JP2011185104A - Compressor - Google Patents

Compressor Download PDF

Info

Publication number
JP2011185104A
JP2011185104A JP2010048584A JP2010048584A JP2011185104A JP 2011185104 A JP2011185104 A JP 2011185104A JP 2010048584 A JP2010048584 A JP 2010048584A JP 2010048584 A JP2010048584 A JP 2010048584A JP 2011185104 A JP2011185104 A JP 2011185104A
Authority
JP
Japan
Prior art keywords
compressor
pressure
compressed fluid
path
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010048584A
Other languages
Japanese (ja)
Other versions
JP5698912B2 (en
Inventor
Daisuke Takahashi
大輔 高橋
Hiroshi Mihashi
博 三橋
Nobuyuki Narusawa
伸之 成澤
Shinko Hasegawa
真弘 長谷川
Ken Umeda
憲 梅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Industrial Equipment Systems Co Ltd
Original Assignee
Hitachi Industrial Equipment Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Industrial Equipment Systems Co Ltd filed Critical Hitachi Industrial Equipment Systems Co Ltd
Priority to JP2010048584A priority Critical patent/JP5698912B2/en
Priority to CN201110042871.6A priority patent/CN102192133B/en
Publication of JP2011185104A publication Critical patent/JP2011185104A/en
Application granted granted Critical
Publication of JP5698912B2 publication Critical patent/JP5698912B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a compressor reduced in a starting load, preventing lowering of purity of a gas and a humidity rise. <P>SOLUTION: In this compressor supplying a primarily compressed fluid to a compressor body to rase the pressure, the primarily compressed fluid is supplied to the compressor body when starting the compressor body, reducing the pressure of the compressed fluid. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は一次圧縮がなされた圧縮流体を圧縮機本体に吸込み昇圧する圧縮機に関するものである。   The present invention relates to a compressor that sucks a compressed fluid, which has undergone primary compression, into a compressor body and pressurizes the compressed fluid.

特許文献1の圧縮機は、一次圧縮がなされた圧縮流体を圧縮機本体に吸込み、昇圧する圧縮機であって、圧縮機の一次圧縮側には、圧縮機の起動時において流体経路内に外気を取り入れる外気取り入れ手段が設けられており、起動負荷を軽減させている。   The compressor of Patent Document 1 is a compressor that sucks a compressed fluid that has undergone primary compression into a compressor body and boosts the pressure, and the primary compression side of the compressor has external air in the fluid path when the compressor is started. The outside air taking-in means for taking in is provided, and the starting load is reduced.

特許文献2の多段圧縮機は、低圧スクロール部で圧縮された圧縮空気が高圧スクロール部に供給される多段圧縮機であって、タンクの圧力が低圧スクロール部から吐出される圧縮空気の圧力に達するまでの間は、低圧スクロール部から直接タンクへ圧縮空気を供給することにより、低圧スクロール部の起動時の負荷を軽減させている。   The multistage compressor of Patent Document 2 is a multistage compressor in which compressed air compressed in the low pressure scroll unit is supplied to the high pressure scroll unit, and the pressure of the tank reaches the pressure of the compressed air discharged from the low pressure scroll unit. In the meantime, the load at the start of the low-pressure scroll unit is reduced by supplying compressed air directly from the low-pressure scroll unit to the tank.

特開2009−36052JP 2009-36052 A 特開2004−332556JP 2004-332556 A

特許文献1の圧縮機は、窒素ガス等特定の気体の昇圧やエアードライヤーで除湿後の気体の昇圧に用いた場合、起動時に大気を取り入れるため、窒素ガス等の純度の低下や除湿後の気体の湿度の上昇が課題となっている。   The compressor of Patent Document 1 uses a specific gas such as nitrogen gas or pressurizes the gas after dehumidification with an air dryer, so that the air is taken in at the time of start-up. Increased humidity is a problem.

特許文献2の多段圧縮機は、タンクの圧力が低い場合にしか高圧スクロール部の圧力が減圧されないため、起動時であっても、タンクの圧力が高い場合は、十分な減圧がなされず、起動時の負荷を軽減することができない。   In the multistage compressor of Patent Document 2, since the pressure of the high-pressure scroll unit is reduced only when the tank pressure is low, even when the tank is started, if the tank pressure is high, the pressure is not sufficiently reduced and the startup is started. The load of time cannot be reduced.

本発明は、上記課題に鑑み、一次圧縮された供給気体を用いることにより、気体の純度の低下や湿度の上昇を防止しつつ起動負荷を軽減させた圧縮機を提供することを目的とする。   In view of the above problems, an object of the present invention is to provide a compressor that reduces a starting load while preventing a decrease in gas purity and an increase in humidity by using a primary compressed supply gas.

上述した課題を解決するために本発明における圧縮機は、一次圧縮がなされた圧縮流体を圧縮機本体に供給し昇圧し、貯留タンクに貯留する圧縮機において、前記圧縮機本体の起動時に前記一次圧縮がなされた圧縮流体を減圧して前記圧縮機本体に供給することを特徴とするものである。   In order to solve the above-described problems, a compressor according to the present invention supplies a compressed fluid, which has undergone primary compression, to the compressor main body, pressurizes the compressed fluid, and stores the compressed fluid in a storage tank. The compressed fluid that has been compressed is decompressed and supplied to the compressor body.

また、本発明の他の観点における圧縮機は、一次圧縮がなされた圧縮流体を昇圧する圧縮機本体と、前記一次圧縮がなされた圧縮流体を圧縮機本体に供給する第1の経路と、前記一次圧縮がなされた圧縮流体を減圧弁により減圧して圧縮機本体に供給する第2の経路とを備えるものである。   A compressor according to another aspect of the present invention includes a compressor body that pressurizes a compressed fluid that has undergone primary compression, a first path that supplies the compressed fluid that has undergone primary compression to the compressor body, and And a second path for depressurizing the compressed fluid subjected to the primary compression by a pressure reducing valve and supplying the compressed fluid to the main body of the compressor.

本発明によれば、気体の純度の低下や湿度の上昇を防止しつつ起動負荷を軽減させた圧縮機を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the compressor which reduced the starting load can be provided, preventing the fall of the purity of gas, and the raise of humidity.

本発明の実施例1における圧縮機空気回路(圧縮機運転中)Compressor air circuit in Embodiment 1 of the present invention (during compressor operation) 本発明の実施例1における圧縮機空気回路(圧縮機停止中)Compressor air circuit in Example 1 of the present invention (compressor stopped) 本発明の実施例1におけるシーケンス図Sequence diagram in embodiment 1 of the present invention 本発明の実施例1におけるタイミングチャートTiming chart in Embodiment 1 of the present invention 本発明の実施例2における圧縮機空気回路(圧縮機運転中)Compressor air circuit in Embodiment 2 of the present invention (during compressor operation) 本発明の実施例2における圧縮機空気回路(圧縮機停止中)Compressor air circuit in Embodiment 2 of the present invention (during compressor stop)

図1−4を用いて、本発明の実施例1における構成を説明する。   The structure in Example 1 of this invention is demonstrated using FIGS. 1-4.

図1、図2は本発明の実施例1における圧縮機である。1は、例えば、工場等の設備全体に配置された圧縮流体供給経路の一部に設けられ、不図示の外部圧力供給源から供給された気体を一次圧縮した一次圧縮流体を、圧縮機本体2の駆動によりさらに昇圧して一次圧縮流体よりも高圧の二次圧縮流体とするブースター圧縮機である。一次圧縮流体としては、大気から分離された所定の気体(例えば、高純度の窒素ガス)やエアードライヤーにより除湿がなされた気体を用いる。大気と構成成分が異なる気体であって、大気の混入によって純度の低下や湿度の上昇などの問題が生じるものであれば、一次圧縮流体は大気から分離された気体でなくてもよい。   1 and 2 show a compressor in Embodiment 1 of the present invention. 1 is provided in a part of a compressed fluid supply path disposed in an entire facility such as a factory, for example, and compresses a primary compressed fluid obtained by primarily compressing a gas supplied from an external pressure supply source (not shown) into a compressor body 2. Is a booster compressor that is further boosted by driving to make a secondary compressed fluid higher in pressure than the primary compressed fluid. As the primary compressed fluid, a predetermined gas separated from the atmosphere (for example, high purity nitrogen gas) or a gas dehumidified by an air dryer is used. The primary compressed fluid may not be a gas separated from the atmosphere as long as it is a gas having a different constituent component from the atmosphere and causes problems such as a decrease in purity and an increase in humidity due to the mixture of the atmosphere.

2は、例えば不図示のクランクシャフトの回転動によりシリンダ3内のピストンを往復動させ、吸気室4から吸い込んだ前記一次圧縮流体をシリンダ3内(圧縮室内)で圧縮し、これを前記二次圧縮流体として吐出室5から吐出する圧縮機本体である。該吐出された二次圧縮流体は、例えば圧縮機本体2と一体に設けた貯留タンク(以下タンク6)内に貯留される。該貯留された二次圧縮流体は、タンク6に設けた吐出ノズル7から空圧機器等に供給される。以下、圧縮機本体2に対する吸気室4を含む上流側を一次圧縮側、吐出室5及びタンク6を含む下流側を二次圧縮側とする。また、前記一次圧縮側における一次圧縮流体の経路を一次流体経路8とし、二次圧縮側における二次圧縮流体の経路を二次流体経路9とする。   2, for example, a piston in the cylinder 3 is reciprocated by a rotational movement of a crankshaft (not shown), and the primary compressed fluid sucked from the intake chamber 4 is compressed in the cylinder 3 (compression chamber). The compressor body discharges from the discharge chamber 5 as a compressed fluid. The discharged secondary compressed fluid is stored, for example, in a storage tank (hereinafter referred to as a tank 6) provided integrally with the compressor body 2. The stored secondary compressed fluid is supplied from a discharge nozzle 7 provided in the tank 6 to a pneumatic device or the like. Hereinafter, the upstream side including the intake chamber 4 with respect to the compressor body 2 is referred to as a primary compression side, and the downstream side including the discharge chamber 5 and the tank 6 is referred to as a secondary compression side. The primary compressed fluid path on the primary compression side is referred to as a primary fluid path 8, and the secondary compressed fluid path on the secondary compression side is referred to as a secondary fluid path 9.

圧縮機本体2は、例えば電動モータ(以下、モータという)11により回転駆動される。モータ11は電磁開閉器33、圧力開閉器6aと接続されており(詳細は図3のシーケンスにて説明する)、タンク6内の圧力に応じて圧力開閉器6aの作動により運転制御される。タンク6内の圧力が所定の上限値未満の場合にはモータ11は通常駆動させて一次圧縮流体の昇圧を行い、タンク6内の圧力が所定の上限値以上となった場合にはモータ11の駆動を停止して該モータ11を含む圧縮機本体2の過負荷運転を防止する。また、タンク6内の圧力が所定の上限値以上の状態から所定下限値未満の状態に戻った際には、モータ11を運転させ圧縮機本体2を再起動させる。なお、所定の下限値は所定の上限値と同じであってもよいし、所定の上限値よりも低い値であってもよい。圧縮機本体2は、一次圧縮がなされた圧縮流体をさらに圧縮するため、特に起動時や再起動時にピストンに圧力が掛りモータへの負荷が増大するといった問題が生じていた。そこで、特に起動時や再起動時には、圧縮機本体2に供給する流体の圧力を大気圧付近にしてモータへの負荷を軽減する必要がある。   The compressor body 2 is rotationally driven by, for example, an electric motor (hereinafter referred to as a motor) 11. The motor 11 is connected to the electromagnetic switch 33 and the pressure switch 6a (details will be described in the sequence of FIG. 3), and the operation is controlled by the operation of the pressure switch 6a according to the pressure in the tank 6. When the pressure in the tank 6 is less than the predetermined upper limit value, the motor 11 is normally driven to increase the pressure of the primary compressed fluid. When the pressure in the tank 6 exceeds the predetermined upper limit value, the motor 11 The driving is stopped and the overload operation of the compressor body 2 including the motor 11 is prevented. Further, when the pressure in the tank 6 returns from a state of a predetermined upper limit value or more to a state of less than a predetermined lower limit value, the motor 11 is operated to restart the compressor body 2. The predetermined lower limit value may be the same as the predetermined upper limit value, or may be a value lower than the predetermined upper limit value. Since the compressor main body 2 further compresses the compressed fluid that has been subjected to the primary compression, there has been a problem that the load is applied to the motor due to pressure applied to the piston particularly at the time of starting or restarting. Therefore, particularly at the time of starting or restarting, it is necessary to reduce the load on the motor by setting the pressure of the fluid supplied to the compressor main body 2 to near atmospheric pressure.

13は、一次流体経路8及び追加流体経路40と圧縮機本体2との連通を切り替える三方弁である。13は、後述の上流側流体経路8aが接続される上流側ポート14、後述の下流側流体経路8bが接続される下流側ポート15、及び後述の追加流体経路40cに接続される追加ポート16を有するハウジング17内にバルブ体18を往復動可能に収容している。前記バルブ体18が例えば下限位置にあるときに上流側ポート14と下流側ポート15とを連通すると共に追加ポート16を閉塞する一次流体経路連通状態とし、バルブ体18が上限位置にあるときに、上流側ポート14を閉塞すると共に下流側ポート15と追加ポート16とを連通する追加流体経路連通状態となるように三方弁13によって流体の流通経路が切り替えられる。バルブ体18は、スプリング等により前記上限位置に向けて取り付けられている。三方弁13は、タンク6内の圧力によって、バルブ体18を往復動させるので、電磁弁とは異なり大きな電力を供給しなくても強い力でバルブ体18を押し付けることができる。従って、一次流体経路8内の圧力が高く、一次流体経路8の径が大きい場合であっても消費電力の増大を招かずに所望の動作を行うことができる。   Reference numeral 13 denotes a three-way valve that switches communication between the primary fluid path 8 and the additional fluid path 40 and the compressor body 2. 13 includes an upstream port 14 to which an after-mentioned upstream fluid path 8a is connected, a downstream port 15 to which a later-described downstream fluid path 8b is connected, and an additional port 16 connected to an after-mentioned additional fluid path 40c. A valve body 18 is accommodated in a housing 17 having a reciprocating motion. When the valve body 18 is in the lower limit position, for example, the upstream port 14 and the downstream port 15 are in communication and the primary fluid path is in communication with the additional port 16 closed. When the valve body 18 is in the upper limit position, The fluid flow path is switched by the three-way valve 13 so that the upstream port 14 is closed and the additional fluid path is in communication with the downstream port 15 and the additional port 16. The valve body 18 is attached toward the upper limit position by a spring or the like. Since the three-way valve 13 reciprocates the valve body 18 by the pressure in the tank 6, unlike the electromagnetic valve, the valve body 18 can be pressed with a strong force without supplying large electric power. Accordingly, even when the pressure in the primary fluid path 8 is high and the diameter of the primary fluid path 8 is large, a desired operation can be performed without causing an increase in power consumption.

本実施例では一次流体経路8中に設けられた三方弁13の追加ポート16に一次流体経路8と並行して追加一次流体経路40(以下追加流体経路とする)を設けた。追加流体経路40の上流は一次流体経路8上のフィルタ32の上流で一次圧縮流体の配管から分岐接続されている。追加流体経路40は、追加流体経路40a、追加流体経路40b、追加流体経路40cから構成される。追加流体経路40aに弁50、減圧弁48を設け補助タンク47に接続される。補助タンク47の後方には追加流体経路40bを設けその経路上に逆止弁46、フィルター45、電磁弁44、弁49が設けられ追加流体経路40cが三方弁17の追加ポート16に接続されている。   In this embodiment, an additional primary fluid path 40 (hereinafter referred to as an additional fluid path) is provided in parallel with the primary fluid path 8 at the additional port 16 of the three-way valve 13 provided in the primary fluid path 8. The upstream of the additional fluid path 40 is branched from the piping of the primary compressed fluid upstream of the filter 32 on the primary fluid path 8. The additional fluid path 40 includes an additional fluid path 40a, an additional fluid path 40b, and an additional fluid path 40c. A valve 50 and a pressure reducing valve 48 are provided in the additional fluid path 40 a and connected to the auxiliary tank 47. An additional fluid path 40b is provided behind the auxiliary tank 47, and a check valve 46, a filter 45, a solenoid valve 44, and a valve 49 are provided on the path, and the additional fluid path 40c is connected to the additional port 16 of the three-way valve 17. Yes.

本実施例では、圧縮機本体2の起動(再起動)時に、追加流体経路40から一次圧縮流体を減圧して圧縮機本体2に供給するために、大気から圧縮機本体2に供給する場合とは異なり、追加流体経路40の圧力が低くなりすぎる可能性がある。この場合、追加流体経路40を構成する配管や圧縮機本体が損傷する可能性がある。そこで、本実施例では、追加流体経路40に補助タンク47を設けた。これにより、追加流体経路40内の圧力が負圧になり、追加流体経路40を構成する配管の損傷を防止することができる。また、本実施例では、補助タンク47と三方弁13との間に逆止弁46を設けた。これにより、補助タンク47内に追加流体経路40bの流体が逆流し、後述の減圧弁48の損傷を防止することができる。   In the present embodiment, when the compressor main body 2 is started (restarted), the primary compressed fluid is decompressed from the additional fluid path 40 and supplied to the compressor main body 2 to supply the compressor main body 2 from the atmosphere. The pressure in the additional fluid path 40 may be too low. In this case, there is a possibility that the piping and the compressor body constituting the additional fluid path 40 are damaged. Therefore, in this embodiment, the auxiliary tank 47 is provided in the additional fluid path 40. Thereby, the pressure in the additional fluid path | route 40 turns into a negative pressure, and damage to the piping which comprises the additional fluid path | route 40 can be prevented. In this embodiment, a check valve 46 is provided between the auxiliary tank 47 and the three-way valve 13. As a result, the fluid in the additional fluid path 40b flows back into the auxiliary tank 47, and damage to the pressure reducing valve 48 described later can be prevented.

48は、追加流体経路40中に設けられ、一次圧縮流体を減圧して圧縮機本体2に供給する減圧弁である。減圧弁48は起動、再起動時に圧縮機が追加ポート16より一次圧縮流体を吸込んだ時に負圧にならず、また起動負荷の軽減が可能な様に運転中に補助タンク47の圧力が例えば大気圧付近の0.1MPa前後になるように一次圧縮流体を減圧する。この圧力は一次圧縮流体の圧力と流量、圧縮機の容量で負荷状態によって決めることが出来る。これにより、一次圧縮流体を大気圧付近まで減圧して圧縮機本体2に供給し、一次圧縮流体の純度の低下や湿度の上昇などを招かずに圧縮機本体2の起動時、再起動時の負荷を軽減させることができる。   48 is a pressure reducing valve provided in the additional fluid path 40 to depressurize the primary compressed fluid and supply it to the compressor body 2. The pressure reducing valve 48 does not become negative when the compressor sucks the primary compressed fluid from the additional port 16 at the time of starting and restarting, and the pressure of the auxiliary tank 47 is high during operation so that the starting load can be reduced. The primary compressed fluid is depressurized so that it becomes around 0.1 MPa near atmospheric pressure. This pressure can be determined according to the load state by the pressure and flow rate of the primary compressed fluid and the capacity of the compressor. As a result, the primary compressed fluid is depressurized to near atmospheric pressure and supplied to the compressor main body 2, and the compressor main body 2 is started and restarted without causing a decrease in the purity of the primary compressed fluid or an increase in humidity. The load can be reduced.

三方弁13は、モータ11の通常駆動状態には一次流体経路8に設けた三方弁13がその上流側の一次流体経路8(以下、上流側流体経路8aという)と下流側の一次流体経路8(以下、下流側流体経路8bという)とを連通した一次流体経路連通状態となり、圧縮機本体2に一次圧縮流体を供給可能とする。   In the normal driving state of the motor 11, the three-way valve 13 is configured such that the three-way valve 13 provided in the primary fluid path 8 has an upstream primary fluid path 8 (hereinafter referred to as an upstream fluid path 8 a) and a downstream primary fluid path 8. (Hereinafter referred to as the downstream fluid path 8 b) is in a primary fluid path communication state, and the primary compressed fluid can be supplied to the compressor body 2.

このとき、タンク6内の圧力が所定の上限値まで増加すると、モータ11の駆動が停止すると共に、三方弁13が前記一次流体経路連通状態から前記下流側流体経路8bと追加流体経路40cとを連通した追加流体経路連通状態に切り替わり、圧縮機本体2の再起動直後に大気圧付近まで減圧された追加流体経路40cからの流体を吸入可能として起動負荷を軽減させる(図2参照)。   At this time, when the pressure in the tank 6 increases to a predetermined upper limit value, the driving of the motor 11 stops and the three-way valve 13 connects the downstream fluid path 8b and the additional fluid path 40c from the primary fluid path communication state. The communication is switched to the connected additional fluid path communication state, and immediately after the compressor body 2 is restarted, the fluid from the additional fluid path 40c reduced to near atmospheric pressure can be sucked to reduce the starting load (see FIG. 2).

そして、タンク6内の二次圧縮流体の使用等により、該タンク6内の圧力が所定の下限値まで低下すると、モータ11が前記通常駆動状態に戻ると共に、三方弁13が前記追加流体経路連通状態から一次流体経路連通状態へと徐々に切り替わる。なお、図中符号6aはタンク6内の圧力を検出する圧力開閉器を示す。   When the pressure in the tank 6 decreases to a predetermined lower limit value due to the use of the secondary compressed fluid in the tank 6, the motor 11 returns to the normal driving state, and the three-way valve 13 communicates with the additional fluid path. The state gradually switches from the state to the primary fluid path communication state. In addition, the code | symbol 6a in a figure shows the pressure switch which detects the pressure in the tank 6. FIG.

バルブ体18の上端側には、ハウジング17内に形成されたシリンダ17a内に臨むピストン18aが設けられる。シリンダ17aにはタンク6から延びる圧力供給経路21が接続され、該圧力供給経路21を介してタンク6内の圧力がシリンダ17a内に供給されることで、ピストン18aと共にバルブ体18が前記付勢力に抗して下方に移動し、三方弁13が前記一次流体経路連通状態となる。一方、シリンダ17a内への圧力供給が停止すると、ピストン18aと共にバルブ体18が前記付勢力により上方に移動し、三方弁13が前記追加流体経路連通状態に切り替わる。バルブ体18を下方に移動させるために要するタンク6内の圧力は、モータ11が停止する前記所定の上限値よりも低く大気圧よりも高い値とされる。   On the upper end side of the valve body 18, a piston 18 a facing the cylinder 17 a formed in the housing 17 is provided. A pressure supply path 21 extending from the tank 6 is connected to the cylinder 17a, and the pressure in the tank 6 is supplied into the cylinder 17a via the pressure supply path 21 so that the valve body 18 and the urging force are moved together with the piston 18a. The three-way valve 13 enters the primary fluid path communication state. On the other hand, when the pressure supply into the cylinder 17a is stopped, the valve body 18 is moved upward together with the piston 18a by the biasing force, and the three-way valve 13 is switched to the additional fluid path communication state. The pressure in the tank 6 required to move the valve body 18 downward is set to a value lower than the predetermined upper limit value at which the motor 11 stops and higher than the atmospheric pressure.

22は、圧力供給経路21と三方弁3との間に設けられ、圧力供給経路21と三方弁3との連通を切り替える電磁弁である。該電磁弁22は、そのタンク6側の圧力供給経路21(タンク側供給経路21a)と三方弁13側の圧力供給経路21(バルブ側供給経路21b)とを連通した経路連通状態と、前記連通を遮断した連通遮断状態とを切り替える。電磁弁22は、前記タンク側供給経路21aが接続されるタンク側ポート23、及びバルブ側供給経路21bが接続されるバルブ側ポート24、大気に連通した大気ポート27を有するハウジング25内にバルブ体26を往復動可能に収容してなり、前記バルブ体26が例えば上限位置にあるときには、タンク側ポート23とバルブ側ポート24とを連通した前記経路連通状態となり、バルブ体26が下限位置にあるときには、前記連通を遮断した前記連通遮断しバルブ側ポート24を大気ポートへ連通した状態となる。   An electromagnetic valve 22 is provided between the pressure supply path 21 and the three-way valve 3 and switches communication between the pressure supply path 21 and the three-way valve 3. The electromagnetic valve 22 is connected to the tank 6 side pressure supply path 21 (tank side supply path 21a) and the three-way valve 13 side pressure supply path 21 (valve side supply path 21b). Switch to the communication cut-off state. The solenoid valve 22 has a valve body in a housing 25 having a tank side port 23 to which the tank side supply path 21a is connected, a valve side port 24 to which the valve side supply path 21b is connected, and an atmospheric port 27 communicating with the atmosphere. When the valve body 26 is in the upper limit position, for example, the tank side port 23 and the valve side port 24 are in communication with each other, and the valve body 26 is in the lower limit position. Sometimes, the communication is cut off and the valve side port 24 is connected to the atmospheric port.

バルブ体26の上端側は、ハウジング25内に支持されたソレノイド25aに挿通され、該ソレノイド25aへの通電の有無によりバルブ体26が上下動することで、電磁弁22が前記経路連通状態又は連通遮断状態に切り替わる。   The upper end side of the valve body 26 is inserted into a solenoid 25a supported in the housing 25, and the valve body 26 moves up and down depending on whether or not the solenoid 25a is energized, so that the electromagnetic valve 22 is in the path communication state or communication. Switch to the shut-off state.

電磁弁22の駆動は電磁開閉器33により制御され、タンク6内の圧力が前記上限値未満であれば、電磁弁22が前記経路連通状態となり、圧力供給経路21を介して三方弁13にタンク6内の圧力が供給され、該三方弁13が前記一次流体経路連通状態に切り替わる。一方、タンク6内の圧力が前記上限値まで増加すると、電磁弁22が前記連通遮断状態に切り替わり圧力供給経路21bが大気開放されるため、三方弁13への圧力供給が遮断され、該三方弁13が前記追加流体経路連通状態となる。また、この状態からタンク6内の圧力が前記下限値まで低下すると、電磁弁22が経路連通状態に戻り、三方弁13が一次流体経路連通状態に戻る。   The driving of the electromagnetic valve 22 is controlled by an electromagnetic switch 33. If the pressure in the tank 6 is less than the upper limit value, the electromagnetic valve 22 is in the communication state, and the tank is connected to the three-way valve 13 via the pressure supply path 21. 6 is supplied, and the three-way valve 13 is switched to the primary fluid path communication state. On the other hand, when the pressure in the tank 6 increases to the upper limit value, the electromagnetic valve 22 is switched to the communication cut-off state and the pressure supply path 21b is opened to the atmosphere, so that the pressure supply to the three-way valve 13 is cut off, and the three-way valve 13 is the additional fluid path communication state. In addition, when the pressure in the tank 6 decreases to the lower limit value from this state, the electromagnetic valve 22 returns to the path communication state, and the three-way valve 13 returns to the primary fluid path communication state.

28は圧力供給経路21のバルブ側供給経路21bに設けられて圧縮機本体2の再起動時に三方弁13の連通状態を徐々に変化させる流量調整弁を示す。   Reference numeral 28 denotes a flow rate adjusting valve provided in the valve side supply path 21b of the pressure supply path 21 to gradually change the communication state of the three-way valve 13 when the compressor body 2 is restarted.

32は一次流体経路8の上流側流体経路8aに設けられたドレン除去機能を有するフィルタである。   Reference numeral 32 denotes a filter having a drain removing function provided in the upstream fluid path 8 a of the primary fluid path 8.

46は圧縮機の異常や電磁弁41の異常で減圧弁48に負荷がかからないように設けられた逆止弁である。   A check valve 46 is provided so that a load is not applied to the pressure reducing valve 48 due to an abnormality of the compressor or an abnormality of the electromagnetic valve 41.

49、50はメンテナンス時に圧縮機本体2内の流体と一次圧縮流体とを遮断するために設けられた弁である。   49 and 50 are valves provided to shut off the fluid in the compressor body 2 and the primary compressed fluid during maintenance.

本実施例の圧縮機1によれば、圧縮機本体2の起動、再起動時において一次圧縮がされた圧縮流体を大気圧付近まで減圧して圧縮機本体2に供給することができる。特に、一次圧縮がされた流体が大気と構成成分の異なる所定の気体である場合は、気体の純度を維持しつつ、圧縮機本体2の起動負荷を軽減させることができる。また、一次圧縮がされた流体がエアードライヤーにより除湿がなされた流体である場合は、湿度の上昇を防止しつつ圧縮機本体の起動負荷を軽減することができる。   According to the compressor 1 of the present embodiment, the compressed fluid that has been subjected to primary compression at the time of starting and restarting the compressor body 2 can be reduced to near atmospheric pressure and supplied to the compressor body 2. In particular, when the first-compressed fluid is a predetermined gas having a constituent component different from that of the atmosphere, the starting load of the compressor body 2 can be reduced while maintaining the purity of the gas. Moreover, when the fluid subjected to primary compression is a fluid that has been dehumidified by an air dryer, it is possible to reduce the startup load of the compressor body while preventing an increase in humidity.

次に、図3により圧縮機1のシーケンスを説明する。なお、図中でこれまで説明した構成要素と同一部品には同一の番号で示した。   Next, the sequence of the compressor 1 will be described with reference to FIG. In the figure, the same components as those described so far are indicated by the same numbers.

モータ11は電磁開閉器33内の電磁接触器61とサマルリレー62を介して電源60に接続されている。一方、電磁開閉器33の操作回路には電磁弁22、電磁弁44、圧力開閉器6a、電源スイッチ(起動スイッチ)63が接続されている。起動スイッチ63を入れることにより電磁接触器61が閉隣電磁弁22に通電されるとともにモータ11が駆動される。これにより、電磁弁22、44が経路連通状態となる。起動直後においては、三方弁13内のバルブ体18が上方にあるため、三方弁13内は、追加流体経路連通状態である。起動後、タンク6内の圧力が上昇すると圧力供給経路21を介して三方弁13にタンク6内の圧力が供給され、該三方弁13が一次流体経路連通状態に徐々に切り替わる。また、タンク内圧力が所定の圧力まで上昇すると圧力開閉器6aが開となり電磁接触器61が開となりモータが停止するとともに電磁弁22への通電が遮断される。これにより、電磁弁22が連通遮断状態に切り替わり圧力供給経路21bが大気開放されるため、三方弁13への圧力供給が遮断され、該三方弁13が追加流体経路連通状態に切り替わる。   The motor 11 is connected to a power source 60 via an electromagnetic contactor 61 and a summar relay 62 in the electromagnetic switch 33. On the other hand, an electromagnetic valve 22, an electromagnetic valve 44, a pressure switch 6a, and a power switch (start switch) 63 are connected to the operation circuit of the electromagnetic switch 33. When the start switch 63 is turned on, the electromagnetic contactor 61 is energized to the closed adjacent electromagnetic valve 22 and the motor 11 is driven. Thereby, the solenoid valves 22 and 44 will be in a path | route communication state. Immediately after startup, the valve body 18 in the three-way valve 13 is on the upper side, so that the inside of the three-way valve 13 is in an additional fluid path communication state. After startup, when the pressure in the tank 6 rises, the pressure in the tank 6 is supplied to the three-way valve 13 via the pressure supply path 21, and the three-way valve 13 is gradually switched to the primary fluid path communication state. When the pressure in the tank rises to a predetermined pressure, the pressure switch 6a is opened, the electromagnetic contactor 61 is opened, the motor is stopped, and the energization to the electromagnetic valve 22 is interrupted. As a result, the electromagnetic valve 22 is switched to the communication cut-off state, and the pressure supply path 21b is opened to the atmosphere, so that the pressure supply to the three-way valve 13 is cut off, and the three-way valve 13 is switched to the additional fluid path communication state.

次に、これらの各部動作と圧力変化を図4のタイミングチャートを用いて説明する。   Next, the operation of each part and the pressure change will be described with reference to the timing chart of FIG.

図4は縦に各部スイッチ、弁などの動作状態と各部の圧力を示し、横軸は時間を示す。また、縦の破線は代表的な状態を示し、(1)〜(5)の状態をもって各部の動作を説明する。   FIG. 4 shows the operating state of each part switch, valve, etc. and the pressure of each part vertically, and the horizontal axis shows time. A vertical broken line indicates a typical state, and the operation of each part will be described with the states (1) to (5).

(1)〜(2)は停止状態を示す。停止状態において、一次流体経路8には一次圧縮流体の圧力が作用している。また、タンク6内の圧力はかかっていないため圧力開閉器6aは閉の状態である。また、電磁弁44の弁体42は上昇していて追加流体経路40を遮断している。   (1)-(2) shows a stop state. In the stop state, the pressure of the primary compressed fluid is acting on the primary fluid path 8. Further, since the pressure in the tank 6 is not applied, the pressure switch 6a is in a closed state. Further, the valve element 42 of the electromagnetic valve 44 is lifted to block the additional fluid path 40.

(2)の時点で起動スイッチ63を開にすることでシーケンス図でも示したように電磁接触器61が開となりモータ11が運転状態となる。ここで、三方弁のシリンダ17a内に圧力が作用して弁体18が下降して追加ポート16を遮断するまでの間は一次圧縮流体が減圧弁47によって大気圧付近まで減圧された状態で圧縮機に供給され、負荷軽減の状態で起動する。即ち、電磁弁22にも通電され圧力供給経路21と三方弁間が連通状態となるがタンク6内の圧力が低いため三方弁は追加流体経路40cに通じた状態であり通路8bは大気圧付近まで減圧された補助タンク47の圧力であり、圧縮機本体2は無負荷運転となる。この間に圧縮機は回転が上昇する。   By opening the start switch 63 at the time of (2), the electromagnetic contactor 61 is opened and the motor 11 is in an operating state as shown in the sequence diagram. Here, the primary compressed fluid is compressed to a pressure near the atmospheric pressure by the pressure reducing valve 47 until the valve element 18 descends and the additional port 16 is shut off by the pressure acting on the cylinder 17a of the three-way valve. It is supplied to the machine and starts up in a reduced load state. That is, the solenoid valve 22 is energized and the pressure supply path 21 and the three-way valve are in communication with each other. However, since the pressure in the tank 6 is low, the three-way valve is in communication with the additional fluid path 40c and the path 8b is near atmospheric pressure. This is the pressure of the auxiliary tank 47 that has been depressurized until the compressor body 2 is in a no-load operation. During this time, the rotation of the compressor increases.

(3)の時点は、タンク圧力が高くなり流量調整弁28を通って三方弁シリンダ内17aの圧力が上昇すると三方弁の弁体18が下降しの位置で追加ポート16を遮断し経路8aと8b間を連通し、三方弁13が一次流体経路連通状態となる。三方弁13が一次流体経路連通状態となると、一次圧縮流体圧力からの昇圧運転となりタンク6内の圧力の上昇も早くなる。   At the time of (3), when the tank pressure increases and the pressure in the three-way valve cylinder 17a rises through the flow regulating valve 28, the additional port 16 is shut off at the position where the valve body 18 of the three-way valve descends, and the path 8a 8b is communicated, and the three-way valve 13 enters the primary fluid path communication state. When the three-way valve 13 enters the primary fluid path communication state, the pressure increase operation starts from the primary compressed fluid pressure, and the pressure in the tank 6 rises quickly.

(4)の時点では、タンク6内の圧力が上昇し所定の上限値になり、圧力開閉器6aが開となり電磁接触器61が開、モータ11が停止、電磁弁22の通電が遮断され弁26が下降する。このとき、三方弁13のシリンダ17aが大気圧となるため、追加流体経路連通状態となり、吸込み経路8bが大気圧付近まで減圧された補助タンク47の圧力となる。また、また電磁弁41も追加流体経路40を遮断し一次圧縮流体は圧縮機側へ流れないようになる。   At the time of (4), the pressure in the tank 6 rises to a predetermined upper limit value, the pressure switch 6a is opened, the electromagnetic contactor 61 is opened, the motor 11 is stopped, the energization of the electromagnetic valve 22 is cut off, and the valve 26 descends. At this time, since the cylinder 17a of the three-way valve 13 is at atmospheric pressure, the additional fluid path is in communication, and the suction path 8b is at the pressure of the auxiliary tank 47 whose pressure is reduced to near atmospheric pressure. The electromagnetic valve 41 also blocks the additional fluid path 40 so that the primary compressed fluid does not flow to the compressor side.

(5)の時点では、圧縮機の空気が使用されタンク6内の圧力が低下し、圧力開閉器6aが閉となりモータ11が再起動する。この時点においては、三方弁は追加流体経路40cに通じた状態であり通路8bは大気圧付近まで減圧された補助タンク47の圧力であり、圧縮機本体2は無負荷運転となる。モータ11が再起動すると電磁弁22に通電されタンク圧力が流量調整弁28を通って絞りによる時間遅れの後、三方弁13のシリンダ17aの圧力が上昇する。シリンダ17aの圧力が上昇すると追加ポート16が徐々に遮断され吸込み経路8aと8bが連通され一次圧縮流体による昇圧となる。   At the time of (5), the air in the compressor is used, the pressure in the tank 6 decreases, the pressure switch 6a is closed, and the motor 11 is restarted. At this time, the three-way valve is in a state communicating with the additional fluid path 40c, the path 8b is the pressure of the auxiliary tank 47 that is decompressed to near atmospheric pressure, and the compressor main body 2 is in a no-load operation. When the motor 11 is restarted, the solenoid valve 22 is energized, the tank pressure passes through the flow rate adjusting valve 28, and after a time delay due to throttling, the pressure in the cylinder 17a of the three-way valve 13 increases. When the pressure of the cylinder 17a rises, the additional port 16 is gradually cut off and the suction paths 8a and 8b are communicated to increase the pressure by the primary compressed fluid.

以上説明した本実施例によれば、圧縮機本体2の起動(再起動時)に一次圧縮がなされた圧縮流体を減圧して圧縮機本体2に供給することとしたため、一次圧縮流体の純度の低下や湿度の上昇を招かずに圧縮機本体2の起動(再起動時)の負荷を低減させることができる。   According to the present embodiment described above, since the compressed fluid that has been subjected to the primary compression at the start-up (re-start) of the compressor body 2 is depressurized and supplied to the compressor body 2, the purity of the primary compressed fluid is reduced. The load at the start-up (re-starting) of the compressor main body 2 can be reduced without causing a decrease or an increase in humidity.

図5、6を用いて本発明の実施例2における構成を説明する。ここでは、実施例1と同じ構成には同じ符号で示し、その説明を省略する。本実施例では、実施例1の三方弁13に代えて電磁弁60を用いたことを特徴としている。一次圧縮流体の圧力がそれほど高くなく、一次流体経路8にそれほど大きな圧力がかからない場合において、三方弁13に代えて電磁弁60を用いても
60は、一次流体経路8及び追加流体経路40と圧縮機本体2との連通を切り替える電磁弁である。60は、上流側流体経路8aが接続される上流側ポート14、下流側流体経路8bが接続される下流側ポート15、及び追加流体経路40cに接続される追加ポート16を備え、弁体61を往復動可能に収容している。図5のように弁体61が例えば下限位置にあるときに上流側ポート14と下流側ポート15とを連通すると共に追加ポート16を閉塞する一次流体経路連通状態とし、図6のように弁体61が上限位置にあるときに、上流側ポート14を閉塞すると共に下流側ポート15と追加ポート16とを連通する追加流体経路連通状態となるように電磁弁60によって流体の流通経路が切り替えられる。電磁弁60の駆動後において、弁体61が急激に上限位置から下限位置に移動しないために、弁体61はスプリング等により上限位置に向けて取り付けられている。
The configuration of the second embodiment of the present invention will be described with reference to FIGS. Here, the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted. The present embodiment is characterized in that an electromagnetic valve 60 is used instead of the three-way valve 13 of the first embodiment. Even when the electromagnetic valve 60 is used instead of the three-way valve 13 when the pressure of the primary compressed fluid is not so high and so much pressure is not applied to the primary fluid path 8, 60 is compressed with the primary fluid path 8 and the additional fluid path 40. It is an electromagnetic valve that switches communication with the machine body 2. 60 includes an upstream port 14 to which the upstream fluid path 8a is connected, a downstream port 15 to which the downstream fluid path 8b is connected, and an additional port 16 to which the additional fluid path 40c is connected. It is housed so that it can reciprocate. As shown in FIG. 5, when the valve body 61 is at the lower limit position, for example, the upstream port 14 and the downstream port 15 are in communication with each other and the primary fluid path is in communication with the additional port 16 closed. When 61 is in the upper limit position, the fluid flow path is switched by the electromagnetic valve 60 so that the upstream port 14 is closed and the additional fluid path communicating with the downstream port 15 and the additional port 16 is brought into communication. After the electromagnetic valve 60 is driven, the valve body 61 is attached toward the upper limit position by a spring or the like so that the valve body 61 does not suddenly move from the upper limit position to the lower limit position.

一次圧縮流体の圧力がそれほど高くなく、一次流体経路8にそれほど大きな圧力がかからない場合において、三方弁13に代えて電磁弁60を用いても一次流体経路8及び追加流体経路40と圧縮機本体2との連通を消費電力の増大を招かずに切り替えることは可能である。この場合、三方弁13を配置する必要がないため、部品点数を少なくすることができ、省スペース化・低コスト化を実現することができる。   When the pressure of the primary compressed fluid is not so high and the primary fluid path 8 is not so large, even if the electromagnetic valve 60 is used instead of the three-way valve 13, the primary fluid path 8, the additional fluid path 40, and the compressor body 2 are used. It is possible to switch the communication with without increasing the power consumption. In this case, since it is not necessary to arrange the three-way valve 13, the number of parts can be reduced, and space saving and cost reduction can be realized.

ここで、電磁弁60の動作について説明する。電磁弁60は実施例1の電磁弁22と同様に起動スイッチ63を開にすることでモータ11と共に駆動される。起動時には、図6のように電磁弁60の弁体61は上限位置にあり、上流側ポート14を閉塞すると共に下流側ポート15と追加ポート16とを連通する追加流体経路連通状態となっている。これにより、起動時には、一次圧縮流体が減圧弁47によって大気圧付近まで減圧された状態で追加流体経路40を通じて圧縮機本体2に供給され、負荷軽減の状態で起動する。起動後、電磁弁60の弁体61は徐々に下限位置に向けて移動する。電磁弁60の弁体61が下限位置まで移動すると、上流側ポート14と下流側ポート15とを連通すると共に追加ポート16を閉塞する一次流体経路連通状態となる。これにより、一次圧縮流体が一次流体経路8を通じて圧縮機本体2に供給され、一次圧縮流体圧力からの昇圧運転となりタンク6内の圧力の上昇も早くなる。   Here, the operation of the electromagnetic valve 60 will be described. The solenoid valve 60 is driven together with the motor 11 by opening the start switch 63 in the same manner as the solenoid valve 22 of the first embodiment. At the time of start-up, the valve body 61 of the electromagnetic valve 60 is in the upper limit position as shown in FIG. 6 and is in an additional fluid path communication state that closes the upstream port 14 and communicates the downstream port 15 and the additional port 16. . Thereby, at the time of start-up, the primary compressed fluid is supplied to the compressor body 2 through the additional fluid path 40 in a state where the pressure is reduced to near atmospheric pressure by the pressure reducing valve 47, and is started in a state of reducing the load. After activation, the valve body 61 of the electromagnetic valve 60 gradually moves toward the lower limit position. When the valve body 61 of the electromagnetic valve 60 moves to the lower limit position, the primary fluid path communication state is established in which the upstream port 14 and the downstream port 15 are communicated and the additional port 16 is closed. As a result, the primary compressed fluid is supplied to the compressor body 2 through the primary fluid path 8, and the pressure is increased from the primary compressed fluid pressure, so that the pressure in the tank 6 increases quickly.

以上説明した本実施例によれば、実施例1と同様に圧縮機本体2の起動(再起動時)に一次圧縮がなされた圧縮流体を減圧して圧縮機本体2に供給することとしたため、一次圧縮流体の純度の低下や湿度の上昇を招かずに圧縮機本体2の起動(再起動時)の負荷を低減させることができる。また、特に、一次圧縮流体の圧力がそれほど高くなく、一次流体経路8にそれほど大きな圧力がかからない場合において、実施例1と比較して部品点数を少なくすることができ、省スペース化・低コスト化を実現することができる。   According to the present embodiment described above, the compressed fluid that has been subjected to the primary compression at the start (restart) of the compressor body 2 is decompressed and supplied to the compressor body 2 as in the first embodiment. It is possible to reduce the load of starting (restarting) the compressor main body 2 without causing a decrease in the purity of the primary compressed fluid or an increase in humidity. In particular, when the pressure of the primary compressed fluid is not so high and the primary fluid path 8 is not so high in pressure, the number of parts can be reduced as compared with the first embodiment, and space saving and cost reduction can be achieved. Can be realized.

これまで説明してきた実施例は、何れも本発明を実施するにあたっての具体化の一例を示したものに過ぎず、これらによって本発明の技術的範囲が限定的に解釈されない。すなわち、本発明はその技術思想、又はその主要な特徴から逸脱することなく、様々な形で実施することができる。   The embodiments described so far are merely examples of implementation in carrying out the present invention, and the technical scope of the present invention is not limitedly interpreted by these. That is, the present invention can be implemented in various forms without departing from the technical idea or the main features thereof.

6 タンク
6a 圧力開閉器
8 一次流体経路(8a、8b)
11 モータ
13 三方弁
16 三方弁13の追加ポート
18 三方弁13の弁体
21 圧力供給経路
22 電磁弁
26 電磁弁22の弁体
28 流量調整弁
33 電磁開閉器
40 追加流体経路(40a、40b、40c)
42 電磁弁44の弁体
44 電磁弁
46 逆止弁
47 補助タンク
48 減圧弁
60 電磁弁
61 電磁弁60の弁体
6 Tank 6a Pressure switch 8 Primary fluid path (8a, 8b)
11 Motor 13 Three-way valve 16 Additional port 18 of the three-way valve 13 Valve body 21 of the three-way valve 13 Pressure supply path 22 Solenoid valve 26 Valve body 28 of the solenoid valve 22 Flow rate adjusting valve
33 Electromagnetic switch 40 Additional fluid path (40a, 40b, 40c)
42 Valve body 44 of solenoid valve 44 Solenoid valve 46 Check valve 47 Auxiliary tank 48 Pressure reducing valve 60 Solenoid valve 61 Valve body of solenoid valve 60

Claims (18)

一次圧縮がなされた圧縮流体を圧縮機本体に供給し昇圧し、貯留タンクに貯留する圧縮機において、
前記圧縮機本体の起動時に前記一次圧縮がなされた圧縮流体を減圧して前記圧縮機本体に供給することを特徴とする圧縮機。
In the compressor that supplies the compressed fluid that has undergone primary compression to the compressor body, boosts the pressure, and stores the compressed fluid in a storage tank,
A compressor characterized in that when the compressor body is started, the compressed fluid that has undergone the primary compression is decompressed and supplied to the compressor body.
前記一次圧縮がなされた圧縮流体を減圧弁により減圧して前記圧縮機本体の起動時に前記圧縮機本体に供給することを特徴とする請求項1に記載の圧縮機。   2. The compressor according to claim 1, wherein the compressed fluid subjected to the primary compression is decompressed by a decompression valve and is supplied to the compressor body when the compressor body is started. 前記減圧弁により減圧した圧縮流体を補助タンクに貯留する請求項2に記載の圧縮機。   The compressor according to claim 2, wherein the compressed fluid decompressed by the pressure reducing valve is stored in an auxiliary tank. 前記補助タンクと前記圧縮機本体との間に逆止弁を設けることを特徴とする請求項3に記載の圧縮機。   The compressor according to claim 3, wherein a check valve is provided between the auxiliary tank and the compressor body. 前記一次圧縮がなされた圧縮流体は大気と構成成分の異なる所定の気体であること特徴とする請求項1乃至4のいずれかに記載の圧縮機。   The compressor according to any one of claims 1 to 4, wherein the compressed fluid subjected to the primary compression is a predetermined gas having a constituent component different from that of the atmosphere. 前記一次圧縮がなされた圧縮流体はエアードライヤーにより除湿がなされた気体であることを特徴とする請求項1乃至4のいずれかに記載の圧縮機。   The compressor according to claim 1, wherein the compressed fluid subjected to the primary compression is a gas dehumidified by an air dryer. 前記圧縮機本体を起動後に前記貯留タンク内の圧力が所定の上限値以上になった場合に前記圧縮機本体の運転を停止させ、前記圧縮機本体を停止させた後、前記貯留タンク内の圧力が所定の下限値未満になった場合に前記圧縮機本体を再起動することを特徴とする請求項1乃至6のいずれかに記載の圧縮機。   After starting the compressor body, when the pressure in the storage tank becomes equal to or higher than a predetermined upper limit value, the operation of the compressor body is stopped, and after the compressor body is stopped, the pressure in the storage tank The compressor according to any one of claims 1 to 6, wherein the compressor body is restarted when the value becomes less than a predetermined lower limit value. 一次圧縮がなされた圧縮流体を昇圧する圧縮機本体と、
前記一次圧縮がなされた圧縮流体を圧縮機本体に供給する第1の経路と、
前記一次圧縮がなされた圧縮流体を減圧弁により減圧して圧縮機本体に供給する第2の経路とを備える圧縮機。
A compressor body that pressurizes a compressed fluid that has undergone primary compression;
A first path for supplying the compressed fluid subjected to the primary compression to the compressor body;
A compressor comprising: a second path that depressurizes the compressed fluid subjected to the primary compression by a pressure reducing valve and supplies the compressed fluid to the compressor body.
前記圧縮機の起動時に前記第2の経路から圧縮機本体に前記一次圧縮がなされた圧縮流体を前記圧縮機本体に供給することを特徴とする請求項8に記載の圧縮機。   9. The compressor according to claim 8, wherein when the compressor is started, the compressed fluid that has been subjected to the primary compression is supplied to the compressor body from the second path. 前記第2の経路に補助タンクを設けることを特徴とする請求項8に記載の圧縮機。   The compressor according to claim 8, wherein an auxiliary tank is provided in the second path. 前記補助タンクと前記圧縮機本体との間に逆止弁を設けることを特徴とする請求項9に記載の圧縮機。   The compressor according to claim 9, wherein a check valve is provided between the auxiliary tank and the compressor main body. 前記一次圧縮がなされた圧縮流体は大気と構成成分の異なる所定の気体であること特徴とする請求項8乃至11のいずれかに記載の圧縮機。   The compressor according to any one of claims 8 to 11, wherein the compressed fluid subjected to the primary compression is a predetermined gas having a constituent component different from that of the atmosphere. 前記一次圧縮がなされた圧縮流体はエアードライヤーにより除湿がなされた気体であることを特徴とする請求項8乃至11のいずれかに記載の圧縮機。   The compressor according to any one of claims 8 to 11, wherein the compressed fluid subjected to the primary compression is a gas dehumidified by an air dryer. 前記圧縮機本体により圧縮された流体を貯留する貯留タンクを備え、
前記貯留タンクの圧力が所定の上限値以上になった場合に前記圧縮機本体の運転を停止させ、前記貯留タンク内の圧力が所定の下限値未満になった場合に前期圧縮機本体を再起動させることを特徴とする請求項8乃至13のいずれかに記載の圧縮機。
A storage tank for storing the fluid compressed by the compressor body;
When the pressure in the storage tank exceeds a predetermined upper limit value, the operation of the compressor body is stopped, and when the pressure in the storage tank becomes lower than a predetermined lower limit value, the previous compressor body is restarted. The compressor according to any one of claims 8 to 13, wherein
前記第1の経路及び前記第2の経路と前記圧縮機本体との連通を切り替える三方弁を備えることを特徴とする請求項14に記載の圧縮機。   The compressor according to claim 14, further comprising a three-way valve that switches communication between the first path and the second path and the compressor body. 前記三方弁は、前記貯留タンクの圧力が前記所定の上限値以上になった場合は前記第2の経路と前記圧縮機本体を連通させ、前記貯留タンクの圧力が前記所定の下限値未満になった場合は前記第2の経路と前記圧縮機本体が連通された状態から前記第1の経路と前記圧縮本体が連通された状態へ切り替えることを特徴とする請求項15に記載の圧縮機。   The three-way valve causes the second path and the compressor main body to communicate with each other when the pressure of the storage tank becomes equal to or higher than the predetermined upper limit value, and the pressure of the storage tank becomes less than the predetermined lower limit value. The compressor according to claim 15, wherein the compressor switches from a state in which the second path and the compressor body communicate with each other to a state in which the first path and the compression body communicate with each other. 前記貯留タンクと前記三方弁との間に前記三方弁と前記貯留タンクとの連通を切り替える電磁弁を備える請求項16に記載の圧縮機。   The compressor according to claim 16, further comprising an electromagnetic valve that switches communication between the three-way valve and the storage tank between the storage tank and the three-way valve. 前記第1の経路及び前記第2の経路と前記圧縮機本体との連通を切り替える電磁弁を備えることを特徴とする請求項14に記載の圧縮機。   The compressor according to claim 14, further comprising an electromagnetic valve that switches communication between the first path and the second path and the compressor body.
JP2010048584A 2010-03-05 2010-03-05 Compressor Active JP5698912B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010048584A JP5698912B2 (en) 2010-03-05 2010-03-05 Compressor
CN201110042871.6A CN102192133B (en) 2010-03-05 2011-02-21 Compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010048584A JP5698912B2 (en) 2010-03-05 2010-03-05 Compressor

Publications (2)

Publication Number Publication Date
JP2011185104A true JP2011185104A (en) 2011-09-22
JP5698912B2 JP5698912B2 (en) 2015-04-08

Family

ID=44600832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010048584A Active JP5698912B2 (en) 2010-03-05 2010-03-05 Compressor

Country Status (2)

Country Link
JP (1) JP5698912B2 (en)
CN (1) CN102192133B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017190702A (en) * 2016-04-13 2017-10-19 株式会社日立産機システム Compressor
JP2018132294A (en) * 2018-03-09 2018-08-23 三菱重工サーマルシステムズ株式会社 Cooling device for liquid gas and maintenance method thereof
US10571190B2 (en) 2015-01-05 2020-02-25 Mitsubishi Heavy Industries Thermal Systems, Ltd. Liquefied gas cooling apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000249047A (en) * 1999-02-24 2000-09-12 Sanyo Electric Co Ltd High pressure gas generator
JP2008248798A (en) * 2007-03-30 2008-10-16 Hitachi Ltd Gas booster
JP2008248846A (en) * 2007-03-30 2008-10-16 Hitachi Ltd Gas booster/compressor
JP2009008065A (en) * 2007-06-29 2009-01-15 Hitachi Ltd Compressor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19812796C2 (en) * 1998-02-06 2000-05-18 Skl Motoren Systemtech Process for increasing fuel gas pressure and compressor system
CN2462311Y (en) * 2001-01-21 2001-11-28 郎荣光 Fast pressure balancer of refrigeration compressor
JP2005220750A (en) * 2004-02-03 2005-08-18 Kobe Steel Ltd Air compressor
JP4690694B2 (en) * 2004-10-27 2011-06-01 日立工機株式会社 air compressor
JP5075521B2 (en) * 2007-07-31 2012-11-21 株式会社日立産機システム Compressor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000249047A (en) * 1999-02-24 2000-09-12 Sanyo Electric Co Ltd High pressure gas generator
JP2008248798A (en) * 2007-03-30 2008-10-16 Hitachi Ltd Gas booster
JP2008248846A (en) * 2007-03-30 2008-10-16 Hitachi Ltd Gas booster/compressor
JP2009008065A (en) * 2007-06-29 2009-01-15 Hitachi Ltd Compressor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10571190B2 (en) 2015-01-05 2020-02-25 Mitsubishi Heavy Industries Thermal Systems, Ltd. Liquefied gas cooling apparatus
JP2017190702A (en) * 2016-04-13 2017-10-19 株式会社日立産機システム Compressor
JP2018132294A (en) * 2018-03-09 2018-08-23 三菱重工サーマルシステムズ株式会社 Cooling device for liquid gas and maintenance method thereof

Also Published As

Publication number Publication date
CN102192133A (en) 2011-09-21
CN102192133B (en) 2016-07-06
JP5698912B2 (en) 2015-04-08

Similar Documents

Publication Publication Date Title
KR101778318B1 (en) Pumping method and device with low power consumption
US5681151A (en) Motor driven air compressor having a combined vent valve and check valve assembly
JP5706681B2 (en) Multistage compressor
US20090016904A1 (en) Compressor
JP5698912B2 (en) Compressor
KR101610986B1 (en) System for actuation in an admission valve of a gas compressor
KR101253086B1 (en) Energy saving device for oil injection type screw compressor
KR20040064630A (en) Oil pressure controlling apparatus for switchgear
CN102465867A (en) Compression device and operation control method thereof
JP6216204B2 (en) Lubricating compressor
KR101509994B1 (en) Oil Pressure Engaging type Variable Displacement Oil Pump
EP1407147B1 (en) Screw compressor
JP6596377B2 (en) Compressor
KR102235562B1 (en) Method of Pumping in a Pumping System And Vacuum Pump System
JP5075521B2 (en) Compressor
JP2015190465A (en) compressor
JP6088171B2 (en) Compressor air intake structure
KR100692240B1 (en) Control device of air compressor for 2-stage pump
KR20120078002A (en) Booting drive device with auto unloading of air compressor
JP6763684B2 (en) Booster compressor
JP2016160753A (en) Air compressor with engine
JP4929253B2 (en) air compressor
JP2011099386A (en) Booster compressor
WO2009028323A1 (en) Refrigeration air conditioner
CN110925170A (en) Novel double-speed exhaust valve and intake valve with unloading function

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120611

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120611

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140410

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140708

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141006

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141006

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20141028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150216

R150 Certificate of patent or registration of utility model

Ref document number: 5698912

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150