′ and the corrected target engine torque TEtgt ′ are set in step S9. Next, in step S10, the PCU 41 drives and controls the fuel injection valves 24 and 28, the spark plug 25, and the like based on the processing result of step S9, and drives and controls the variable valve mechanisms 26 and 27 in the EM valve opening mode VM1. To do.

次に、PCU41は、ステップS12で目標エンジン出力PEtgt(すなわち、目標エンジン回転速度NEtgtと目標エンジントルクTEtgtとの積)と補正エンジン出力PE'(すなわち、補正目標エンジン回転速度NEtgt'と補正目標エンジントルクTEtgt'との積)との差を出力変動分ΔP(出力不足分)として算出した後、ステップS13で出力変動分ΔPを補うようにモータジェネレータ3(モータ31)に駆動力アシストを行わせる。   Next, in step S12, the PCU 41 determines that the target engine output PEtgt (that is, the product of the target engine speed NEtgt and the target engine torque TEtgt) and the corrected engine output PE ′ (that is, the corrected target engine speed NEtgt ′ and the corrected target engine). After calculating the difference from the product of the torque TEtgt 'as an output fluctuation amount ΔP (output shortage), in step S13, the motor generator 3 (motor 31) is assisted with driving force so as to compensate for the output fluctuation amount ΔP. .

[第2実施形態]
第2実施形態は、上述した第1実施形態と同一のパワーユニットを備えているが、出力制御の手順が異なっているため、その作用のみを説明する。
[Second Embodiment]
The second embodiment includes the same power unit as that of the first embodiment described above, but the procedure of output control is different, so only the operation thereof will be described.

≪第2実施形態の作用≫
自動車の運転が開始されると、PCU41は、図6のフローチャートにその手順を示す出力制御を所定の制御間隔(例えば、10msec)で繰り返し実行する。
出力制御を開始すると、PCU41は、ステップS21で図示しない排気温センサの検出信号等に基づいて排気浄化触媒16が暖機中であるか否かを判定し、この判定がNoであればステップS22でエンジン2の目標エンジン出力PEtgtを前述の式(1)により算出する。
<< Operation of Second Embodiment >>
When the driving of the automobile is started, the PCU 41 repeatedly executes output control whose procedure is shown in the flowchart of FIG. 6 at a predetermined control interval (for example, 10 msec).
When the output control is started, the PCU 41 determines in step S21 whether or not the exhaust purification catalyst 16 is warming up based on a detection signal of an exhaust temperature sensor (not shown). If this determination is No, step S22 is performed. Then, the target engine output PEtgt of the engine 2 is calculated by the above-described equation (1).

次に、PCU41は、ステップS23で、前述した図3の開弁モードマップに基づき、現在の目標エンジン出力PEtgtがEM開弁モードVM1と燃費開弁モードVM2とのどちらに存在するのかを判定する。   Next, in step S23, the PCU 41 determines whether the current target engine output PEtgt exists in the EM valve opening mode VM1 or the fuel efficiency valve opening mode VM2 based on the valve opening mode map of FIG. .

次に、PCU41は、ステップS24で、前述した図4のエンジン回転速度−エンジントルクマップに基づき、目標エンジン出力PEtgtと目標動作ラインとから目標エンジン回転速度NEtgtと目標エンジントルクTEtgtとを設定する。しかる後、PCU41は、ステップS25で、ステップS23,S24の処理結果に基づき、エンジン2(すなわち、燃料噴射弁24,28や点火プラグ25、可変動弁機構26,27等)を駆動制御する。   Next, in step S24, the PCU 41 sets the target engine speed NEtgt and the target engine torque TEtgt from the target engine output PEtgt and the target operation line based on the engine speed-engine torque map of FIG. 4 described above. Thereafter, in step S25, the PCU 41 drives and controls the engine 2 (that is, the fuel injection valves 24 and 28, the spark plug 25, the variable valve mechanisms 26 and 27, etc.) based on the processing results of steps S23 and S24.

一方、エンジン2の始動直後等でステップS21の判定がYesとなった場合、PCU41は、ステップS26でエンジン2の目標エンジン出力PEtgtを前述の式(1)により算出する。次に、PCU41は、ステップS27で、図7の暖機時開弁モードマップに基づき、目標エンジン出力PEtgtがEM開弁モードVM1に存在しているか否かを判定し、この判定がNoであればステップS24,S25に移行して燃費開弁モードVM2でエンジン2を駆動制御する。   On the other hand, if the determination in step S21 is Yes, such as immediately after the engine 2 is started, the PCU 41 calculates the target engine output PEtgt of the engine 2 by the above-described equation (1) in step S26. Next, in step S27, the PCU 41 determines whether or not the target engine output PEtgt exists in the EM valve opening mode VM1 based on the warm-up valve opening mode map of FIG. For example, the process goes to steps S24 and S25 to drive and control the engine 2 in the fuel consumption valve opening mode VM2.

目標エンジン出力PEtgtがEM開弁モードVM1に存在していてステップS27の判定がYesになると、PCU41は、ステップS28で、エンジン動作点(エンジン回転速度NE)を変えずにEM開弁モードVM1でエンジン2を運転する場合のエンジン出力を補正エンジン出力PE'として算出した後、ステップS29で補正目標エンジントルクTEtgt'を設定する。次に、PCU41は、ステップS30で、ステップS29の処理結果に基づき燃料噴射弁24,28や点火プラグ25等を駆動制御するとともに、EM開弁モードVM1で可変動弁機構26,27を駆動制御する。   If the target engine output PEtgt is present in the EM valve opening mode VM1 and the determination in step S27 is Yes, the PCU 41 in step S28 in the EM valve opening mode VM1 without changing the engine operating point (engine speed NE). After calculating the engine output when the engine 2 is operated as the corrected engine output PE ′, the corrected target engine torque TEtgt ′ is set in step S29. Next, in step S30, the PCU 41 drives and controls the fuel injection valves 24 and 28, the spark plug 25, and the like based on the processing result in step S29, and drives and controls the variable valve mechanisms 26 and 27 in the EM valve opening mode VM1. To do.

次に、PCU41は、ステップS31で目標エンジン回転速度NEtgtと目標エンジントルクTEtgtとの積)と補正エンジン出力PE'(すなわち、目標エンジン回転速度NEtgtと補正目標エンジントルクTEtgt'との積)との差を出力変動分ΔPとして算出した後、ステップS32でモータジェネレータ3(ジェネレータ32)からバッテリ33に充放電を行わせて出力変動分ΔPを相殺させる。   Next, in step S31, the PCU 41 calculates the product of the target engine speed NEtgt and the target engine torque TEtgt) and the corrected engine output PE ′ (that is, the product of the target engine speed NEtgt and the corrected target engine torque TEtgt ′). After the difference is calculated as the output fluctuation amount ΔP, the motor generator 3 (generator 32) charges and discharges the battery 33 in step S32 to cancel the output fluctuation amount ΔP.

[第3実施形態]
第3実施形態も、上述した第1実施形態と同一のパワーユニットを備えているが、出力制御の手順が異なっているため、その作用のみを説明する。
≪第3実施形態の作用≫
自動車の運転が開始されると、PCU41は、図8のフローチャートにその手順を示す出力制御を所定の制御間隔(例えば、10msec)で繰り返し実行する。
出力制御を開始すると、PCU41は、ステップS41で図示しない排気温センサの検出信号等に基づいて排気浄化触媒16が暖機中であるか否かを判定し、この判定がYesであればステップS42でエンジン2の目標エンジン出力PEtgtを前述の式(1)により算出する。
[Third Embodiment]
Although the third embodiment also includes the same power unit as that of the first embodiment described above, the procedure of output control is different, so only the operation thereof will be described.
<< Operation of Third Embodiment >>
When the driving of the automobile is started, the PCU 41 repeatedly executes output control whose procedure is shown in the flowchart of FIG. 8 at a predetermined control interval (for example, 10 msec).
When the output control is started, the PCU 41 determines in step S41 whether or not the exhaust purification catalyst 16 is warming up based on a detection signal of an exhaust temperature sensor (not shown). If this determination is Yes, step S42 is performed. Then, the target engine output PEtgt of the engine 2 is calculated by the above-described equation (1).

次に、PCU41は、ステップS43で、前述した図3の開弁モードマップに基づき、現在の目標エンジン出力PEtgtがEM開弁モードVM1に存在するか否かを判定する。そして、この判定がYesであれば、PCU41は、ステップS44で、前述した図4のエンジン回転速度−エンジントルクマップに基づき、目標エンジン出力PEtgtと目標動作ラインとから目標エンジン回転速度NEtgtと目標エンジントルクTEtgtとを設定する。しかる後、PCU41は、ステップS45で、ステップS44の処理結果に基づき、エンジン2をEM開弁モードVM1で駆動制御する。   Next, in step S43, the PCU 41 determines whether or not the current target engine output PEtgt exists in the EM valve opening mode VM1 based on the valve opening mode map of FIG. 3 described above. If this determination is Yes, in step S44, the PCU 41 determines the target engine speed NEtgt and the target engine from the target engine output PEtgt and the target operation line based on the engine speed-engine torque map of FIG. Torque TEtgt is set. Thereafter, in step S45, the PCU 41 drives and controls the engine 2 in the EM valve opening mode VM1 based on the processing result in step S44.

また、目標エンジン出力PEtgtが燃費開弁モードVM2に存在していてステップS43の判定がNoとなった場合、PCU41は、ステップS46で図5中に矢印で示すように、EM開弁モードVM1に移行させるべく、目標エンジン出力PEtgtを目標動作ラインに沿って低減させた補正エンジン出力PE'を算出した後、ステップS47で補正目標エンジン回転速度NEtgt'および補正目標エンジントルクTEtgt'を設定する。次に、PCU41は、ステップS48で、ステップS47の処理結果に基づきエンジン2をEM開弁モードVM1で駆動制御する。   If the target engine output PEtgt exists in the fuel efficiency valve opening mode VM2 and the determination in step S43 is No, the PCU 41 switches to the EM valve opening mode VM1 in step S46 as indicated by an arrow in FIG. In order to shift, after calculating the corrected engine output PE ′ obtained by reducing the target engine output PEtgt along the target operation line, the corrected target engine rotational speed NEtgt ′ and the corrected target engine torque TEtgt ′ are set in step S47. Next, in step S48, the PCU 41 controls the drive of the engine 2 in the EM valve opening mode VM1 based on the processing result of step S47.

次に、PCU41は、ステップS49で目標エンジン回転速度NEtgtと目標エンジントルクTEtgtとの積)と補正エンジン出力PE'(すなわち、補正目標エンジン回転速度NEtgt'と補正目標エンジントルクTEtgt'との積)との差を出力変動分ΔPとして算出した後、ステップS50でモータジェネレータ3(ジェネレータ32)からバッテリ33に充放電を行わせて出力変動分ΔPを相殺させる。   Next, in step S49, the PCU 41 calculates the product of the target engine speed NEtgt and the target engine torque TEtgt) and the corrected engine output PE ′ (that is, the product of the corrected target engine speed NEtgt ′ and the corrected target engine torque TEtgt ′). Is calculated as an output fluctuation amount ΔP, and then the battery generator 33 is charged / discharged from the motor generator 3 (generator 32) in step S50 to cancel the output fluctuation amount ΔP.

一方、排気浄化触媒16の暖機が終了してステップS41の判定がNoとなった場合、PCU41は、ステップS51でエンジン2の目標エンジン出力PEtgtを式(1)により算出する。次に、PCU41は、ステップS52で、図5の開弁モードマップに基づき、現在の目標エンジン回転速度NEtgtおよび目標エンジントルクTEtgtから、目標エンジン出力PEtgtが燃費開弁モードVM2に存在しているか否かを判定する。そして、この判定がYesであれば、PCU41は、ステップS53で、図4のエンジン回転速度−エンジントルクマップに基づき、目標エンジン出力PEtgtと目標動作ラインとから目標エンジン回転速度NEtgtと目標エンジントルクTEtgtとを設定する。しかる後、PCU41は、ステップS54で、ステップS53の処理結果に基づき、エンジン2を燃費開弁モードVM2で駆動制御する。   On the other hand, when the warm-up of the exhaust purification catalyst 16 is completed and the determination in step S41 is No, the PCU 41 calculates the target engine output PEtgt of the engine 2 by the equation (1) in step S51. Next, in step S52, the PCU 41 determines whether or not the target engine output PEtgt is present in the fuel efficiency valve opening mode VM2 from the current target engine speed NEtgt and the target engine torque TEtgt based on the valve opening mode map of FIG. Determine whether. If this determination is Yes, in step S53, the PCU 41, based on the engine speed-engine torque map of FIG. 4, calculates the target engine speed NEtgt and the target engine torque TEtgt from the target engine output PEtgt and the target operation line. And set. Thereafter, in step S54, the PCU 41 controls the drive of the engine 2 in the fuel consumption valve opening mode VM2 based on the processing result of step S53.

また、目標エンジン出力PEtgtがEM開弁モードVM1に存在していてステップS52の判定がNoとなった場合、PCU41は、ステップS55で図9中に矢印で示すように、燃費開弁モードVM2に移行させるべく、目標エンジン出力PEtgtを目標動作ラインに沿って増減させた補正エンジン出力PE'を算出した後、ステップS56で補正目標エンジン回転速度NEtgt'および補正目標エンジントルクTEtgt'を設定する。次に、PCU41は、ステップS57で、ステップS56の処理結果に基づきエンジン2を燃費開弁モードVM2で駆動制御する。   If the target engine output PEtgt exists in the EM valve opening mode VM1 and the determination in step S52 is No, the PCU 41 enters the fuel consumption valve opening mode VM2 in step S55 as indicated by an arrow in FIG. In order to shift, the corrected engine output PE ′ obtained by increasing or decreasing the target engine output PEtgt along the target operation line is calculated, and then the corrected target engine rotational speed NEtgt ′ and the corrected target engine torque TEtgt ′ are set in step S56. Next, in step S57, the PCU 41 controls the drive of the engine 2 in the fuel consumption opening mode VM2 based on the processing result of step S56.

次に、PCU41は、ステップS58で目標エンジン回転速度NEtgtと目標エンジントルクTEtgtとの積)と補正エンジン出力PE'(すなわち、補正目標エンジン回転速度NEtgt'と補正目標エンジントルクTEtgt'との積)との差を出力変動分ΔPとして算出した後、ステップS59でモータジェネレータ3(ジェネレータ32)からバッテリ33に充放電を行わせて出力変動分ΔPを相殺させる。   Next, in step S58, the PCU 41 calculates the product of the target engine speed NEtgt and the target engine torque TEtgt) and the corrected engine output PE ′ (that is, the product of the corrected target engine speed NEtgt ′ and the corrected target engine torque TEtgt ′). Is calculated as the output fluctuation amount ΔP, and then the battery generator 33 is charged / discharged from the motor generator 3 (generator 32) in step S59 to cancel the output fluctuation amount ΔP.

各実施形態では、上述した構成を採ったことにより、排気浄化触媒16の暖機時においては、エンジン2がEM開弁モードVM1で運転されて有害排出ガス成分が削減されるとともに、出力変動分ΔPがモータジェネレータ3の駆動力アシストやバッテリ33への充放電によって補われることで運転者が運転フィーリングに違和感を憶えることや、ドライバビリティが低下することが効果的に抑制できるようになる。   In each embodiment, by adopting the above-described configuration, when the exhaust purification catalyst 16 is warmed up, the engine 2 is operated in the EM valve opening mode VM1 to reduce harmful exhaust gas components and output fluctuations. Since ΔP is compensated by the driving force assist of the motor generator 3 and charging / discharging of the battery 33, it is possible to effectively suppress the driver from feeling uncomfortable in driving feeling and the decrease in drivability.

以上で具体的実施形態の説明を終えるが、本発明はこれら実施形態に限定されることなく幅広く変形実施することができる。例えば、第2,第3実施形態においてバッテリ33に余裕が存在すれば、第1実施形態と同様にモータ31に駆動力アシストを行わせることができる。その他、パワーユニットの具体的構成や制御の具体的手順等についても、本発明の趣旨を逸脱しない範囲であれば適宜変更可能である。   Although the description of the specific embodiments is finished as described above, the present invention is not limited to these embodiments and can be widely modified. For example, if there is a margin in the battery 33 in the second and third embodiments, the driving force assist can be performed by the motor 31 as in the first embodiment. In addition, the specific configuration of the power unit, the specific procedure of the control, and the like can be changed as appropriate without departing from the spirit of the present invention.

1 パワーユニット
2 エンジン
3 モータジェネレータ
16 排気浄化触媒
22 吸気バルブ
23 排気バルブ
26,27 可変動弁機構(開弁特性可変装置)
31 モータ
32 ジェネレータ
33 バッテリ
34 ダウンバータ
41 PCU(制御装置)
42 アクセルセンサ(要求エンジン出力検出装置)
DESCRIPTION OF SYMBOLS 1 Power unit 2 Engine 3 Motor generator 16 Exhaust purification catalyst 22 Intake valve 23 Exhaust valve 26, 27 Variable valve mechanism (Valve opening characteristic variable device)
31 Motor 32 Generator 33 Battery 34 Downverter 41 PCU (Control Device)
42 Accelerator sensor (required engine output detection device)

Claims (5)

第1の走行用駆動源としての内燃機関と、回生ブレーキとしても機能する第2の走行用駆動源としてのモータジェネレータと、前記内燃機関の吸気バルブと排気バルブとの少なくとも一方の開弁特性を可変制御する開弁特性可変装置と、前記内燃機関の排気ガスを浄化する排気浄化装置と、前記モータジェネレータとの間で電力の授受を行うバッテリと、運転者の要求エンジン出力を検出する要求エンジン出力検出装置とを有するハイブリッド車の制御装置であって、
エンジン回転速度とエンジントルクとをパラメータとして、前記排気ガス中の有害排出ガス成分を抑制すべく吸気量を増大させるように前記開弁特性可変装置を駆動するEM開弁モードを実行する領域と、前記内燃機関の燃料消費量を抑制すべく吸気量を減少させるように前記開弁特性可変装置を駆動する燃費開弁モードを実行する領域と、燃料消費率が最も低くなる目標動作ラインとが設定されたモードマップを有し、
前記排気浄化装置の暖機が完了するまでの間、前記要求エンジン出力と前記モードマップの前記目標動作ラインとから前記燃費開弁モードとなる場合の少なくとも一部で前記EM開弁モードにより前記開弁特性可変装置を駆動制御し、
前記EM開弁モードの実行によって前記内燃機関の発生出力と前記要求エンジン出力との間に差が生じた場合に、当該出力差を補償するように前記モータジェネレータを作動させることを特徴とするハイブリッド車の制御装置。
An opening characteristic of at least one of an internal combustion engine as a first travel drive source, a motor generator as a second travel drive source that also functions as a regenerative brake, and an intake valve and an exhaust valve of the internal combustion engine A variable valve opening characteristic control device that variably controls, an exhaust purification device that purifies exhaust gas of the internal combustion engine, a battery that transfers power to and from the motor generator, and a request engine that detects a driver's request engine output A hybrid vehicle control device having an output detection device,
A region for executing the EM valve opening mode for driving the valve opening characteristic variable device so as to increase the intake air amount so as to suppress harmful exhaust gas components in the exhaust gas using the engine rotation speed and the engine torque as parameters, A region for executing the fuel consumption valve opening mode for driving the variable valve opening characteristic device so as to reduce the intake air amount so as to suppress the fuel consumption amount of the internal combustion engine, and a target operation line where the fuel consumption rate becomes the lowest are set. Mode map
Wherein until the warm-up of the exhaust purification device is completed, the open by the EM valve opening mode in at least some cases from said target operating line of the mode map and the required engine output becomes the fuel valve opening mode Drive and control the valve characteristic variable device,
When the EM valve opening mode is executed, if a difference occurs between the generated output of the internal combustion engine and the required engine output, the motor generator is operated to compensate for the output difference. Car control device.
前記内燃機関が1気筒当たり2つの吸気バルブを備え、
前記開弁特性可変装置は、前記燃費開弁モードを実行する領域において各気筒の吸気バルブの一方を閉弁することを特徴とする、請求項1に記載されたハイブリッド車の制御装置。
The internal combustion engine comprises two intake valves per cylinder;
2. The hybrid vehicle control device according to claim 1, wherein the valve opening characteristic variable device closes one of the intake valves of each cylinder in a region in which the fuel efficiency valve opening mode is executed .
前記排気浄化装置の暖機が完了するまでの間、前記エンジン回転速度および前記エンジントルクを前記目標動作ライン上に設定するとともに、当該エンジン回転速度が前記燃費開弁モードを実行する領域に移行することを禁止することを特徴とする、請求項1または請求項2に記載されたハイブリッド車の制御装置。 The engine speed and the engine torque are set on the target operation line until the exhaust purification device is warmed up, and the engine speed is shifted to a region where the fuel consumption valve opening mode is executed. The hybrid vehicle control device according to claim 1, wherein the control device is prohibited. 前記排気浄化装置の暖機が完了するまでの間、前記燃費開弁モードとなる場合の少なくとも一部で前記EM開弁モードにより前記開弁特性可変装置を駆動制御する場合、前記要求エンジン出力と前記目標動作ラインとによって設定されたエンジン回転速度を変えないことを特徴とする、請求項1または請求項2に記載されたハイブリッド車の制御装置。   When the valve opening characteristic variable device is driven and controlled by the EM valve opening mode in at least a part of the fuel economy valve opening mode until the exhaust gas purification device is warmed up, the required engine output and 3. The hybrid vehicle control device according to claim 1, wherein the engine speed set by the target operation line is not changed. 前記排気浄化装置の暖機完了後は、前記要求エンジン出力と前記モードマップの前記目標動作ラインとから前記EM開弁モードとなる場合の少なくとも一部で前記開弁特性可変装置を前記燃費開弁モードで駆動制御するとともに、当該燃費開弁モードの実行によって前記内燃機関の発生出力と前記要求エンジン出力との間に差が生じた場合に、当該出力差を補償するように前記モータジェネレータを作動させることを特徴とする、請求項1〜請求項4のいずれか一項に記載されたハイブリッド車の制御装置。 Wherein after completion of the warm-up of the exhaust purification device, the request at least a portion in the valve opening characteristics variable apparatus the fuel valve opening when the engine output from said mode map the target operating line becomes the EM valve opening mode The motor generator is operated so as to compensate for the output difference when a difference occurs between the generated output of the internal combustion engine and the required engine output by executing the fuel consumption valve opening mode. The hybrid vehicle control device according to claim 1, wherein the control device is a hybrid vehicle control device.
JP2012502997A 2010-03-02 2011-02-23 Control device for hybrid vehicle Expired - Fee Related JP5584282B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012502997A JP5584282B2 (en) 2010-03-02 2011-02-23 Control device for hybrid vehicle

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010045084 2010-03-02
JP2010045084 2010-03-02
JP2012502997A JP5584282B2 (en) 2010-03-02 2011-02-23 Control device for hybrid vehicle
PCT/JP2011/001016 WO2011108226A1 (en) 2010-03-02 2011-02-23 Hybrid vehicle control device

Publications (2)

Publication Number Publication Date
JPWO2011108226A1 JPWO2011108226A1 (en) 2013-06-20
JP5584282B2 true JP5584282B2 (en) 2014-09-03

Family

ID=44541896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012502997A Expired - Fee Related JP5584282B2 (en) 2010-03-02 2011-02-23 Control device for hybrid vehicle

Country Status (2)

Country Link
JP (1) JP5584282B2 (en)
WO (1) WO2011108226A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5874748B2 (en) * 2013-04-03 2016-03-02 トヨタ自動車株式会社 Hybrid vehicle control system
JP2015116959A (en) * 2013-12-19 2015-06-25 トヨタ自動車株式会社 Hybrid vehicle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09329060A (en) * 1996-06-10 1997-12-22 Toyota Motor Corp Catalyst temperature controlling device for hybrid vehicle
JP3936901B2 (en) * 2001-09-25 2007-06-27 アー・ファウ・エル・リスト・ゲー・エム・ベー・ハー Internal combustion engine and internal combustion engine control method
JP2008163768A (en) * 2006-12-27 2008-07-17 Honda Motor Co Ltd Variable valve opening characteristic internal combustion engine
JP2009292287A (en) * 2008-06-04 2009-12-17 Honda Motor Co Ltd Controller of hybrid vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09329060A (en) * 1996-06-10 1997-12-22 Toyota Motor Corp Catalyst temperature controlling device for hybrid vehicle
JP3936901B2 (en) * 2001-09-25 2007-06-27 アー・ファウ・エル・リスト・ゲー・エム・ベー・ハー Internal combustion engine and internal combustion engine control method
JP2008163768A (en) * 2006-12-27 2008-07-17 Honda Motor Co Ltd Variable valve opening characteristic internal combustion engine
JP2009292287A (en) * 2008-06-04 2009-12-17 Honda Motor Co Ltd Controller of hybrid vehicle

Also Published As

Publication number Publication date
JPWO2011108226A1 (en) 2013-06-20
WO2011108226A1 (en) 2011-09-09

Similar Documents

Publication Publication Date Title
CN108688647B (en) Automobile, automobile control device, and automobile control method
CN108622078B (en) Automobile, automobile control device, and automobile control method
JP4535184B2 (en) Control device for hybrid vehicle
JP4197038B2 (en) Hybrid vehicle and control method thereof
JP4301197B2 (en) Vehicle control device
JP4519085B2 (en) Control device for internal combustion engine
JP2014184892A (en) Hybrid vehicle
JP6926656B2 (en) Hybrid vehicle control device
JP2013129260A (en) Hybrid vehicle
JP6852802B2 (en) Hybrid vehicle control method and control device
JP4582184B2 (en) Vehicle control apparatus and control method
JP2013141858A (en) Controller for hybrid vehicle
JP2013187959A (en) Vehicle
JP4195018B2 (en) Control device for hybrid vehicle
JP5584282B2 (en) Control device for hybrid vehicle
JP4479110B2 (en) Control device and control method for automatic engine start
JP5858578B2 (en) Learning device for air-fuel ratio sensor in hybrid vehicle
JP5126023B2 (en) INTERNAL COMBUSTION ENGINE DEVICE, VEHICLE HAVING SAME, AND METHOD FOR CONTROLLING INTERNAL COMBUSTION ENGINE DEVICE
JP2003164013A (en) Method and device for controlling traction for vehicle
JP5520641B2 (en) Control device for internal combustion engine
JP5803485B2 (en) Control device for hybrid vehicle
JP5655693B2 (en) Hybrid car
JP2014189081A (en) Hybrid vehicle
JP5971188B2 (en) Hybrid car
JP2018069779A (en) Hybrid automobile

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140527

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140701

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140717

R150 Certificate of patent or registration of utility model

Ref document number: 5584282

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees