JP2011183424A - Powder for casting boron-containing stainless steel and method of continuously casting boron-containing stainless steel - Google Patents

Powder for casting boron-containing stainless steel and method of continuously casting boron-containing stainless steel Download PDF

Info

Publication number
JP2011183424A
JP2011183424A JP2010050447A JP2010050447A JP2011183424A JP 2011183424 A JP2011183424 A JP 2011183424A JP 2010050447 A JP2010050447 A JP 2010050447A JP 2010050447 A JP2010050447 A JP 2010050447A JP 2011183424 A JP2011183424 A JP 2011183424A
Authority
JP
Japan
Prior art keywords
powder
stainless steel
boron
mass
containing stainless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010050447A
Other languages
Japanese (ja)
Other versions
JP4846858B2 (en
Inventor
Hidekazu Todoroki
秀和 轟
Yuichi Kanbe
雄一 神戸
Teruaki Ishii
照彰 石井
Natsuki Shiga
夏樹 志賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Yakin Kogyo Co Ltd
Original Assignee
Nippon Yakin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Yakin Kogyo Co Ltd filed Critical Nippon Yakin Kogyo Co Ltd
Priority to JP2010050447A priority Critical patent/JP4846858B2/en
Publication of JP2011183424A publication Critical patent/JP2011183424A/en
Application granted granted Critical
Publication of JP4846858B2 publication Critical patent/JP4846858B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Continuous Casting (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a powder for continuous casting which is suitable to continuous casting of a boron-containing stainless steel, and a method of continuously casting a boron-containing stainless steel slab free from surface defects. <P>SOLUTION: The powder for casting contains, by mass, 0.30 to 35% CaO, 20 to 30% SiO<SB>2</SB>, 0.10 to 16% Na<SB>2</SB>O, 8 to 11% Al<SB>2</SB>O<SB>3</SB>, 3 to <5% B<SB>2</SB>O<SB>3</SB>, 4 to 10% F and 1 to 3% aggregate C, and has a basicity of 1.0≤C/S<1.3, a viscosity of 0.5 to 2 poises at 1,300°C, a solidification temperature of 900 to 1,200°C, and allows a powder film having a thickness of 0.5 to 3 mm to be formed when it is made to flow into a space between a mold and a solidified shell, The method of continuously casting a boron-containing stainless steel uses the powder. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、ボロン含有ステンレス鋼、とくに液相線温度の低い(1320〜1380℃)ボロン含有ステンレス鋼の溶湯を連続鋳造する時に用いられる鋳造用パウダーと、このパウダーを用いて表面欠陥の少ないボロン含有ステンレス鋼のスラブを連続鋳造する方法についての提案である。   The present invention relates to a casting powder used when continuously casting a boron-containing stainless steel, particularly a boron-containing stainless steel having a low liquidus temperature (1320 to 1380 ° C.), and boron with less surface defects using this powder. It is a proposal about the method of continuously casting the slab of containing stainless steel.

ボロン含有ステンレス鋼は、中性子吸収能が高く、耐食性にも優れることから、原子力発電所の使用済み核燃料の貯蔵容器用材料や遮蔽材料などとして使用される材料の1つである。このボロン含有ステンレス鋼の金相学的特徴は、オ−ステナイトとボライドとの共晶型で、液相線温度が低く、凝固時の固相化の速度が遅いという点にある。そのために、この鋼は、鋳造時に凝固割れを起しやすいという欠点がある。さらに、この種の鋼は、連続鋳造時に、溶鋼中のBと溶融パウダー中のSiOとが下記式に示す反応を起こし、パウダー中にBがピックアップすることが知られている。 Boron-containing stainless steel is one of materials used as a storage container material or a shielding material for spent nuclear fuel in nuclear power plants because it has high neutron absorption capability and excellent corrosion resistance. The gold phase characteristic of this boron-containing stainless steel is that it is an eutectic type of austenite and boride, the liquidus temperature is low, and the solidification speed during solidification is slow. For this reason, this steel has a drawback that it tends to cause solidification cracking during casting. Furthermore, this type of steel is known to cause a reaction represented by the following formula between B in molten steel and SiO 2 in molten powder during continuous casting, and B 2 O 3 is picked up in the powder.

3(SiO)+4=2(B)+3Si (1)
( )は溶融パウダー中成分、下線は溶鋼中成分を示す。
3 (SiO 2 ) +4 B = 2 (B 2 O 3 ) +3 Si (1)
() Indicates the component in the molten powder, and the underline indicates the component in the molten steel.

パウダー中のBが増加すると、パウダーの粘度や凝固温度が低下し、連続鋳造時における鋳型/凝固シェル間への溶融パウダー流入量の増加を招くだけでなく、この時に生成するパウダーフィルムがガラス質化する傾向がある。該パウダーフィルムがガラス質になると、鋳型内メニスカス部において、不均一冷却を招くと共に、縦割れやデプレッションの発生を助長する。 When B 2 O 3 in the powder increases, the viscosity and solidification temperature of the powder decrease, which not only increases the amount of molten powder flowing into the mold / solidified shell during continuous casting, but also the powder film generated at this time Tends to vitrify. When the powder film becomes vitreous, non-uniform cooling is caused at the meniscus portion in the mold, and vertical cracking and depletion are promoted.

このような現象に鑑み、従来(特許文献1、2、3)、パウダー中に、反応終了時点に相当する量のBを予め添加しておくことにより、パウダーの物性の変化を抑制する方法の提案がある。しかし、これらの方法だけでは、結晶化挙動を適正に導くことができるとは言い難いのが実情であった。即ち、これらの既知技術では、結晶が全く形成されないか、あるいは、形成されてもその成長が著しく遅いという問題があった。 In view of such a phenomenon, conventionally (Patent Documents 1, 2, and 3), the change in physical properties of the powder is suppressed by adding in advance an amount of B 2 O 3 corresponding to the reaction end point in the powder. There are suggestions on how to do that. However, the fact is that it is difficult to say that the crystallization behavior can be properly led by these methods alone. That is, these known techniques have a problem that crystals are not formed at all, or the growth is extremely slow even if formed.

一方、パウダー中のSiOを極力低下させ、その代わりに、Alを添加したCaO−Al系パウダーが開発されている(特許文献4、5)。このパウダーによれば、反応による物性の変化を抑えることができる。しかしながら、このCaO−Al系パウダーはそもそも、滓化性に乏しいという欠点があり、そのために、パウダーをスラブ表面に噛み込みやすいといった問題があった。 On the other hand, CaO—Al 2 O 3 -based powder in which SiO 2 in the powder is reduced as much as possible and Al 2 O 3 is added instead has been developed (Patent Documents 4 and 5). According to this powder, changes in physical properties due to reaction can be suppressed. However, this CaO—Al 2 O 3 -based powder originally has a drawback of poor hatchability, and thus has a problem that it is easy to bite the powder into the slab surface.

その他、特許文献6では、結晶化を促進するために、LiOを添加したパウダーを用いた鋳造方法を提案している。しかし、この技術の場合、結晶化率が15%〜75%と高いが、鋳型内で緩冷却になりすぎる傾向があり、そのために、シェルの成長が弱くバルジングが起きやすいという問題などがあった。 In addition, Patent Document 6 proposes a casting method using powder to which Li 2 O is added in order to promote crystallization. However, in the case of this technique, the crystallization rate is as high as 15% to 75%, but there is a tendency that the cooling becomes too slow in the mold, and there is a problem that the shell growth is weak and bulging is likely to occur. .

特開平02−155547号公報Japanese Patent Laid-Open No. 02-155547 特開平08−141712号公報Japanese Patent Laid-Open No. 08-141712 特開2001−191153号公報JP 2001-191153 A 特開平11−309548号公報JP 11-309548 A 特開2002−205153号公報JP 2002-205153 A 特開2007−61846号公報JP 2007-61846 A

上述したように、ボロン含有ステンレス鋼を連続鋳造する場合に用いられてきた従来のパウダーは、凝固温度が高すぎたり溶融が遅くなり過ぎたりして、結晶相が形成されにくいという問題、あるいは結晶相が発達しすぎたりするといった問題があった。このような問題があると、鋳型内で不均一冷却となりやすく、縦割れ、デプレッションあるいは焼き付きを起こしやすくない、最悪の場合は、ブレ−クアウトして鋳造停止になることがあった。   As described above, the conventional powder that has been used for continuous casting of boron-containing stainless steel has a problem that the solidification temperature is too high or the melting is too slow, and the crystal phase is difficult to form, or the crystal There was a problem that the phase developed too much. If there is such a problem, non-uniform cooling is likely to occur in the mold, and vertical cracking, depletion or seizure is not likely to occur. In the worst case, the mold may break out and stop casting.

そこで、本発明の目的は、ボロン含有ステンレス鋼の連続鋳造に用いられる連続鋳造用パウダーを提供すること、および表面欠陥のないボロン含有ステンレス鋼スラブを連続鋳造する方法を提案することにある。   Therefore, an object of the present invention is to provide a powder for continuous casting used for continuous casting of boron-containing stainless steel, and to propose a method for continuously casting a boron-containing stainless steel slab having no surface defects.

発明者らは、まず、ボロン含有ステンレス鋼を連続鋳造するのに必要な連続鋳造用パウダーの好ましい物性について、凝固試験を行って検討した。その結果、本発明で処理対象とするようなボロン含有ステンレス鋼は、そもそも液相線温度が低く(1320〜1380℃)、連続鋳造機にて鋳造する通常のステンレス鋼と比較すると、著しく低い温度を有する鋼種である。一般に、連続鋳造用パウダーの特性としては、溶鋼の熱により溶融するものであるから、低温の溶鋼に接しても確実に溶融し、鋳型/凝固シェル間に円滑に流入するようなものでなければならない。例えば、ボロン含有ステンレス鋼鋳造用のパウダーの特性としては、凝固温度が900〜1200℃(これは従来のパウダーよりも低い)であって、1300℃における粘度が0.5〜2poise程度のものであるようなものが求められる。さもないと、低温のボロン含有ステンレス鋼の場合、鋳型/凝固シェル間に適正量の溶融パウダーを流入させることができなくなるからである。   The inventors first examined a preferable physical property of the powder for continuous casting necessary for continuously casting the boron-containing stainless steel by performing a solidification test. As a result, the boron-containing stainless steel to be treated in the present invention has a low liquidus temperature (1320 to 1380 ° C.) in the first place, and a significantly lower temperature than ordinary stainless steel cast in a continuous casting machine. It is a steel type having In general, the characteristics of powder for continuous casting is that it melts due to the heat of molten steel, so it must melt reliably even in contact with low-temperature molten steel and flow smoothly between the mold and the solidified shell. Don't be. For example, the properties of powder for casting boron-containing stainless steel include a solidification temperature of 900 to 1200 ° C. (which is lower than conventional powder) and a viscosity at 1300 ° C. of about 0.5 to 2 poise. Something is required. Otherwise, in the case of low-temperature boron-containing stainless steel, an appropriate amount of molten powder cannot flow between the mold and the solidified shell.

そこで、発明者らは、前記物性を示すパウダーサンプル(CaO−SiO−NaO−Al−B−F系)を、組成を変化させて30種類程度作製し、これらのパウダーサンプルの結晶化挙動ならびに溶融速度について調査した。通常、鋳型/凝固シェル間に流入するパウダーは、鋳型に冷却されて固体となりフィルムを形成する。このフィルムは、鋳型側において結晶相が形成されずガラス化すると、凝固シェルは強冷かつ不均一冷却になりやすく、そのためにデプレッションや縦割れ、ブリーディングなどを引き起こし、最悪の場合にはブレークアウトして鋳造停止となる場合もある。この理由は、ガラス化した場合、輻射伝熱が高くなることと、鋳型との接触が不均一になりやすいためと考えられている。一方で、結晶化が進みすぎた場合も、シェルの成長が遅くれ、充分なシェル強度が確保することができず、バルジングを起してしまう問題があった。そのため、連続鋳造用パウダーとしては、適正な結晶化挙動を示すものが必要となってくる。 Therefore, the inventors made about 30 kinds of powder samples (CaO—SiO 2 —Na 2 O—Al 2 O 3 —B 2 O 3 —F system) showing the above physical properties by changing the composition, and these The crystallization behavior and melting rate of the powder samples were investigated. Usually, the powder flowing between the mold and the solidified shell is cooled by the mold to become a solid to form a film. When this film is vitrified without forming a crystalline phase on the mold side, the solidified shell tends to be strongly and non-uniformly cooled, which causes depletion, vertical cracking, bleeding, etc., and breaks out in the worst case. The casting may be stopped. The reason for this is considered to be that when vitrified, the radiant heat transfer becomes high and the contact with the mold tends to be uneven. On the other hand, when crystallization progresses too much, the growth of the shell is delayed, and there is a problem that sufficient shell strength cannot be secured and bulging occurs. Therefore, as the powder for continuous casting, a powder showing an appropriate crystallization behavior is required.

上述したように、鋳造用パウダーの結晶化挙動は、本発明を考える上で最も重要なポイントである。そこで、発明者らは、Bが10mass%程度ピックアップしても、結晶化が確実に進むパウダーの開発を目的に、銅板などを使用して、鋳型/凝固シェル間に流入した溶融パウダーの状態を模擬する実験を行った。その結果、溶鋼温度が低いとガラス化しやすくなり、結晶が晶出し難くなることがわかった。その理由は、銅板で冷却された溶融パウダーは、最初はガラス化するが、その後は溶湯側からの熱を受けてやがて結晶化する。この時、合金の液相線温度が低く、そのために鋳込み温度が低いものだと、ガラス化したパウダーに充分な熱が伝わらないために、結晶化し難くなるものと考えられる。 As described above, the crystallization behavior of the casting powder is the most important point in considering the present invention. Therefore, the inventors used a copper plate or the like to melt the molten powder that flowed between the mold and the solidified shell for the purpose of developing a powder that can be surely crystallized even when B 2 O 3 is picked up by about 10 mass%. An experiment was conducted to simulate the state of. As a result, it was found that when the molten steel temperature is low, it becomes easy to vitrify and it is difficult to crystallize. The reason is that the molten powder cooled by the copper plate is vitrified at first, but then receives heat from the molten metal side and eventually crystallizes. At this time, if the liquidus temperature of the alloy is low and therefore the casting temperature is low, sufficient heat is not transmitted to the vitrified powder, and it is considered that crystallization is difficult.

次に、発明者らは、上記のボロン含有ステンレス鋼(液相線温度が1320〜1380℃)と、SUS304ステンレス鋼(液相線温度が1463℃)との比較を試みた。即ち、この両者の液相線温度は、100℃ほどの差があることに着目し、溶鋼/パウダー間のBのピックアップがどうなるのかを検証した。具体的には、高周波誘導炉を用いて、マグネシア坩堝内でそれぞれの鋼を溶解し、溶鋼/パウダー間で反応実験を繰り返し行った。その結果、液相線温度が1320〜1380℃であるボロン含有ステンレス鋼では、Bのピックアップは約1%程度に止まることを突き止めた。このことは、たとえ予めBを含有していても、ピックアップの量を抑えることさえできれば、ガラス化を抑えて所定の結晶相を生成させることができることを意味している。 Next, the inventors tried to compare the boron-containing stainless steel (liquidus temperature is 1320 to 1380 ° C.) with SUS304 stainless steel (liquidus temperature is 1463 ° C.). That is, paying attention to the difference between the liquidus temperatures of about 100 ° C., it was verified what happens to the pickup of B 2 O 3 between molten steel / powder. Specifically, each steel was melted in a magnesia crucible using a high frequency induction furnace, and reaction experiments were repeated between molten steel / powder. As a result, in the boron-containing stainless steel having a liquidus temperature of 1320 to 1380 ° C., it was found that the B 2 O 3 pickup stopped at about 1%. This means that even if B 2 O 3 is contained in advance, vitrification can be suppressed and a predetermined crystal phase can be generated as long as the amount of pickup can be suppressed.

そのための方法として、本発明では、パウダーの塩基度(CaO/SiO、以下「C/S」と略記する)に着目し、これを1.0≦C/S<1.3に調整すると共に、B含有量を3〜5(未満)mass%に設計したパウダーを準備し、このパウダーを18トンクラスの小規模の連続鋳造試験に適用したところ、問題なく連続鋳造できることがわかった。 As a method therefor, in the present invention, attention is paid to the basicity of the powder (CaO / SiO 2 , hereinafter abbreviated as “C / S”), and this is adjusted to 1.0 ≦ C / S <1.3. , B 2 O 3 content of 3 to 5 (less than) mass% designed powder was prepared, and when this powder was applied to a small-scale continuous casting test of 18 tons class, it was found that continuous casting can be performed without problems. .

さらに、この実験では、鋳型/シェル間に流入して形成されたパウダーフィルムは、0.5〜3mmの厚さがあり、そのうち、鋳型側の3%を超えて15%未満が結晶相となっていた(結晶相の占める%は厚みの割合である。図1のSEM像参照)。発明者らの知見では、結晶相の割合がこの範囲内だと、好ましいシェルの成長に有効であることがわかった。即ち、充分なシェル強度を確保することができ、バルジングを起こさず、勿論、縦割れやデプレッション、焼付きといった問題もなく、連続鋳造することができるのである。そして、この結晶相は、EDSあるいはX線回折により分析したところ、図2に示すように、結晶相はカスピダイン(3CaO・2SiO2・CaF)であることもわかった。 Further, in this experiment, the powder film formed by flowing between the mold / shell has a thickness of 0.5 to 3 mm, of which the crystal phase is more than 3% and less than 15% on the mold side. (The% occupied by the crystal phase is the ratio of the thickness. See the SEM image in FIG. 1). According to the knowledge of the inventors, it was found that when the proportion of the crystal phase is within this range, it is effective for preferable shell growth. That is, sufficient shell strength can be ensured, bulging does not occur, and, of course, continuous casting can be performed without problems such as vertical cracks, depletion, and seizure. When this crystal phase was analyzed by EDS or X-ray diffraction, it was also found that the crystal phase was caspodyne (3CaO · 2SiO2 · CaF 2 ) as shown in FIG.

次に、本発明に係るパウダーの特徴の1つに、骨材としてCを添加することが挙げられる。この骨材Cは、連続鋳造用パウダーを構成するCaO・SiOやAlなどの酸化物、およびCaFやNaFなどの弗化物粒子の間に介在し、溶融速度を調整する働きを有する。このCは、大気中の酸素と反応して燃焼する段階では、酸化物や弗化物粒子の接触を防いで、溶融を抑制する。ただし、最終的には、酸化物や弗化物の粒子の接触を促して溶融を促す作用をもっている。そのため、パウダー中における骨材C量は、低温の溶鋼でもパウダーを確実に溶融させるようにするためにも、そしてパウダーの溶融速度を適正化する上で重要な成分である。 Next, one of the characteristics of the powder according to the present invention is to add C as an aggregate. This aggregate C is interposed between oxides such as CaO.SiO 2 and Al 2 O 3 and fluoride particles such as CaF 2 and NaF constituting the powder for continuous casting, and functions to adjust the melting rate. Have. In the stage where this C reacts with oxygen in the atmosphere and burns, C prevents contact with oxide and fluoride particles and suppresses melting. However, it finally has the effect of promoting melting by promoting the contact of oxide and fluoride particles. Therefore, the amount of aggregate C in the powder is an important component in order to ensure that the powder is melted even in low-temperature molten steel and to optimize the melting rate of the powder.

そこで発明者らは、骨材C量を0〜5mass%の範囲内で変化させて、溶融速度を測定する実験を行った。この測定実験では、高周波誘導炉内で上記のステンレス鋼を溶解し、溶鋼の過熱度(液相線温度と溶鋼温度の差)を40℃と一定にした条件下で、該溶鋼上に連続鋳造用パウダーを投入して完全に溶融するまでの時間を測定した。目標とする溶融速度は、液相線温度が1463℃であるSUS304ステンレス鋼と、それに用いている連続鋳造用パウダーの組合せによる場合を基準として、同等の結果が得られる、骨材C量を観察した結果から、1〜3mass%とする必要があることがわかった。   Therefore, the inventors conducted an experiment to measure the melting rate by changing the amount of aggregate C within a range of 0 to 5 mass%. In this measurement experiment, the above-mentioned stainless steel was melted in a high-frequency induction furnace, and the molten steel was continuously cast on the molten steel under the condition that the degree of superheat (difference between the liquidus temperature and molten steel temperature) was kept constant at 40 ° C. The time until the powder was completely melted was measured. The target melting rate is based on the combination of SUS304 stainless steel with a liquidus temperature of 1463 ° C and the continuous casting powder used for it. From the result, it was found that it was necessary to be 1 to 3 mass%.

次に、本発明に適合する物性を有するパウダーを実機試験に供し、種々の条件下で鋳造し鋳造スラブを得た。その結果、ボロン含有ステンレス鋼を円滑に連続鋳造するためには、上述した鋳造用パウダーの選択と共に、溶鋼過熱度と鋳造速度も適正に制御することが有効であることがわかった。即ち、溶鋼過熱度が5℃未満では、前記鋳造用パウダーを用いても溶融速度が低下し、充分な溶融パウダーを得ることができないのと、浸漬ノズル内で地金が凝固し、ノズル閉塞を起す場合があった。一方、この溶鋼過熱度が50℃を超える場合には、連続鋳造機内で凝固が完了せず、中心割れを起すこともあった。したがって、溶鋼の過熱度は、5〜50℃が好ましいことがわかった。   Next, a powder having physical properties suitable for the present invention was subjected to an actual machine test, and cast under various conditions to obtain a cast slab. As a result, in order to smoothly and continuously cast boron-containing stainless steel, it has been found that it is effective to appropriately control the superheat degree of the molten steel and the casting speed in addition to the selection of the powder for casting described above. That is, when the molten steel superheat degree is less than 5 ° C., the melting rate is lowered even if the casting powder is used, and sufficient molten powder cannot be obtained. There was a case. On the other hand, when the superheat degree of the molten steel exceeds 50 ° C., solidification is not completed in the continuous casting machine, and a center crack may occur. Therefore, it was found that the superheat degree of the molten steel is preferably 5 to 50 ° C.

さらに、本発明において連続鋳造時のスラブ引抜速度(鋳造速度)は、550mm/分未満ではスラブ表面品質が悪化し、900mm/分を超えるような速度では、凝固シェルが充分に成長せず、ブレ−クアウトを誘起した。そのため、鋳造速度は、550〜900mm/分とすることが好ましいことがわかった。   Furthermore, in the present invention, when the slab drawing speed (casting speed) during continuous casting is less than 550 mm / min, the quality of the slab surface deteriorates, and when the slab drawing speed exceeds 900 mm / min, the solidified shell does not grow sufficiently. -Induced quat. Therefore, it was found that the casting speed is preferably 550 to 900 mm / min.

本発明は、前述した実験結果から知り得た新規な知見に基づいて開発したものである。即ち、本発明に係るボロン含有ステンレス鋼鋳造用パウダーは、Ca0:30〜35mass%、SiO:20〜30mass%、NaO:10〜16mass%、Al:8〜11mass%、B:3〜5(未満)mass%、F:4〜10mass%、骨材C:1〜3mass%を含有する成分組成を有し、かつ、塩基度が1.0≦C/S<1.3、1300℃における粘度が0.5〜2poise、凝固温度が900〜1200℃、かつ鋳型と凝固シェルとの間に流入した時に、0.5〜3mmの厚さのパウダーフィルムを形成する特性を具えるものであることが必要である。 The present invention has been developed on the basis of novel findings obtained from the above-described experimental results. That is, boron-containing stainless steel casting powder according to the present invention, Ca0: 30~35mass%, SiO 2 : 20~30mass%, Na 2 O: 10~16mass%, Al 2 O 3: 8~11mass%, B 2 O 3 : 3 to 5 (less than) mass%, F: 4 to 10 mass%, aggregate C: 1 to 3 mass%, and basicity is 1.0 ≦ C / S < 1.3 When a viscosity at 1300 ° C. is 0.5-2 poise, a solidification temperature is 900-1200 ° C., and flows between the mold and the solidified shell, a powder film having a thickness of 0.5-3 mm is formed. It is necessary to have characteristics.

また、本発明は、C≦0.2mass%、Si≦3mass%、Mn≦5mass%、Cr:15〜25mass%、Ni:3〜20mass%、B:0.8〜1.5mass%、残部がFeおよび不可避的不純物からなるボロン含有ステンレス鋼の溶鋼を、前記連続鋳造パウダーを用いて連続鋳造することを特徴とするボロン含有ステンレス鋼の連続鋳造方法を提案する。   Moreover, this invention is C <= 0.2 mass%, Si <= 3 mass%, Mn <= 5 mass%, Cr: 15-25 mass%, Ni: 3-20 mass%, B: 0.8-1.5 mass%, remainder is A continuous casting method for boron-containing stainless steel, characterized by continuously casting a molten steel of boron-containing stainless steel made of Fe and inevitable impurities using the continuous casting powder, is proposed.

前述したように構成される本発明では、
(1)前記パウダーフィルムは、鋳型側に、このフィルムの厚さの3%超〜15%未満の部分が結晶相を有するものであること、
(2)パウダーフィルム中の前記結晶相はカスピダインであること、
(3)液相線温度が1320〜1380℃であるボロン含有ステンレス鋼を連続鋳造すること、
(4)溶鋼過熱度が5〜50℃、連続鋳造速度が550〜900mm/分の条件下で連続鋳造すること、
が、より好ましい実施形態である。
In the present invention configured as described above,
(1) The powder film has, on the mold side, a portion of more than 3% to less than 15% of the thickness of the film has a crystal phase,
(2) The crystalline phase in the powder film is caspidine.
(3) Continuous casting of boron-containing stainless steel having a liquidus temperature of 1320 to 1380 ° C.
(4) Continuous casting under conditions where the molten steel superheat degree is 5 to 50 ° C. and the continuous casting speed is 550 to 900 mm / min,
Is a more preferred embodiment.

以上のように構成される本発明に係る鋳造用パウダーよれば、ボロン含有ステンレス鋼の連続鋳造にあたり、縦割れ、デプレッションあるいは焼き付きがなくなるだけでなく、ブレ−クアウト等の事故もなくなり、安定した連続鋳造が可能となる。また、本発明に係る鋳造用パウダーを用いて連続鋳造したスラブは、表面性状に優れているため、切断および研削歩留りが良好となり、生産性の向上、さらには、製造コストの低減を実現することができる。   According to the casting powder according to the present invention configured as described above, in continuous casting of boron-containing stainless steel, not only does vertical cracking, depletion or seizure disappear, but there is no accident such as breakout and stable continuous operation. Casting becomes possible. In addition, since the slab continuously cast using the casting powder according to the present invention has excellent surface properties, cutting and grinding yields are improved, productivity is improved, and manufacturing cost is reduced. Can do.

パウダーフィルムの断面を示す写真である。It is a photograph which shows the cross section of a powder film. パウダーフィルム中の結晶層を示す写真である。It is a photograph which shows the crystal | crystallization layer in a powder film.

本発明に係る鋳造用パウダーは、上述した各種の実験に基づく知見により開発したものであり、CaO−SiO−NaO−Al−B−F系のパウダーであって、塩基度が1.0≦C/S<1.3、1300℃における粘度が0.5〜2poise、凝固温度が900〜1200℃で、かつ鋳型と凝固シェルとの間に流入した時に、0.5〜3mmの厚さのパウダーフィルムを形成する特性を具えるものであることを特徴としている。このような成分、物性を有する鋳造用パウダーであれば、1320〜1380℃と低い液相線温度のボロン含有ステンレス鋼の鋳造であっても確実に溶融し、鋳型と凝固シェルとの間に流入した時に、鋳型側に適量の結晶相を形成させることができる。以下、本発明にかかる鋳造用パウダーの物性、成分組成を、上記のように限定する理由について説明する。 The casting powder according to the present invention was developed based on the knowledge based on the various experiments described above, and is a CaO—SiO 2 —Na 2 O—Al 2 O 3 —B 2 O 3 —F based powder. When the basicity is 1.0 ≦ C / S <1.3, the viscosity at 1300 ° C. is 0.5-2 poise, the solidification temperature is 900-1200 ° C., and it flows between the mold and the solidified shell, It has the characteristic of forming a powder film having a thickness of 5 to 3 mm. If it is a casting powder having such components and physical properties, it is surely melted even when casting boron-containing stainless steel having a liquidus temperature as low as 1320 to 1380 ° C. and flows between the mold and the solidified shell. When this is done, an appropriate amount of crystal phase can be formed on the mold side. The reason why the physical properties and component composition of the casting powder according to the present invention are limited as described above will be described below.

a.1300℃における粘度:0.5〜2poise
パウダー粘度は、0.5poise未満だと、鋳型/凝固シェル間への流入が過多となり、深いオシレ−ションを引き起こし、デプレッションの起点になる。逆に、2poiseを超えて高粘度になると、流入不足となってスティッキングを引き起こしやすくなる。いずれの場合も、ブレ−クアウトを起こすことがある。このことから、1300℃における粘度は、0.5〜2poiseとする。好ましくは、0.6〜1.6poise、より好ましくは、0.7〜1.5poiseである。
a. Viscosity at 1300 ° C .: 0.5-2 poise
If the powder viscosity is less than 0.5 poise, excessive flow into the mold / solidified shell will cause deep oscillation and become the starting point of depletion. On the other hand, if the viscosity is higher than 2 poise, the inflow is insufficient and sticking is likely to occur. In either case, breakout may occur. For this reason, the viscosity at 1300 ° C. is set to 0.5 to 2 poise. Preferably, it is 0.6 to 1.6 poise, more preferably 0.7 to 1.5 poise.

b.凝固温度:900〜1200℃
パウダーの凝固温度は、900℃未満だと、鋳型/凝固シェル間への流入が過多となり深いオシレ−ションを引き起こし、デプレッションの起点になる。一方、1200℃を超えると、溶融速度が低下して流入不足となり、スティッキングを引き起こすことがある。いずれの場合も、最悪はブレークアウトを招く。このことから、凝固温度は900〜1200℃とする。好ましくは、950〜1180℃、より好ましくは、1000〜1150℃である。
b. Solidification temperature: 900-1200 ° C
If the solidification temperature of the powder is less than 900 ° C., excessive flow into the mold / solidification shell will cause deep oscillation, which will be the starting point of depletion. On the other hand, when it exceeds 1200 ° C., the melting rate is lowered, the inflow is insufficient, and sticking may be caused. In either case, the worst is a breakout. Therefore, the solidification temperature is set to 900 to 1200 ° C. Preferably, it is 950-1180 degreeC, More preferably, it is 1000-1150 degreeC.

c.結晶化挙動
一般的に、酸化物、弗化物の混合溶融体は、銅板上で冷却されると、ガラス化する性質がある。したがって、溶融したパウダーは、溶鋼の熱により、鋳型/凝固シェル間へ流入し、その直後はガラス化していると推定される。そして、流入してフィルムを形成するが、やがて溶鋼の熱を受けて、鋳型側に結晶相が形成されるものと考えられる。この点、結晶相が形成されると、フィルム/鋳型間の均一な接触が実現されて、健全な表面品質の鋳片が得られる。本発明では、比較的低温の溶鋼からの熱で充分な結晶相を得る必要があり、結晶化挙動は極めて重要である。なお、該結晶相の組成は、図2に示す写真に明らかなように、EDS分析により基本的にはカスピダイン(3CaO・2SiO・CaF)であることを確認している。場合によって、ネフェリン(NaO・Al・2SiO)やCaFが含まれていても構わない。
c. Crystallization behavior In general, a mixed melt of oxide and fluoride has the property of vitrifying when cooled on a copper plate. Therefore, it is estimated that the molten powder flows into the mold / solidified shell due to the heat of the molten steel, and immediately after that, it is vitrified. And it flows in and forms a film, but it is thought that a crystal phase is formed on the mold side by receiving heat of molten steel before long. In this respect, when the crystal phase is formed, uniform contact between the film / mold is realized, and a slab of sound surface quality is obtained. In the present invention, it is necessary to obtain a sufficient crystal phase with heat from a relatively low temperature molten steel, and the crystallization behavior is extremely important. As is apparent from the photograph shown in FIG. 2, the composition of the crystal phase is basically confirmed to be caspodyne (3CaO.2SiO 2 .CaF 2 ) by EDS analysis. Optionally, it may be included nepheline (Na 2 O · Al 2 O 3 · 2SiO 2) and CaF 2.

d.上述したフィルムは、厚み0.5〜3mm程度であって、そのうち、鋳型に接する側の3%を超えて15%未満が、図1に示すような結晶相を占めるもの(残部ガラス層)とする。この理由は、結晶相の厚みがフィルム厚の全厚に対し3%以下だと、ほとんどガラスとしての挙動を示し、一方、この厚みが15%以上だと凝固シェルの潤滑を悪くするとともに、緩冷却となりすぎて、充分なシェル強度を確保することができなくなる。これらの場合、スラブ表面欠陥発生の原因となるばかりか、ブレークアウトを引き起こす危険がある。そのため、パウダーフィルムに占める結晶相の割合は、鋳型に接する側において、3%を超えて15%未満の厚みが、図2に示すような結晶相からなるものとする。この結晶化特性については、パウダーの構成成分であるCaO、SiO、NaO、Al、B、Fの含有量を適正化することで制御することができる。 d. The film described above has a thickness of about 0.5 to 3 mm, of which over 3% on the side in contact with the mold and less than 15% occupy the crystal phase as shown in FIG. 1 (the remaining glass layer) To do. The reason for this is that when the thickness of the crystal phase is 3% or less of the total thickness of the film, the glass behaves almost as a glass. Cooling becomes too much, and sufficient shell strength cannot be secured. In these cases, not only does it cause slab surface defects, but there is also a risk of causing breakout. Therefore, the proportion of the crystal phase in the powder film is such that the thickness exceeding 3% and less than 15% is composed of the crystal phase as shown in FIG. This crystallization characteristic can be controlled by optimizing the contents of CaO, SiO 2 , Na 2 O, Al 2 O 3 , B 2 O 3 , and F, which are constituent components of the powder.

e. 次に、パウダー組成を上記のように限定した理由を説明する。
CaO:30〜35mass%、SiO:20〜30mass%、NaO:10〜16mass%、Al:8〜11mass%、B:3〜5(未満)mass%、F:4〜10mass%
これらは、いずれも、上記した物性値ならびに結晶化挙動を達成するために必要な成分組成である。即ち、本発明においては、CaO、SiO、NaO、Al、B、Fについて、パウダーの凝固温度、粘度、結晶化挙動を適正なものにするため、それぞれ、上記の範囲内にする。
e. Next, the reason why the powder composition is limited as described above will be described.
CaO: 30~35mass%, SiO 2: 20~30mass%, Na 2 O: 10~16mass%, Al 2 O 3: 8~11mass%, B 2 O 3: 3~5 ( below) mass%, F: 4-10mass%
All of these are component compositions necessary for achieving the physical property values and crystallization behavior described above. That is, in the present invention, for CaO, SiO 2 , Na 2 O, Al 2 O 3 , B 2 O 3 , and F, in order to make the solidification temperature, viscosity, and crystallization behavior of the powder appropriate, Within the range.

上記成分のうちCaO、SiO、およびFは、結晶相であるカスピダインの構成元素であるため、いずれの成分も上記の下限値を下まわると上述した結晶相の生成割合が不足し(≦3%)てしまい、一方、上限値よりも高くなると、結晶相の割合が多く(≧15%)なりすぎてしまう。また、SiOは、あまり高いと粘度が高くなりすぎ、そして、CaOはあまり高すぎると、凝固温度が高くなってしまい、低すぎると凝固温度が低くなってしまう。NaOは、結晶化を促進する成分であり、低いと結晶相の生成割合が低く、高すぎると逆に多くなりすぎる。Alは、基本的に結晶化挙動と粘度に作用する。上限値を超えると粘度が高くなり、さらに結晶相の割合も低くなってしまう。逆に、Alが下限値を下まわりすぎると、粘度が低くなり、さらには結晶相の割合も高くなってしまう。Bは、低すぎる(3mass%未満)と結晶相の割合が多くなり、一方、高すぎる(5mass%以上)と逆に結晶相の割合が不足してしまう。Bの好ましい範囲は、3.1mass%以上4.9mass%以下である。 Among the above components, CaO, SiO 2 , and F are constituent elements of caspodyne, which is a crystalline phase. Therefore, if any component falls below the above lower limit, the above-mentioned crystal phase generation rate is insufficient (≦ 3 On the other hand, if it is higher than the upper limit value, the proportion of the crystal phase is too large (≧ 15%). Further, if SiO 2 is too high, the viscosity becomes too high, and if CaO is too high, the solidification temperature becomes high, and if it is too low, the solidification temperature becomes low. Na 2 O is a component that promotes crystallization. If it is low, the generation rate of the crystal phase is low, and if it is too high, it is excessively increased. Al 2 O 3 basically affects crystallization behavior and viscosity. When the upper limit is exceeded, the viscosity increases, and the proportion of the crystal phase also decreases. On the other hand, when Al 2 O 3 is too lower than the lower limit, the viscosity is lowered and the ratio of the crystal phase is also increased. If B 2 O 3 is too low (less than 3 mass%), the proportion of the crystal phase is increased. On the other hand, if it is too high (5 mass% or more), the proportion of the crystal phase is insufficient. A preferable range of B 2 O 3 is 3.1 mass% or more and 4.9 mass% or less.

f.塩基度:1.0≦C/S<1.3
塩基度は、この値が1.0未満だと、ガラス化しやすくなるとともに、凝固温度、粘度ともに高くなる傾向にあり、物性値の制御が困難になる。一方、1.3以上の場合にも、凝固温度、粘度ともに高くなる傾向にあり、物性値の制御が困難になる。したがって、塩基度の範囲は、1.0以上1.3未満とした。好ましくは、1.1以上1.25以下、より好ましくは、1.15以上1.24以下である。
f. Basicity: 1.0 ≦ C / S <1.3
When the basicity is less than 1.0, vitrification tends to occur and the solidification temperature and viscosity tend to increase, making it difficult to control physical properties. On the other hand, in the case of 1.3 or more, both the solidification temperature and the viscosity tend to be high, and it becomes difficult to control the physical property values. Therefore, the basicity range is 1.0 or more and less than 1.3. Preferably, it is 1.1 or more and 1.25 or less, More preferably, it is 1.15 or more and 1.24 or less.

g.骨材C:1〜3mass%以下
Cは、パウダーの溶融速度を制御するために添加されるものであり、本発明では極めて重要な成分である。このC量が1mass%未満では溶融が速すぎて過剰流入を引き起こす。一方、3mass%を超えると、溶融速度が遅過ぎて流入が追いつかなくなる。いずれの場合も、デプレッションや縦割れ、ブリ−ディングを引き起こす危険があり、最悪の場合、ブレ−クアウトする。そのため、1〜3mass%とした。好ましくは、1mass%以上3mass%未満、より好ましくは1.4mass%超2.8mass%以下である。
g. Aggregate C: 1 to 3 mass% or less C is added to control the melting rate of the powder, and is an extremely important component in the present invention. If the amount of C is less than 1 mass%, melting is too fast and excessive inflow occurs. On the other hand, if it exceeds 3 mass%, the melting rate is too slow and the inflow cannot catch up. In either case, there is a risk of causing depletion, vertical cracking, and bleeding, and in the worst case, breaks out. Therefore, it was set to 1 to 3 mass%. Preferably, they are 1 mass% or more and less than 3 mass%, More preferably, it is more than 1.4 mass% and 2.8 mass% or less.

また、本発明は、上述した鋳造用パウダーを用いてボロン含有ステンレス鋼を連続鋳造する方法を提案する。以下に、この方法について説明する。   The present invention also proposes a method for continuously casting boron-containing stainless steel using the above-described casting powder. This method will be described below.

(1)鋳造材料
本発明方法に適用するボロン含有ステンレス鋼とは、C≦0.2mass%、Si≦3mass%、Mn≦mass5%、Cr:15〜25mass%、Ni:3〜20mass%、B:0.8〜1.5mass%、残部がFeおよび不可避的不純物からなる溶鋼であり、この成分組成を有するボロン含有ステンレス鋼を上記のパウダーを用いて鋳造する。特に限定されるものではないが、上記のボロン含有ステンレス鋼は、Mo:5mass%以下、Co:1mass%以下のうち、いずれか一方または両方を含有する鋼であってもよい。
(1) Cast material The boron-containing stainless steel applied to the method of the present invention is C ≦ 0.2 mass%, Si ≦ 3 mass%, Mn ≦ mass 5%, Cr: 15 to 25 mass%, Ni: 3 to 20 mass%, B : 0.8 to 1.5 mass%, the balance being molten steel composed of Fe and inevitable impurities, and boron-containing stainless steel having this component composition is cast using the above powder. Although not particularly limited, the boron-containing stainless steel may be steel containing either one or both of Mo: 5 mass% or less and Co: 1 mass% or less.

ボロン含有ステンレス鋼の上記成分組成において、Cは、強度を保つために含有させるものであり、Si、Mnは、脱酸に有用な元素である。また、Crは、耐食性、耐熱性に有用な元素であり、Niは、組織をオ−ステナイトに保つために有用な元素である。Bは、中性子を吸収する能力を持つため、最も重要な元素である。Moは、耐食性を向上させ、Coは、オ−ステナイトを安定化させる元素であり、必要に応じて添加される。   In the above component composition of the boron-containing stainless steel, C is contained for maintaining strength, and Si and Mn are elements useful for deoxidation. Cr is an element useful for corrosion resistance and heat resistance, and Ni is an element useful for maintaining the structure in austenite. B is the most important element because it has the ability to absorb neutrons. Mo improves corrosion resistance, and Co is an element that stabilizes austenite, and is added as necessary.

(2)鋳造条件
a.鋳造速度(引抜速度):550〜900mm/分
引抜速度は、550mm/分未満ではスラブ表面品質が悪化し、一方、900mm/分を超えて速くした場合、凝固シェルが充分に成長せず、ブレ−クアウトを引き起す。そのため、引抜速度は、550〜900mm/分とする。好ましくは、600〜880mm/分、より好ましくは、650〜800mm/分とする。
b.溶鋼過熱度:5〜50℃
溶鋼過熱度(溶鋼の液相線温度とタンディッシュ内溶鋼温度の差として定義する)は、5℃未満では、連続鋳造用パウダーの溶融速度が低下し、充分な溶融パウダーを得ることができないことに加え、浸漬ノズル内で地金が凝固してノズル閉塞を招くことがある。一方、この温度が50℃を超える場合、連続鋳造機内で凝固が完了せず、中心割れとなることがある。したがって、溶鋼の過熱度は、5〜50℃とする。好ましくは、10〜45℃、より好ましくは、15〜43℃とする。
(2) Casting conditions a. Casting speed (drawing speed): 550 to 900 mm / min When the drawing speed is less than 550 mm / min, the surface quality of the slab deteriorates. On the other hand, when it exceeds 900 mm / min, the solidified shell does not grow sufficiently. -Causes queuing. Therefore, the drawing speed is set to 550 to 900 mm / min. Preferably, it is 600 to 880 mm / min, more preferably 650 to 800 mm / min.
b. Molten steel superheat degree: 5-50 ° C
If the superheat degree of the molten steel (defined as the difference between the liquidus temperature of the molten steel and the molten steel temperature in the tundish) is less than 5 ° C, the melting rate of the powder for continuous casting is reduced and sufficient molten powder cannot be obtained. In addition, the base metal may solidify in the immersion nozzle, resulting in nozzle clogging. On the other hand, when this temperature exceeds 50 degreeC, solidification may not be completed within a continuous casting machine, and it may become a center crack. Therefore, the superheat degree of molten steel shall be 5-50 degreeC. The temperature is preferably 10 to 45 ° C, more preferably 15 to 43 ° C.

なお、鋳造初期の鋳造を安定させ、初期のスラブ表面品質を健全に保つためには、溶融が速く、早期にパウダーフィルムを形成する発熱型のスタ−トパウダーを用いることも有効である。   In addition, in order to stabilize casting at the initial stage of casting and to keep the initial slab surface quality sound, it is also effective to use a heat-generating start powder that quickly melts and forms a powder film at an early stage.

電気炉で、鉄屑、ステンレス屑、ニッケル、フェロクロム、フェロボロン、クロムを溶解し、AODあるいはVODのいずれか一方または両方を用いて精錬し、表1に示す組成のボロン含有ステンレス鋼を得た。鋳造の規模は60トンであり、スラブの形状は、154mm厚み×800〜1300mm幅である。長さは、1つのスラブをおよそ7〜10mに切断した。なお、表1には、連続鋳造用パウダーの成分組成と、その物性値および連続鋳造の条件についても併記した。溶鋼成分、パウダー成分および物性値は、以下の方法により評価した。   Iron scrap, stainless steel scrap, nickel, ferrochrome, ferroboron, and chromium were melted in an electric furnace and refined using one or both of AOD and VOD to obtain boron-containing stainless steel having the composition shown in Table 1. The scale of casting is 60 tons, and the shape of the slab is 154 mm thick × 800 to 1300 mm wide. The length of one slab was cut to approximately 7-10 m. In Table 1, the component composition of the powder for continuous casting, its physical properties, and the conditions for continuous casting are also shown. The molten steel component, powder component and physical property values were evaluated by the following methods.

(1)溶鋼成分:蛍光X線分析装置により定量分析した。表1に示した残部はFeを主に含み、その他に不可避的不純物として、P、S、Cu、O、Nなどを含んでいる。さらに、脱酸にAlを用いている場合、0.4mass%以下程度のAlが含まれる。
(2)連続鋳造用パウダー成分:C以外は、化学分析により定量分析した。表1中に示す各成分の合計が100mass%未満であるのは、これらの成分以外にも、MgO、Fe等の不可避的不純物を含むためである。C含有量は添加した重量比から求めた。
(3)粘度:回転円筒法により測定した。即ち、鉄坩堝にパウダーを入れ、縦型抵抗炉内で溶解し、その後、鉄製のロ−タ−を挿入、回転することで粘度を測定した。
(4)凝固温度:上記粘度測定の際に、温度を降下していくと急激に粘度の値が立ち上がる点が求まる。この変曲点を凝固温度とした。
(5)パウダーフィルムの厚み:鋳込み後のパウダーフィルムをサンプリングし、厚みを測定した。
(6)結晶相の割合:鋳込み後のパウダーフィルムを埋め込み研磨し、SEM観察した。その観察から、結晶相の厚みを測定した。その一例を、図1および2に示す。
(7)スラブの表面あるいは内部欠陥:表面欠陥は外観観察により特定した。内部欠陥はスラブを切断して、断面のPT(浸透探傷)検査により割れの有無を確認した。
(8)研削および切断歩留まり:欠陥部の切断および研削を行った前後での重量を測定して、算出した。
(1) Molten steel component: Quantitative analysis was performed using a fluorescent X-ray analyzer. The balance shown in Table 1 mainly contains Fe, and additionally contains P, S, Cu, O, N, etc. as unavoidable impurities. Furthermore, when Al is used for deoxidation, about 0.4 mass% or less of Al is contained.
(2) Powder component for continuous casting: Except for C, quantitative analysis was performed by chemical analysis. The reason why the total of each component shown in Table 1 is less than 100 mass% is because it contains inevitable impurities such as MgO and Fe 2 O 3 in addition to these components. The C content was determined from the added weight ratio.
(3) Viscosity: measured by the rotating cylinder method. That is, powder was put into an iron crucible and melted in a vertical resistance furnace, and then the viscosity was measured by inserting and rotating an iron rotor.
(4) Solidification temperature: When the viscosity is measured, the point at which the viscosity value suddenly rises as the temperature is lowered is determined. This inflection point was taken as the solidification temperature.
(5) Thickness of powder film: The powder film after casting was sampled and the thickness was measured.
(6) Ratio of crystal phase: The powder film after casting was embedded and polished, and observed by SEM. From the observation, the thickness of the crystal phase was measured. An example is shown in FIGS.
(7) Slab surface or internal defects: Surface defects were identified by appearance observation. Internal defects were cut through slabs, and the presence or absence of cracks was confirmed by PT (penetration inspection) inspection of the cross section.
(8) Grinding and cutting yield: Calculated by measuring the weight before and after cutting and grinding of the defective part.

表1および表2に示したボロン含有ステンレス鋼の液相線温度は、最も低いものでB含有量が1.41mass%(比較例12)の1321℃、最も高いもので、B含有量が0.82mass%(比較例6)の1375℃である。なお、中間の1.1%程度の鋼の液相線温度は、1350℃である。   The liquidus temperature of the boron-containing stainless steel shown in Tables 1 and 2 is the lowest, the B content is 1.41 mass% (Comparative Example 12) at 1321 ° C., the highest, and the B content is 0. It is 1375 degreeC of .82 mass% (Comparative Example 6). In addition, the liquidus temperature of about 1.1% of middle steel is 1350 degreeC.

次に、表1に示す連続鋳造用パウダーを用いて連続鋳造した、その結果、発明例1〜4では、いずれも問題なく完鋳することができた。しかも、得られたスラブの研削および切断歩留まりも、いずれも94%以上と良好であった。   Next, continuous casting was performed using the powder for continuous casting shown in Table 1. As a result, in Invention Examples 1 to 4, it was possible to complete casting without any problem. Moreover, both the grinding and cutting yield of the obtained slab were as good as 94% or more.

一方、比較例(No.5〜No.12)では、パウダー成分、パウダー物性値、鋳造条件、それにともない、パウダーフィルムの結晶性のいずれかが本発明の範囲を外れたため、縦割れ、デプレッション、スティッキング等を引き起こす結果となった。また、研削歩留まりも90%未満となってしまい、製造コストの上昇を招いた。以下に、比較例についてさらに詳しく説明する。   On the other hand, in the comparative examples (No. 5 to No. 12), since any of the powder components, powder physical properties, casting conditions, and the crystallinity of the powder film is out of the scope of the present invention, vertical cracks, depletion, This resulted in sticking. Moreover, the grinding yield was also less than 90%, leading to an increase in manufacturing cost. Hereinafter, the comparative example will be described in more detail.

(1)比較例の5〜9は、各成分が本発明の範囲を外れているパウダーを、連続鋳造に適用した例を示す。
a.比較例5:これらはパウダー中のCa0、SiO、NaO、Alの含有量が本発明の範囲を外れており、それにともない塩基度C/Sの値も低く、さらに、Bを添加していないパウダーを用いた例である。そのため、粘度が6.2poiseと高く、凝固温度も1210℃と高かった。このため、パウダーが流入しすぎてフィルム厚みが、6.5mmと厚く、しかも完全にガラス質になってしまった。その結果、スラブはデプレッション、縦割れが発生した。
b.比較例6:パウダー中のB添加量が少なかったため、フィルム厚みが3.6mmと厚くなり、さらに結晶相の割合も1%と低かった。そのため、デプレッションを引き起こした。
c.比較例7:パウダー中のB含有量が8.3%と高いため、凝固温度が870℃と低すぎた。そのため、フィルム厚みが6.1mmと厚く、なおかつ、完全なガラス質となり、スラブはデプレッション、縦割れが発生した。
d.比較例8:パウダー中のCaO、SiO、NaO、Alの含有量が本発明の範囲を外れており、それにともない塩基度C/Sの値も低い。粘度が0.35poiseと低く、かつ凝固温度も725℃と低かった。そのため、フィルム厚みが5.6mmと厚く、なおかつ、完全なガラス質となり、スラブはデプレッション、縦割れが発生した。
e.比較例9:パウダー中に骨材Cを多く添加した例である。パウダーの溶融が遅くなってしまい、フィルム厚みが0.3mmと薄くなってしまった。その結果スティッキングを引き起こしてしまった。
(1) Comparative Examples 5 to 9 show examples in which powders in which each component is out of the scope of the present invention are applied to continuous casting.
a. Comparative Example 5: These Ca0 in powder, SiO 2, Na 2 O, Al 2 O 3 content are outside the scope of the present invention, the values of basicity C / S Correspondingly low, further, B This is an example using powder to which 2 O 3 is not added. Therefore, the viscosity was as high as 6.2 poise and the coagulation temperature was as high as 1210 ° C. For this reason, powder flowed in too much, and the film thickness was as thick as 6.5 mm, and it became completely glassy. As a result, the slab was depleted and cracked.
b. Comparative Example 6: Since the amount of B 2 O 3 added in the powder was small, the film thickness was as thick as 3.6 mm, and the proportion of the crystal phase was as low as 1%. This caused depression.
c. Comparative Example 7: Since the content of B 2 O 3 in the powder was as high as 8.3%, the solidification temperature was too low at 870 ° C. Therefore, the film thickness was as thick as 6.1 mm, and it was completely glassy. Depression and vertical cracking occurred in the slab.
d. Comparative Example 8: The content of CaO, SiO 2 , Na 2 O, and Al 2 O 3 in the powder is out of the range of the present invention, and the basicity C / S is accordingly low. The viscosity was as low as 0.35 poise and the coagulation temperature was as low as 725 ° C. Therefore, the film thickness was as thick as 5.6 mm, and it became completely vitreous, and the slab was depleted and vertical cracks occurred.
e. Comparative Example 9: In this example, a large amount of aggregate C was added to the powder. The melting of the powder was delayed, and the film thickness was as thin as 0.3 mm. As a result, it caused sticking.

(2)次に、比較例の10〜12は、いずれも本発明に適合するパウダーを用いたが、鋳造の条件が適合しなかった例を示している。
a.比較例10:引き抜き速度が1200mm/分と速かったため、凝固シェルが充分に成長せずにブレ−クアウトを引き起こし、完鋳できなかった。
b.比較例11:溶鋼過熱度が2℃と低かったため、パウダーの溶融が遅く、パウダーフィルムの厚みが0.2mmと薄くなってしまった。また、引き抜き速度も500mm/分と遅かったため、スティッキングを起こした。
c.比較例12:溶鋼過熱度が80℃と高かったために、連続鋳造機内で溶鋼が充分に固まらず、スラブの中心割れを引き起こした。研削歩留りは、それほど悪くなかったが、内部割れのため、圧延しても圧着せず、製品にならなかった。
(2) Next, Comparative Examples 10 to 12 show examples in which the powder suitable for the present invention was used but the casting conditions were not suitable.
a. Comparative Example 10: Since the drawing speed was as fast as 1200 mm / min, the solidified shell did not grow sufficiently, causing breakout and complete casting.
b. Comparative Example 11: Since the degree of superheated molten steel was as low as 2 ° C., melting of the powder was slow, and the thickness of the powder film was as thin as 0.2 mm. Moreover, since the drawing speed was as slow as 500 mm / min, sticking occurred.
c. Comparative Example 12: Since the degree of superheating of the molten steel was as high as 80 ° C., the molten steel was not sufficiently solidified in the continuous casting machine, causing a center crack of the slab. The grinding yield was not so bad, but due to internal cracks, it was not crimped even after rolling and did not become a product.

Figure 2011183424
Figure 2011183424

Figure 2011183424
Figure 2011183424

本発明は、ボロン含有ステンレス鋼やNi−Cu系合金など液相線温度の低い合金・鋼の連続鋳造、そのためのパウダーとしても利用することができる。   The present invention can also be used as a continuous casting of alloy / steel having a low liquidus temperature, such as boron-containing stainless steel or Ni—Cu alloy, and as a powder for that purpose.

Claims (6)

Ca0:30〜35mass%、SiO:20〜30mass%、NaO:10〜16mass%、Al:8〜11mass%、B:3〜5(未満)mass%、F:4〜10mass%、骨材C:1〜3mass%を含有する成分組成を有し、かつ、塩基度が1.0≦C/S<1.3、1300℃における粘度が0.5〜2poise、凝固温度が900〜1200℃、かつ鋳型と凝固シェルとの間に流入した時に、0.5〜3mmの厚さのパウダーフィルムを形成する特性を具えることを特徴とするボロン含有ステンレス鋼用連続鋳造用パウダー。 Ca0: 30~35mass%, SiO 2: 20~30mass%, Na 2 O: 10~16mass%, Al 2 O 3: 8~11mass%, B 2 O 3: 3~5 ( below) mass%, F: 4-10 mass%, Aggregate C: having a component composition containing 1-3 mass%, and having a basicity of 1.0 ≦ C / S <1.3, a viscosity at 1300 ° C. of 0.5-2 poise, Continuous for boron-containing stainless steel characterized by having a characteristic of forming a powder film with a thickness of 0.5 to 3 mm when the solidification temperature is 900 to 1200 ° C. and it flows between the mold and the solidified shell. Powder for casting. 前記パウダーフィルムは、鋳型側に、このフィルムの厚さの3%超〜15%未満の部分が結晶相を有するものであることを特徴とする請求項1に記載のボロン含有ステンレス鋼鋳造用パウダー。 2. The powder for casting boron-containing stainless steel according to claim 1, wherein the powder film has a crystal phase in a portion of more than 3% to less than 15% of the thickness of the film on the mold side. . パウダーフィルム中の前記結晶相はカスピダインであることを特徴とする請求項1または2に記載のボロン含有ステンレス鋼造用パウダー。 The boron-containing stainless steel building powder according to claim 1 or 2, wherein the crystalline phase in the powder film is caspidine. C≦0.2mass%、Si≦3mass%、Mn≦5mass%、Cr:15〜25mass%、Ni:3〜20mass%、B:0.8〜1.5mass%、残部がFeおよび不可避的不純物からなるボロン含有ステンレス鋼の溶鋼を、請求項1〜3のいずれか1に記載の連続鋳造パウダーを用いて連続鋳造することを特徴とするボロン含有ステンレス鋼の連続鋳造方法。 C ≦ 0.2 mass%, Si ≦ 3 mass%, Mn ≦ 5 mass%, Cr: 15 to 25 mass%, Ni: 3 to 20 mass%, B: 0.8 to 1.5 mass%, the balance from Fe and inevitable impurities A continuous casting method for boron-containing stainless steel, comprising continuously casting a molten steel of boron-containing stainless steel using the continuous casting powder according to any one of claims 1 to 3. 液相線温度が1320〜1380℃であるボロン含有ステンレス鋼を連続鋳造することを特徴とする請求項4に記載のボロン含有ステンレス鋼の連続鋳造方法。 The method for continuous casting of boron-containing stainless steel according to claim 4, wherein the boron-containing stainless steel having a liquidus temperature of 1320 to 1380 ° C is continuously cast. 溶鋼過熱度が5〜50℃、連続鋳造速度が550〜900mm/分の条件下で連続鋳造することを特徴とする請求項4または5に記載のボロン含有ステンレス鋼の連続鋳造方法。 The continuous casting method for boron-containing stainless steel according to claim 4 or 5, wherein continuous casting is performed under conditions where the superheat degree of the molten steel is 5 to 50 ° C and the continuous casting speed is 550 to 900 mm / min.
JP2010050447A 2010-03-08 2010-03-08 Boron-containing stainless steel casting powder and method for continuous casting of boron-containing stainless steel Active JP4846858B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010050447A JP4846858B2 (en) 2010-03-08 2010-03-08 Boron-containing stainless steel casting powder and method for continuous casting of boron-containing stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010050447A JP4846858B2 (en) 2010-03-08 2010-03-08 Boron-containing stainless steel casting powder and method for continuous casting of boron-containing stainless steel

Publications (2)

Publication Number Publication Date
JP2011183424A true JP2011183424A (en) 2011-09-22
JP4846858B2 JP4846858B2 (en) 2011-12-28

Family

ID=44790332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010050447A Active JP4846858B2 (en) 2010-03-08 2010-03-08 Boron-containing stainless steel casting powder and method for continuous casting of boron-containing stainless steel

Country Status (1)

Country Link
JP (1) JP4846858B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015186813A (en) * 2014-03-26 2015-10-29 新日鐵住金株式会社 MOLD FLUX FOR CONTINUOUS CASTING OF Al-CONTAINING STEEL AND CONTINUOUS CASTING METHOD
JP2017018978A (en) * 2015-07-09 2017-01-26 日本冶金工業株式会社 Continuous casting powder for Al-containing steel and continuous casting method
KR101795469B1 (en) * 2015-12-10 2017-12-01 주식회사 포스코 APPARATUS FOR CONTINUOUS CASTING AND Method OF CONTIOUOUS CASTING

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08309483A (en) * 1995-05-11 1996-11-26 Nippon Steel Corp Continuous casting method for stainless steel containing boron
JP2001191153A (en) * 1999-12-28 2001-07-17 Nippon Yakin Kogyo Co Ltd Powder for continuously casting b-containing steel and continuous casting method
JP2005186124A (en) * 2003-12-26 2005-07-14 Sumitomo Metal Ind Ltd Mold powder for continuously casting boron-containing steel
JP2007061846A (en) * 2005-08-31 2007-03-15 Nippon Yakin Kogyo Co Ltd Continuous casting powder for boron-containing stainless steel, and continuous casting method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08309483A (en) * 1995-05-11 1996-11-26 Nippon Steel Corp Continuous casting method for stainless steel containing boron
JP2001191153A (en) * 1999-12-28 2001-07-17 Nippon Yakin Kogyo Co Ltd Powder for continuously casting b-containing steel and continuous casting method
JP2005186124A (en) * 2003-12-26 2005-07-14 Sumitomo Metal Ind Ltd Mold powder for continuously casting boron-containing steel
JP2007061846A (en) * 2005-08-31 2007-03-15 Nippon Yakin Kogyo Co Ltd Continuous casting powder for boron-containing stainless steel, and continuous casting method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015186813A (en) * 2014-03-26 2015-10-29 新日鐵住金株式会社 MOLD FLUX FOR CONTINUOUS CASTING OF Al-CONTAINING STEEL AND CONTINUOUS CASTING METHOD
JP2017018978A (en) * 2015-07-09 2017-01-26 日本冶金工業株式会社 Continuous casting powder for Al-containing steel and continuous casting method
KR101795469B1 (en) * 2015-12-10 2017-12-01 주식회사 포스코 APPARATUS FOR CONTINUOUS CASTING AND Method OF CONTIOUOUS CASTING

Also Published As

Publication number Publication date
JP4846858B2 (en) 2011-12-28

Similar Documents

Publication Publication Date Title
JP3574427B2 (en) Continuous casting powder and continuous casting method for Ti and Al-containing steel
JP5370929B2 (en) Mold flux for continuous casting of steel
KR20180079380A (en) Continuous Casting Mold Flux and Continuous Casting Method
JP4950751B2 (en) Method for continuous casting of Fe-base alloy and Ni-base alloy and exothermic mold powder for continuous casting
JP4813225B2 (en) Continuous casting powder for Al-containing Ni-base alloy and continuous casting method
JP5704030B2 (en) Mold flux for continuous casting of steel
JP4846858B2 (en) Boron-containing stainless steel casting powder and method for continuous casting of boron-containing stainless steel
JP6674093B2 (en) Mold powder for continuous casting of steel and continuous casting method
JP4611153B2 (en) Continuous casting powder for boron-containing stainless steel and continuous casting method
JP4430638B2 (en) Mold powder for continuous casting of high aluminum steel
JP4881203B2 (en) Powder for continuous casting
JP4611327B2 (en) Continuous casting powder for Ni-Cu alloy and continuous casting method
JP3574428B2 (en) Powder for continuous casting for Fe-Ni alloy or Ni-based alloy and continuous casting method
JP2006175472A (en) Mold powder for continuous casting of steel, and continuous casting method of steel
JP6510342B2 (en) Continuous casting powder for Al-containing steel and continuous casting method
JP3891078B2 (en) Continuous casting method of molten perovskite carbon steel
JP4527693B2 (en) Continuous casting method of high Al steel slab
KR20140058145A (en) Method for manufacturing mold powder and method for the continuous casting of ferritic stainless steel using the method
JP2014050855A (en) Scum weir, manufacturing method of thin cast piece, manufacturing device of thin cast piece and thin cast piece
JP4805637B2 (en) Continuous casting powder for Ni-Cr-Mo-Fe alloy and continuous casting method
JP7158614B1 (en) Exothermic mold powder for continuous casting and continuous casting method
JP7032600B1 (en) Mold powder for continuous casting and continuous casting method used for Fe—Ni based alloys or Ni-based alloys.
JP4598937B2 (en) Powder for continuous casting of steel
Yan et al. Development of Mold Flux for Heat‐Resistant Alloy Containing Al and Ti
JP5447118B2 (en) High Si high Al steel continuous casting powder and continuous casting method

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20110621

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20110707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110816

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111004

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111012

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4846858

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250