JP2011183488A - Surface coated cutting tool with hard coating layer for exhibiting excellent separation resistance and abrasion resistance - Google Patents

Surface coated cutting tool with hard coating layer for exhibiting excellent separation resistance and abrasion resistance Download PDF

Info

Publication number
JP2011183488A
JP2011183488A JP2010049579A JP2010049579A JP2011183488A JP 2011183488 A JP2011183488 A JP 2011183488A JP 2010049579 A JP2010049579 A JP 2010049579A JP 2010049579 A JP2010049579 A JP 2010049579A JP 2011183488 A JP2011183488 A JP 2011183488A
Authority
JP
Japan
Prior art keywords
layer
crystal
inclination angle
degrees
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010049579A
Other languages
Japanese (ja)
Other versions
JP5440270B2 (en
Inventor
Kohei Tomita
興平 冨田
Makoto Igarashi
誠 五十嵐
Akira Osada
晃 長田
Keiji Nakamura
惠滋 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2010049579A priority Critical patent/JP5440270B2/en
Publication of JP2011183488A publication Critical patent/JP2011183488A/en
Application granted granted Critical
Publication of JP5440270B2 publication Critical patent/JP5440270B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface coated cutting tool with a hard coating layer for exhibiting excellent separation resistance and abrasion resistance by high speed heavy cutting work. <P>SOLUTION: This surface coated cutting tool is provided by depositing-forming a Y including &alpha; type Al<SB>2</SB>O<SB>3</SB>layer having a crystal grain organization structure of a plate polygonal shape and a longitudinal long shape on a surface of a tool base body as (a) a Ti compound layer as a lower layer, (b) an &alpha; type Al<SB>2</SB>O<SB>3</SB>layer as an intermediate layer and (c) an upper layer. The intermediate layer and the upper layer of a flank and a rake surface are respectively composed of the &alpha; type Al<SB>2</SB>O<SB>3</SB>layer and the Y including &alpha; type Al<SB>2</SB>O<SB>3</SB>layer having the high orientation ratio of a (0001) surface. Among a crystal grain of the upper layer of the flank and the rake surface, the inside of the crystal grain of 60% or more in the area ratio is divided by a crystal lattice interface composed of at least one or more of constituting atom sharing lattice point forms expressed by &Sigma;3. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

この発明は、例えば、合金工具鋼や軸受鋼の焼入れ材などの高硬度鋼の切削加工を、高熱発生を伴う高速重切削条件で行った場合でも、硬質被覆層が剥離、チッピングを発生することなく、長期の使用に亘ってすぐれた耐摩耗性を発揮する表面被覆切削工具(以下、被覆工具という)に関するものである。   In the present invention, for example, even when high-hardness steel such as alloy tool steel or hardened material of bearing steel is cut under high-speed heavy cutting conditions with high heat generation, the hard coating layer peels off and chipping occurs. The present invention relates to a surface-coated cutting tool (hereinafter referred to as a coated tool) that exhibits excellent wear resistance over a long period of use.

特許文献1に示すように、従来、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成された基体(以下、これらを総称して工具基体という)の表面に、
(a)下部層は、Ti化合物層、
(b)上部層は、化学蒸着形成した状態でα型の結晶構造を有し、各区分内に存在する度数を集計してなる傾斜角度数分布グラフにおいて、0〜10度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0〜10度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の45%以上の割合を占める傾斜角度数分布グラフを示すα型Al23層、
で構成された硬質被覆層を形成してなる被覆工具(従来被覆工具1という)が知られており、この従来被覆工具1は、上部層の高温強度が優れることから、合金鋼、炭素鋼、鋳鉄等の高速断続切削ですぐれた耐チッピング性を示すことが知られている。
また、特許文献2に示すように、上記従来被覆工具1の上部層(b)の代わりに、Y(イットリウム)を少量含有するα型(Al,Y)23層(以下、従来AlYO層という)で構成した被覆工具(以下、従来被覆工具2という)も知られており、そして、この従来被覆工具2では、α型Al23の結晶粒の脱落が防止されるとともに、連続切削加工ですぐれた切削耐久性を示すことが知られている。
As shown in Patent Document 1, conventionally, a substrate composed of tungsten carbide (hereinafter referred to as WC) based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) based cermet (hereinafter collectively referred to as a tool). On the surface of the substrate)
(A) The lower layer is a Ti compound layer,
(B) The upper layer has an α-type crystal structure in a state in which chemical vapor deposition is formed, and an inclination within a range of 0 to 10 degrees in an inclination angle number distribution graph obtained by counting the frequencies existing in each section. Α showing an inclination angle distribution graph in which the highest peak exists in the angle section and the total of the frequencies existing in the range of 0 to 10 degrees occupies a ratio of 45% or more of the entire frequencies in the inclination angle distribution graph. Type Al 2 O 3 layer,
A coated tool formed by forming a hard coating layer (referred to as a conventional coated tool 1) is known, and this conventional coated tool 1 is superior in the high-temperature strength of the upper layer, so alloy steel, carbon steel, It is known to show excellent chipping resistance by high-speed intermittent cutting of cast iron or the like.
Further, as shown in Patent Document 2, instead of the upper layer (b) of the conventional coated tool 1, an α-type (Al, Y) 2 O 3 layer (hereinafter referred to as a conventional AlYO layer) containing a small amount of Y (yttrium). (Hereinafter referred to as the conventional coated tool 2) is also known, and the conventional coated tool 2 prevents the falling of α-type Al 2 O 3 crystal grains and is capable of continuous cutting. It is known to show excellent cutting durability in processing.

ただ、上記従来被覆工具1、従来被覆工具2の何れにおいても、硬質被覆層全体としての特性の向上を目指しているが、被覆工具は、すくい面と逃げ面によって求められる特性が異なるという点から、それぞれの面に応じた特性を付与することも知られている。
例えば、特許文献3に示すように、硬質被覆層の下部層を構成するTiCN層について、すくい面におけるTiCN層の(422)面配向係数を、逃げ面におけるそれより大きくすることによって、すくい面における耐衝撃性を高めると同時に、逃げ面における耐摩耗性を高めた被覆工具(以下、従来被覆工具3という)も知られている。
However, both the conventional coated tool 1 and the conventional coated tool 2 aim to improve the characteristics of the hard coating layer as a whole, but the coated tool has different characteristics required for the rake face and the flank face. It is also known to impart characteristics according to each surface.
For example, as shown in Patent Document 3, for the TiCN layer constituting the lower layer of the hard coating layer, by making the (422) plane orientation coefficient of the TiCN layer on the rake face larger than that on the flank face, A coated tool (hereinafter referred to as a conventional coated tool 3) is also known which has improved impact resistance and at the same time improved wear resistance on the flank.

特開2005−205586号公報JP-A-2005-205586 特開2004−1154号公報JP 2004-1154 A 特開2006−305714号公報JP 2006-305714 A

近年の切削装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工は一段と高速化する傾向にあるが、上記従来被覆工具1〜3においては、これを通常の鋼、鋳鉄等の高速切削加工に用いた場合には特に問題はないが、特にこれを、合金工具鋼や軸受鋼の焼入れ材などの高硬度鋼の切削工具の刃先に高熱発生及び機械的な高負荷を伴う高速重切削条件加工に用いた場合には、特に、切刃部における硬質被覆層のチッピングあるいは耐摩耗性の低下により、比較的短時間で使用寿命に至るのが現状である。   In recent years, the performance of cutting machines has been dramatically improved, while on the other hand, there is a strong demand for labor saving and energy saving and further cost reduction for cutting work, and along with this, cutting work tends to be further speeded up. In tools 1 to 3, there is no particular problem when this is used for high-speed cutting of ordinary steel, cast iron, etc., but this is particularly true for high-hardness steel such as alloy tool steel and hardened material of bearing steel. When used for high-speed heavy cutting conditions with high heat generation and high mechanical load on the cutting edge of the cutting tool, especially for relatively short time due to chipping of hard coating layer on the cutting edge or reduced wear resistance. At present, the service life is reached.

そこで、本発明者等は、上述のような観点から、切削工具の刃先に高熱発生及び機械的な高負荷を伴う高硬度鋼の高速重切削加工に用いた場合にも、長期の使用に亘ってすぐれた耐チッピング、耐摩耗性を発揮する被覆工具を開発すべく、鋭意研究を行った結果、以下の知見を得た。   In view of the above, the present inventors have long-term use even when used for high-speed heavy cutting of high hardness steel with high heat generation and mechanical high load at the cutting edge of the cutting tool. As a result of earnest research to develop a coated tool that exhibits excellent chipping resistance and wear resistance, the following findings were obtained.

上記の従来被覆工具においては、Ti化合物からなる下部層を形成した後、これに引き続いて、上部層(例えば、上記従来被覆工具1におけるα型Al層、また、上記従来被覆工具2における従来AlYO層)が成膜されるが、被覆工具の切削性能を高めるために、中間層を介して上部層を成膜することも行われていることから、本発明者らは、従来被覆工具1におけるα型Al層を中間層とし、その上に、従来被覆工具2における従来AlYO層をさらに上部層として形成することにより、被覆工具の切削性能を高めることを試みたところ、合金工具鋼や軸受鋼の焼入れ材などの高硬度鋼の高速重切削加工に用いた場合には、特に、切刃部の硬質被覆層の耐チッピング性、耐摩耗性が依然として不十分であるとの結論に至った。 In the above conventional coated tool, after forming a lower layer made of a Ti compound, subsequently, an upper layer (for example, the α-type Al 2 O 3 layer in the conventional coated tool 1 or the conventional coated tool 2 described above). In order to improve the cutting performance of the coated tool, the upper layer is also formed through an intermediate layer. When the α-type Al 2 O 3 layer in the tool 1 is used as an intermediate layer, and the conventional AlYO layer in the conventional coated tool 2 is further formed thereon as an upper layer, an attempt was made to improve the cutting performance of the coated tool. When used for high-speed heavy cutting of hardened steel such as hardened alloy tool steel and bearing steel, chipping resistance and wear resistance of the hard coating layer of the cutting edge are still insufficient. To the conclusion of It was.

そこで、本発明者らはさらに鋭意研究を進めたところ、工具基体表面全体にTi化合物からなる下部層を形成した後、成膜処理を一時中断し、切刃部に形成されているTi化合物層(下部層)にレーザー処理を施した後、所定の条件で中間層としてのα型Al23層、さらに、上部層としてのY含有α型Al23層を成膜した場合には、特に、切刃部の中間層の結晶配向性と上部層の結晶配向性および結晶組織形態を、逃げ面およびすくい面のそれとは異なるものとすることができ、これによって、切刃部の硬質被覆層の耐チッピング性を高めることができるとともに、耐摩耗性をも高めることができるため、高熱発生および機械的高負荷を伴う高硬度鋼の高速重切削加工においても、耐チッピング性と耐摩耗性にすぐれた被覆工具が得られることを見出したのである。
なお、この発明でいうところのすくい面、逃げ面および切刃部とは、図5に示される概略模式図のとおりであるが、被覆工具のすくい面と逃げ面に接し、曲率を持った曲線で囲われる部分が切刃部である。ただ、すくい面と逃げ面とが直線的に交差し、曲線で囲われる部分が形成されない場合には、直線の交点から膜深さ方向で囲まれる部分(図5中の斜線領域)が切刃部となる。
Therefore, the present inventors have further studied earnestly, and after forming a lower layer made of a Ti compound on the entire tool base surface, the film forming process was temporarily interrupted, and the Ti compound layer formed on the cutting edge portion When laser processing is applied to the (lower layer), an α-type Al 2 O 3 layer as an intermediate layer and a Y-containing α-type Al 2 O 3 layer as an upper layer are formed under predetermined conditions. In particular, the crystal orientation of the intermediate layer of the cutting edge part and the crystal orientation and crystal structure of the upper layer can be made different from those of the flank face and the rake face. The chipping resistance of the coating layer can be increased, and the wear resistance can be increased. Therefore, even in high speed heavy cutting of high hardness steel with high heat generation and mechanical high load, chipping resistance and wear resistance A coated tool with excellent properties is obtained. It was found Rukoto.
Note that the rake face, flank face, and cutting edge in the present invention are as shown in the schematic schematic diagram shown in FIG. 5, but are curved curves that are in contact with the rake face and flank face of the coated tool and have curvature. The part surrounded by is the cutting edge part. However, when the rake face and the flank face intersect linearly and the part surrounded by the curve is not formed, the part surrounded by the film depth direction from the intersection of the straight lines (the hatched area in FIG. 5) is the cutting edge. Part.

この発明は、上記知見に基づいてなされたものであって、
「(1) 炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に、
(a)下部層が、いずれも化学蒸着形成された、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上からなり、かつ、2〜15μmの合計平均層厚を有するTi化合物層、
(b)中間層が、1〜5μmの平均層厚を有し、化学蒸着した状態でα型の結晶構造を有する酸化アルミニウム層、
(c)上部層が、2〜15μmの平均層厚を有し、化学蒸着した状態でα型の結晶構造を有するY含有酸化アルミニウム層、
上記(a)〜(c)からなる硬質被覆層を蒸着形成した表面被覆切削工具において、
上記(b)の中間層および上記(c)の上部層について、電界放出型走査電子顕微鏡を用い、上記工具基体の表面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、前記測定傾斜角のうちの0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフで表わした場合、
(d)切刃部における中間層は、0〜10度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0〜10度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の20%以上45%未満の割合を占め、また、逃げ面およびすくい面における中間層は、0〜10度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0〜10度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の45%以上の割合を占める傾斜角度数分布グラフを示し、
(e)切刃部における上部層は、0〜10度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0〜10度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の30%以上60%未満の割合を占め、また、逃げ面およびすくい面における上部層は、0〜10度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0〜10度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の60%以上の割合を占める傾斜角度数分布グラフを示し、
(f)また、上記(c)の上部層について、電界放出型走査電子顕微鏡で組織観察した場合に、層厚方向に垂直な面内で平板多角形状、また、層厚方向に平行な面内で層厚方向にたて長形状を有する結晶粒からなる組織構造を有するY含有酸化アルミニウム層であり、
(g)さらに、上記(c)の上部層は、電界放出型走査電子顕微鏡と電子後方散乱回折像装置を用い、表面研磨面の測定範囲内に存在する結晶粒個々に電子線を照射して、六方晶結晶格子からなる結晶格子面のそれぞれの法線が基体表面の法線と交わる角度を測定し、この測定結果から、隣接する結晶格子相互の結晶方位関係を算出し、結晶格子界面を構成する構成原子のそれぞれが前記結晶格子相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(但し、Nはコランダム型六方最密晶の結晶構造上2以上の偶数となるが、分布頻度の点からNの上限を28とした場合、4、8、14、24および26の偶数は存在せず)存在する構成原子共有格子点形態をΣN+1で表した場合に、切刃部における上記(c)の上部層を構成する結晶粒の内、面積比率で35%以上60%未満の結晶粒の内部は、少なくとも一つ以上のΣ3で表される構成原子共有格子点形態からなる結晶格子界面により分断されており、また、逃げ面およびすくい面における上記(c)の上部層を構成する結晶粒の内、面積比率で60%以上の結晶粒の内部は、少なくとも一つ以上のΣ3で表される構成原子共有格子点形態からなる結晶格子界面により分断されているY含有酸化アルミニウム層である、
ことを特徴とする表面被覆切削工具。
(2) 前記(c)の上部層を電界放出型走査電子顕微鏡で組織観察した場合に、層厚方向に垂直な面内で平坦六角形状、また、層厚方向に平行な面内で層厚方向にたて長形状を有する結晶粒が、層厚方向に垂直な面内において全体の35%以上の面積割合を占める前記(1)に記載の表面被覆切削工具。」
に特徴を有するものである。
This invention has been made based on the above findings,
“(1) On the surface of a tool base made of tungsten carbide-based cemented carbide or titanium carbonitride-based cermet,
(A) the lower layer is formed of one or more of Ti carbide layer, nitride layer, carbonitride layer, carbonate layer and carbonitride oxide layer, all formed by chemical vapor deposition; And a Ti compound layer having a total average layer thickness of 2 to 15 μm,
(B) the intermediate layer has an average layer thickness of 1 to 5 μm, and an aluminum oxide layer having an α-type crystal structure in the state of chemical vapor deposition;
(C) The upper layer has an average layer thickness of 2 to 15 μm, and a Y-containing aluminum oxide layer having an α-type crystal structure in a chemical vapor deposited state;
In the surface-coated cutting tool in which the hard coating layer composed of the above (a) to (c) is formed by vapor deposition,
For the intermediate layer of (b) and the upper layer of (c), each crystal grain having a hexagonal crystal lattice existing within the measurement range of the surface polished surface of the tool base is measured using a field emission scanning electron microscope. Irradiated with an electron beam, the inclination angle formed by the normal line of the (0001) plane, which is the crystal plane of the crystal grain, is measured with respect to the normal line of the surface-polished surface. When the measured inclination angle within the range of 45 degrees is divided for each pitch of 0.25 degrees and the frequency existing in each division is represented by an inclination angle number distribution graph,
(D) The intermediate layer in the cutting edge portion has the highest peak in the inclination angle section within the range of 0 to 10 degrees, and the total of the frequencies existing in the range of 0 to 10 degrees is the inclination angle number distribution. It accounts for 20% or more and less than 45% of the total frequency in the graph, and the intermediate layer on the flank and rake face has the highest peak in the inclination angle section within the range of 0 to 10 degrees, The inclination angle number distribution graph in which the total of the frequencies existing in the range of 10 degrees occupies a ratio of 45% or more of the whole frequency in the inclination angle number distribution graph,
(E) The upper layer in the cutting edge portion has the highest peak in the inclination angle section within the range of 0 to 10 degrees, and the total of the frequencies existing in the range of 0 to 10 degrees is the inclination angle number distribution. The upper layer on the flank face and the rake face has the highest peak in the inclination angle section within the range of 0 to 10 degrees, The inclination angle number distribution graph in which the total of the frequencies existing within the range of 10 degrees occupies a ratio of 60% or more of the entire frequency in the inclination angle number distribution graph,
(F) When the structure of the upper layer of (c) is observed with a field emission scanning electron microscope, a planar polygonal shape in a plane perpendicular to the layer thickness direction, and a plane parallel to the layer thickness direction A Y-containing aluminum oxide layer having a texture structure composed of crystal grains having a long shape in the layer thickness direction,
(G) Further, the upper layer of (c) is irradiated with an electron beam on each crystal grain existing within the measurement range of the surface polished surface using a field emission scanning electron microscope and an electron backscatter diffraction image apparatus. , Measure the angle at which each normal of the crystal lattice plane composed of hexagonal crystal lattice intersects the normal of the substrate surface, and from this measurement result, calculate the crystal orientation relationship between adjacent crystal lattices, Calculate the distribution of lattice points (constituent atom shared lattice points) where each constituent atom shares one constituent atom between the crystal lattices, and do not share constituent atoms between the constituent atom shared lattice points N (however, N is an even number of 2 or more due to the crystal structure of the corundum hexagonal close-packed crystal, but when the upper limit of N is 28 from the point of distribution frequency, 4, 8, 14, 24 and 26) (There is no even number) When the child dot form is represented by ΣN + 1, at least one of the crystal grains constituting the upper layer of (c) above in the cutting edge portion has an area ratio of 35% or more and less than 60%. Are divided by the crystal lattice interface composed of the constituent atomic shared lattice points represented by Σ3, and the area ratio of the crystal grains constituting the upper layer of the above (c) on the flank face and the rake face is 60 by area ratio. The inside of the crystal grains of% or more is a Y-containing aluminum oxide layer that is divided by a crystal lattice interface composed of at least one constituent atom shared lattice point represented by Σ3.
A surface-coated cutting tool characterized by that.
(2) When the upper layer of (c) is observed with a field emission scanning electron microscope, a flat hexagonal shape in a plane perpendicular to the layer thickness direction and a layer thickness in a plane parallel to the layer thickness direction The surface-coated cutting tool according to (1), wherein the crystal grains having a long shape in the direction occupy an area ratio of 35% or more of the whole in a plane perpendicular to the layer thickness direction. "
It has the characteristics.

以下に、この発明の被覆工具の硬質被覆層の構成層について、より詳細に説明する。
(a)Ti化合物層(下部層)
Tiの炭化物(以下、TiCで示す)層、窒化物(以下、同じくTiNで示す)層、炭窒化物(以下、TiCNで示す)層、炭酸化物(以下、TiCOで示す)層および炭窒酸化物(以下、TiCNOで示す)層のうちの1層または2層以上からなるTi化合物層は、化学蒸着によって形成することができ、基本的には中間層である改質α型Al23層の下部層として存在し、自身の具備するすぐれた靭性及び耐摩耗性によって硬質被覆層の高温強度向上に寄与するほか、工具基体と改質α型Al23層のいずれにも強固に密着し、よって硬質被覆層の工具基体に対する密着性向上にも寄与する作用を有するが、その合計平均層厚が2μm未満では、前記作用を十分に発揮させることができず、一方その合計平均層厚が15μmを越えると、特に切削工具の刃先に高熱発生及び機械的な高負荷を伴う高硬度鋼の高速重切削加工条件では熱塑性変形を起し易くなり、これが偏摩耗の原因となることから、その合計平均層厚を2〜15μmと定めた。
Below, the constituent layer of the hard coating layer of the coated tool of this invention is demonstrated in detail.
(A) Ti compound layer (lower layer)
Ti carbide (hereinafter referred to as TiC) layer, nitride (hereinafter also referred to as TiN) layer, carbonitride (hereinafter referred to as TiCN) layer, carbonate (hereinafter referred to as TiCO) layer and carbonitriding A Ti compound layer composed of one or more of the material (hereinafter referred to as TiCNO) layers can be formed by chemical vapor deposition, and basically a modified α-type Al 2 O 3 that is an intermediate layer. It exists as a lower layer of the layer and contributes to improving the high-temperature strength of the hard coating layer by its excellent toughness and wear resistance, and it is firmly attached to both the tool base and the modified α-type Al 2 O 3 layer It has an action that contributes to improving the adhesion of the hard coating layer to the tool substrate, but if the total average layer thickness is less than 2 μm, the above-mentioned action cannot be sufficiently exerted, whereas the total average layer When the thickness exceeds 15 μm, In particular, high-speed heavy cutting of high-hardness steel with high heat generation and mechanical high load on the cutting edge of the cutting tool tends to cause thermoplastic deformation, which causes uneven wear. It was determined to be 2 to 15 μm.

(b)レーザー処理:
この発明では、上記Ti化合物層(下部層)の成膜を行った後、成膜処理を一時中断し、切刃部に形成されているTi化合物層(下部層)にレーザー処理を施し、切刃部のTi化合物層(下部層)に意図的に凹凸を形成し、この上に、中間層、上部層を成膜する試験を行った結果、レーザー処理を施した切刃部については、硬質被覆層の耐チッピング性、耐摩耗性を向上させることができることを確認した。その際、レーザー処理を施した下部層の表面粗さを測定すると、Ra≧0.3(μm)であった。
具体的なレーザー処理は、例えば、次のようにして行う。
Ti化合物層(下部層)を被覆した切刃部にレーザーを照射し、各走査線間隔が一定となるように線状にレーザーを走査・照射する。
その際、レーザービームの断面強度は、ガウシアン分布して波長190〜360nmとし、ビームの断面形状を走査方向に対して扁平させた楕円にする。即ち、この形状は、走査方向を短軸、走査方向と直交する方向を長軸とした楕円形状である。そして、楕円の長軸/短軸比を1.5以上とし、走査線の重なりを長軸径の1/4〜1/3とする。また、走査するレーザービームのピークパワー密度は、0.8〜1.5MW/cmとする。
この際、走査速度はレーザーの繰り返し周波数と走査方向(短軸長さ)の1/4〜1/3に対し、次の関係が成り立つ速度にて走査する。
走査速度[mm/sec]
=(1/3>走査方向径>1/4[μm])/(1/繰り返し周波数[Hz])
また、この発明でいう表面粗さRaとは、JIS B0601(1994)で規定される算術平均粗さRaの値をいい、また、その測定法については特段限定されるものではない。
(B) Laser treatment:
In the present invention, after the Ti compound layer (lower layer) is formed, the film forming process is temporarily interrupted, and the Ti compound layer (lower layer) formed on the cutting edge portion is subjected to laser treatment, and the cutting process is performed. As a result of the intentional formation of irregularities on the Ti compound layer (lower layer) of the blade part and the formation of an intermediate layer and upper layer thereon, the cutting edge part subjected to laser treatment is hard It was confirmed that the chipping resistance and wear resistance of the coating layer can be improved. At that time, when the surface roughness of the lower layer subjected to the laser treatment was measured, it was Ra ≧ 0.3 (μm).
Specific laser processing is performed as follows, for example.
A laser is irradiated to the cutting edge part which coat | covered Ti compound layer (lower layer), and a laser is scanned and irradiated to linear form so that each scanning line space | interval may become fixed.
At this time, the cross-sectional intensity of the laser beam is a Gaussian distribution with a wavelength of 190 to 360 nm, and the cross-sectional shape of the beam is an ellipse flattened in the scanning direction. That is, this shape is an elliptical shape in which the scanning direction is the short axis and the direction orthogonal to the scanning direction is the long axis. The major axis / minor axis ratio of the ellipse is set to 1.5 or more, and the overlap of the scanning lines is set to ¼ to 3 of the major axis diameter. The peak power density of the laser beam to be scanned is 0.8 to 1.5 MW / cm 2 .
At this time, scanning is performed at a speed that satisfies the following relationship with respect to the laser repetition frequency and 1/4 to 1/3 of the scanning direction (short axis length).
Scanning speed [mm / sec]
= (1/3> scanning direction diameter> 1/4 [μm]) / (1 / repetition frequency [Hz])
Moreover, the surface roughness Ra as used in this invention means the value of arithmetic mean roughness Ra prescribed | regulated by JISB0601 (1994), and the measuring method is not specifically limited.

この発明では、切刃部のTi化合物層(下部層)表面のみに、上記のレーザー処理を施し、その表面粗さRaをRa≧0.3(μm)としたのち、成膜処理を再開し、この上に中間層および上部層を成膜すると、切刃部の中間層の結晶配向性と上部層の結晶配向性およびΣ3形態を、逃げ面及びすくい面のそれとは異なるものとすることができ、これによって、切刃部の硬質被覆層の耐チッピング、耐摩耗性を高めることができる。
そして、その結果、高熱発生及び機械的な高負荷を伴う高硬度鋼の高速重切削加工においても、逃げ面及びすくい面の耐摩耗性が優れるとともに、切刃部の耐チッピング性、耐摩耗性が向上した被覆工具を得ることができる。
In this invention, only the surface of the Ti compound layer (lower layer) of the cutting edge portion is subjected to the above laser treatment, and the surface roughness Ra is set to Ra ≧ 0.3 (μm), and then the film forming treatment is resumed. When the intermediate layer and the upper layer are formed thereon, the crystal orientation of the intermediate layer of the cutting edge portion, the crystal orientation of the upper layer, and the Σ3 form may be different from those of the flank and rake face. This can improve the chipping resistance and wear resistance of the hard coating layer of the cutting edge.
As a result, even in high-speed heavy cutting of high-hardness steel with high heat generation and mechanical high load, the flank and rake surfaces have excellent wear resistance, and the cutting edge portion has chipping resistance and wear resistance. A coated tool with improved can be obtained.

(c)α型Al23層(中間層)
α型Al23層からなる中間層は、Ti化合物層からなる下部層上に、例えば、前記特許文献1に記載される化学蒸着条件、すなわち、
通常の化学蒸着装置にて、
反応ガス組成:容量%で、AlCl3:3〜10%、CO2:0.5〜3%、C24:0.01〜0.3%、H2:残り、
反応雰囲気温度:750〜900℃、
反応雰囲気圧力:3〜13kPa、
の条件で、下部層であるTi化合物層の表面にAl23核を形成し、この場合Al23核は20〜200nmの平均層厚を有するAl23核薄膜であるのが望ましく、引き続いて、反応雰囲気を圧力:3〜13kPaの水素雰囲気に変え、反応雰囲気温度を1100〜1200℃に昇温した条件でAl23核薄膜に加熱処理を施した状態で、α型Al23層を蒸着することによって形成することができる。
そして、この発明では、切刃部の下部層にレーザー処理を施し、その表面粗さRaを0.3(μm)以上としておくことによって、切刃部には、逃げ面及びすくい面とは異なった結晶配向性を有するα型Al23層が形成される。
即ち、Ti化合物層(下部層)の上に化学蒸着された逃げ面及びすくい面のα型Al23層について、電界放出型走査電子顕微鏡を用い、図1(a),(b)に示される通り、表面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフで表した場合、図2に例示される通り、傾斜角区分0〜10度の範囲内にシャープな最高ピークが現れ、傾斜角区分0〜10度の範囲内に存在する度数の合計は、傾斜角度数分布グラフにおける度数全体の45%以上の割合を占める。
一方、切刃部に形成された中間層(α型Al23層)については、傾斜角区分0〜10度の範囲内に存在する度数の合計は、図3に例示される通り、傾斜角度数分布グラフにおける度数全体の20%以上45%未満である。
したがって、逃げ面及びすくい面の中間層は、(0001)面配向率の高いα型Al23層として構成されているが、切刃部の(0001)面配向率は逃げ面及びすくい面に対して低く抑えられているため、切刃部では下部層と中間層との付着強度が高められ、また、この中間層は、すぐれた高温硬さ、耐熱性、高温強度を発揮し、さらに加えて、この上に蒸着形成されるY含有α型Al23層との付着強度も高められるため、その結果として、切刃部の硬質被覆層の耐チッピング性、耐摩耗性を向上することができる。
なお、α型Al23層からなる中間層の平均層厚については、すくい面、逃げ面、切刃部の何れの面においても、中間層の平均層厚が1μm未満では前記の特性を硬質被覆層に十分に具備せしめることができず、一方、その平均層厚が5μmを越えると、切削時に発生する高熱によって偏摩耗の原因となる熱塑性変形が発生し易くなり、摩耗が加速するようになることから、その平均層厚は1〜5μmと定めた。
(C) α-type Al 2 O 3 layer (intermediate layer)
The intermediate layer composed of the α-type Al 2 O 3 layer is formed on the lower layer composed of the Ti compound layer, for example, the chemical vapor deposition conditions described in Patent Document 1, that is,
With normal chemical vapor deposition equipment,
Reaction gas composition:% by volume, AlCl 3 : 3 to 10%, CO 2 : 0.5 to 3%, C 2 H 4 : 0.01 to 0.3%, H 2 : remaining,
Reaction atmosphere temperature: 750 to 900 ° C.
Reaction atmosphere pressure: 3 to 13 kPa,
Under these conditions, Al 2 O 3 nuclei are formed on the surface of the Ti compound layer as the lower layer. In this case, the Al 2 O 3 nuclei are Al 2 O 3 nuclei thin films having an average layer thickness of 20 to 200 nm. Desirably, subsequently, the reaction atmosphere is changed to a hydrogen atmosphere of pressure: 3 to 13 kPa, and the reaction atmosphere temperature is raised to 1100 to 1200 ° C., and the Al 2 O 3 core thin film is subjected to heat treatment in the α-type. It can be formed by depositing an Al 2 O 3 layer.
In the present invention, the lower layer of the cutting edge is subjected to laser treatment, and the surface roughness Ra is set to 0.3 (μm) or more, so that the cutting edge is different from the flank and rake face. Thus, an α-type Al 2 O 3 layer having crystal orientation is formed.
That is, the flank and rake face α-type Al 2 O 3 layers chemically vapor-deposited on the Ti compound layer (lower layer) are shown in FIGS. 1A and 1B using a field emission scanning electron microscope. As shown, each crystal grain having a hexagonal crystal lattice existing within the measurement range of the surface polished surface is irradiated with an electron beam, and is a crystal plane of the crystal grain with respect to the normal line of the surface polished surface The inclination angle formed by the normal of the (0001) plane is measured, and among the measurement inclination angles, the measurement inclination angles in the range of 0 to 45 degrees are divided for each pitch of 0.25 degrees, and within each division 2, the sharpest peak appears in the range of the tilt angle section 0 to 10 degrees, and the tilt angle sections 0 to 0 are represented as illustrated in FIG. The sum of the frequencies existing within the range of 10 degrees is the degree in the inclination angle frequency distribution graph. It accounts for over 45% of the total number.
On the other hand, for the intermediate layer (α-type Al 2 O 3 layer) formed on the cutting edge part, the sum of the frequencies existing in the range of the inclination angle section 0 to 10 degrees is inclined as illustrated in FIG. It is 20% or more and less than 45% of the entire frequency in the angle distribution graph.
Therefore, the intermediate layer of the flank and rake face is configured as an α-type Al 2 O 3 layer having a high (0001) plane orientation ratio, but the (0001) plane orientation ratio of the cutting edge portion is the flank and rake face. In the cutting edge, the adhesion strength between the lower layer and the intermediate layer is increased, and this intermediate layer exhibits excellent high-temperature hardness, heat resistance, and high-temperature strength. In addition, since the adhesion strength with the Y-containing α-type Al 2 O 3 layer deposited on this is also increased, as a result, the chipping resistance and wear resistance of the hard coating layer of the cutting edge are improved. be able to.
As for the average layer thickness of the intermediate layer composed of the α-type Al 2 O 3 layer, the above characteristics are obtained when the average layer thickness of the intermediate layer is less than 1 μm in any of the rake face, flank face, and cutting edge part. On the other hand, if the average thickness of the hard coating layer cannot exceed 5 μm, thermoplastic deformation that causes uneven wear is likely to occur due to high heat generated at the time of cutting, which accelerates wear. Therefore, the average layer thickness was determined to be 1 to 5 μm.

(d)Y含有α型Al23層(上部層)
中間層の上に化学蒸着で形成するY含有α型Al23層からなる上部層は、その構成成分であるAl成分が、層の高温硬さおよび耐熱性を向上させ、また、層中に微量(Alとの合量に占める割合で、Y/(Al+Y)が0.0005〜0.01(但し、原子比))含有されたY成分が、Y含有α型Al23層の結晶粒界面強度を向上させ、高温強度の向上に寄与するが、Y成分の含有割合が0.0005未満では、上記作用を期待することはできず、一方、Y成分の含有割合が0.01を超えた場合には、層中にY粒子等の化合物が生成することによって粒界面強度が低下するため、Al成分との合量に占めるY成分の含有割合(Y/(Al+Y)の比の値)は0.0005〜0.01(但し、原子比)の範囲内とすることが望ましい。
(D) Y-containing α-type Al 2 O 3 layer (upper layer)
The upper layer composed of the Y-containing α-type Al 2 O 3 layer formed by chemical vapor deposition on the intermediate layer has an Al component that is a constituent component to improve the high-temperature hardness and heat resistance of the layer. In the Y-containing α-type Al 2 O 3 layer is contained in a trace amount (Y / (Al + Y) is 0.0005 to 0.01 (however, atomic ratio) in the total amount with Al). Although the crystal grain interface strength is improved and contributes to the improvement of the high temperature strength, if the content ratio of the Y component is less than 0.0005, the above effect cannot be expected, while the content ratio of the Y component is 0.01. In the case where the amount exceeds 1, the grain interface strength decreases due to the formation of compounds such as Y 2 O 3 particles in the layer, so the content ratio of the Y component in the total amount with the Al component (Y / (Al + Y) The ratio value is preferably in the range of 0.0005 to 0.01 (however, the atomic ratio). Arbitrariness.

α型Al23層からなる中間層の上に形成する上記Y含有α型Al23層は、蒸着時の反応ガス組成、反応雰囲気温度および反応雰囲気圧力の各化学蒸着条件を、例えば、以下のとおり調整することによって成膜することができる。
即ち、まず、
(イ)反応ガス組成(容量%):
AlCl: 1〜5 %、
YCl: 0.05〜0.1 %、
CO2: 2〜6 %、
HCl: 1〜5 %、
S: 0.25〜0.75 %、
2:残り、
(ロ)反応雰囲気温度; 1020〜1050 ℃、
(ハ)反応雰囲気圧力; 3〜5 kPa、
の条件で第1段階の蒸着を約1時間行った後、
次に、
(イ)反応ガス組成(容量%):
AlCl: 6〜10 %、
YCl: 0.4〜1.0 %、
CO2: 4〜8 %、
HCl: 3〜5 %、
S: 0.25〜0.6 %、
2:残り、
(ロ)反応雰囲気温度; 920〜1000 ℃、
(ハ)反応雰囲気圧力; 6〜10 kPa、
の条件で第2段階の蒸着を行うことによって、2〜15μmの平均層厚の蒸着層を成膜すると、Y/(Al+Y)の比の値が原子比で0.0005〜0.01であるY含有α型Al23層を形成することができる。
the Y-containing α-type the Al 2 O 3 layer formed on the intermediate layer consisting of α-type Al 2 O 3 layer is the reaction gas composition during the deposition, each chemical vapor deposition conditions of reaction atmosphere temperature and reaction atmosphere pressure, e.g. The film can be formed by adjusting as follows.
That is, first,
(B) Reaction gas composition (volume%):
AlCl 3 : 1 to 5%,
YCl 3 : 0.05 to 0.1%,
CO 2 : 2-6%,
HCl: 1-5%,
H 2 S: 0.25~0.75%,
H 2 : Remaining
(B) Reaction atmosphere temperature; 1020 to 1050 ° C.,
(C) Reaction atmosphere pressure; 3-5 kPa,
After performing the first stage deposition for about 1 hour under the conditions of
next,
(B) Reaction gas composition (volume%):
AlCl 3 : 6 to 10%,
YCl 3 : 0.4 to 1.0%,
CO 2: 4~8%,
HCl: 3-5%,
H 2 S: 0.25~0.6%,
H 2 : Remaining
(B) Reaction atmosphere temperature; 920 to 1000 ° C.,
(C) Reaction atmosphere pressure; 6 to 10 kPa,
When a vapor deposition layer having an average layer thickness of 2 to 15 μm is formed by performing the second stage vapor deposition under the conditions of: Y / (Al + Y) ratio value is 0.0005 to 0.01 in atomic ratio. A Y-containing α-type Al 2 O 3 layer can be formed.

そして、この発明では、切刃部の中間層は、前記のごとく逃げ面及びすくい面とは異なった結晶配向を示したが、上部層についても、切刃部の上部層と、逃げ面及びすくい面の上部層とは異なった結晶配向を示した。
即ち、逃げ面及びすくい面の上部層(Y含有α型Al23層)について、電界放出型走査電子顕微鏡を用い、表面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフで表した場合、傾斜角区分0〜10度の範囲内にシャープな最高ピークが現れ、傾斜角区分0〜10度の範囲内に存在する度数の合計は、傾斜角度数分布グラフにおける度数全体の60%以上の割合を占めた。
一方、切刃部に形成された上部層(Y含有α型Al23層)については、傾斜角区分0〜10度の範囲内に存在する度数の合計は、傾斜角度数分布グラフにおける度数全体の30%以上60%未満であった。
したがって、逃げ面及びすくい面の上部層は、(0001)面配向率の高いY含有α型Al23層として構成され高温強度に優れ、一方、切刃部の上部層の(0001)面配向率は逃げ面及びすくい面に対して低く抑えているため、切刃部においては耐チッピング性、耐摩耗性にすぐれた上部層(Y含有α型Al23層)が形成される。
In the present invention, the intermediate layer of the cutting edge portion has a crystal orientation different from that of the flank and rake face as described above, but the upper layer of the cutting edge portion, the flank face and the rake face are also shown for the upper layer. The crystal orientation was different from that of the upper layer of the surface.
That is, for the upper layer (Y-containing α-type Al 2 O 3 layer) of the flank and rake face, a crystal grain having a hexagonal crystal lattice existing within the measurement range of the surface polished surface using a field emission scanning electron microscope Individually irradiate an electron beam, measure the tilt angle formed by the normal of the (0001) plane that is the crystal plane of the crystal grain with respect to the normal of the polished surface, and among the measured tilt angles, When the measured tilt angle in the range of 0 to 45 degrees is divided into pitches of 0.25 degrees and the frequency existing in each section is tabulated, it is represented by a tilt angle number distribution graph. A sharp maximum peak appears in the range of 0 to 10 degrees, and the total of the frequencies existing in the range of the inclination angle range of 0 to 10 degrees accounted for 60% or more of the total degrees in the inclination angle frequency distribution graph. .
On the other hand, for the upper layer (Y-containing α-type Al 2 O 3 layer) formed on the cutting edge, the total number of frequencies existing in the range of the tilt angle section 0 to 10 degrees is the frequency in the tilt angle number distribution graph. It was 30% or more and less than 60% of the whole.
Therefore, the upper layer of the flank and rake face is configured as a Y-containing α-type Al 2 O 3 layer having a high (0001) plane orientation ratio and excellent in high-temperature strength, while the (0001) plane of the upper layer of the cutting edge portion Since the orientation rate is kept low with respect to the flank and rake face, an upper layer (Y-containing α-type Al 2 O 3 layer) excellent in chipping resistance and wear resistance is formed in the cutting edge portion.

また、上記上部層(Y含有α型Al23層)について、電界放出型走査電子顕微鏡で組織観察すると、図4(a)に示されるように、層厚方向に垂直な面内で見た場合に、結晶粒径の大きい平板多角形状であり、また、図4(b)に示されるように、層厚方向に平行な面内で見た場合に、層表面はほぼ平坦であって、しかも、層厚方向にたて長形状を有する結晶粒(平板多角形たて長形状結晶粒)からなる組織構造が形成される。 In addition, when the structure of the upper layer (Y-containing α-type Al 2 O 3 layer) is observed with a field emission scanning electron microscope, it can be seen in a plane perpendicular to the layer thickness direction as shown in FIG. In this case, the surface of the layer is substantially flat when viewed in a plane parallel to the layer thickness direction, as shown in FIG. 4 (b). And the structure | tissue structure which consists of a crystal grain (vertical polygonal long crystal grain) which has a long shape in the layer thickness direction is formed.

また、上記Y含有α型Al23層の蒸着において、より限定した条件(例えば、第1段階における反応ガス中のHSを0.50〜0.75容量%、反応雰囲気温度を1020〜1030℃とし、さらに、第2段階における反応ガス中のYClを0.6〜0.8容量%、HSを0.25〜0.4容量%、反応雰囲気温度を960〜980℃とした条件)で蒸着を行うと、逃げ面のY含有α型Al23層は、図4(c)に示されるように、層厚方向に垂直な面内で見た場合に、大粒径の平坦六角形状であり、かつ、層厚方向に平行な面内で見た場合に、図4(b)に示されるのと同様、層表面はほぼ平坦であり、層厚方向にたて長形状を有する結晶粒が、層厚方向に垂直な面内において全体の35%以上の面積割合を占める組織構造が形成される。 In the vapor deposition of the Y-containing α-type Al 2 O 3 layer, more limited conditions (for example, H 2 S in the reaction gas in the first stage is 0.50 to 0.75 vol%, and the reaction atmosphere temperature is 1020). -1030 ° C., further, 0.6 to 0.8% by volume of YCl 3 in the reaction gas in the second stage, 0.25 to 0.4% by volume of H 2 S, and a reaction atmosphere temperature of 960 to 980 ° C. 4), the Y-containing α-type Al 2 O 3 layer on the flank face is large when viewed in a plane perpendicular to the layer thickness direction, as shown in FIG. When viewed in a plane parallel to the layer thickness direction and having a flat hexagonal shape, the surface of the layer is substantially flat, as shown in FIG. The structure in which crystal grains having a long shape occupy an area ratio of 35% or more of the whole in a plane perpendicular to the layer thickness direction It is formed.

さらに、上記Y含有α型Al23層について、電界放出型走査電子顕微鏡と電子後方散乱回折像装置を用い、表面研磨面の測定範囲内に存在する結晶粒個々に電子線を照射して、六方晶結晶格子からなる結晶格子面のそれぞれの法線が前記表面研磨面の法線と交わる角度を測定し、
この測定結果から、隣接する結晶格子相互の結晶方位関係を算出し、結晶格子界面を構成する構成原子のそれぞれが前記結晶格子相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(但し、Nはコランダム型六方最密晶の結晶構造上2以上の偶数となるが、分布頻度の点からNの上限を28とした場合、4、8、14、24および26の偶数は存在せず)存在する構成原子共有格子点形態をΣN+1で表すと、
逃げ面及びすくい面の上部層については、図6に示すように、電界放出型走査電子顕微鏡で観察されるY含有α型Al23層を構成する平板多角形(平坦六角形を含む)たて長形状結晶粒の内、面積比率で60%以上の結晶粒の内部は、少なくとも一つ以上の、Σ3対応界面で分断されていることがわかり、また、切刃部の上部層については、平板多角形(平坦六角形を含む)たて長形状結晶粒の内、面積比率で35%以上60%未満の結晶粒の内部は、少なくとも一つ以上の、Σ3対応界面で分断されていることがわかる。
そして、Y含有α型Al23層の平板多角形(平坦六角形を含む)たて長形状結晶粒の内部に、上記のΣ3対応界面が存在することによって、結晶粒内強度の向上が図られ、その結果として、高硬度鋼の高速重切削加工時に、逃げ面及びすくい面のY含有α型Al23層中にクラックが発生することが抑えられ、また、仮にクラックが発生したとしても、クラックの成長・伝播が妨げられ、耐チッピング性の向上が図られる。
Further, the Y-containing α-type Al 2 O 3 layer was irradiated with an electron beam on each crystal grain existing within the measurement range of the surface polished surface using a field emission scanning electron microscope and an electron backscatter diffraction image apparatus. Measuring the angle at which each normal of the crystal lattice plane consisting of hexagonal crystal lattice intersects the normal of the surface polished surface,
From this measurement result, the crystal orientation relationship between adjacent crystal lattices is calculated, and each of the constituent atoms constituting the crystal lattice interface shares one constituent atom between the crystal lattices (constituent atom shared lattice point). ) And the number of lattice points that do not share constituent atoms between the constituent atomic shared lattice points (where N is an even number of 2 or more on the crystal structure of the corundum hexagonal close-packed crystal, but the distribution frequency) When the upper limit of N is 28 from this point, the even number of 4, 8, 14, 24 and 26 does not exist.)
As for the upper layer of the flank and rake face, as shown in FIG. 6, flat polygons (including flat hexagons) constituting the Y-containing α-type Al 2 O 3 layer observed with a field emission scanning electron microscope It can be seen that at least one of the vertically long crystal grains has an area ratio of 60% or more, and is divided by at least one Σ3-compatible interface. In addition, the inside of flat polygonal (including flat hexagonal) long crystal grains having an area ratio of 35% or more and less than 60% is divided by at least one Σ3-compatible interface. I understand that.
Further, the presence of the above-mentioned Σ3-corresponding interface within the long polygonal crystal grains (including flat hexagons) of the Y-containing α-type Al 2 O 3 layer improves the strength within the grains. As a result, during high-speed heavy cutting of high-hardness steel, the occurrence of cracks in the Y-containing α-type Al 2 O 3 layer on the flank and rake face was suppressed, and cracks were temporarily generated. However, the growth and propagation of cracks are hindered, and the chipping resistance is improved.

また、Y含有α型Al23層からなる上部層の平均層厚については、逃げ面及びすくい面ばかりでなく、切刃部においても、上部層の平均層厚が2μm未満では、上記上部層のすぐれた特性を十分に発揮することができず、一方、上部層の平均層厚が15μmを超えると偏摩耗の原因となる熱塑性変形が発生しやすくなり、また、チッピングも発生しやすくなることから、上部層の平均層厚を2〜15μmと定めた。 In addition, regarding the average layer thickness of the upper layer made of the Y-containing α-type Al 2 O 3 layer, not only the flank and rake face but also the cutting edge, the upper layer has an average layer thickness of less than 2 μm. The excellent properties of the layer cannot be fully exhibited. On the other hand, if the average layer thickness of the upper layer exceeds 15 μm, thermoplastic deformation that causes uneven wear is likely to occur, and chipping is also likely to occur. Therefore, the average layer thickness of the upper layer was determined to be 2 to 15 μm.

上記のとおり、この発明の被覆工具は、逃げ面及びすくい面に被覆された中間層の(0001)面配向率が高く、すぐれた高温強度、耐熱性を備え、一方、切刃部に被覆された中間層は(0001)面配向率が逃げ面およびすくい面に対して相対的に低いが、下部層とのすぐれた付着強度を有し、また、切刃部、すくい面及び逃げ面の上部層を構成するY含有α型Al23層を、表面平坦性を備えた平板多角形(平坦六角形を含む)たて長形状の結晶粒からなる組織構造とし、さらに、上記結晶粒の内部にΣ3対応界面を形成し、結晶粒内強度を強化したことにより、一段とすぐれた表面性状、高温強度を具備し、さらに、切刃部の上部層を構成するY含有α型Al23層は中間層との高い付着強度を有し耐チッピング性、耐摩耗性にすぐれ一方、逃げ面及びすくい面のY含有α型Al23層はすぐれた耐摩耗性を有することから、このような硬質被覆層を形成した被覆工具は、高熱発生及び機械的高負荷を伴う高硬度鋼の高速重切削加工においても、逃げ面及びすくい面のすぐれた耐摩耗性および切刃部のすぐれた耐チッピング性、耐摩耗性が発揮されることによって、使用寿命の一層の延命化が可能となる。 As described above, the coated tool of the present invention has a high (0001) plane orientation ratio of the intermediate layer coated on the flank and rake face, and has excellent high-temperature strength and heat resistance, while being coated on the cutting edge. The intermediate layer has a low (0001) plane orientation ratio relative to the flank and rake face, but has excellent adhesion strength with the lower layer, and the upper edge of the cutting edge, rake face and flank face. The Y-containing α-type Al 2 O 3 layer constituting the layer is made to have a textured structure composed of long and flat crystal grains (including flat hexagons) having surface flatness, and By forming an interface corresponding to Σ3 inside and strengthening the strength within the crystal grains, it has excellent surface properties and high-temperature strength, and further, the Y-containing α-type Al 2 O 3 constituting the upper layer of the cutting edge portion The layer has high adhesion strength with the intermediate layer and excellent chipping resistance and wear resistance. On the other hand, since the Y-containing α-type Al 2 O 3 layer on the flank face and the rake face has excellent wear resistance, the coated tool formed with such a hard coating layer is accompanied by high heat generation and high mechanical load. Even in high-speed heavy-duty machining of high-hardness steel, the service life is further extended by exhibiting excellent wear resistance of the flank and rake face and excellent chipping resistance and wear resistance of the cutting edge. Is possible.

硬質被覆層を構成するα型Al23層の結晶粒の(0001)面を測定する場合の傾斜角の測定範囲を示す概略説明図である。It is a schematic diagram illustrating a measurement range of the inclination angle in the case of measuring the (0001) plane crystal grains of the α-type the Al 2 O 3 layer constituting the hard coating layer. 本発明被覆工具3の逃げ面の中間層を構成するα型Al23層の(0001)面の傾斜角度数分布グラフである。It is an inclination angle number distribution graph of the (0001) plane of the α-type Al 2 O 3 layer constituting the intermediate layer of the flank of the coated tool 3 of the present invention. 本発明被覆工具3の切刃部の中間層を構成するα型Al23層の(0001)面の傾斜角度数分布グラフである。It is an inclination angle number distribution graph of the (0001) plane of the α-type Al 2 O 3 layer constituting the intermediate layer of the cutting edge portion of the coated tool 3 of the present invention. (a)は、本発明被覆工具2の逃げ面のY含有α型Al23層からなる上部層について、層厚方向に垂直な面内での電界放出型走査電子顕微鏡による観察で得られた、平板多角形状の結晶粒組織構造を示す模式図であり、(b)は、同じく、層厚方向に平行な面内での電界放出型走査電子顕微鏡による観察で得られた、層表面がほぼ平坦であり、層厚方向にたて長形状を有する結晶粒組織構造を示す模式図であり、(c)は、本発明被覆工具11の逃げ面のY含有α型Al23層からなる上部層について、層厚方向に垂直な面内での電界放出型走査電子顕微鏡による観察で得られた、平坦六角形状の結晶粒組織構造を示す模式図である。(A) is obtained by observing the upper layer composed of the Y-containing α-type Al 2 O 3 layer on the flank of the coated tool 2 of the present invention with a field emission scanning electron microscope in a plane perpendicular to the layer thickness direction. FIG. 5B is a schematic diagram showing a flat-plate polygonal crystal grain structure, and FIG. 5B shows a layer surface obtained by observation with a field emission scanning electron microscope in a plane parallel to the layer thickness direction. It is a schematic diagram showing a crystal grain structure structure which is substantially flat and has a long shape in the layer thickness direction, and (c) is from a Y-containing α-type Al 2 O 3 layer on the flank face of the coated tool 11 of the present invention. It is a schematic diagram which shows the flat hexagonal crystal grain structure structure obtained by observation by the field emission type | mold scanning electron microscope in the surface perpendicular | vertical to a layer thickness direction about the upper layer which becomes. (a)は、本発明被覆工具2の切刃部のY含有α型Al23層からなる上部層について、層厚方向に垂直な面内での電界放出型走査電子顕微鏡による観察で得られた、平板多角形状の結晶粒組織構造を示す模式図であり、(b)は、同じく、層厚方向に平行な面内での電界放出型走査電子顕微鏡による観察で得られた、層表面がほぼ平坦であり、層厚方向にたて長形状を有する結晶粒組織構造を示す模式図であり、(c)は、本発明被覆工具11の切刃部のY含有α型Al23層からなる上部層について、層厚方向に垂直な面内での電界放出型走査電子顕微鏡による観察で得られた、平坦六角形状の結晶粒組織構造を示す模式図である。(A) is obtained by observing the upper layer composed of the Y-containing α-type Al 2 O 3 layer of the cutting edge portion of the coated tool 2 of the present invention with a field emission scanning electron microscope in a plane perpendicular to the layer thickness direction. FIG. 2B is a schematic diagram showing a flat-plate polygonal crystal grain structure, and (b) is a layer surface obtained by observation with a field emission scanning electron microscope in a plane parallel to the layer thickness direction. Is a schematic diagram showing a crystal grain structure having a long shape in the layer thickness direction, (c) is a Y-containing α-type Al 2 O 3 of the cutting edge portion of the coated tool 11 of the present invention. It is a schematic diagram which shows the flat hexagonal crystal grain structure structure obtained by observation with the field emission type | mold scanning electron microscope in the surface perpendicular | vertical to a layer thickness direction about the upper layer which consists of layers. (a)、(b)は、それぞれ、本発明被覆工具2の逃げ面のY含有α型Al23層からなる上部層について、電界放出型走査電子顕微鏡および電子後方散乱回折像装置を用いて測定した、層厚方向に垂直な面における粒界解析図であり、実線は、電界放出型走査電子顕微鏡で観察される平板多角形状の結晶粒界を示し、破線は、電子後方散乱回折像装置により測定された結晶粒内のΣ3対応界面を示す。(A), (b) respectively uses a field emission scanning electron microscope and an electron backscatter diffraction image apparatus for the upper layer composed of the Y-containing α-type Al 2 O 3 layer on the flank of the coated tool 2 of the present invention. Is a grain boundary analysis diagram in a plane perpendicular to the layer thickness direction, measured with a solid line, a flat polygonal crystal grain boundary observed with a field emission scanning electron microscope, and a broken line, an electron backscatter diffraction image The Σ3 corresponding interface in the crystal grain measured by the apparatus is shown. 被覆工具のすくい面、逃げ面、切刃部を示す概略模式図であり、図示される斜線部分(すくい面、逃げ面から直線を引き、その直線と工具基体のコーナーR終わり、接点から膜厚深さ方向で囲まれる部分)が切刃部である。但し、工具基体のコーナーRがゼロの場合は、図示される二重斜線部分(すくい面、逃げ面から引いた直線の交点から膜厚深さ方向で囲まれる部分)が切刃部となる。It is a schematic diagram showing a rake face, a flank face, and a cutting edge portion of a coated tool, and a hatched portion shown in the drawing (a straight line is drawn from the rake face and the flank face, and the straight line and the corner R end of the tool base, the thickness from the contact The portion surrounded by the depth direction) is the cutting edge portion. However, when the corner R of the tool base is zero, the double hatched portion shown in the figure (the portion surrounded by the film thickness depth direction from the intersection of the rake face and the straight line drawn from the flank face) is the cutting edge portion.

つぎに、この発明の被覆工具を実施例により具体的に説明する。   Next, the coated tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも2〜4μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr32粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、切刃部にR:0.07mmのホーニング加工を施すことによりISO・CNMG120408に規定するスローアウエイチップ形状をもったWC基超硬合金製の工具基体A〜Eをそれぞれ製造した。 WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder, and Co powder all having an average particle diameter of 2 to 4 μm are prepared as raw material powders. These raw material powders were blended into the composition shown in Table 1, added with wax, ball milled in acetone for 24 hours, dried under reduced pressure, and pressed into a green compact with a predetermined shape at a pressure of 98 MPa. The green compact was vacuum sintered at a predetermined temperature in the range of 1370 to 1470 ° C. for 1 hour in a vacuum of 5 Pa. After sintering, the cutting edge portion was R: 0.07 mm honing By processing, tool bases A to E made of a WC-based cemented carbide having a throwaway tip shape defined in ISO · CNMG120408 were produced.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、Mo2C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1540℃に1時間保持の条件で焼結し、焼結後、切刃部にR:0.07mmのホーニング加工を施すことによりISO規格・CNMG120408のチップ形状をもったTiCN基サーメット製の工具基体a〜eを形成した。 In addition, as raw material powders, TiCN (mass ratio TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC powder, all having an average particle diameter of 0.5 to 2 μm. Co powder and Ni powder are prepared, and these raw material powders are blended in the blending composition shown in Table 2, wet mixed by a ball mill for 24 hours, dried, and pressed into a compact at a pressure of 98 MPa. The green compact was sintered in a nitrogen atmosphere of 1.3 kPa at a temperature of 1540 ° C. for 1 hour, and after the sintering, the cutting edge portion was subjected to a honing process of R: 0.07 mm. Tool bases a to e made of TiCN base cermet having a standard / CNMG120408 chip shape were formed.

ついで、これらの工具基体A〜Eおよび工具基体a〜eのそれぞれを、通常の化学蒸着装置に装入し、
(a)まず、表3(表3中のl−TiCNは特開平6−8010号公報に記載される縦長成長結晶組織をもつTiCN層の形成条件を示すものであり、これ以外は通常の粒状結晶組織の形成条件を示すものである)に示される条件にて、表6に示される目標層厚のTi化合物層を硬質被覆層の下部層として蒸着形成し、
(b)ついで、逃げ面及びすくい面のTi化合物層(下部層)に対しはレーザー処理を行わずに、表7に示される表面粗さのTi化合物層(下部層)を形成し、一方、切刃部上のTi化合物層(下部層)に対してはレーザー処理を施し、表8に示される表面粗さのTi化合物層(下部層)を形成し、
(c)ついで、表4に示される条件でTi化合物層(下部層)上にAl23核薄膜を形成し、その後加熱処理を施した状態で、表3に示される条件にて、表7、表8に示される目標層厚のα型Al23層からなる中間層を、切刃部、すくい面、逃げ面に蒸着形成し、
(d)次に、表5に示される蒸着条件により、同じく表7、表8に示される目標層厚のY含有α型Al23層を硬質被覆層の上部層として蒸着形成することにより本発明被覆工具1〜15をそれぞれ製造した。
なお、レーザー処理条件を具体的に言うならば、例えば、本発明被覆工具3では、レーザービームの断面強度は、ガウシアン分布して波長355nmとし、走査するレーザービームのピークパワー密度は、1.0MW/cmとし、走査速度は 1.25mm/secという条件でレーザー処理を行い、その結果として、表面粗さ0.35μmである下部層表面が形成された。
Then, each of these tool bases A to E and tool bases a to e is charged into a normal chemical vapor deposition apparatus,
(A) First, Table 3 (l-TiCN in Table 3 indicates the conditions for forming a TiCN layer having a vertically elongated crystal structure described in JP-A-6-8010, and the other conditions are ordinary granularity. Under the conditions shown in Table 6), the Ti compound layer having the target layer thickness shown in Table 6 is deposited as the lower layer of the hard coating layer,
(B) Next, the Ti compound layer (lower layer) having the surface roughness shown in Table 7 is formed without performing laser treatment on the Ti compound layer (lower layer) on the flank and rake face, The Ti compound layer (lower layer) on the cutting edge is subjected to laser treatment to form a Ti compound layer (lower layer) having a surface roughness shown in Table 8,
(C) Next, an Al 2 O 3 core thin film was formed on the Ti compound layer (lower layer) under the conditions shown in Table 4, and then subjected to heat treatment, under the conditions shown in Table 3. 7, an intermediate layer composed of an α-type Al 2 O 3 layer having a target layer thickness shown in Table 8 is formed by vapor deposition on the cutting edge, rake face, and flank face,
(D) Next, according to the vapor deposition conditions shown in Table 5, the Y-containing α-type Al 2 O 3 layer having the target layer thickness shown in Tables 7 and 8 is vapor deposited as the upper layer of the hard coating layer. The present coated tools 1 to 15 were produced, respectively.
If the laser processing conditions are specifically described, for example, in the coated tool 3 of the present invention, the cross-sectional intensity of the laser beam is Gaussian distributed with a wavelength of 355 nm, and the peak power density of the scanning laser beam is 1.0 MW. / Cm 2 and the scanning speed was 1.25 mm / sec. Laser treatment was performed. As a result, a lower layer surface having a surface roughness of 0.35 μm was formed.

また、比較の目的で、硬質被覆層の下部層を表3に示される条件にて形成し、下部層に対するレーザー処理を行わずに、表4に示される条件でTi化合物層(下部層)上にAl23核薄膜を形成し、その後加熱処理を施した状態で、表3に示される条件にて、表9に示される目標層厚のα型Al23層からなる中間層を、切刃部、すくい面、逃げ面に蒸着形成し、ついで、表5に示される蒸着条件により、表9に示される目標層厚のY含有α型Al23層を硬質被覆層の上部層として蒸着形成することにより、表9に示される目標層厚のTi化合物層とα型Al23層とY含有α型Al23層とからなる硬質被覆層を設けた比較被覆工具1〜15をそれぞれ製造した。
なお、比較被覆工具1〜15の工具基体種別、下部層種別、下部層厚、中間層厚および上部層厚は、それぞれ、本発明被覆工具1〜15のそれと同じである。
Further, for comparison purposes, the lower layer of the hard coating layer is formed under the conditions shown in Table 3, and the Ti compound layer (lower layer) is formed on the conditions shown in Table 4 without performing laser treatment on the lower layer. An intermediate layer composed of an α-type Al 2 O 3 layer having a target layer thickness shown in Table 9 under the conditions shown in Table 3 in the state where an Al 2 O 3 nuclear thin film is formed on the substrate and then heat-treated. Then, the Y-containing α-type Al 2 O 3 layer having the target layer thickness shown in Table 9 is formed on the upper portion of the hard coating layer according to the evaporation conditions shown in Table 5. Comparative coating tool provided with a hard coating layer comprising a Ti compound layer having a target layer thickness shown in Table 9, an α-type Al 2 O 3 layer, and a Y-containing α-type Al 2 O 3 layer by vapor deposition as a layer 1 to 15 were produced.
The tool base type, the lower layer type, the lower layer thickness, the intermediate layer thickness, and the upper layer thickness of the comparative coated tools 1 to 15 are the same as those of the inventive coated tools 1 to 15, respectively.

表7には、本発明被覆工具1〜15のレーザー処理を施していない逃げ面及びすくい面のTi化合物層(下部層)の表面粗さを示し、また、表8には、本発明被覆工具1〜15のレーザー処理によって表面を凹凸化した切刃部のTi化合物層(下部層)の表面粗さを示す。
表9には、参考のために、レーザー処理を施していない比較被覆工具1〜15の下部層の表面粗さRaも示す。
Table 7 shows the surface roughness of the Ti compound layer (lower layer) of the flank face and rake face of the present invention coated tools 1 to 15 that have not been subjected to laser treatment, and Table 8 shows the present invention coated tool. The surface roughness of the Ti compound layer (lower layer) of the cutting edge part which roughened the surface by the laser processing of 1-15 is shown.
Table 9 also shows the surface roughness Ra of the lower layer of the comparative coated tools 1 to 15 not subjected to laser treatment for reference.

ついで、上記の本発明被覆工具1〜15および比較被覆工具1〜15の硬質被覆層の中間層を構成するα型Al23層、同上部層を構成するY含有α型Al23層について、電界放出型走査電子顕微鏡を用いて、傾斜角度数分布グラフをそれぞれ作成した。
すなわち、上記傾斜角度数分布グラフは、上記の本発明被覆工具1〜15、比較被覆工具1〜15の各層について、それぞれの表面を研磨面とした状態で、電界放出型走査電子顕微鏡の鏡筒内にセットし、前記研磨面に70度の入射角度で15kVの加速電圧の電子線を1nAの照射電流で、それぞれの前記表面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に照射して、電子後方散乱回折像装置を用い、30×50μmの領域を0.1μm/stepの間隔で、前記研磨面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、この測定結果に基づいて、前記測定傾斜角のうちの0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計することにより、傾斜角度数分布グラフ作成した。
傾斜角度数分布グラフの一例として、図2に、本発明被覆工具3の逃げ面の中間層を構成するα型Al23層の(0001)面の傾斜角度数分布グラフ、図3に、本発明被覆工具3の切刃部の中間層を構成するα型Al23層の(0001)面の傾斜角度数分布グラフを示す。
なお、この発明でいう“表面”とは、基体表面に平行な面ばかりでなく、基体表面に対して傾斜する面、例えば、層の切断面、をも含む。
Subsequently, the α-type Al 2 O 3 layer constituting the intermediate layer of the hard coating layer of the present invention-coated tools 1 to 15 and the comparative coated tools 1 to 15 and the Y-containing α-type Al 2 O 3 constituting the upper layer. About the layer, the inclination angle number distribution graph was each created using the field emission scanning electron microscope.
That is, the inclination angle number distribution graph shows the column of the field emission scanning electron microscope with the respective surfaces of the present invention coated tools 1 to 15 and comparative coated tools 1 to 15 being polished surfaces. A crystal grain having a hexagonal crystal lattice existing in the measurement range of each surface polished surface with an electron beam with an acceleration voltage of 15 kV and an irradiation current of 1 nA at an incident angle of 70 degrees on the polished surface. Individually irradiated, using an electron backscatter diffraction image apparatus, a region of 30 × 50 μm at a spacing of 0.1 μm / step is a crystal plane of the crystal grain with respect to the normal of the polished surface (0001 ) The inclination angle formed by the normal of the surface is measured, and based on the measurement result, the measurement inclination angle within the range of 0 to 45 degrees of the measurement inclination angles is divided for each pitch of 0.25 degrees. As well as the frequencies present in each category By aggregate was prepared inclination angle frequency distribution graph.
As an example of an inclination angle number distribution graph, FIG. 2 shows an inclination angle number distribution graph of the (0001) plane of the α-type Al 2 O 3 layer constituting the intermediate layer of the flank of the present coated tool 3, and FIG. The inclination angle number distribution graph of the (0001) plane of the α-type Al 2 O 3 layer constituting the intermediate layer of the cutting edge portion of the coated tool 3 of the present invention is shown.
The “surface” in the present invention includes not only a surface parallel to the substrate surface but also a surface inclined with respect to the substrate surface, for example, a cut surface of a layer.

表7〜表9には、本発明被覆工具1〜15および比較被覆工具1〜15のα型Al23層、Y含有α型Al23層の傾斜角度数分布グラフにおいて、0〜10度の範囲内の傾斜角区分に存在する度数の、傾斜角度数分布グラフ全体に占める割合を示した。
表7、表8から明らかなように、本発明被覆工具1〜15の逃げ面及びすくい面においては、傾斜角度数分布グラフにおける0〜10度の範囲内の傾斜角区分に存在する度数割合は、α型Al23層では45%以上、また、Y含有α型Al23層では60%以上であるのに対して、本発明被覆工具1〜15の切刃部においては、傾斜角度数分布グラフにおける0〜10度の範囲内の傾斜角区分に存在する度数割合は、α型Al23層では20〜45%未満、また、Y含有α型Al23層では30〜60%未満であった。
なお、表9に示すように、比較被覆工具1〜15では、切刃部、すくい面および逃げ面のいずれの面についても、傾斜角度数分布グラフにおける0〜10度の範囲内の傾斜角区分に存在する度数割合は、α型Al23層では45%以上、また、Y含有α型Al23層では60%以上であった。
In Table 7 to Table 9, in the inclination angle number distribution graphs of the α-type Al 2 O 3 layer and the Y-containing α-type Al 2 O 3 layer of the present coated tools 1 to 15 and the comparative coated tools 1 to 15, The ratio of the frequency existing in the tilt angle section within the range of 10 degrees to the entire tilt angle number distribution graph is shown.
As is clear from Tables 7 and 8, on the flank and rake face of the present coated tools 1 to 15, the frequency ratio existing in the inclination angle section within the range of 0 to 10 degrees in the inclination angle number distribution graph is The α-type Al 2 O 3 layer is 45% or more, and the Y-containing α-type Al 2 O 3 layer is 60% or more. power ratio existing in the tilt angle sections of the range of 0 ° in the angular frequency distribution graph is less than 20-45% in α-type the Al 2 O 3 layer, and in Y-containing α-type the Al 2 O 3 layer is 30 It was less than -60%.
In addition, as shown in Table 9, in the comparative coating tools 1 to 15, the inclination angle division within the range of 0 to 10 degrees in the inclination angle number distribution graph for any of the cutting edge portion, the rake face, and the flank face The frequency ratio existing in the α-type Al 2 O 3 layer was 45% or more, and the Y-containing α-type Al 2 O 3 layer was 60% or more.

ついで、上記の本発明被覆工具1〜15および比較被覆工具1〜15の上部層を構成するY含有α型Al23層について、電界放出型走査電子顕微鏡、電子後方散乱回折像装置を用いて、結晶粒組織構造および構成原子共有格子点形態を調査した。
すなわち、まず、上記の本発明被覆工具1〜15および比較被覆工具1〜15の逃げ面及びすくい面のY含有α型Al23層について、電界放出型走査電子顕微鏡を用いて観察したところ、本発明被覆工具1〜15では、図4(a)、(b)で代表的に示される平板多角形(平坦六角形を含む)状かつたて長形状の大きな粒径の結晶粒組織構造が観察された(なお、図4(a)は、層厚方向に垂直な面内で見た本発明被覆工具2の組織構造模式図、また、図4(c)は、層厚方向に垂直な面内で見た本発明被覆工具11の、平坦六角形状かつたて長形状の大きな粒径の結晶粒からなる組織構造模式図)。
また、比較被覆工具1〜15の逃げ面及びすくい面についても、本発明の場合と同様な結晶粒組織構造が観察された。
Next, with respect to the Y-containing α-type Al 2 O 3 layer constituting the upper layers of the present invention coated tools 1 to 15 and the comparative coated tools 1 to 15, a field emission scanning electron microscope and an electron backscatter diffraction image apparatus are used. Thus, the grain structure and the constituent atom shared lattice point morphology were investigated.
That is, first, the Y-containing α-type Al 2 O 3 layer on the flank and rake face of the above-described inventive coated tools 1 to 15 and comparative coated tools 1 to 15 was observed using a field emission scanning electron microscope. In the coated tools 1 to 15 of the present invention, a crystal grain structure having a large grain size of a flat plate polygon (including a flat hexagon) and a long shape typically shown in FIGS. 4 (a) and 4 (b) (FIG. 4A is a schematic diagram of the structure of the coated tool 2 of the present invention viewed in a plane perpendicular to the layer thickness direction, and FIG. 4C is a diagram perpendicular to the layer thickness direction. FIG. 2 is a schematic diagram of the structure of a flat hexagonal and long long crystal grain of the coated tool 11 of the present invention viewed in a smooth plane).
Moreover, the crystal grain structure similar to the case of this invention was observed also about the flank and rake face of the comparative coating tools 1-15.

つぎに、上記の本発明被覆工具1〜15および比較被覆工具1〜15の切刃部、すくい面、逃げ面のY含有α型Al23層を構成する結晶粒の内部にΣ3対応界面が存在する結晶粒の面積割合を測定した。
まず、本発明被覆工具1〜15の切刃部、すくい面、逃げ面の各面のY含有α型Al23層について、その表面を研磨面とした状態で、電界放出型走査電子顕微鏡の鏡筒内にセットし、前記表面研磨面に70度の入射角度で15kVの加速電圧の電子線を1nAの照射電流で、それぞれの前記表面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、電子後方散乱回折像装置を用い、30×50μmの領域を0.1μm/stepの間隔で、前記結晶粒の各結晶格子面のそれぞれの法線が基体表面の法線と交わる角度を測定し、この測定結果から、隣接する結晶格子相互の結晶方位関係を算出し、結晶格子界面を構成する構成原子のそれぞれが前記結晶格子相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(但し、Nはコランダム型六方最密晶の結晶構造上2以上の偶数となるが、分布頻度の点からNの上限を28とした場合、4、8、14、24および26の偶数は存在せず)存在する構成原子共有格子点形態をΣN+1で表した場合に、Y含有α型Al23層の測定範囲内に存在する全結晶粒のうちで、結晶粒の内部に、少なくとも一つ以上のΣ3対応界面が存在する結晶粒の面積比率を求め、その値を、Σ3対応界面割合(%)として表7、表8に示した。
また、比較被覆工具1〜15についても、本発明被覆工具の場合と同様な方法により、Y含有α型Al23層の測定範囲内に存在する全結晶粒のうちで、結晶粒の内部に、少なくとも一つ以上のΣ3対応界面が存在する結晶粒の面積比率を求め、その値を、Σ3対応界面割合(%)として表9に示した。
Σ3対応界面割合は、測定範囲内(30×50μm)に存在する各々の結晶粒を色彩識別することで、各々の結晶粒の面積を算出し、その中で、結晶粒の内部に、少なくとも一つ以上のΣ3対応界面が存在する結晶粒の面積を全結晶粒の面積各結晶粒の総和で除することで算出し、前記算出法によって求めた5箇所の測定範囲の平均値をΣ3対応界面割合(%)として定義した。
Next, a Σ3-compatible interface is formed inside the crystal grains constituting the Y-containing α-type Al 2 O 3 layer of the cutting edge portion, rake face, and flank face of the above-described inventive coated tools 1 to 15 and comparative coated tools 1 to 15. The area ratio of the crystal grains in which there was was measured.
First, with respect to the Y-containing α-type Al 2 O 3 layer on each of the cutting edge portion, rake face, and flank face of the coated tools 1 to 15 of the present invention, a field emission scanning electron microscope in a state where the surface is a polished surface. A hexagonal crystal lattice existing in the measurement range of each surface polished surface at an irradiation current of 1 nA with an acceleration voltage of 15 kV at an incident angle of 70 degrees on the surface polished surface. Each of the crystal grains having the crystal grains is irradiated with an electron beam, and a normal line of each crystal lattice plane of the crystal grains is formed at an interval of 0.1 μm / step in an area of 30 × 50 μm using an electron backscatter diffraction image apparatus. Is measured from the measurement results, the crystal orientation relationship between adjacent crystal lattices is calculated from the measurement results, and each of the constituent atoms constituting the crystal lattice interface is one between the crystal lattices. Lattice points that share constituent atoms The distribution of the child shared lattice points is calculated, and N lattice points that do not share constituent atoms between the constituent atomic shared lattice points (where N is an even number of 2 or more in the crystal structure of the corundum hexagonal close-packed crystal) However, when the upper limit of N is 28 from the point of distribution frequency, there is no even number of 4, 8, 14, 24, and 26) When the existing constituent atomic shared lattice point form is represented by ΣN + 1, Among all the crystal grains existing within the measurement range of the α-type Al 2 O 3 layer, the area ratio of the crystal grains in which at least one Σ3 corresponding interface exists in the crystal grains is obtained, Tables 7 and 8 show the Σ3 corresponding interface ratio (%).
Further, the comparison coated tool 15 also optionally the same method of the present invention coated tools, among all crystal grains existing within the measuring range of the Y-containing α-type the Al 2 O 3 layer, the interior of the crystal grains In addition, the area ratio of crystal grains in which at least one Σ3-corresponding interface exists was determined, and the value is shown in Table 9 as the Σ3-compatible interface ratio (%).
The Σ3-corresponding interface ratio calculates the area of each crystal grain by color-identifying each crystal grain existing within the measurement range (30 × 50 μm). Calculate by dividing the area of the crystal grains where there are two or more Σ3-corresponding interfaces by the total area of all the crystal grains, and calculate the average value of the five measurement ranges determined by the above calculation method. It was defined as a percentage (%).

表7、表8に示される通り、本発明被覆工具1〜15の逃げ面及びすくい面のY含有α型Al23層については、結晶粒の内部に少なくとも一つ以上のΣ3対応界面が存在する結晶粒の面積比率は60%以上であるのに対して、切刃部については、結晶粒の内部に少なくとも一つ以上のΣ3対応界面が存在する結晶粒の面積比率は35%以上60%未満であって、結晶粒の内部にΣ3対応界面が存在する率は小さいことがわかる。
また、比較被覆工具1〜15については、表9に示される通り、切刃部、すくい面および逃げ面のいずれの面についても、結晶粒の内部に少なくとも一つ以上のΣ3対応界面が存在する結晶粒の面積比率は60%以上であった。
As shown in Tables 7 and 8, the Y-containing α-type Al 2 O 3 layer of the flank and rake face of the present coated tools 1 to 15 has at least one Σ3 corresponding interface inside the crystal grains. Whereas the area ratio of the existing crystal grains is 60% or more, in the cutting edge portion, the area ratio of the crystal grains in which at least one Σ3 corresponding interface exists in the crystal grains is 35% or more and 60%. It can be seen that the ratio of the interface corresponding to Σ3 in the crystal grains is small.
Further, as shown in Table 9, for the comparative coated tools 1 to 15, at least one Σ3 corresponding interface exists in the crystal grains for any of the cutting edge portion, the rake face, and the flank face. The area ratio of the crystal grains was 60% or more.

また、本発明被覆工具1〜15の切刃部、逃げ面、すくい面のY含有α型Al23層および比較被覆工具1〜15の切刃部、逃げ面、すくい面のY含有α型Al23層について、電界放出型走査電子顕微鏡を用いて、層厚方向に垂直な面内に存在する、大粒径の平坦六角形状の結晶粒の面積割合を求めた。この値を表7〜表9に示す。
なお、ここで言う「大粒径の平坦六角形状」の結晶粒とは、
「電界放出型走査電子顕微鏡により観察される層厚方向に垂直な面内に存在する粒子の直径を計測し、10粒子の平均値が3〜8μmであり、頂点の角度が100〜140°である頂角を6個有する多角形状である。」
と定義する。
In addition, the Y-containing α-type Al 2 O 3 layer of the cutting edge, flank and rake face of the coated tools 1 to 15 of the present invention and the Y-containing α of the cutting edge, flank and rake face of the comparative coated tools 1 to 15 The area ratio of large hexagonal flat hexagonal crystal grains present in a plane perpendicular to the layer thickness direction was determined for the type Al 2 O 3 layer using a field emission scanning electron microscope. This value is shown in Tables 7-9.
In addition, the crystal grains of the “large hexagonal flat hexagonal shape” mentioned here are:
“The diameter of particles existing in a plane perpendicular to the layer thickness direction observed by a field emission scanning electron microscope is measured, the average value of 10 particles is 3 to 8 μm, and the vertex angle is 100 to 140 °. It is a polygonal shape with six apex angles. "
It is defined as

ついで、本発明被覆工具1〜15、比較被覆工具1〜15の硬質被覆層の各構成層の厚さを、走査型電子顕微鏡を用いて測定(縦断面測定)したが、いずれもの場合も、目標層厚と実質的に同じ平均層厚(5点測定の平均値)を示した。   Next, the thickness of each constituent layer of the hard coating layer of the present invention coated tool 1-15, comparative coated tool 1-15 was measured using a scanning electron microscope (longitudinal cross section measurement), in either case, The average layer thickness (average value of 5-point measurement) substantially the same as the target layer thickness was shown.

つぎに、上記の本発明被覆工具1〜15、比較被覆工具1〜15について、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、
被削材:JIS・SUJ2(HRC62)の丸棒、
切削速度: 250 m/min.、
切り込み: 1.5 mm、
送り: 0.30 mm/rev.、
切削時間: 5 分、
の条件(切削条件Aという)での軸受鋼の乾式高速重切削試験(通常の切削速度および送りは、それぞれ200m/min 、0.15 mm/rev.)、
被削材:JIS・SKD11(HRC58)の丸棒、
切削速度: 300 m/min.、
切り込み: 2.7 mm、
送り: 0.30 mm/rev.、
切削時間: 5 分、
の条件(切削条件Bという)での合金工具鋼の乾式高速重切削試験(通常の切削速度および送りは、それぞれ200m/min 、0.15 mm/rev.)、
被削材:JIS・SK3(HRC61)の丸棒、
切削速度: 250 m/min.、
切り込み: 2.7 mm、
送り: 0.30 mm/rev.、
切削時間: 5 分、
の条件(切削条件Cという)での炭素工具鋼の乾式高速重切削試験(通常の切削速度および送りは、それぞれ200m/min 、0.15 mm/rev.)、
を行い、いずれの切削試験でも逃げ面の硬質被覆層の摩耗量、剥離の有無を測定・観察した。
この測定結果を表10に示した。
Next, for the above-described inventive coated tools 1-15 and comparative coated tools 1-15, both are screwed to the tip of the tool steel tool with a fixing jig,
Work material: JIS / SUJ2 (HRC62) round bar,
Cutting speed: 250 m / min. ,
Cutting depth: 1.5 mm,
Feed: 0.30 mm / rev. ,
Cutting time: 5 minutes,
Dry high-speed heavy cutting test of bearing steel under the following conditions (referred to as cutting condition A) (normal cutting speed and feed are 200 m / min and 0.15 mm / rev., Respectively),
Work material: JIS · SKD11 (HRC58) round bar,
Cutting speed: 300 m / min. ,
Incision: 2.7 mm,
Feed: 0.30 mm / rev. ,
Cutting time: 5 minutes,
Dry high speed heavy cutting test of alloy tool steel under the following conditions (referred to as cutting condition B) (normal cutting speed and feed are 200 m / min and 0.15 mm / rev., Respectively),
Work material: JIS / SK3 (HRC61) round bar,
Cutting speed: 250 m / min. ,
Incision: 2.7 mm,
Feed: 0.30 mm / rev. ,
Cutting time: 5 minutes,
Dry high speed heavy cutting test of carbon tool steel under the following conditions (referred to as cutting conditions C) (normal cutting speed and feed are 200 m / min and 0.15 mm / rev., Respectively),
In each cutting test, the amount of wear of the hard coating layer on the flank and the presence or absence of peeling were measured and observed.
The measurement results are shown in Table 10.

Figure 2011183488
Figure 2011183488

Figure 2011183488
Figure 2011183488

Figure 2011183488
Figure 2011183488

Figure 2011183488
Figure 2011183488

Figure 2011183488
Figure 2011183488

Figure 2011183488
Figure 2011183488

Figure 2011183488
Figure 2011183488

Figure 2011183488
Figure 2011183488

Figure 2011183488
Figure 2011183488

Figure 2011183488
Figure 2011183488

表7〜10に示される結果から、本発明被覆工具1〜15は、逃げ面及びすくい面の中間層として、(0001)面配向率が45%以上の高い比率を示すα型Al23層が形成され、さらに、この上にY含有α型Al23層からなる上部層が構成され、該上部層が、平板多角形(平坦六角形)たて長形状の結晶粒の組織構造を有し、(0001)面配向率が60%以上の高い比率を示し、また、結晶粒の内部に少なくとも一つ以上のΣ3対応界面が存在する結晶粒の面積比率が60%以上と高いことによって、Y含有α型Al23層が一段とすぐれた高温強度と結晶粒内強度を有し、また、一段とすぐれた表面平坦性とを兼備し、その一方、切刃部のTi化合物層からなる下部層の表面がレーザー処理によって、その表面粗さRaが0.3(μm)以上となるように凹凸化され、その結果、切刃部の(0001)面配向率は、α型Al23層では20%以上45%未満に低減され、Y含有α型Al23層では30%以上60%未満に低減され、加えて、切刃部におけるY含有α型Al23層の結晶粒の内部に少なくとも一つ以上のΣ3対応界面が存在する結晶粒の面積比率が35%以上60%未満に低減されることにより、高熱発生および機械的な高負荷を伴う合金工具鋼や軸受鋼の焼入れ材などの高硬度鋼の高速重切削加工で、逃げ面及びすくい面の硬質被覆層はすぐれた高温強度、耐摩耗性および耐チッピング性を発揮するとともに、切刃部の硬質被覆層の耐チッピング性、耐摩耗性が一段と改善されることによって、長期の使用にわたってすぐれた切削性能を示し、使用寿命の一層の延命化を可能とするものである。
これに対して、切刃部、すくい面および逃げ面のいずれの面も同様な硬質被覆層が形成された比較被覆工具1〜15については、合金工具鋼や軸受鋼の焼入れ材などの高硬度鋼の高速重切削加工では、特に、切刃部の硬質被覆層のチッピング発生による耐摩耗性の低下によって、比較的短時間で使用寿命に至ることが明らかである。
From the results shown in Tables 7 to 10, the inventive coated tools 1 to 15 are α-type Al 2 O 3 showing a high ratio of (0001) plane orientation ratio of 45% or more as an intermediate layer between the flank face and the rake face. A layer is formed, and an upper layer composed of a Y-containing α-type Al 2 O 3 layer is formed thereon, and the upper layer is a textured structure of long and flat crystal grains (flat hexagonal) And the (0001) plane orientation ratio is as high as 60% or higher, and the crystal grain area ratio in which at least one Σ3-compatible interface exists inside the crystal grains is as high as 60% or higher. The Y-containing α-type Al 2 O 3 layer has excellent high-temperature strength and in-grain strength, and also has excellent surface flatness, and on the other hand, from the Ti compound layer of the cutting edge portion The surface of the lower layer becomes a surface roughness Ra of 0.3 by laser treatment. [mu] m) are textured so that above, so that the (0001) plane orientation ratio of the cutting edge is in the α-type the Al 2 O 3 layer is reduced to less than 45% or more 20%, Y content α-type Al 2 In the O 3 layer, it is reduced to 30% or more and less than 60%, and in addition, the crystal grains in which at least one Σ3 corresponding interface exists inside the crystal grains of the Y-containing α-type Al 2 O 3 layer in the cutting edge portion. By reducing the area ratio to 35% or more and less than 60%, high-speed heavy cutting of hardened steel such as alloy tool steel and hardened material of bearing steel with high heat generation and high mechanical load, The hard coating layer on the rake face exhibits excellent high-temperature strength, wear resistance and chipping resistance, as well as long-term use by further improving the chipping resistance and wear resistance of the hard coating layer on the cutting edge. Excellent cutting performance over the longevity And it makes it possible to further extended life of.
On the other hand, the comparative coated tools 1 to 15 in which the same hard coating layer is formed on any of the cutting edge portion, the rake face, and the flank face have high hardness such as a hardened material of alloy tool steel or bearing steel. In high-speed heavy cutting of steel, it is clear that the service life is reached in a relatively short period of time, particularly due to a decrease in wear resistance due to chipping of the hard coating layer of the cutting edge.

上述のように、この発明の被覆工具は、各種の鋼や鋳鉄などの通常条件の切削加工は勿論のこと、高熱発生および機械的高負荷を伴う高硬度鋼の高速重切削加工でも、チッピングの発生なく、すぐれた耐摩耗性を示し、長期に亘ってすぐれた切削性能を発揮するものであるから、切削装置の高性能化並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。   As described above, the coated tool of the present invention is capable of chipping not only in normal conditions such as various steels and cast iron, but also in high-speed heavy cutting of high-hardness steel with high heat generation and high mechanical load. It is excellent in wear resistance and has excellent cutting performance over a long period of time, so it is fully satisfied with high performance cutting equipment, labor saving and energy saving of cutting, and cost reduction. It can cope with.

Claims (2)

炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に、
(a)下部層が、いずれも化学蒸着形成された、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上からなり、かつ、2〜15μmの合計平均層厚を有するTi化合物層、
(b)中間層が、1〜5μmの平均層厚を有し、化学蒸着した状態でα型の結晶構造を有する酸化アルミニウム層、
(c)上部層が、2〜15μmの平均層厚を有し、化学蒸着した状態でα型の結晶構造を有するY含有酸化アルミニウム層、
上記(a)〜(c)からなる硬質被覆層を蒸着形成した表面被覆切削工具において、
上記(b)の中間層および上記(c)の上部層について、電界放出型走査電子顕微鏡を用い、上記工具基体の表面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、前記測定傾斜角のうちの0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフで表わした場合、
(d)切刃部における中間層は、0〜10度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0〜10度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の20%以上45%未満の割合を占め、また、逃げ面およびすくい面における中間層は、0〜10度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0〜10度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の45%以上の割合を占める傾斜角度数分布グラフを示し、
(e)切刃部における上部層は、0〜10度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0〜10度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の30%以上60%未満の割合を占め、また、逃げ面およびすくい面における上部層は、0〜10度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0〜10度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の60%以上の割合を占める傾斜角度数分布グラフを示し、
(f)また、上記(c)の上部層について、電界放出型走査電子顕微鏡で組織観察した場合に、層厚方向に垂直な面内で平板多角形状、また、層厚方向に平行な面内で層厚方向にたて長形状を有する結晶粒からなる組織構造を有するY含有酸化アルミニウム層であり、
(g)さらに、上記(c)の上部層について、電界放出型走査電子顕微鏡と電子後方散乱回折像装置を用い、表面研磨面の測定範囲内に存在する結晶粒個々に電子線を照射して、六方晶結晶格子からなる結晶格子面のそれぞれの法線が基体表面の法線と交わる角度を測定し、この測定結果から、隣接する結晶格子相互の結晶方位関係を算出し、結晶格子界面を構成する構成原子のそれぞれが前記結晶格子相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(但し、Nはコランダム型六方最密晶の結晶構造上2以上の偶数となるが、分布頻度の点からNの上限を28とした場合、4、8、14、24および26の偶数は存在せず)存在する構成原子共有格子点形態をΣN+1で表した場合に、切刃部における上記(c)の上部層を構成する結晶粒の内、面積比率で35%以上60%未満の結晶粒の内部は、少なくとも一つ以上のΣ3で表される構成原子共有格子点形態からなる結晶格子界面により分断されており、また、すくい面および逃げ面における上記(c)の上部層を構成する結晶粒の内、面積比率で60%以上の結晶粒の内部は、少なくとも一つ以上のΣ3で表される構成原子共有格子点形態からなる結晶格子界面により分断されているY含有酸化アルミニウム層である、
ことを特徴とする表面被覆切削工具。
On the surface of the tool base composed of tungsten carbide based cemented carbide or titanium carbonitride based cermet,
(A) the lower layer is formed of one or more of Ti carbide layer, nitride layer, carbonitride layer, carbonate layer and carbonitride oxide layer, all formed by chemical vapor deposition; And a Ti compound layer having a total average layer thickness of 2 to 15 μm,
(B) the intermediate layer has an average layer thickness of 1 to 5 μm, and an aluminum oxide layer having an α-type crystal structure in the state of chemical vapor deposition;
(C) The upper layer has an average layer thickness of 2 to 15 μm, and a Y-containing aluminum oxide layer having an α-type crystal structure in a chemical vapor deposited state;
In the surface-coated cutting tool in which the hard coating layer composed of the above (a) to (c) is formed by vapor deposition,
For the intermediate layer of (b) and the upper layer of (c), each crystal grain having a hexagonal crystal lattice existing within the measurement range of the surface polished surface of the tool base is measured using a field emission scanning electron microscope. Irradiated with an electron beam, the inclination angle formed by the normal line of the (0001) plane, which is the crystal plane of the crystal grain, is measured with respect to the normal line of the surface-polished surface. When the measured inclination angle within the range of 45 degrees is divided for each pitch of 0.25 degrees and the frequency existing in each division is represented by an inclination angle number distribution graph,
(D) The intermediate layer in the cutting edge portion has the highest peak in the inclination angle section within the range of 0 to 10 degrees, and the total of the frequencies existing in the range of 0 to 10 degrees is the inclination angle number distribution. It accounts for 20% or more and less than 45% of the total frequency in the graph, and the intermediate layer on the flank and rake face has the highest peak in the inclination angle section within the range of 0 to 10 degrees, The inclination angle number distribution graph in which the total of the frequencies existing in the range of 10 degrees occupies a ratio of 45% or more of the whole frequency in the inclination angle number distribution graph,
(E) The upper layer in the cutting edge portion has the highest peak in the inclination angle section within the range of 0 to 10 degrees, and the total of the frequencies existing in the range of 0 to 10 degrees is the inclination angle number distribution. The upper layer on the flank face and the rake face has the highest peak in the inclination angle section within the range of 0 to 10 degrees, The inclination angle number distribution graph in which the total of the frequencies existing within the range of 10 degrees occupies a ratio of 60% or more of the entire frequency in the inclination angle number distribution graph,
(F) When the structure of the upper layer of (c) is observed with a field emission scanning electron microscope, a planar polygonal shape in a plane perpendicular to the layer thickness direction, and a plane parallel to the layer thickness direction A Y-containing aluminum oxide layer having a texture structure composed of crystal grains having a long shape in the layer thickness direction,
(G) Further, with respect to the upper layer of (c), an electron beam is irradiated to each crystal grain existing within the measurement range of the surface polished surface using a field emission scanning electron microscope and an electron backscatter diffraction image apparatus. , Measure the angle at which each normal of the crystal lattice plane composed of hexagonal crystal lattice intersects the normal of the substrate surface, and from this measurement result, calculate the crystal orientation relationship between adjacent crystal lattices, Calculate the distribution of lattice points (constituent atom shared lattice points) where each constituent atom shares one constituent atom between the crystal lattices, and do not share constituent atoms between the constituent atom shared lattice points N (however, N is an even number of 2 or more due to the crystal structure of the corundum hexagonal close-packed crystal, but when the upper limit of N is 28 from the point of distribution frequency, 4, 8, 14, 24 and 26) (There is no even number) When the shared lattice point form is represented by ΣN + 1, at least one of the crystal grains constituting the upper layer of the above (c) in the cutting edge portion has an area ratio of 35% or more and less than 60%. It is divided by the crystal lattice interface composed of the constituent atomic shared lattice points represented by Σ3, and the area ratio of the crystal grains constituting the upper layer of the above (c) on the rake face and flank face The interior of 60% or more of the crystal grains is a Y-containing aluminum oxide layer that is divided by a crystal lattice interface composed of at least one constituent atom shared lattice point represented by Σ3.
A surface-coated cutting tool characterized by that.
前記(c)の上部層を電界放出型走査電子顕微鏡で組織観察した場合に、層厚方向に垂直な面内で平坦六角形状、また、層厚方向に平行な面内で層厚方向にたて長形状を有する結晶粒が、層厚方向に垂直な面内において全体の35%以上の面積割合を占める請求項1に記載の表面被覆切削工具。   When the upper layer of (c) was observed with a field emission scanning electron microscope, it was flat hexagonal in a plane perpendicular to the layer thickness direction, and in the layer thickness direction in a plane parallel to the layer thickness direction. The surface-coated cutting tool according to claim 1, wherein the crystal grains having a long shape occupy an area ratio of 35% or more of the whole in a plane perpendicular to the layer thickness direction.
JP2010049579A 2010-03-05 2010-03-05 Surface-coated cutting tool with excellent peeling resistance and wear resistance due to its hard coating layer Expired - Fee Related JP5440270B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010049579A JP5440270B2 (en) 2010-03-05 2010-03-05 Surface-coated cutting tool with excellent peeling resistance and wear resistance due to its hard coating layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010049579A JP5440270B2 (en) 2010-03-05 2010-03-05 Surface-coated cutting tool with excellent peeling resistance and wear resistance due to its hard coating layer

Publications (2)

Publication Number Publication Date
JP2011183488A true JP2011183488A (en) 2011-09-22
JP5440270B2 JP5440270B2 (en) 2014-03-12

Family

ID=44790379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010049579A Expired - Fee Related JP5440270B2 (en) 2010-03-05 2010-03-05 Surface-coated cutting tool with excellent peeling resistance and wear resistance due to its hard coating layer

Country Status (1)

Country Link
JP (1) JP5440270B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000246506A (en) * 1999-03-02 2000-09-12 Mitsubishi Materials Corp Cutting tool made of surface coated super head material exhibiting excellent high temperature heat conductivity at its hard coated layer
JP2004001154A (en) * 2002-06-03 2004-01-08 Hitachi Tool Engineering Ltd Oxide film coating tool
JP2005205586A (en) * 2003-12-26 2005-08-04 Mitsubishi Materials Corp Surface-coated cermet cutting tool exhibiting excellent chipping resistance in hard coated layer
JP2005279909A (en) * 2004-03-02 2005-10-13 Mitsubishi Materials Corp Surface coated cermet-made cutting tool having hard coating layer exhibiting excellent chipping resistance
JP2006305714A (en) * 2005-03-29 2006-11-09 Kyocera Corp Surface coated cutting tool
JP2008006546A (en) * 2006-06-29 2008-01-17 Sumitomo Electric Hardmetal Corp Cutting edge changing type cutting tip
JP2009248218A (en) * 2008-04-03 2009-10-29 Mitsubishi Materials Corp Surface-coated cutting tool having hard coating layer for exhibiting superior chipping resistance and abrasive resistance in high speed heavy cutting work
JP2009248217A (en) * 2008-04-03 2009-10-29 Mitsubishi Materials Corp Surface-coated cutting tool having hard coating layer for exhibiting superior chipping resistance and abrasive resistance in high speed heavy cutting work

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000246506A (en) * 1999-03-02 2000-09-12 Mitsubishi Materials Corp Cutting tool made of surface coated super head material exhibiting excellent high temperature heat conductivity at its hard coated layer
JP2004001154A (en) * 2002-06-03 2004-01-08 Hitachi Tool Engineering Ltd Oxide film coating tool
JP2005205586A (en) * 2003-12-26 2005-08-04 Mitsubishi Materials Corp Surface-coated cermet cutting tool exhibiting excellent chipping resistance in hard coated layer
JP2005279909A (en) * 2004-03-02 2005-10-13 Mitsubishi Materials Corp Surface coated cermet-made cutting tool having hard coating layer exhibiting excellent chipping resistance
JP2006305714A (en) * 2005-03-29 2006-11-09 Kyocera Corp Surface coated cutting tool
JP2008006546A (en) * 2006-06-29 2008-01-17 Sumitomo Electric Hardmetal Corp Cutting edge changing type cutting tip
JP2009248218A (en) * 2008-04-03 2009-10-29 Mitsubishi Materials Corp Surface-coated cutting tool having hard coating layer for exhibiting superior chipping resistance and abrasive resistance in high speed heavy cutting work
JP2009248217A (en) * 2008-04-03 2009-10-29 Mitsubishi Materials Corp Surface-coated cutting tool having hard coating layer for exhibiting superior chipping resistance and abrasive resistance in high speed heavy cutting work

Also Published As

Publication number Publication date
JP5440270B2 (en) 2014-03-12

Similar Documents

Publication Publication Date Title
JP5187570B2 (en) Surface coated cutting tool with excellent wear resistance due to hard coating layer
WO2010106811A1 (en) Surface-coated cutting tool
JP5440311B2 (en) Surface-coated cutting tool with excellent peeling resistance and wear resistance due to its hard coating layer
JP2009248218A (en) Surface-coated cutting tool having hard coating layer for exhibiting superior chipping resistance and abrasive resistance in high speed heavy cutting work
JP5326707B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP2010000570A (en) Surface-coated cutting tool having hard coating layer exhibiting excellent wear resistance
JP5240668B2 (en) Surface-coated cutting tool with excellent chipping resistance in high-speed intermittent cutting of hard alloy steel
JP5440269B2 (en) Surface-coated cutting tool with excellent peeling resistance and wear resistance due to its hard coating layer
JP5739086B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP5594572B2 (en) Surface-coated cutting tool with excellent peel resistance, chipping resistance, and wear resistance with excellent hard coating layer
JP5454924B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP5428569B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP5594574B2 (en) Surface-coated cutting tool with excellent peeling resistance and wear resistance due to its hard coating layer
JP4811787B2 (en) Surface-coated cermet cutting tool with excellent grain interface strength in modified κ-type aluminum oxide layer of hard coating layer
JP5594571B2 (en) Surface-coated cutting tool with excellent peeling resistance and wear resistance due to its hard coating layer
JP5440270B2 (en) Surface-coated cutting tool with excellent peeling resistance and wear resistance due to its hard coating layer
JP5594573B2 (en) Surface-coated cutting tool with excellent peeling resistance and wear resistance due to its hard coating layer
JP5594570B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP5424097B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP5440268B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP5176797B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP5176798B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP5370919B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP5454923B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP5370920B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131202

R150 Certificate of patent or registration of utility model

Ref document number: 5440270

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees