JP3574427B2 - Continuous casting powder and continuous casting method for Ti and Al-containing steel - Google Patents

Continuous casting powder and continuous casting method for Ti and Al-containing steel Download PDF

Info

Publication number
JP3574427B2
JP3574427B2 JP2001285037A JP2001285037A JP3574427B2 JP 3574427 B2 JP3574427 B2 JP 3574427B2 JP 2001285037 A JP2001285037 A JP 2001285037A JP 2001285037 A JP2001285037 A JP 2001285037A JP 3574427 B2 JP3574427 B2 JP 3574427B2
Authority
JP
Japan
Prior art keywords
powder
continuous casting
steel
less
casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001285037A
Other languages
Japanese (ja)
Other versions
JP2003094150A (en
Inventor
秀和 轟
照彰 石井
誠 穴沢
建次 水野
敦哉 本郷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Yakin Kogyo Co Ltd
Original Assignee
Nippon Yakin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Yakin Kogyo Co Ltd filed Critical Nippon Yakin Kogyo Co Ltd
Priority to JP2001285037A priority Critical patent/JP3574427B2/en
Publication of JP2003094150A publication Critical patent/JP2003094150A/en
Application granted granted Critical
Publication of JP3574427B2 publication Critical patent/JP3574427B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、TiおよびAlを含有する鋼、とくにステンレス鋼や耐熱鋼,超耐食鋼などを連続鋳造するときに用いる連続鋳造用パウダーと、そのパウダーを用いて表面欠陥のないスラブを連続鋳造する方法についての提案である。
【0002】
【従来の技術】
鋼の連続鋳造用パウダーは、一般に、CaO,SiO,NaO,Al,F等の酸化物にて構成されているものが用いられている。しかし、このようなパウダーの場合、活性な元素であるTiやAlを含有する鋼を連続鋳造する場合には、これらの元素がパウダー(以下、単に「パウダー」という)に含まれるSiOと反応し、TiO,Al等の酸化物を生成し、これらがパウダー(スラグ)中にピックアップされる。そのため、パウダーの組成が大きく変化するとともに、粘度、凝固温度等の物性もまた変化し、鋳造に適した物性範囲を逸脱するという問題点があった。その結果、デプレッション、縦割れ、ブリーディング等のスラブ表面欠陥を引き起こし、最悪の場合、ブレークアウトを招いて鋳造停止となるようなこともあった。
【0003】
こうした問題に対処するため従来、たとえば特開平4−100660号公報では、塩基度CaO/SiOを0.4以下、凝固温度を790〜835℃としたパウダーを用いて鋳造し、パウダーが組成変化を起こしても、物性値が適性範囲に収まるようにした技術を提案している。しかし、この技術は、塩基度ならびに凝固温度を低めに誘導していることから、パウダーの結晶性が失われてガラス化し、凝固シェル/銅鋳型間への溶融パウダーの流入量が大幅に増加し、不均一冷却を招くという問題があった。
【0004】
また、Ti濃度0.1〜0.5wt%の鋼種に対して、特開平7−32091号公報では、塩基度CaO/SiOが0.4〜0.7のパウダーを、特開平7−116778号公報では、塩基度CaO/SiOが0.2〜0.6のパウダーをそれぞれ用いて鋳造する技術を開示している。しかし、これらの技術の場合もまた、塩基度が低いため、パウダーの結晶性が失われてガラス化し、パウダー流入量が大幅に増加し、不均一冷却を招くという問題があった。
【0005】
上記の技術とは逆に、特開平7−116797号公報では、塩基度CaO/SiOを1.8〜2.5と高く調整したパウダーを用いて鋳造する技術を提案している。このようにパウダーの塩基度を高くすると、溶鋼成分であるTiやAlとパウダー中のSiOとの反応が抑制され、パウダーの物性変化を防止することができる。しかし、このパウダーは、塩基度が著しく高いために、凝固温度が高くなり、適性なパウダーの流入量が確保できず、スティッキング等の間題を起こすおそれがあった。また、このパウダーは、凝固温度および粘度を適正化するために、LiOやNaO等の高価なフラックスの添加を必要とするため、コスト高となるという問題もあった。
【0006】
なお、Ti含有鋼については、Tiが高活性な元素であるため、精錬時の歩留りが悪いという問題がある。そのため、Ti含有鋼の脱酸は、Alで行っており、Alの濃度は、低くても0.02wt%、高い場合には0.8wt%程度である。その結果、パウダー中にAlのピックアップが起こり、パウダー物性に対して大きな影響を及ぼすようになる。しかし、上記各従来技術では、この点についての配慮がなされていない。
【0007】
【発明が解決しようとする課題】
上述したように、従来、活性なTiやAlを含有する鋼を連続鋳造する場合、従来のパウダーでは、鋳造中にSiOが低減し、TiOやAlのピックアップが起こり、その結果、上述したように、デプレッション、縦割れ、ブリーディング等の表面欠陥を招いたり、場合によっては、ブレークアウトして、鋳造停止となる問題があった。
【0008】
本発明の目的は、TiおよびAl含有鋼の鋳造に好適な連続鋳造用パウダーを提供すること、および表面欠陥のないスラブを連続鋳造する方法を提案することにある。
【0009】
【課題を解決するための手段】
従来技術が抱えている上述した問題に接し、発明者らは、まず、少なくともTi:0.08〜3.0wt%、Al:0.02〜0.8wt%を含み、その他にFeならびに各種添加成分と不可避的混入元素とからなる鋼を連続鋳造するのに好適な、連続鋳造用パウダーの物性値がどのようなものが好適かについて検討した。その検討のために、発明者らは熱分析等の溶鋼の凝固試験を行った。その結果、1300℃における粘度が1〜4poise、凝固温度が900〜1300℃であり、さらに、凝固時に、カスピダイン、ネフェリン、ペロブスカイトといった結晶相を晶出する特性を有するパウダーであれば、本発明において処理対象とするTiおよびAl含有鋼を、表面欠陥を伴うことなく鋳造できることが明らかとなった。
【0010】
次に、上記の物性を満足するパウダーは、どのような化学成分・組成にしたらいいかについて究明するために、種々の成分組成のパウダーについて、粘度ならびに凝固温度を測定した。その結果、CaO:25〜40wt%、SiO:25〜40wt%、NaO:10〜20wt%、Al:10wt%以下、F:5〜10wt%を含む成分組成のパウダーが、上記の物性値ならびに性質を満足することがわかった。
【0011】
引き続き、高周波誘導炉にて、種々の成分組成の連続鋳造用パウダーと、Ti:0.08〜3.0%、Al:0.02〜0.8%を含む溶鋼との反応実験を行った。その結果、溶鋼の過熱度を50℃以下とし、かつ、パウダーの塩基度を0.7<CaO/SiO<1.8を満足するようにした場合、パウダー中へのTiOおよびAlのピックアップを、鋳造適性範囲を超えない範囲(合計で30%以下)に抑えることができることがわかった。
【0012】
このような知見の下に開発したパウダーを、最終的に実機にて使用し、種々の鋳造条件で試験鋳造を行った。その結果、上記成分組成のものにさらに骨材としてのCを1〜3.5wt%含む連続鋳造用パウダーを用い、溶鋼過熱度を5〜50℃とし、引抜速度を600〜900mm/分に制御して連続鋳造を行うことにより、パウダーの溶融速度ならびに溶融パウダーの流入量がともに適正範囲に入ることが明らかとなった。
【0013】
本発明は正に、上記の知見ならびに試験結果に基づき開発されたものであって、その要旨構成とするところは、少なくとTi:0.08〜3.0wt%、Al:0.02〜0.8wt%を含有する鋼の連続鋳造に用いるパウダーであって、このパウダーは、CaO:25〜40wt%、SiO:25〜40wt%、Na2O:10〜20wt%、Al:10wt%以下、F:5〜10wt%、骨材としてのCを1〜3.5wt%含有する成分組成を有し、かつ、塩基度が0.7<CaO/SiO<1.8、1300℃における粘度が1〜4poise、凝固温度が900〜1300℃かつ鋳型と凝固シェルとの間に流入したときに鋳型に接する側に、パウダートータル厚みの15〜75%の厚みにて、カスピダイン、ネフェリン、ペロブスカイトのうちいずれか1種または2種以上からなる結晶相を晶出する特性を有することにある。
【0015】
また、本発明は、C≦1.0wt%、Si≦2.0wt%、Mn≦2.0wt%、Ni≦85wt%、Cr≦30wt%、Ti:0.08〜3.0wt%、Al:0.02〜0.8wt%、残部がFeおよび不可避的不純物からなる溶鋼を、引抜速度:600〜900mm/分、溶鋼過熱度:5〜50℃の条件の下で、上記した連続鋳造用パウダーを用いて連続鋳造する方法である。
【0016】
なお、本発明は、上記溶鋼は、さらに、Mo:0.5〜5wt%、Cu:0.5〜5wt%、V:0.5%以下およびB:100ppm以下のうちから選ばれる1種または2種以上を含むことが好ましい。
【0017】
なお、本発明においては、連続鋳造時における、パウダー中のTiOおよびAlのピックアップ量が、合計で30wt%以下になるように鋳造することが好ましい。
【0018】
【発明の実施の形態】
上述したように、本発明に係る連続鋳造用パウダーは、実験を通して開発されたものであり、基本的に、CaO−SiO−NaO−Al−F系から構成されており、1300℃における粘度が1〜4poise、凝固温度が900〜1300℃という特性を有し、かつ凝固時に結晶化することが特徴である。以下、本発明のかかるパウダーの物性と性質を上記のように限定した理由について説明する。
【0019】
1300℃における粘度:1〜4poise
パウダー粘度は、これが1poise未満と低すぎたり、4poiseを超えるような高さのものでは、デプレッション、縦割れ、ブリーディング等の表面欠陥を発生し、スラブの研削量が増加して歩留りが低下する。しかも、最悪の場合には、ブレークアウトを引き起こす。このことから、1300℃における粘度は1〜4poiseとする。好ましくは1.2〜3.7poise、より好ましくは1.5〜2.5poiseである。
【0020】
凝固温度:900〜1300℃
凝固温度は、これが900℃未満と低すぎたり、1300℃を超えて高すぎたりすると、デプレッション、縦割れ、ブリーディング等の表面欠陥を発生し、スラブの研削量が増加して歩留りが低下する。最悪の場合にはブレークアウトを引き起こす。このことから、凝固温度は900〜1300℃とする。好ましくは950〜1280℃、より好ましくは980〜1250℃である。
【0021】
結晶化挙動
酸化物あるいは酸フッ化物は一般に、凝固の際に、結晶化する場合とガラス化する場合とがある。溶融したパウダーは、鋳造中に凝固シェルと銅鋳型間に流入して少なくとも一部が凝固する。このとき、凝固層のパウダーがガラス化することなく結晶化すれば、パウダーフイルムが均一に形成されるようになり、スラブの均一冷却が実現される。従って、パウダーの特性として、凝固時に少なくとも鋳型に接する側が所定の厚みで結晶化することが必要とされる。なお、パウダーが凝固する際に生成する該結晶相の組成は、カスピダイン(3CaO・2SiO・CaF)、ネフェリン(NaO・Al・2SiO)、ペロブスカイト(CaO・TiO)のうちのいずれか1種または2種以上となることが望ましい。なお、ペロブスカイトは、パウダー中にTiOがピックアップした際に生成する。
【0022】
かかる凝固相のうちの鋳型に接する側に生成する結晶相の厚み(割合)は、凝固層トータル厚みの15〜75%を占める厚みとする。ただし、このような凝固層にする理由は、結晶相の割合が15%未満であると、ほとんどガラスとしての挙動を示すため、上述した理由により不均一冷却を起こす。逆に、75%を超える場合、溶融パウダー層が薄くなり、凝固シェルの潤滑を悪くする。これらの場合、いずれも、表面欠陥をもたらす危険性がきわめて高くなる。したがって、本発明に係るパウダーの性質としては、鋳型/凝固シェル間に流入したパウダーの結晶相の割合が、凝固層トータルの厚みの15〜75%を占めるようなものにする。この性質については、CaO,SiO,AlO,NaO,F含有量を適正化することにより制御できる。なお、鋳型/凝固シェル間に流入したパウダーのトータル厚みは、 0.5〜3mmとする
【0023】
次に、本発明に係るパウダーの組成を上記のように限定した理由を説明する。CaO:25〜40wt%、SiO:25〜40wt%、NaO:10〜20wt%、Al:10wt%以下、F:5〜10wt%;
これらの成分は、いずれも、上記した物性値ならびに結晶化挙動を達成するために必要である。このうち、Alは、含まなくても、物性値および結晶化挙動を適正範囲とすることができるため、10wt%以下とした。その他のCaOやSiO,NaO,Fについては、凝固温度,粘度,結晶化挙動を適正なものにするため、それぞれ上記の範囲内に制御することとした。
【0024】
塩基度:0.7<CaO/SiO<1.8
塩基度が0.7以下の場合には、パウダー中のSiOの活量が高くなるため、下記の反応が起こり、パウダー中にTiOおよびAlがピックアップされる。TiOおよびAlのうちのいずれかまたは両方のピックアップ量が10%を超えると、物性値が鋳造適性範囲を逸脱してしまう。その結果、デプレッション、縦割れ、ブリーディング等の表面欠陥を発生し、スラブの研削量が増加して歩留りが低下する。最悪の場合は、ブレークアウトを引き起こす。
(SiO)+Ti=(TiO)+Si ……(1)
3(SiO)+4Al=2(Al)+3Si ……(2)
ここで、( )はパウダー中の成分であり、下線部は溶鋼中の成分を表す。
また、パウダーは、塩基度が低いとガラス化し易くなるとともに、粘度も高くなる傾向にあり、物性値を調整し難くなる。また、塩基度が1.8以上の場合は、上記の物性値を得ることが出来ない。したがって、塩基度の範囲を0.7超え1.8末満とした。好ましくは、0.75以上、1.5以下、より好ましくは0.8以上、1.3以下である。
【0025】
骨材としてのC:1〜5wt%
Cはパウダーの溶融速度を制御するために添加されるものであり、1wt%未満では、溶融が速すぎて、過剰流入を引き起こし、デプレッション、縦割れ、ブリーディング等の表面欠陥を発生し、スラブ歩留りが低下する。最悪の場合は、ブレークアウトを引き起こす。逆に、Cが5wt%を超えて高い場合は、溶融速度が遅くなりすぎて、流入が追いつかず、デプレッション、縦割れ、ブリーディング等の表面欠陥を引き起こし、スラブ歩留りが低下する。最悪の場合は、ブレークアウトを引き起こす。
【0026】
また、本発明は上記のパウダーを用いたTi,Al含有鋼の連続鋳造方法を提案する。
本発明に係る上記パウダーが効果的に用いられる対象鋼種は、C≦1.0wt%、Si≦2.0wt%、Mn≦2.0wt%、Ni≦85wt%、Cr≦30wt%、Ti:0.08〜3.0wt%、Al:0.02〜0.8wt%、残部がFeと不可避的不純物からなる溶鋼である。そして、この溶鋼を鋳造する際は、引抜速度を600〜900mm/分、溶鋼過熱度を5〜50℃に制限する。すなわち、本発明のパウダーを用いて、上記条件下で連続鋳造を行うことにより、パウダー中へのTiOおよびAlのピックアップ量を、合計で30wt%以下に抑制することが可能となり、その結果、表面欠陥がなく、スラブの研削における歩留りを90%以上に確保することが可能となる。以下に、それぞれの限定理由について説明する。
【0027】
対象鋼種は、たとえばC:0.0005〜0.1wt%、Si:0.01〜2.0wt%、Mn:0.01〜2.0wt%、Ni:5〜85wt%、Cr:13〜30wt%、Ti:0.08〜3.0wt%,Al:0.02〜0.8wt%を含み、必要に応じ、Mo:0.5〜5wt%、Cu:0.5〜5wt%、V:0.5wt%以下、B:100ppm以下のうちから選ばれる1種または2種以上を含むステンレス鋼,耐熱鋼,超耐食鋼を用いることが好ましい。
【0028】
上記の成分組成において、Cは材料の強度を保つために有用であり、Si,Mnは脱酸に有用な元素である。また、Niは組織をオーステナイトに保つために有用であり、Crは耐食性,耐熱性に有用な元素である。そして、Ti,Alは耐熱性や耐高温酸化性あるいは脱酸に有用な元素である。その他、Mo,Cu,Vは、耐食性や結晶粒径制御のために有用で、必要に応じて添加できる。Bは熱間加工性向上のため添加しても構わない成分である。
【0029】
引抜速度:600〜900mm/分
引抜速度が600mm/分未満の場合には、スラブの鋳型内の滞在時間が長くなり、強冷却になるとともに、溶融パウダーの更新が遅くなり、デプレッション、縦割れ、ブリーディング等の表面欠陥を発生してスラブの研削量が増加して歩留りが低下する。逆に、引抜速度が900mm/分を超える場合、鋳型内でのシェルの成長が追いつかず、ブレークアウトを引き起こす。そのため、引抜速度は600〜900mm/分に制限する。好ましくは、650〜880mm/分、より好ましくは、700〜850mm/分とする。
【0030】
溶鋼過熱度:5〜50℃
溶鋼の過熱度が5℃未満になると、溶鋼が浸漬ノズル内で凝固してノズル閉塞を引き起こし、鋳造停止となる。逆に、過熱度が50℃を超えて高い場合は、上記(1)(2)式の反応が活発となり、TiOおよびAlのピックアップが激しくなる。TiOおよびAl両方のピックアップ合計量が30wt%を超えると、物性値が鋳造の適性範囲を逸脱してしまう。その結果、デプレッション、縦割れ、ブリーディング等の表面欠陥を発生し、スラブ研削量が増加して、歩留りが低下する。最悪の場合は、ブレークアウトを引き起こす。そのため、溶鋼過熱度は5〜50℃に限定する。好ましくは、10〜45℃、より好ましくは、15〜40℃とする。
【0031】
パウダー中のTiOおよびAlの合計ピックアップ量:30wt%以下
先述したように、TiOおよびAlの酸化物の、ピックアップ量が合計で30wt%を超えると、物性値が鋳造適性範囲を逸脱してしまう。その結果、デプレッション、縦割れ、ブリーディング等の表面欠陥を発生し、スラブ歩留りが低下する。最悪の場合は、ブレークアウトを引き起こす。このことから、パウダー中のTiOおよびAlの合計ピックアップ量を30wt%以下に制限する。好ましくは、28wt%以下、より好ましくは、25wt%以下とする。
なお、この連続鋳造の際、鋳造開始のごく初期に、溶融を助ける意味合いで、発熱性のパウダーを添加してもよい。
【0032】
【実施例】
表1に示した成分組成をもつ溶鋼を溶製し、表1に示すパウダーを用いて連続鋳造してスラブを得た。
溶製は、電気炉で、鉄屑、純ニツケル、フェロクロム、ステンレス屑等の原料を溶解し、AODあるいはVODのいずれか一方または両方を用いて精錬し、所定の成分とした。溶製した鋼種は、[NCF800H、NCF825、インコロ イ840]、SUH660、SUS321および Ti Al を含んだ 18Cr 8Ni ステンレス鋼である。なお、表1には、連続鋳造に用いたパウダーの成分組成と、その物性値および連続鋳造の条件についても併記した。
【0033】
【表1】

Figure 0003574427
【0034】
なお、溶鋼成分、パウダー成分およびパウダーの物性値は、以下の方法で評価した。
・溶鋼成分:蛍光X線分析装置により定量分析した。表1に示した成分の残部は、Feを主に含み、その他に、微量のSi,Mn,P等を含んでいる。
・パウダー成分:Cは燃焼法により、その他の成分は化学分析により定量分析した。表1中に示す各成分の合計が、96.2〜99.9wt%となっているのは、これらの成分以外にも、MgO,Fe等の不可避的不純物を含むためである。
・粘度:回転円筒法により測定した。すなわち、鉄ルツボ中にパウダーを入れ、縦型抵抗炉内で溶解し、その後、鉄製のローターを挿入、回転することで、粘度を測定した。
・凝固温度:上記、粘度測定の際、温度を降下していくと急激に粘度の値が立ち上がる点が求まる。この変曲点を凝固温度とした。
【0035】
表2には、表1に示した溶鋼を連続鋳造した際の、パウダーの組成変化と凝固した時の結晶相、連続鋳造における異常有無および得られたスラブの表面品質と研削後のスラブ歩留りの結果をまとめて示した。
ここで、それぞれの評価は以下の方法で行った。
・パウダーの組成変化:鋳型内からサンプルを採取し、化学分析により定量分析した。
・結晶相:鋳込み後のパウダーフイルムを採取し、X線回折することで結晶相を特定した。
・表面欠陥:鋳込み後のスラブを観察し特定した。
・スラブ研削歩留:研削前後での重量変化より測定した。
【0036】
【表2】
Figure 0003574427
【0037】
表2から判るように、本発明例の1〜8では、いずれもパウダーの組成変化が少なく、トラブルなく鋳造を行うことができた。また、得られたスラブも表面欠陥を発生することなく、スラブ研削での歩留りも90%以上と良好な結果であった。
それに対して、比較例の9〜17は、スラグ成分、物性値および鋳造条件のいずれかが本発明の制限範囲を外れているため、鋳造においてブレークアウト、ノズル詰まり等のトラブルが発生し、あるいは、完鋳しても縦割れ等の表面欠陥を引き起こす結果となった。表面欠陥が発生すると、スラブ研削歩留りが90%未満となってしまい、製造コストの上昇を招く。
【0038】
以下にそれぞれの失敗原因を説明する。
・No.10は、パウダー中のCaO,SiO,NaO濃度の範囲が外れているため、塩基度が低く、粘度も高い。その結果、TiOおよびAlのピックアップ量の合計が30%を超えたため、ブレークアウトしてしまった。
・No.11では、パウダーは適正なものを用いたが、引抜速度が速すぎたため、ブレークアウトした。
・No.12では、パウダーは適正なものを用いたが、溶鋼過熱度が2℃と低かったことと、引抜速度が550mm/分と遅かったため、浸漬ノズルが詰まり鋳造停止となってしまった。
・No.13では、パウダーは適正なものを用いたが、溶鋼過熱度が80℃と高すぎたため、パウダー中のTiOおよびAlのピックアップ量の合計が30wt%を超えたため、表面欠陥が発生した。
・No.14では、パウダー成分が適正ではなく、塩基度が2.22と高く、粘度、凝固温度とも高いものを使用したため、表面欠陥が発生した。
・No.15では、パウダー成分が適正ではなく、塩基度が0.45と低く、凝固温度も低いものを使用した。その結果、凝固シェル/鋳型間に流入したパウダーフイルムがガラス質となり、表面欠陥が発生した。
・No.16では、骨材Cが低すぎたため、流入量が過剰となり、表面欠陥が発生した。
・No.17では、骨材Cが高すぎたため、流入量が少なすぎ、ブレークアウトしてしまった。
【0039】
【発明の効果】
以上説明したように、本発明によれば、TiおよびAl含有鋼の鋳造に当たり、ブレークアウト等の事故がなくなり、安定した連続鋳造が可能となる。さらに、本発明に係るパウダーを用いて鋳造したスラブは、表面性状に優れているため、研削歩留りが良好となり、生産性の向上、さらには、製造コストの低減が実現できる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a powder for continuous casting used for continuously casting steel containing Ti and Al, particularly stainless steel, heat-resistant steel, super-corrosion-resistant steel, and the like, and to continuously cast a slab having no surface defects using the powder. A suggestion on how to do it.
[0002]
[Prior art]
As the powder for continuous casting of steel, one composed of an oxide such as CaO, SiO 2 , Na 2 O, Al 2 O 3 , and F is generally used. However, in the case of such a powder, when steel containing active elements such as Ti and Al is continuously cast, these elements react with SiO 2 contained in the powder (hereinafter simply referred to as “powder”). Then, oxides such as TiO 2 and Al 2 O 3 are generated, and these are picked up in the powder (slag). For this reason, there is a problem that the composition of the powder changes greatly, and the physical properties such as the viscosity and the solidification temperature also change, deviating from the physical property range suitable for casting. As a result, slab surface defects such as depletion, vertical cracking, and bleeding are caused, and in the worst case, a breakout is caused to stop the casting.
[0003]
In order to cope with such a problem, for example, in Japanese Patent Application Laid-Open No. Hei 4-100660, a powder having a basicity of CaO / SiO 2 of 0.4 or less and a solidification temperature of 790 to 835 ° C. is cast, and the powder changes in composition. A technique has been proposed in which the physical property value is kept within an appropriate range even if the above occurs. However, since this technique induces a lower basicity and a lower solidification temperature, the crystallinity of the powder is lost and vitrification occurs, and the flow of molten powder between the solidified shell and the copper mold is greatly increased. However, there is a problem that uneven cooling is caused.
[0004]
Japanese Patent Application Laid-Open No. 7-32091 discloses a powder having a basicity CaO / SiO of 0.4 to 0.7 for a steel type having a Ti concentration of 0.1 to 0.5 wt%. The gazette discloses a technique of casting using powders each having a basicity of CaO / SiO of 0.2 to 0.6. However, these techniques also have a problem in that since the basicity is low, the crystallinity of the powder is lost and vitrification occurs, the amount of powder flowing in is greatly increased, and uneven cooling is caused.
[0005]
Contrary to the above technique, Japanese Patent Application Laid-Open No. Hei 7-116797 proposes a technique of casting using a powder whose basicity CaO / SiO is adjusted to a high value of 1.8 to 2.5. When the basicity of the powder is increased as described above, the reaction between Ti or Al as a molten steel component and SiO 2 in the powder is suppressed, and a change in the physical properties of the powder can be prevented. However, since this powder has a remarkably high basicity, the coagulation temperature becomes high, and an appropriate inflow of the powder cannot be ensured, which may cause problems such as sticking. In addition, this powder requires addition of an expensive flux such as Li 2 O or Na 2 O in order to optimize the coagulation temperature and viscosity, so that there is a problem that the cost is high.
[0006]
Note that Ti-containing steel has a problem that the yield during refining is poor because Ti is a highly active element. Therefore, deoxidation of the Ti-containing steel is performed with Al, and the concentration of Al is as low as about 0.02 wt% and as high as about 0.8 wt%. As a result, Al 2 O 3 is picked up in the powder, which has a great influence on the physical properties of the powder. However, each of the above prior arts does not take this point into consideration.
[0007]
[Problems to be solved by the invention]
As described above, conventionally, when continuously casting steel containing active Ti or Al, in the conventional powder, SiO 2 is reduced during casting, and TiO 2 or Al 2 O 3 is picked up. As a result, As described above, there has been a problem that surface defects such as depletion, vertical cracks, bleeding, etc. are caused, and in some cases, casting is stopped due to breakout.
[0008]
An object of the present invention is to provide a powder for continuous casting suitable for casting of a steel containing Ti and Al, and to propose a method for continuously casting a slab having no surface defects.
[0009]
[Means for Solving the Problems]
In contact with the above-mentioned problem of the prior art, the present inventors first contain at least 0.08 to 3.0 wt% of Ti and 0.02 to 0.8 wt% of Al, and additionally contain Fe and various additives. A study was made on what physical properties of the powder for continuous casting are suitable for continuous casting of steel composed of components and unavoidable elements. For the study, the inventors conducted a solidification test of molten steel such as thermal analysis. As a result, a powder having a viscosity of 1 to 4 poise at 1300 ° C. and a solidification temperature of 900 to 1300 ° C., and further having a property of crystallizing a crystal phase such as caspidyne, nepheline, or perovskite at the time of solidification is used in the present invention. It became clear that the Ti and Al-containing steel to be treated can be cast without any surface defects.
[0010]
Next, the viscosity and the solidification temperature were measured for powders having various component compositions in order to find out what chemical components and compositions should be used for the powders satisfying the above physical properties. As a result, CaO: 25~40wt%, SiO 2 : 25~40wt%, Na 2 O: 10~20wt%, Al 2 O 3: 10wt% or less, F: powder component composition containing 5 to 10 wt% is It was found that the above physical properties and properties were satisfied.
[0011]
Subsequently, in a high-frequency induction furnace, a reaction experiment was performed between powder for continuous casting having various component compositions and molten steel containing 0.08 to 3.0% of Ti and 0.02 to 0.8% of Al. . As a result, when the degree of superheat of the molten steel is set to 50 ° C. or less and the basicity of the powder satisfies 0.7 <CaO / SiO 2 <1.8, TiO 2 and Al 2 O in the powder are It was found that the pickup of No. 3 could be suppressed to a range not exceeding the casting suitability range (30% or less in total).
[0012]
The powder developed based on such knowledge was finally used in an actual machine, and test casting was performed under various casting conditions. As a result, using a powder for continuous casting containing 1 to 3.5 wt% of C as an aggregate in addition to the above component composition, controlling the superheat of molten steel to 5 to 50 ° C and controlling the drawing speed to 600 to 900 mm / min. By performing continuous casting, it became clear that both the melting speed of the powder and the inflow amount of the molten powder were within appropriate ranges.
[0013]
The present invention positively, which has been developed based on the above findings and test results, the has as summary and construction, also a small Ti: 0.08~3.0wt%, Al: containing 0.02~0.8Wt% a powder for use in continuous casting of steel which, this powder, CaO: 25~40wt%, SiO 2 : 25~40wt%, Na 2 O: 10~20wt%, Al 2 O 3: 10wt% or less, F : Has a composition of 5 to 10% by weight and 1 to 3.5 % by weight of C as an aggregate, has a basicity of 0.7 <CaO / SiO 2 <1.8, a viscosity of 1 to 4 poise at 1300 ° C., and solidifies When the temperature is 900 to 1300 ° C. and flows between the mold and the solidified shell, on the side in contact with the mold, at a thickness of 15 to 75% of the total thickness of the powder, any one of caspidyne, nepheline, perovskite or It is to have the property of crystallizing a crystalline phase composed of two or more.
[0015]
In addition, the present invention provides C ≦ 1.0 wt%, Si ≦ 2.0 wt%, Mn ≦ 2.0 wt%, Ni ≦ 85 wt%, Cr ≦ 30 wt%, Ti: 0.08-3.0 wt%, Al: The above-mentioned powder for continuous casting is prepared by subjecting molten steel consisting of 0.02 to 0.8 wt%, the balance being Fe and unavoidable impurities, to a drawing speed of 600 to 900 mm / min and a superheat of molten steel of 5 to 50 ° C. This is a method of continuous casting using
[0016]
In the present invention, the molten steel may further include one or more selected from Mo: 0.5 to 5 wt%, Cu: 0.5 to 5 wt%, V: 0.5% or less, and B: 100 ppm or less. It is preferable to include two or more types.
[0017]
In the present invention, the casting is preferably performed so that the total amount of TiO 2 and Al 2 O 3 in the powder during continuous casting is 30 wt% or less.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
As described above, the powder for continuous casting according to the present invention has been developed through experiments, and is basically composed of a CaO—SiO 2 —Na 2 O—Al 2 O 3 —F system, It has characteristics of a viscosity of 1 to 4 poise at 1300 ° C. and a solidification temperature of 900 to 1300 ° C., and is characterized by crystallization during solidification. Hereinafter, the reason for limiting the physical properties and properties of the powder of the present invention as described above will be described.
[0019]
Viscosity at 1300 ° C: 1-4 poise
If the powder viscosity is too low, such as less than 1 poise, or more than 4 poise, surface defects such as depletion, vertical cracking, and bleeding occur, and the amount of slab grinding increases and the yield decreases. In the worst case, it causes a breakout. From this, the viscosity at 1300 ° C. is set to 1 to 4 poise. Preferably it is 1.2 to 3.7 poise, more preferably 1.5 to 2.5 poise.
[0020]
Solidification temperature: 900-1300 ° C
If the solidification temperature is too low (less than 900 ° C.) or too high (more than 1300 ° C.), surface defects such as depletion, vertical cracks, and bleeding occur, and the slab grinding amount increases and the yield decreases. In the worst case, it causes a breakout. For this reason, the solidification temperature is set to 900 to 1300 ° C. Preferably it is 950-1280 degreeC, More preferably, it is 980-1250 degreeC.
[0021]
Crystallization Behavior Oxides or oxyfluorides generally crystallize or vitrify during solidification. The molten powder flows between the solidified shell and the copper mold during casting and at least partially solidifies. At this time, if the powder of the solidified layer is crystallized without vitrification, the powder film is formed uniformly, and uniform cooling of the slab is realized. Therefore, as a characteristic of the powder, it is necessary that at least the side in contact with the mold at the time of solidification be crystallized with a predetermined thickness. The composition of the crystal phase generated when the powder is solidified, Kasupidain (3CaO · 2SiO 2 · CaF 2 ), nepheline (Na 2 O · Al 2 O 3 · 2SiO 2), perovskite (CaO · TiO 2) It is desirable that any one or more of the above be used. The perovskite is generated when TiO 2 is picked up in the powder.
[0022]
The thickness (proportion) of the crystal phase formed on the side in contact with the mold in the solidified phase is a thickness occupying 15 to 75 % of the total thickness of the solidified layer. However, the reason for such a solidified layer, when the proportion of the crystalline phase is less than 1 5%, most to show the behavior of the glass, causing uneven cooling for the reasons described above. Conversely, if it exceeds 75 %, the thickness of the molten powder layer becomes thin, and the lubrication of the solidified shell deteriorates. In each of these cases, the risk of introducing surface defects is extremely high. Therefore, the properties of the powder according to the present invention are such that the ratio of the crystal phase of the powder flowing between the mold and the solidified shell accounts for 15 to 75 % of the total thickness of the solidified layer. This property, CaO, SiO 2, Al 3 O 2, Na 2 O, can be controlled by optimizing the F content. Name your, total of powder that has flowed between the mold / solidified shell thickness optic lobe, and 0 .5~3mm.
[0023]
Next, the reason why the composition of the powder according to the present invention is limited as described above will be described. CaO: 25~40wt%, SiO 2: 25~40wt%, Na 2 O: 10~20wt%, Al 2 O 3: 10wt% or less, F: 5~10wt%;
All of these components are necessary to achieve the above-mentioned physical properties and crystallization behavior. Of these, even if Al 2 O 3 is not contained, the physical property value and the crystallization behavior can be kept in appropriate ranges, so that the content is set to 10 wt% or less. Other CaO, SiO 2 , Na 2 O, and F were each controlled within the above ranges in order to make the solidification temperature, viscosity, and crystallization behavior appropriate.
[0024]
Basicity: 0.7 <CaO / SiO 2 <1.8
When the basicity is 0.7 or less, the activity of SiO 2 in the powder increases, so that the following reaction occurs, and TiO 2 and Al 2 O 3 are picked up in the powder. If the pickup amount of one or both of TiO 2 and Al 2 O 3 exceeds 10%, the physical property values deviate from the casting suitability range. As a result, surface defects such as depletion, vertical cracks, and bleeding are generated, and the amount of grinding of the slab increases, and the yield decreases. In the worst case, it causes a breakout.
(SiO 2 ) + Ti = (TiO 2 ) + Si (1)
3 (SiO 2 ) +4 Al = 2 (Al 2 O 3 ) +3 Si (2)
Here, () indicates a component in the powder, and an underlined portion indicates a component in the molten steel.
When the basicity of the powder is low, the powder tends to be vitrified, and the viscosity tends to be high, so that it is difficult to adjust the physical properties. When the basicity is 1.8 or more, the above physical property values cannot be obtained. Therefore, the range of the basicity was set to be more than 0.7 and less than 1.8. Preferably it is 0.75 or more and 1.5 or less, more preferably 0.8 or more and 1.3 or less.
[0025]
C as an aggregate: 1 to 5 wt%
C is added in order to control the melting rate of the powder, and if it is less than 1 wt%, the melting is too fast, causing excessive inflow, generating surface defects such as depletion, longitudinal cracking, bleeding, and the like, and increasing the slab yield. Decreases. In the worst case, it causes a breakout. Conversely, if C is higher than 5 wt%, the melting rate becomes too slow to keep up with the inflow, causing surface defects such as depletion, vertical cracking, and bleeding, and lowering the slab yield. In the worst case, it causes a breakout.
[0026]
Further, the present invention proposes a continuous casting method of Ti, Al-containing steel using the above powder.
The target steel types in which the powder according to the present invention is effectively used include C ≦ 1.0 wt%, Si ≦ 2.0 wt%, Mn ≦ 2.0 wt%, Ni ≦ 85 wt%, Cr ≦ 30 wt%, and Ti: 0. 0.08-3.0 wt%, Al: 0.02-0.8 wt%, the balance being molten steel composed of Fe and unavoidable impurities. When casting the molten steel, the drawing speed is limited to 600 to 900 mm / min, and the degree of superheat of the molten steel is limited to 5 to 50 ° C. That is, by performing continuous casting under the above conditions using the powder of the present invention, it is possible to suppress the total pickup amount of TiO 2 and Al 2 O 3 in the powder to 30 wt% or less, As a result, there is no surface defect, and it is possible to secure a yield in slab grinding of 90% or more. Hereinafter, the reasons for each limitation will be described.
[0027]
The target steel types are, for example, C: 0.0005 to 0.1 wt%, Si: 0.01 to 2.0 wt%, Mn: 0.01 to 2.0 wt%, Ni: 5 to 85 wt%, Cr: 13 to 30 wt%. %, 0.08 to 3.0 wt% of Ti, 0.02 to 0.8 wt% of Al, and if necessary, 0.5 to 5 wt% of Mo, 0.5 to 5 wt% of Cu, and V: It is preferable to use stainless steel, heat-resistant steel, and super-corrosion-resistant steel containing one or more selected from 0.5 wt% or less and B: 100 ppm or less.
[0028]
In the above component composition, C is useful for maintaining the strength of the material, and Si and Mn are elements useful for deoxidation. Ni is useful for keeping the structure austenite, and Cr is an element useful for corrosion resistance and heat resistance. Ti and Al are elements useful for heat resistance, high temperature oxidation resistance, or deoxidation. In addition, Mo, Cu, and V are useful for controlling corrosion resistance and crystal grain size, and can be added as needed. B is a component that may be added for improving hot workability.
[0029]
Drawing speed: 600 to 900 mm / min When the drawing speed is less than 600 mm / min, the residence time of the slab in the mold becomes longer, the cooling becomes more powerful, the renewal of the molten powder becomes slower, and depletion, longitudinal cracking, Surface defects such as bleeding occur, and the amount of grinding of the slab increases, and the yield decreases. Conversely, if the drawing speed exceeds 900 mm / min, the growth of the shell in the mold cannot catch up, causing a breakout. Therefore, the drawing speed is limited to 600 to 900 mm / min. Preferably, it is 650-880 mm / min, more preferably 700-850 mm / min.
[0030]
Superheat degree of molten steel: 5 to 50 ° C
If the degree of superheat of the molten steel is lower than 5 ° C., the molten steel solidifies in the immersion nozzle, causing nozzle blockage, and stopping casting. Conversely, when the degree of superheat is higher than 50 ° C., the reactions of the above equations (1) and (2) become active, and the pickup of TiO 2 and Al 2 O 3 becomes severe. If the total amount of both TiO 2 and Al 2 O 3 pickup exceeds 30 wt%, the physical properties deviate from the suitable range for casting. As a result, surface defects such as depletion, vertical cracks, and bleeding are generated, the slab grinding amount increases, and the yield decreases. In the worst case, it causes a breakout. Therefore, the degree of superheat of molten steel is limited to 5 to 50 ° C. Preferably it is 10-45 degreeC, More preferably, it is 15-40 degreeC.
[0031]
Total pick-up amount of TiO 2 and Al 2 O 3 in powder: 30 wt% or less As described above, when the total pick-up amount of oxides of TiO 2 and Al 2 O 3 exceeds 30 wt%, the physical property value is cast. It deviates from the appropriate range. As a result, surface defects such as depletion, vertical cracks, and bleeding occur, and the slab yield decreases. In the worst case, it causes a breakout. For this reason, the total pickup amount of TiO 2 and Al 2 O 3 in the powder is limited to 30 wt% or less. It is preferably at most 28 wt%, more preferably at most 25 wt%.
At the time of this continuous casting, an exothermic powder may be added at the very beginning of the casting to help melting.
[0032]
【Example】
A slab was obtained by smelting molten steel having the component composition shown in Table 1 and continuously casting it using the powder shown in Table 1.
In the smelting, raw materials such as iron scrap, pure nickel, ferrochrome, and stainless scrap were melted in an electric furnace and refined using one or both of AOD and VOD to obtain predetermined components. Melting the steel species, [NCF800H, NCF825, Inkoro Lee 840], SUH660, including SUS321 and Ti and Al 18Cr - a 8Ni stainless steel. Table 1 also shows the composition of the powder used in the continuous casting, the physical properties thereof, and the conditions for the continuous casting.
[0033]
[Table 1]
Figure 0003574427
[0034]
The physical properties of the molten steel component, the powder component, and the powder were evaluated by the following methods.
-Molten steel component: Quantitatively analyzed by a fluorescent X-ray analyzer. The balance of the components shown in Table 1 mainly includes Fe, and also includes trace amounts of Si, Mn, P, and the like.
-Powder component: C was quantitatively analyzed by a combustion method, and other components were quantitatively analyzed by a chemical analysis. The sum of the components shown in Table 1, has become a 96.2~99.9Wt%, in addition to these components, in order to contain MgO, unavoidable impurities such as Fe 2 O 3.
Viscosity: measured by a rotating cylinder method. That is, the powder was put in an iron crucible, melted in a vertical resistance furnace, and then the viscosity was measured by inserting and rotating an iron rotor.
Solidification temperature: In the above viscosity measurement, a point at which the value of the viscosity rises sharply as the temperature is lowered is determined. This inflection point was taken as the solidification temperature.
[0035]
Table 2 shows the change in powder composition and the crystal phase when solidified during continuous casting of the molten steel shown in Table 1, the presence or absence of abnormalities in continuous casting, the surface quality of the obtained slab, and the slab yield after grinding. The results are shown together.
Here, each evaluation was performed by the following methods.
-Powder composition change: A sample was collected from the inside of the mold and quantitatively analyzed by chemical analysis.
Crystal phase: The powder phase after casting was sampled, and the crystal phase was identified by X-ray diffraction.
-Surface defect: The slab after casting was observed and specified.
Slab grinding yield: Measured from the weight change before and after grinding.
[0036]
[Table 2]
Figure 0003574427
[0037]
As can be seen from Table 2, in each of Examples 1 to 8 of the present invention, there was little change in the composition of the powder, and casting could be performed without any trouble. Further, the obtained slab did not cause any surface defects, and the yield in slab grinding was a good result of 90% or more.
On the other hand, in any of Comparative Examples 9 to 17, any one of the slag component, the physical property value, and the casting condition is out of the range of limitation of the present invention, so that a trouble such as breakout or nozzle clogging occurs in casting, or However, even when casting was completed, surface defects such as vertical cracks were caused. When a surface defect occurs, the slab grinding yield becomes less than 90%, which leads to an increase in manufacturing cost.
[0038]
The causes of each failure will be described below.
・ No. Sample No. 10 has a low basicity and a high viscosity because the concentration of CaO, SiO 2 , and Na 2 O in the powder is out of the range. As a result, the total pickup amount of TiO 2 and Al 2 O 3 exceeded 30%, resulting in a breakout.
・ No. In 11, the powder used was appropriate, but the drawing-out speed was too fast, so a breakout occurred.
・ No. In No. 12, an appropriate powder was used. However, since the degree of superheat of molten steel was as low as 2 ° C. and the drawing speed was as low as 550 mm / min, the immersion nozzle was clogged and the casting was stopped.
・ No. In No. 13, the powder used was appropriate, but the superheat degree of the molten steel was too high at 80 ° C., and the total amount of TiO 2 and Al 2 O 3 pickup in the powder exceeded 30 wt%, and surface defects occurred. did.
・ No. In No. 14, since the powder component was not appropriate, the basicity was as high as 2.22, and the viscosity and the coagulation temperature were both high, surface defects occurred.
・ No. In No. 15, the powder component was not appropriate, the basicity was as low as 0.45, and the coagulation temperature was low. As a result, the powder film flowing between the solidified shell and the mold became vitreous, and surface defects occurred.
・ No. In No. 16, since the aggregate C was too low, the inflow amount became excessive, and surface defects occurred.
・ No. In No. 17, since the aggregate C was too high, the inflow amount was too small and a breakout occurred.
[0039]
【The invention's effect】
As described above, according to the present invention, when casting a steel containing Ti and Al, accidents such as breakouts can be eliminated, and stable continuous casting can be performed. Furthermore, since the slab cast using the powder according to the present invention has excellent surface properties, the grinding yield is good, and the productivity can be improved and the manufacturing cost can be reduced.

Claims (4)

少なくとTi:0.08〜3.0wt%、Al:0.02〜0.8wt%を含有する鋼の連続鋳造に用いるパウダーであって、このパウダーは、CaO:25〜40wt%、SiO:25〜40wt%、Na2O:10〜20wt%、Al:10wt%以下、F:5〜10wt%、Cを1〜3.5wt%含有してなる成分組成を有し、かつ、塩基度が0.7<CaO/SiO<1.8、1300℃における粘度が1〜4poise、凝固温度が900〜1300℃、かつ鋳型と凝固シェルとの間に流入したときに鋳型に接する側に、パウダートータル厚み(0.5〜3 mm )の15〜75%が、カスピダイン、ネフェリン、ペロブスカイトのうちいずれか1種または2種以上からなる結晶相を晶出するものであることを特徴とするTiおよびAl含有鋼用連続鋳造パウダー。Least be Ti: 0.08~3.0wt%, Al: a powder for use in continuous casting of steel containing 0.02~0.8wt%, this powder, CaO: 25~40wt%, SiO 2 : 25~40wt% , Na 2 O: 10 to 20 wt%, Al 2 O 3 : 10 wt% or less, F: 5 to 10 wt%, C: 1 to 3.5 wt%, and a basicity of 0.7 <CaO / SiO 2 <1.8, a viscosity at 1300 ° C. of 1 to 4 poise, a solidification temperature of 900 to 1300 ° C., and a powder total thickness (0. 15-75% of the 5 to 3 mm) is Kasupidain, nepheline, continuous for Ti and Al-containing steel, characterized in that it is of even that produce crystals of either one or crystalline phase comprising two or more of perovskite Casting powder. C≦1.0wt%、Si≦2.0wt%、Mn≦2.0wt%、Ni≦85wt%、Cr≦30wt%、Ti:0.08〜3.0wt%、Al:0.02〜0.8wt%、残部がFeおよび不可避的不純物からなる溶鋼を、引抜速度:600〜900mm/分、溶鋼過熱度:5〜50℃の条件の下で、請求項1に記載の連続鋳造パウダーを用いて連続鋳造することを特徴とするTiおよびAl含有鋼の連続鋳造方法。C ≦ 1.0wt%, Si ≦ 2.0wt%, Mn ≦ 2.0wt%, Ni ≦ 85wt%, Cr ≦ 30wt%, Ti: 0.08-3.0wt%, Al: 0.02-0.8wt%, balance Fe and inevitable A continuous casting of molten steel comprising impurities using the continuous casting powder according to claim 1 under the conditions of a drawing speed: 600 to 900 mm / min and a degree of superheating of the molten steel: 5 to 50 ° C. And continuous casting method for Al-containing steel. 上記溶鋼は、さらに、Mo:0.5〜5wt%、Cu:0.5〜5wt%、V:0.5wt%以下およびB:100ppm以下のうちから選ばれる1種または2種以上を含むことを特徴とする請求項に記載のTiおよびAl含有鋼の連続鋳造方法。The molten steel further comprises one or more selected from the group consisting of Mo: 0.5 to 5 wt%, Cu: 0.5 to 5 wt%, V: 0.5 wt% or less, and B: 100 ppm or less. Item 4. A continuous casting method for a Ti and Al-containing steel according to Item 2 . 連続鋳造時におけるパウダーのTiOおよびAlのピックアップ合計量が、30wt%以下であることを特徴とする請求項に記載のTiおよびAl含有鋼の連続鋳造方法。 3. The continuous casting method for Ti and Al-containing steel according to claim 2 , wherein the total amount of the powdered TiO 2 and Al 2 O 3 pickup during the continuous casting is 30 wt% or less.
JP2001285037A 2001-09-19 2001-09-19 Continuous casting powder and continuous casting method for Ti and Al-containing steel Expired - Fee Related JP3574427B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001285037A JP3574427B2 (en) 2001-09-19 2001-09-19 Continuous casting powder and continuous casting method for Ti and Al-containing steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001285037A JP3574427B2 (en) 2001-09-19 2001-09-19 Continuous casting powder and continuous casting method for Ti and Al-containing steel

Publications (2)

Publication Number Publication Date
JP2003094150A JP2003094150A (en) 2003-04-02
JP3574427B2 true JP3574427B2 (en) 2004-10-06

Family

ID=19108254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001285037A Expired - Fee Related JP3574427B2 (en) 2001-09-19 2001-09-19 Continuous casting powder and continuous casting method for Ti and Al-containing steel

Country Status (1)

Country Link
JP (1) JP3574427B2 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4486878B2 (en) * 2004-12-22 2010-06-23 新日本製鐵株式会社 Mold powder for continuous casting of steel and continuous casting method
JP4813225B2 (en) * 2005-04-05 2011-11-09 日本冶金工業株式会社 Continuous casting powder for Al-containing Ni-base alloy and continuous casting method
CN101658909B (en) * 2009-09-05 2011-07-20 太原钢铁(集团)有限公司 Crystallizer protection slag and preparation method thereof
CN103135206B (en) 2012-09-07 2016-04-20 玉晶光电(厦门)有限公司 Portable electron device and its optical imaging lens
CN103076667B (en) 2012-09-07 2015-08-19 玉晶光电(厦门)有限公司 Optical lens
TWI498622B (en) 2012-10-31 2015-09-01 玉晶光電股份有限公司 Optical lens
CN103071771A (en) * 2012-11-22 2013-05-01 河南省西保冶材集团有限公司 Stainless steel dedicated mold fluxes
US9223113B2 (en) 2013-10-09 2015-12-29 Genius Electronic Optical Co., Ltd. Optical lens and electronic apparatus including the lens
CN103639380B (en) * 2013-11-04 2016-04-27 河南通宇冶材集团有限公司 A kind of slab continuous crystallizer protecting slag and preparation method thereof
KR101742077B1 (en) * 2015-05-04 2017-05-31 주식회사 포스코 Mold Flux and the continuous casting method using the same and the casting steel for manufacturing by them
CN106475536B (en) * 2016-12-30 2018-11-13 河南省西保冶材集团有限公司 A kind of P91 jet chimneys steel continuous crystallizer protecting slag and preparation method thereof
CN106513607B (en) * 2016-12-30 2018-07-10 河南省西保冶材集团有限公司 A kind of 304 stainless steel continuous crystallizer protecting slags and preparation method thereof
CN108465791B (en) * 2018-07-09 2020-08-18 西峡龙成冶金材料有限公司 Low-nickel high-nitrogen austenitic stainless steel continuous casting crystallizer casting powder
CN112247087A (en) * 2019-07-22 2021-01-22 宝山钢铁股份有限公司 Low-fluorine lithium-free covering slag for titanium-containing welding wire steel
CN111230058A (en) * 2020-03-31 2020-06-05 西峡县西保冶金材料有限公司 Continuous casting crystallizer function protection material for air valve steel
CN113695542A (en) * 2021-07-13 2021-11-26 李富海 Preparation method for producing square billet continuous casting covering slag by using electrolytic aluminum carbon slag
JP7032600B1 (en) * 2021-09-01 2022-03-08 日本冶金工業株式会社 Mold powder for continuous casting and continuous casting method used for Fe—Ni based alloys or Ni-based alloys.
CN113798458B (en) * 2021-09-28 2023-05-26 张家港宏昌钢板有限公司 Continuous casting crystallizer casting powder and preparation method and application thereof
CN114012050B (en) * 2021-11-19 2023-04-07 西峡龙成冶金材料有限公司 Special continuous casting crystallizer casting powder for CSP sheet billet titanium-containing steel and preparation method thereof
CN114130973B (en) * 2021-12-13 2023-05-05 芜湖新兴铸管有限责任公司 Application of special mold flux for crystallizer for corrosion-resistant steel bars

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0659534B2 (en) * 1986-06-30 1994-08-10 日新製鋼株式会社 Continuous casting method of molten steel containing Al
JPH01306057A (en) * 1988-05-31 1989-12-11 Nippon Steel Corp Method for continuously casting ti-containing steel
JPH02220746A (en) * 1989-02-20 1990-09-03 Kawasaki Steel Corp Mold powder for continuous casting for ti-containing dead soft carbon steel
JP2637004B2 (en) * 1992-02-21 1997-08-06 新日本製鐵株式会社 Evaluation method of powder for continuous casting of low carbon steel
JPH1058102A (en) * 1996-08-20 1998-03-03 Nippon Steel Corp Method for continuously casting medium-carbon steel
JP2000197950A (en) * 1998-12-28 2000-07-18 Kawasaki Steel Corp Mold flux for stainless steel and continuous casting method and manufacture of stainless steel

Also Published As

Publication number Publication date
JP2003094150A (en) 2003-04-02

Similar Documents

Publication Publication Date Title
JP3574427B2 (en) Continuous casting powder and continuous casting method for Ti and Al-containing steel
US11118250B2 (en) Fe—Cr—Ni alloy and method for production thereof
JP4483662B2 (en) Mold flux for continuous casting of steel.
JP4813225B2 (en) Continuous casting powder for Al-containing Ni-base alloy and continuous casting method
JP4837804B2 (en) Mold powder for continuous casting of steel
JP5704030B2 (en) Mold flux for continuous casting of steel
JP6116286B2 (en) Ferritic stainless steel with less heat generation
JP2017170494A (en) Continuous casting mold powder of steel and continuous casting method
JP5136994B2 (en) Continuous casting method of steel using mold flux
JP4611153B2 (en) Continuous casting powder for boron-containing stainless steel and continuous casting method
JP4846858B2 (en) Boron-containing stainless steel casting powder and method for continuous casting of boron-containing stainless steel
JP3574428B2 (en) Powder for continuous casting for Fe-Ni alloy or Ni-based alloy and continuous casting method
JP6510342B2 (en) Continuous casting powder for Al-containing steel and continuous casting method
JP4611327B2 (en) Continuous casting powder for Ni-Cu alloy and continuous casting method
JP3142216B2 (en) Mold powder for continuous casting of steel
JP6593111B2 (en) Zr-containing forging steel
JP4805637B2 (en) Continuous casting powder for Ni-Cr-Mo-Fe alloy and continuous casting method
JPH0985404A (en) Flux for continuously casting a1-containing molten steel and continuous casting method
JP3335616B2 (en) Powder for continuous casting for B-containing steel and method for producing B-containing steel
JP2001049322A (en) Production of ferritic stainless steel excellent in ridging resistance
JP7032600B1 (en) Mold powder for continuous casting and continuous casting method used for Fe—Ni based alloys or Ni-based alloys.
JPH0790504A (en) Ni-containing steel for low temperature use and secondary cooling method of its continuously cast slab
JP7097198B2 (en) Mold powder
JP2024032616A (en) Molten steel coating powder
JP2002254147A (en) Mold powder for continuous casting and continuous casting method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040506

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040629

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040701

R150 Certificate of patent or registration of utility model

Ref document number: 3574427

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080709

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080709

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090709

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090709

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100709

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110709

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110709

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120709

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120709

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees