JP7032600B1 - Mold powder for continuous casting and continuous casting method used for Fe—Ni based alloys or Ni-based alloys. - Google Patents
Mold powder for continuous casting and continuous casting method used for Fe—Ni based alloys or Ni-based alloys. Download PDFInfo
- Publication number
- JP7032600B1 JP7032600B1 JP2021142622A JP2021142622A JP7032600B1 JP 7032600 B1 JP7032600 B1 JP 7032600B1 JP 2021142622 A JP2021142622 A JP 2021142622A JP 2021142622 A JP2021142622 A JP 2021142622A JP 7032600 B1 JP7032600 B1 JP 7032600B1
- Authority
- JP
- Japan
- Prior art keywords
- mold
- powder
- continuous casting
- based alloy
- slab
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000843 powder Substances 0.000 title claims abstract description 121
- 229910045601 alloy Inorganic materials 0.000 title claims abstract description 110
- 239000000956 alloy Substances 0.000 title claims abstract description 110
- 238000009749 continuous casting Methods 0.000 title claims abstract description 49
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 title claims abstract description 47
- 238000000034 method Methods 0.000 title claims abstract description 20
- 239000002184 metal Substances 0.000 claims abstract description 65
- 229910052751 metal Inorganic materials 0.000 claims abstract description 65
- 238000007711 solidification Methods 0.000 claims abstract description 64
- 230000008023 solidification Effects 0.000 claims abstract description 64
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 28
- 229910052717 sulfur Inorganic materials 0.000 claims abstract description 24
- 239000000203 mixture Substances 0.000 claims abstract description 15
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 5
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 30
- 238000005266 casting Methods 0.000 claims description 16
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 14
- 238000010586 diagram Methods 0.000 abstract description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract 4
- 229910052681 coesite Inorganic materials 0.000 abstract 2
- 229910052906 cristobalite Inorganic materials 0.000 abstract 2
- 239000000377 silicon dioxide Substances 0.000 abstract 2
- 235000012239 silicon dioxide Nutrition 0.000 abstract 2
- 229910052682 stishovite Inorganic materials 0.000 abstract 2
- 229910052905 tridymite Inorganic materials 0.000 abstract 2
- 229910002974 CaO–SiO2 Inorganic materials 0.000 abstract 1
- KKCBUQHMOMHUOY-UHFFFAOYSA-N Na2O Inorganic materials [O-2].[Na+].[Na+] KKCBUQHMOMHUOY-UHFFFAOYSA-N 0.000 abstract 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 abstract 1
- 229910052593 corundum Inorganic materials 0.000 abstract 1
- 229910001845 yogo sapphire Inorganic materials 0.000 abstract 1
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 49
- 238000000227 grinding Methods 0.000 description 41
- 238000001514 detection method Methods 0.000 description 29
- 238000011156 evaluation Methods 0.000 description 19
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 18
- 238000005336 cracking Methods 0.000 description 16
- 238000001816 cooling Methods 0.000 description 14
- 230000002829 reductive effect Effects 0.000 description 13
- 230000000694 effects Effects 0.000 description 12
- 230000005499 meniscus Effects 0.000 description 12
- 239000002344 surface layer Substances 0.000 description 11
- 230000000052 comparative effect Effects 0.000 description 10
- 229910052755 nonmetal Inorganic materials 0.000 description 9
- 229910052760 oxygen Inorganic materials 0.000 description 9
- 229910003271 Ni-Fe Inorganic materials 0.000 description 8
- 239000013078 crystal Substances 0.000 description 8
- 230000007423 decrease Effects 0.000 description 8
- 229910052742 iron Inorganic materials 0.000 description 8
- 229910000831 Steel Inorganic materials 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 7
- 230000008018 melting Effects 0.000 description 7
- 238000002844 melting Methods 0.000 description 7
- 239000010959 steel Substances 0.000 description 7
- 210000004027 cell Anatomy 0.000 description 6
- 210000001787 dendrite Anatomy 0.000 description 6
- 238000005098 hot rolling Methods 0.000 description 6
- 238000005461 lubrication Methods 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 239000012535 impurity Substances 0.000 description 5
- 239000010410 layer Substances 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- 230000003068 static effect Effects 0.000 description 5
- XARHOZCQSBWPOC-UHFFFAOYSA-N Neferin Natural products COc1ccc(CC2N(C)CCc3cc(OC)c(Oc4ccc(CC5N(C)CCc6cc(OC)c(OC)cc56)cc4O)cc23)cc1 XARHOZCQSBWPOC-UHFFFAOYSA-N 0.000 description 4
- MIBATSHDJRIUJK-ROJLCIKYSA-N Neferine Chemical compound C1=CC(OC)=CC=C1C[C@@H]1C2=CC(OC=3C(=CC=C(C[C@@H]4C5=CC(OC)=C(OC)C=C5CCN4C)C=3)O)=C(OC)C=C2CCN1C MIBATSHDJRIUJK-ROJLCIKYSA-N 0.000 description 4
- MIBATSHDJRIUJK-UHFFFAOYSA-N Neferine Natural products C1=CC(OC)=CC=C1CC1C2=CC(OC=3C(=CC=C(CC4C5=CC(OC)=C(OC)C=C5CCN4C)C=3)O)=C(OC)C=C2CCN1C MIBATSHDJRIUJK-UHFFFAOYSA-N 0.000 description 4
- 229910000990 Ni alloy Inorganic materials 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 238000007689 inspection Methods 0.000 description 4
- 238000007670 refining Methods 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- 229910004261 CaF 2 Inorganic materials 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000015271 coagulation Effects 0.000 description 3
- 238000005345 coagulation Methods 0.000 description 3
- 239000000155 melt Substances 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 230000006911 nucleation Effects 0.000 description 3
- 238000010899 nucleation Methods 0.000 description 3
- 230000000704 physical effect Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 229910017827 Cu—Fe Inorganic materials 0.000 description 2
- 229910000640 Fe alloy Inorganic materials 0.000 description 2
- 241000209094 Oryza Species 0.000 description 2
- 235000007164 Oryza sativa Nutrition 0.000 description 2
- 229910001566 austenite Inorganic materials 0.000 description 2
- 230000000740 bleeding effect Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000006477 desulfuration reaction Methods 0.000 description 2
- 230000023556 desulfurization Effects 0.000 description 2
- 238000007598 dipping method Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 150000002222 fluorine compounds Chemical class 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910052664 nepheline Inorganic materials 0.000 description 2
- 239000010434 nepheline Substances 0.000 description 2
- 235000009566 rice Nutrition 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 238000005204 segregation Methods 0.000 description 2
- 230000008961 swelling Effects 0.000 description 2
- 230000008719 thickening Effects 0.000 description 2
- 150000003568 thioethers Chemical class 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910000863 Ferronickel Inorganic materials 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 206010039509 Scab Diseases 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 239000011818 carbonaceous material particle Substances 0.000 description 1
- 235000013339 cereals Nutrition 0.000 description 1
- 239000003610 charcoal Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000004453 electron probe microanalysis Methods 0.000 description 1
- 238000004993 emission spectroscopy Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 239000011819 refractory material Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000009628 steelmaking Methods 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Continuous Casting (AREA)
- Treatment Of Steel In Its Molten State (AREA)
Abstract
【課題】表面性状に優れるFe-Ni系合金またはNi基合金の連続鋳造スラブを製造するためFe-Ni系合金またはNi基合金の溶湯の連続鋳造に用いるモールドパウダーを提供するとともに本連続鋳造用モールドパウダーを用いた連続鋳造方法を提供する。【解決手段】Niを30wt%以上含むFe-Ni系合金またはNi基合金の連続鋳造用モールドパウダーはCaO-SiO2系パウダーであり、CaO:30~40wt%、SiO2:30~40wt%、Al2O3:3~10wt%、Na2O:8~15wt%、F:5~10wt%、K2O:0.01~2.00wt%、S:0.01~0.50wt%、P:0.01~2.00wt%およびC:1.0~3.5wt%の成分組成を有し、かつ塩基度が0.75≦CaO/SiO2≦1.33を満足し、1300℃における粘度が1.0~4.0poise、凝固温度が1000~1250℃である。【選択図】図2PROBLEM TO BE SOLVED: To provide a mold powder used for continuous casting of a molten metal of Fe—Ni based alloy or Ni based alloy in order to produce a continuous casting slab of Fe—Ni based alloy or Ni based alloy having excellent surface properties, and for main continuous casting. A continuous casting method using a mold powder is provided. SOLUTION: The mold powder for continuous casting of Fe—Ni based alloy or Ni based alloy containing 30 wt% or more of Ni is CaO—SiO2 based powder, CaO: 30 to 40 wt%, SiO2: 30 to 40 wt%, Al2O3 :. 3 to 10 wt%, Na2O: 8 to 15 wt%, F: 5 to 10 wt%, K2O: 0.01 to 2.00 wt%, S: 0.01 to 0.50 wt%, P: 0.01 to 2.00 wt% % And C: 1.0 to 3.5 wt% component composition, basicity of 0.75 ≦ CaO / SiO2 ≦ 1.33, and viscosity at 1300 ° C. of 1.0 to 4.0 poise. The solidification temperature is 1000 to 1250 ° C. [Selection diagram] Fig. 2
Description
本発明は、表面性状に優れるFe-Ni系合金またはNi基合金のスラブを製造するための連続鋳造用モールドパウダーに関し、また、当該モールドパウダーを用いた連続鋳造方法に関するものである。 The present invention relates to a mold powder for continuous casting for producing a slab of an Fe—Ni based alloy or a Ni-based alloy having excellent surface properties, and also relates to a continuous casting method using the mold powder.
Niを30%以上含むFe-Ni系合金またはNi基合金には、36wt%Ni-Fe合金、42wt%Ni-Fe合金、45wt%Ni-Fe合金、50.5wt%Ni-Fe合金、76.5wt%Ni-15.5wt%Cr-6.5wt%Fe合金、77wt%Ni-4wt%Mo-5wt%Cu-Fe合金 、99.5wt%Ni合金等がある。これらの合金は、組織がオーステナイト単相であるため、凝固時にP、Sなどの不純物がデンドライトの樹間に濃化しやすく、割れやすいという欠点がある。こうした割れは、連続鋳造機で造塊したスラブ表面に縦割れあるいは横割れもしくは未凝固の溶湯が割れからにじみ出したブリーディングといった形で現れることが多く、溶湯のにじみ出しが止まらなければ最悪の場合は、ブレイクアウトして鋳造停止になることもあった。 For Fe-Ni based alloys or Ni-based alloys containing 30% or more of Ni, 36 wt% Ni-Fe alloys, 42 wt% Ni-Fe alloys, 45 wt% Ni-Fe alloys, 50.5 wt% Ni-Fe alloys, 76. There are 5 wt% Ni-15.5 wt% Cr-6.5 wt% Fe alloy, 77 wt% Ni-4 wt% Mo-5 wt% Cu-Fe alloy, 99.5 wt% Ni alloy and the like. Since these alloys have a single-phase austenite structure, impurities such as P and S tend to concentrate between the dendrite trees during solidification, and have the disadvantage of being easily cracked. Such cracks often appear in the form of vertical cracks, horizontal cracks, or bleeding in which unsolidified molten metal oozes out from the cracks on the surface of the slab ingot by a continuous casting machine. , It sometimes broke out and stopped casting.
したがって、Fe-Ni系合金またはNi基合金は従来、普通造塊により鋳造されることが多かった。またスラブ表面の微細な割れであっても、熱間圧延後の熱帯表面および厚板表面のヘゲ疵の原因になるため、熱間圧延前のスラブ表面の研削を行い、その後、浸透探傷試験によって割れの有無を確認して、割れがある場合は、追加の研削による微細な割れの除去が必要であり、生産性の低下や歩留低下による製造コストの上昇をもたらしていた。 Therefore, Fe—Ni-based alloys or Ni-based alloys have traditionally been cast by ordinary ingot formation. Even if the surface of the slab is finely cracked, it may cause scratches on the tropical surface and the surface of the plank after hot rolling. Therefore, the surface of the slab before hot rolling is ground, and then a penetration flaw detection test is performed. If there is a crack, it is necessary to remove fine cracks by additional grinding, resulting in a decrease in productivity and an increase in manufacturing cost due to a decrease in yield.
これらの課題に対して、特許文献1では、Fe-Ni系合金またはNi基合金の連続鋳造時において溶湯上に散布する連続鋳造用パウダーの粘度、凝固温度、結晶相を適正化して連続鋳造時のメニスカスでの不均一冷却を防止することにより、縦割れ、ブリーディング、ブレイクアウトを防止し、スラブの研削歩留り90%以上を確保できることを開示している。
In response to these problems,
しかしながら、特許文献1の発明例24のうち15例がスラブ研削歩留りが95wt%以下であり、この15例は5wt%以上スラブ表面を研削する必要があることを示している。すなわち特許文献1の開示内容では、Fe-Ni系合金またはNi基合金のスラブ表面の微細な割れに関する課題は、残ったままであったと言える。
However, 15 of the 24 invention examples of
また、特許文献2では、Niを7.5~10質量%含有するNi含有鋼鋳片に関して、鋳片表面での凝固核発生密度を0.6個/mm2以上にすることにより、凝固セルのサイズを小さくして、凝固セル界面でのS及びPの偏析が軽減して凝固セル界面での脆化が少なくなり、且つ、凝固セル界面に作用する応力も分散され、これにより、凝固セル界面における凝固割れが抑制され、鋳片表面における割れの発生が低減することを提案している。さらに、凝固核発生密度が0.6個/mm2以上にするために、Ni合金の成分およびモールドパウダーの1300℃における粘度、鋳型の振動数を開示している。
Further, in
しかしながら、凝固核発生密度および凝固割れを抑制できる応力は、鋼および合金の成分に依存するため、本発明の対象としているNiを30wt%以上含むFe-Ni系合金またはNi基合金には特許文献2の開示内容は適応できず、鋳片表面における割れを防止することはできない。 However, since the solidification nucleation density and the stress capable of suppressing solidification cracking depend on the components of the steel and the alloy, the Fe—Ni based alloy or Ni-based alloy containing 30 wt% or more of Ni, which is the subject of the present invention, is a patent document. The disclosure content of 2 cannot be applied, and cracking on the surface of the slab cannot be prevented.
また、特許文献3では、ニッケルを5~10重量%含有する溶鋼を連続鋳造するに際して、該溶鋼を燐が0.006重量%以下、硫黄が0.003 重量%以下になるよう溶製して、2次冷却帯では、鋳片の液相線温度から1050℃までの温度領域は 3.0℃/秒以上の速度で冷却するとともに矯正点通過終了時の表面温度を850℃以上に維持することで、連続鋳造したスラブの表面割れ、表面下割れはもとより、微細な割れの発生をも完全に防止する方法を開示している。
Further, in
しかしながら、特許文献3の内容は、鋳造過程に湾曲部が存在する連続鋳造のみを対象にした内容であり、垂湾曲部が存在しない垂直型連続鋳造機で造塊したスラブでも表面割れは発生しており特許文献3の開示内容では垂直型連続鋳造機で造塊したスラブの表面割れを防止することはできない。また、特許文献3では矯正終了時点の鋳片温度は850℃以上としている。この温度以下は、鋳片の脆化温度域になり、表面微細割れが発生すると開示しているが、鋳片の脆化温度は、鋼および合金の成分に依存するため、本発明の対象としているNiを30wt%以上含むFe-Ni系合金またはNi基合金には特許文献3の開示内容は適応できず、鋳片表面における割れを防止することはできない。
However, the content of
上記の通り、従来技術では、Niを30wt%以上含むFe-Ni系合金またはNi基合金のスラブ表面の微細な割れまでは防止できていないため、熱間圧延前のスラブ表面を研削して微細な割れを除去することにより、熱間圧延後に熱帯および厚板表面のヘゲ疵を防止していた。そのため、歩留の低下や製造工程の追加が発生していた。すなわち、Niを30wt%以上含むFe-Ni系合金またはNi基合金のスラブ表面の微細な縦割れに関する課題は、残ったままであったと言える。 As described above, since the conventional technique cannot prevent fine cracks on the slab surface of Fe—Ni based alloys or Ni-based alloys containing 30 wt% or more of Ni, the surface of the slab before hot rolling is ground to be fine. By removing the cracks, scabs on the tropical and plank surfaces were prevented after hot rolling. Therefore, the yield has decreased and the manufacturing process has been added. That is, it can be said that the problem of fine vertical cracking on the slab surface of the Fe—Ni based alloy or Ni-based alloy containing 30 wt% or more of Ni remained.
本発明では、表面性状に優れるFe-Ni系合金またはNi基合金のスラブを連続鋳造するために用いるモールドパウダーおよび本モールドパウダーを用いた連続鋳造方法を提供することにある。 The present invention provides a mold powder used for continuously casting a slab of an Fe—Ni based alloy or a Ni-based alloy having excellent surface properties, and a continuous casting method using the present mold powder.
上述したような問題を解消するため、発明者らはまずFe-Ni系合金またはNi基合金のスラブ表面の割れ部分を詳細に調査した。割れ部断面のエッチング組織から、割れは凝固粒界に沿って存在しており、さらに凝固粒界の組成をSEM/EDSおよびEPMAにて分析を行いSおよびPが濃化していることを確認した。これはFe-Ni系合金またはNi基合金の凝固組織がオーステナイト単相であるため、凝固時にP、Sなどの不純物がデンドライトの樹間に濃化しやすく、割れやすいという従来の知見と一致する。 In order to solve the above-mentioned problems, the inventors first investigated in detail the cracked portion of the slab surface of the Fe—Ni based alloy or Ni-based alloy. From the etching structure of the cross section of the crack, the cracks existed along the solidified grain boundaries, and the composition of the solidified grain boundaries was analyzed by SEM / EDS and EPMA, and it was confirmed that S and P were concentrated. .. This is consistent with the conventional finding that since the solidification structure of the Fe—Ni based alloy or Ni-based alloy is austenite single phase, impurities such as P and S are likely to be concentrated between the dendrite trees during solidification and are easily cracked.
引き続き、発明者らはFe-36Ni系合金のスラブの表面付近を0.5mm厚みごと薄く切り出した試料を作製し、SおよびPの厚み方向の濃度分布を発光分光分析および蛍光X線分析を用いて分析を行い、その結果を図1(a)と(b)のグラフに示した。図1では、溶湯段階でのS濃度は0.0005%、P濃度は0.0046%であった。図1に示すように、表層のSおよびP濃度が高いことを発見した。しかも、連続鋳造時のタンディッシュで採取した溶湯のS濃度およびP濃度より、表層のS濃度およびP濃度が高いことが分かった。このスラブ表層のS濃度およびP濃度の濃化がスラブ表層の割れを助長していることが考えられた。 Subsequently, the inventors prepared a sample in which the vicinity of the surface of the slab of the Fe-36Ni-based alloy was cut out thinly to a thickness of 0.5 mm, and the concentration distribution in the thickness direction of S and P was analyzed by emission spectroscopy and fluorescent X-ray analysis. The analysis was performed, and the results are shown in the graphs of FIGS. 1 (a) and 1 (b). In FIG. 1, the S concentration and the P concentration at the molten metal stage were 0.0005% and 0.0046%. As shown in FIG. 1, it was discovered that the S and P concentrations on the surface layer were high. Moreover, it was found that the S concentration and P concentration of the surface layer were higher than the S concentration and P concentration of the molten metal collected by the tundish during continuous casting. It was considered that the thickening of the S concentration and the P concentration of the slab surface layer promoted the cracking of the slab surface layer.
さらに、発明者らはこのスラブ表層のS濃度およびP濃度の濃化が発生する原因を特定するため調査を続けた。図2は、その模式図を示す。符号1は連続鋳造用鋳型であり、鋳型1には、浸漬ノズル2より溶湯3が注ぎ込まれる。鋳型1で冷却された溶湯3の周縁部には凝固シェル4が形成される。また、溶湯3の上部には、溶融パウダー5とモールドパウダー6が散布されている。図2に示すように、Fe-Ni系合金またはNi基合金の連続鋳造中の鋳型1内の溶湯表面にφ8mmの鉄棒7を約10mm差し込んで先端に溶湯を付着させ瞬時に引き上げることにより、溶湯表面の溶湯を採取した。鉄棒先端には凝固した溶湯とガラス状に固まったモールドパウダーが付着しているが、ハンマーでガラス状のモールドパウダーを砕き、凝固した溶湯サンプル部分のみを回収して分析した。図3で示すように、溶湯の採取は鋳型幅方向の半分の複数個所で実施した。採取した溶湯サンプルのS濃度およびP濃度を化学分析にて分析したところ、図3の上面図に示すように連続鋳造時のタンディッシュで採取した溶湯のS濃度およびP濃度より高い部分が存在することが分かった。すなわちスラブ表層のS濃度およびP濃度の濃化は凝固過程で発生するのではなく、鋳型内の溶湯の時点で発生していることを発見した。
Furthermore, the inventors continued to investigate the cause of the increase in S concentration and P concentration on the surface layer of the slab. FIG. 2 shows a schematic diagram thereof.
そこで、発明者らは、実験室の20kg高周波誘導炉でFe-36Ni合金を溶解し、さらに液相線温度+50℃の温度で昇温後、高周波電源をOFFにして高周波による溶湯の対流を無くした後、溶湯の上にS濃度およびP濃度を調整したモールドパウダーを100g添加し、モールドパウダーが溶解直後に溶湯にφ8mm鉄棒を約10mm差し込んで瞬時に引き上げることにより、溶湯表面の溶湯サンプルを採取した。この試験を各種のS濃度およびP濃度のモールドパウダーで繰り返し行った。採取した溶湯サンプルのS濃度およびP濃度を化学分析にて分析したところ、図4に示したように、添加したモールドパウダーのS濃度およびP濃度と鉄棒で採取した溶湯サンプルのS濃度およびP濃度は相関があることを突き止めた。 Therefore, the inventors melted the Fe-36Ni alloy in a 20 kg high frequency induction furnace in the laboratory, and after raising the temperature at the liquidus line temperature + 50 ° C., turned off the high frequency power supply to eliminate the convection of the molten metal due to high frequency. After that, 100 g of mold powder with adjusted S concentration and P concentration is added on the molten metal, and immediately after the mold powder is melted, a φ8 mm iron rod is inserted into the molten metal by about 10 mm and pulled up instantly to collect a molten metal sample on the surface of the molten metal. did. This test was repeated with various S and P concentration mold powders. When the S concentration and P concentration of the collected molten metal sample were analyzed by chemical analysis, as shown in FIG. 4, the S concentration and P concentration of the added mold powder and the S concentration and P concentration of the molten metal sample collected by the iron rod Found that there was a correlation.
上記の調査結果からFe-Ni系合金またはNi基合金のスラブ表層にSおよびPが濃化する原因は、溶融したモールドパウダーとFe-Ni系合金またはNi基合金の溶湯の界面で、式1、2で示す反応でSおよびPが溶湯に移行しているためである。
(%S)in溶融モールドパウダー → [%S]in溶湯 …(式1)
(%P)in溶融モールドパウダー → [%P]in溶湯 …(式2)
From the above investigation results, the cause of the concentration of S and P on the slab surface layer of the Fe—Ni based alloy or Ni based alloy is the interface between the molten mold powder and the molten metal of the Fe—Ni based alloy or Ni based alloy. This is because S and P are transferred to the molten metal in the reaction shown in 2.
(% S) in molten mold powder → [% S] in molten metal ... (Equation 1)
(% P) in molten mold powder → [% P] in molten metal ... (Equation 2)
図5に示すように、連続鋳造時の鋳型1内の溶湯3は矢印で示すメニスカス部分から凝固が始まり、メニスカス部分がスラブの表層部分になる。すなわちメニスカス部分にSおよびPが濃化した部分が存在すると、スラブの表層部分にSおよびPが濃化した部分8が存在することになる。SおよびPが濃化した部分は、2次冷却帯でのスプレー水のわずかな濃淡により発生する凝固収縮の不均一やロール間で凝固シェルに膨らみでの応力によってスラブ表面に縦割れおよび横割れが発生することになる。
As shown in FIG. 5, the
そこで、発明者らはさらに、多種のS濃度およびP濃度のモールドパウダーを作製し、Fe-Ni系合金またはNi基合金スラブを各種操業条件の連続鋳造にて製造して、モールドパウダーの組成および連続鋳造の製造条件とスラブ表面の割れ個数との関係を調査し、表面割れのないFe-Ni系合金またはNi基合金スラブを製造するに至った。本発明は、以上の通りの研究を通して完成したものであり、内容は以下に示すとおりである。 Therefore, the inventors further produced mold powders having various S and P concentrations, and produced Fe—Ni alloys or Ni-based alloy slabs by continuous casting under various operating conditions to obtain the composition of the mold powder and the composition of the mold powder. By investigating the relationship between the manufacturing conditions of continuous casting and the number of cracks on the surface of the slab, it was possible to manufacture Fe—Ni based alloys or Ni-based alloy slabs without surface cracks. The present invention has been completed through the above studies, and the contents are as shown below.
本発明は、Niを30wt%以上含むFe-Ni系合金またはNi基合金の連続鋳造用モールドパウダーであって、このモールドパウダーはCaO-SiO2系パウダーであり、CaO:30~40wt%、SiO2:30~40wt%、Al2O3:3~10wt%、Na2O:8~15wt%、F:5~10wt%、K2O:0.01~2.00wt%、S:0.01~0.50wt%、P:0.01~2.00wt%およびC:1.0~3.5wt%の成分組成を有し、かつ塩基度が0.75≦CaO/SiO2≦1.33を満足し、1300℃における粘度が1.0~4.0poise、凝固温度が1000~1250℃であることを特徴とするFe-Ni系合金またはNi基合金の連続鋳造用モールドパウダーである。 The present invention is a mold powder for continuous casting of Fe—Ni based alloy or Ni based alloy containing 30 wt% or more of Ni, and this mold powder is CaO—SiO 2 based powder, CaO: 30-40 wt%, SiO. 2 : 30-40 wt%, Al 2 O 3 : 3-10 wt%, Na 2 O: 8-15 wt%, F: 5-10 wt%, K 2 O: 0.01-2.00 wt%, S: 0. It has a component composition of 01 to 0.50 wt%, P: 0.01 to 2.00 wt% and C: 1.0 to 3.5 wt%, and has a basicity of 0.75 ≤ CaO / SiO 2 ≤ 1. It is a mold powder for continuous casting of a Fe—Ni based alloy or a Ni-based alloy, which satisfies 33 and has a viscosity at 1300 ° C. of 1.0 to 4.0 poise and a solidification temperature of 1000 to 1250 ° C.
また、Fe-Ni系合金またはNi基合金はS:0.0001~0.0050wt%、P:0.0001~0.0150wt%であることをさらなる特徴とする。 Further, the Fe—Ni based alloy or Ni-based alloy is further characterized in that S: 0.0001 to 0.0050 wt% and P: 0.0001 to 0.0150 wt%.
さらに上記Fe-Ni系合金またはNi基合金を、連続鋳造機で鋳造する際、連続鋳造スラブの引き抜き速度:400~900mm/分、溶湯の過熱度:5~50℃の条件下で、上記の連続鋳造用モールドパウダーを用いて鋳造することを特徴とするFe-Ni系合金またはNi基合金の連続鋳造方法である。 Further, when the Fe-Ni alloy or Ni-based alloy is cast by a continuous casting machine, the above conditions are such that the drawing speed of the continuous casting slab is 400 to 900 mm / min and the superheating degree of the molten metal is 5 to 50 ° C. It is a continuous casting method of a Fe—Ni based alloy or a Ni-based alloy, which comprises casting using a mold powder for continuous casting.
本発明のモールドパウダーおよび連続鋳造法によれば、Niを30wt%以上含むFe-Ni系合金またはNi基合金の連続鋳造スラブ表面に発生する微細な割れを防止することが可能であり、その結果、熱間圧延前のスラブ表面研削を軽減することができ、歩留り良く、製造工程を短縮することが可能になる。 According to the mold powder and the continuous casting method of the present invention, it is possible to prevent fine cracks generated on the surface of the continuously cast slab of a Fe—Ni based alloy or a Ni-based alloy containing 30 wt% or more of Ni, and as a result. The slab surface grinding before hot rolling can be reduced, the yield is good, and the manufacturing process can be shortened.
本発明のNiを30wt%以上含むFe-Ni系合金またはNi基合金の連続鋳造用モールドパウダーの化学成分および物性の限定理由を以下に説明する。CaO:30~40wt%、SiO2:30~40wt%、Al2O3:3~10wt%、Na2O:8~15wt%、F:5~10wt%、K2O:0.01~2.00wt%、S:0.01~0.50wt%、P:0.01~2.00wt%およびC:1~3.5wt%の成分組成を有し、かつ塩基度が0.75≦CaO/SiO2≦1.33の成分範囲内であれば、1300℃における粘度が1.0~4.0poise、凝固温度が1000~1250℃を満足する。モールドパウダーは酸化物、弗化物、硫化物、炭材などを混合した粉末である。 The reasons for limiting the chemical composition and physical properties of the mold powder for continuous casting of Fe—Ni based alloys or Ni-based alloys containing 30 wt% or more of Ni of the present invention will be described below. CaO: 30-40 wt%, SiO 2 : 30-40 wt%, Al 2 O 3 : 3-10 wt%, Na 2 O: 8-15 wt%, F: 5-10 wt%, K 2 O: 0.01-2 It has a component composition of .00 wt%, S: 0.01 to 0.50 wt%, P: 0.01 to 2.00 wt% and C: 1 to 3.5 wt%, and has a basicity of 0.75 ≦ CaO. Within the component range of / SiO 2 ≤ 1.33, the viscosity at 1300 ° C. is 1.0 to 4.0 poise, and the solidification temperature is 1000 to 1250 ° C. Mold powder is a powder that is a mixture of oxides, fluorides, sulfides, charcoal materials, and the like.
CaO:30~40wt%
CaOはモールドパウダーの主成分の一つである。CaOが30wt%より低いと塩基度CaO/SiO2が0.75より小さくなり、逆にCaOが40wt%より高いと塩基度CaO/SiO2が1.33より大きくなる。CaO-SiO2系パウダーは、塩基度CaO/SiO2=1付近の粘度および凝固温度が低く、塩基度CaO/SiO2が1付近より高いまたは低くなると粘度および凝固温度が高くなる。Na2O、F、K2Oの添加で粘度および凝固温度を調整するが、本発明範囲の1300℃における粘度4.0poiseおよび凝固温度1250℃を超えてしまい、パウダーの消費量が減り、凝固シェルと鋳型の潤滑が悪化する。凝固シェルと鋳型の焼き付きが発生すると凝固シェルが引きちぎれ溶湯が漏れ出し、ブレイクアウトトラブルの原因となる。ブレイクアウトに至らない凝固シェルの引きちぎれでも、スラブ表面に大きな横割れを生じ、研削歩留が悪化する。そのため、30~40wt%と規定した。好ましくは、32~39wt%、より好ましくは34~38wt%である。
CaO: 30-40 wt%
CaO is one of the main components of the mold powder. When CaO is lower than 30 wt%, the basicity CaO / SiO 2 is smaller than 0.75, and conversely, when CaO is higher than 40 wt%, the basicity CaO / SiO 2 is larger than 1.33. The CaO-SiO 2 powder has a low viscosity and solidification temperature in the vicinity of basicity CaO / SiO 2 = 1, and a high viscosity and solidification temperature when the basicity CaO / SiO 2 is higher or lower than in the vicinity of 1. The viscosity and solidification temperature are adjusted by adding Na 2 O, F, and K 2 O, but the viscosity at 1300 ° C. and the solidification temperature of 1250 ° C., which are within the range of the present invention, are exceeded, the consumption of powder is reduced, and solidification occurs. Lubrication of the shell and mold deteriorates. When seizure occurs between the solidified shell and the mold, the solidified shell is torn off and the molten metal leaks out, causing breakout trouble. Even if the solidified shell is torn off without breaking out, large lateral cracks will occur on the slab surface and the grinding yield will deteriorate. Therefore, it is specified as 30 to 40 wt%. It is preferably 32 to 39 wt%, more preferably 34 to 38 wt%.
SiO2:30~40wt%
SiO2はモールドパウダーの主成分の一つである。SiO2が30wt%より高いと塩基度CaO/SiO2が0.75より小さくなり、逆にSiO2が40wt%より低いとと塩基度CaO/SiO2が1.33より大きくなる。CaO-SiO2系パウダーは、塩基度CaO/SiO2=1付近の粘度および凝固温度が低く、塩基度CaO/SiO2が1付近より高いまたは低くなると粘度および凝固温度が高くなる。Na2O、F、K2Oの添加で粘度および凝固温度を調整するが、本発明範囲の1300℃における粘度4.0poiseおよび凝固温度1250℃を超えてしまい、パウダーの消費量が減り、凝固シェルと鋳型の潤滑が悪化する。凝固シェルと鋳型の焼き付きが発生すると凝固シェルが引きちぎれ溶湯が漏れ出し、ブレイクアウトトラブルの原因となる。ブレイクアウトに至らない凝固シェルの引きちぎれでも、スラブ表面に大きな横割れを生じ、研削歩留が悪化する。そのため、30~40wt%と規定した。好ましくは、31~38wt%、より好ましくは32~36wt%である。
SiO 2 : 30-40 wt%
SiO 2 is one of the main components of the mold powder. When SiO 2 is higher than 30 wt%, the basicity CaO / SiO 2 is smaller than 0.75, and conversely, when SiO 2 is lower than 40 wt%, the basicity CaO / SiO 2 is larger than 1.33. The CaO-SiO 2 powder has a low viscosity and solidification temperature in the vicinity of basicity CaO / SiO 2 = 1, and a high viscosity and solidification temperature when the basicity CaO / SiO 2 is higher or lower than in the vicinity of 1. The viscosity and solidification temperature are adjusted by adding Na 2 O, F, and K 2 O, but the viscosity at 1300 ° C. and the solidification temperature of 1250 ° C., which are within the range of the present invention, are exceeded, the consumption of powder is reduced, and solidification occurs. Lubrication of the shell and mold deteriorates. When seizure occurs between the solidified shell and the mold, the solidified shell is torn off and the molten metal leaks out, causing breakout trouble. Even if the solidified shell is torn off without breaking out, large lateral cracks will occur on the slab surface and the grinding yield will deteriorate. Therefore, it is specified as 30 to 40 wt%. It is preferably 31 to 38 wt%, more preferably 32 to 36 wt%.
Al2O3:3~10wt%
Al2O3は凝固温度を上げる効果と粘度を上げる効果および結晶相のネフェリン(Na2O・Al2O3・2SiO2)を生成する効果がある。Al2O3が3%より多いと溶融パウダーが鋳型と凝固シェルの間で固まるときに、結晶相のネフェリン(Na2O・Al2O3・2SiO2)を生成する。鋳造中、モールドパウダーは溶湯からの熱を受けて溶融し、溶融したモールドパウダーは凝固シェルと背面が水冷された鋳型の間に流入して、急速に冷却され凝固し、ガラス質のパウダーフィルムを生成する。ガラス質のパウダーフィルムは透明なため放射伝熱により凝固シェルを急冷するが、パウダーフィルム中に結晶相であるネフェリンが存在すること白く濁ることで放射伝熱が軽減し、凝固シェルの緩冷却が可能になり、スラブ表面の割れを防止できる。逆にAl2O3が10wt%より多いと、粘度が4poiseより大きくなり、凝固温度が1250℃を超える。さらに、Al2O3が10wt%より多いと、パウダーフィルム内に粗大なAl2O3粒が生成し、スラブ表面に縦長の凹み欠陥を生成し、さらに凹みの下には縦割れが発生する。そのため、3~10wt%と規定した。好ましくは、4~9wt%、より好ましくは5~8wt%である。
Al 2 O 3 : 3 to 10 wt%
Al 2 O 3 has an effect of increasing the solidification temperature, an effect of increasing the viscosity, and an effect of producing neferin (Na 2 O · Al 2 O 3.2SiO 2 ) in the crystalline phase. If Al 2 O 3 is greater than 3%, the crystalline phase neferin (Na 2 O · Al 2 O 3.2SiO 2 ) is produced when the molten powder hardens between the mold and the solidified shell. During casting, the mold powder melts under the heat of the molten metal, and the melted mold powder flows between the solidified shell and the mold whose back surface is water-cooled, and is rapidly cooled and solidified to form a glassy powder film. Generate. Since the glassy powder film is transparent, the solidified shell is rapidly cooled by radiant heat transfer, but the presence of neferin, which is a crystalline phase, in the powder film reduces the radiant heat transfer and slows the cooling of the solidified shell. This makes it possible to prevent cracking of the slab surface. On the contrary, when Al 2 O 3 is more than 10 wt%, the viscosity becomes larger than 4 poise and the solidification temperature exceeds 1250 ° C. Further, when the amount of Al 2 O 3 is more than 10 wt%, coarse Al 2 O 3 grains are generated in the powder film, a vertically long dent defect is generated on the slab surface, and a vertical crack is generated under the dent. .. Therefore, it is specified as 3 to 10 wt%. It is preferably 4 to 9 wt%, more preferably 5 to 8 wt%.
Na2O:8~15wt%
Na2Oは凝固温度を下げる効果と粘度を下げる効果および結晶相のネフェリン(Na2O・Al2O3・2SiO2)を生成する効果がある。Na2Oが8wt%より低いと粘度が4poiseより高くなり、凝固温度も1250℃を超える。また、結晶相のネフェリン(Na2O・Al2O3・2SiO2)の生成がなくなり、凝固シェルの急冷による縦割れが発生する。逆に、Na2Oが15wt%より高いと粘度が1poiseより低くなり、凝固温度も1000℃より低くなる。また、Na2Oが15%より高いと、パウダーフィルム内の結晶相が過多になり、鋳型内で冷却が弱くなりすぎ、必要な凝固シェルが生成せず、鋳型の直下で溶鋼の静圧で凝固シェルが膨らむバルジングトラブルによる鋳込み中止を引き起こす。そのため、8~15wt%と規定した。好ましくは、9~13wt%、より好ましくは10~12wt%である。
Na 2 O: 8 to 15 wt%
Na 2 O has the effect of lowering the solidification temperature, the effect of lowering the viscosity, and the effect of producing nepheline (Na 2 O · Al 2 O 3.2SiO 2 ) in the crystalline phase. When Na 2 O is lower than 8 wt%, the viscosity becomes higher than 4 poise and the solidification temperature also exceeds 1250 ° C. In addition, the formation of nepheline (Na 2 O · Al 2 O 3.2SiO 2 ) in the crystal phase is eliminated, and vertical cracking occurs due to quenching of the solidified shell. On the contrary, when Na 2 O is higher than 15 wt%, the viscosity is lower than 1 poise and the solidification temperature is also lower than 1000 ° C. Further, when Na 2 O is higher than 15%, the crystal phase in the powder film becomes excessive, the cooling in the mold becomes too weak, the necessary solidification shell is not generated, and the static pressure of the molten steel directly under the mold is used. The solidified shell swells, causing bulging trouble to stop casting. Therefore, it is specified as 8 to 15 wt%. It is preferably 9 to 13 wt%, more preferably 10 to 12 wt%.
F:5~10wt%
Fは凝固温度を下げる効果と粘度を下げる効果および結晶相のカスピダイン(3CaO・2SiO2・CaF2)を生成する効果がある。Fが5wt%より低いと粘度が4poiseより高くなり、凝固温度も1250℃を超える。また、結晶相のカスピダイン(3CaO・2SiO2・CaF2)の生成がなくなり、凝固シェルの急冷による縦割れが発生する。逆に、Fが10wt%より高いと粘度が1poiseより低くなり、凝固温度も1000℃より低くなる。また、Fが10%より高いと、パウダーフィルム内の結晶相が過多になり、鋳型内で冷却が弱くなりすぎ、必要な凝固シェルが生成せず、鋳型の直下で溶鋼の静圧で凝固シェルが膨らむバルジングトラブルによる鋳込み中止を引き起こす。鋳込み中止にいたらない程度のバルジング変形でも凝固シェルの膨らみにより縦割れおよび横割れを引き起こす。そのため、5~10wt%と規定した。好ましくは、6~9wt%、より好ましくは7~8wt%である。
F: 5-10 wt%
F has an effect of lowering the solidification temperature, an effect of lowering the viscosity, and an effect of producing caspidyne (3CaO, 2SiO 2 , CaF 2 ) in the crystalline phase. When F is lower than 5 wt%, the viscosity becomes higher than 4 poise, and the solidification temperature also exceeds 1250 ° C. In addition, the formation of caspidyne (3CaO, 2SiO 2 , CaF 2 ) in the crystalline phase is eliminated, and vertical cracking occurs due to rapid cooling of the solidified shell. On the contrary, when F is higher than 10 wt%, the viscosity becomes lower than 1 poise and the solidification temperature becomes lower than 1000 ° C. Further, when F is higher than 10%, the crystal phase in the powder film becomes excessive, the cooling becomes too weak in the mold, the required solidification shell is not generated, and the solidification shell is formed by the static pressure of the molten steel directly under the mold. Causes casting to be stopped due to bulging trouble. Even bulging deformation that does not stop casting causes vertical cracks and horizontal cracks due to the swelling of the solidified shell. Therefore, it is specified as 5 to 10 wt%. It is preferably 6 to 9 wt%, more preferably 7 to 8 wt%.
K2O:0.01~2.00wt%
K2Oは凝固温度を下げる効果と粘度を下げる効果がある。また、K2Oはパウダーフィルム内で結晶相を生成しないため、Al2O3、Na2O、Fの添加で生成した結晶相の量を適正に確保しながら、粘度、凝固温度を本発明範囲の1.0~4.0poise、1000~1250℃に緻密に制御することができる。すなわち、Al2O3、Na2O、Fの添加のみを増やし、粘度、凝固温度を調整すると、パウダーフィルム内の結晶相が過多になり、鋳型内で冷却が弱くなりすぎ、必要な凝固シェルが生成せず、鋳型の直下で溶鋼の静圧で凝固シェルが膨らむバルジングトラブルによる鋳込み中止を引き起こす。鋳込み中止にいたらない程度のバルジング変形でも凝固シェルの膨らみにより縦割れおよび横割れを引き起こす。そのため、結晶相生成しないK2Oでの粘度、凝固温度の調整はとても重要である。粘度および凝固温度を本発明範囲の粘度、凝固温度に制御するため、0.01~2.00wt%と規定した。好ましくは、0.05~1.80wt%、より好ましくは0.10~1.00wt%である。
K 2 O: 0.01-2.00 wt%
K 2 O has the effect of lowering the solidification temperature and the effect of lowering the viscosity. Further, since K 2 O does not generate a crystal phase in the powder film, the present invention has a viscosity and a solidification temperature while appropriately ensuring the amount of the crystal phase generated by the addition of Al 2 O 3 , Na 2 O and F. It can be precisely controlled in the range of 1.0 to 4.0 pores and 1000 to 1250 ° C. That is, if only the addition of Al 2 O 3 , Na 2 O, and F is increased and the viscosity and solidification temperature are adjusted, the crystal phase in the powder film becomes excessive, the cooling in the mold becomes too weak, and the necessary solidification shell is used. Is not generated, and the solidified shell swells due to the static pressure of the molten steel directly under the mold, causing casting to be stopped due to bulging trouble. Even bulging deformation that does not stop casting causes vertical cracks and horizontal cracks due to the swelling of the solidified shell. Therefore, it is very important to adjust the viscosity and solidification temperature of K2O , which does not generate a crystal phase. In order to control the viscosity and solidification temperature within the range of the present invention, it is defined as 0.01 to 2.00 wt%. It is preferably 0.05 to 1.80 wt%, more preferably 0.10 to 1.00 wt%.
S:0.01~0.50wt%
Sはスラブ表面の微細な割れを防止するのに重要な成分である。0.50wt%を超えるとスラブ表面の微細な割れが顕著になり、スラブ研削の歩留を低下させる。また、Sは溶融モールドパウダーの表面張力に大きく影響する成分でもある。0.01wt%未満では溶融モールドパウダーの表面張力が高くなり、パウダーの消費低下し、凝固シェルと鋳型の焼き付きが発生し、凝固シェルが引きちぎれ溶湯が漏れ出し、ブレイクアウトトラブルの原因となる。ブレイクアウトに至らない凝固シェルの引きちぎれでも、スラブ表面に大きな横割れを生じ、研削歩留が悪化する。さらにSは溶融酸化物を低融点にする成分であり、溶湯上でモールドパウダー粉末が接触後、部分的に溶融し焼結体を形成するのに重要な役割をはたす。0.01wt%未満ではモールドパウダーの溶融が遅くなり、未溶融の焼結体がメニスカスの凝固シェルに触れてスラブ表面に縦割れやモールドパウダー焼結物の巻き込みを引き起こす。そのため、0.01~0.5wt%と規定した。好ましくは0.02~0.30wt%、より好ましくは0.03~0.15wt%である。
S: 0.01 to 0.50 wt%
S is an important component for preventing fine cracks on the surface of the slab. If it exceeds 0.50 wt%, fine cracks on the surface of the slab become remarkable, and the yield of slab grinding is lowered. Further, S is also a component that greatly affects the surface tension of the molten mold powder. If it is less than 0.01 wt%, the surface tension of the molten mold powder becomes high, the consumption of the powder decreases, seizure of the solidified shell and the mold occurs, the solidified shell is torn off, and the molten metal leaks out, which causes a breakout trouble. Even if the solidified shell is torn off without breaking out, large lateral cracks will occur on the slab surface and the grinding yield will deteriorate. Furthermore, S is a component that lowers the melting point of the molten oxide, and plays an important role in forming a sintered body by partially melting the molded powder powder after contacting it on the molten metal. If it is less than 0.01 wt%, the mold powder melts slowly, and the unmelted sintered body touches the solidified shell of the meniscus, causing vertical cracks and entrainment of the molded powder sintered body on the slab surface. Therefore, it is specified as 0.01 to 0.5 wt%. It is preferably 0.02 to 0.30 wt%, more preferably 0.03 to 0.15 wt%.
P:0.01~2.00wt%
Pはスラブ表面の微細な割れを防止するのに重要な成分である。2.00wt%を超えるとスラブ表面の微細な割れが顕著になり、スラブ研削の歩留を低下させる。また、Pは溶融モールドパウダーの表面張力に大きく影響する成分でもあり、0.01wt%未満では溶融モールドパウダーの表面張力が高くなり、パウダーの消費低下し、凝固シェルと鋳型の焼き付きが発生し、凝固シェルが引きちぎれ溶湯が漏れ出し、ブレイクアウトトラブルの原因となる。ブレイクアウトに至らない凝固シェルの引きちぎれでも、スラブ表面に大きな横割れを生じ、研削歩留が悪化する。上記理由より、0.01~2.00wt%と規定した。好ましくは、0.05~1.50wt%、より好ましくは0.10~1.00wt%である。
P: 0.01-2.00 wt%
P is an important component for preventing fine cracks on the surface of the slab. If it exceeds 2.00 wt%, fine cracks on the surface of the slab become remarkable, and the yield of slab grinding is lowered. In addition, P is also a component that greatly affects the surface tension of the molten mold powder, and if it is less than 0.01 wt%, the surface tension of the molten mold powder becomes high, the consumption of the powder decreases, and seizure of the solidified shell and the mold occurs. The solidified shell is torn off and the molten metal leaks out, causing breakout trouble. Even if the solidified shell is torn off without breaking out, large lateral cracks will occur on the slab surface and the grinding yield will deteriorate. For the above reasons, it is specified as 0.01 to 2.00 wt%. It is preferably 0.05 to 1.50 wt%, more preferably 0.10 to 1.00 wt%.
C:1.0~3.5wt%
炭材のC粒子は上記の酸化物、弗化物、硫化物の間に存在しており、接触することによる溶融を防ぐ働きを持つ。つまり、Cが燃焼してガス化すると、C粒子が消えて、酸化物、弗化物、硫化物の粉末が接触し部分的に溶融した焼結体を形成し、その後、完全に溶融する。このように、C量を制御することにより、パウダーの溶融速度を制御することができる。1.0%未満だと溶融が速すぎて、溶湯の上の溶融パウダー層が厚くなり、ベアと呼ばれる一旦溶融したパウダーが鋳型表面で冷却されて生成した凝固物が鋳型内面に大きく成長する。ベアの凹凸が原因で縦割れが発生し、研削歩留を低下させる。逆に3.5wt%を超えて高いと溶融が遅すぎて、鋳型と凝固シェルの間に溶融パウダーが流入しなくなり、焼結体がメニスカスの凝固シェルに触れてしまう。これによりスラブ表面に縦割れやモールドパウダー焼結物の噛みこみを引き起こす。また、ブレイクアウトの危険も発生する。そのため、1.0~3.5wt%と規定した。好ましくは、1.5~3.2wt%、より好ましくは2.0~3.0wt%である。
C: 1.0-3.5 wt%
The C particles of the carbonaceous material exist between the above-mentioned oxides, fluorides, and sulfides, and have a function of preventing melting due to contact. That is, when C is burned and gasified, the C particles disappear, and oxide, fluoride, and sulfide powders come into contact with each other to form a partially melted sintered body, which is then completely melted. By controlling the amount of C in this way, the melting rate of the powder can be controlled. If it is less than 1.0%, the melting is too fast, the molten powder layer on the molten metal becomes thick, and the solidified product formed by cooling the once melted powder called a bear on the mold surface grows greatly on the inner surface of the mold. Vertical cracks occur due to the unevenness of the bear, which reduces the grinding yield. On the contrary, if it is higher than 3.5 wt%, the melting is too slow, the molten powder does not flow between the mold and the solidified shell, and the sintered body touches the solidified shell of the meniscus. This causes vertical cracks and biting of the molded powder sintered material on the slab surface. There is also a risk of breakout. Therefore, it is specified as 1.0 to 3.5 wt%. It is preferably 1.5 to 3.2 wt%, more preferably 2.0 to 3.0 wt%.
塩基度CaO/SiO2:0.75~1.33
CaO-SiO2系パウダーは、塩基度CaO/SiO2=1付近の粘度および凝固温度が低く、塩基度CaO/SiO2が1付近より高いまたは低くなると粘度および凝固温度が高くなる。Na2O、F、K2Oの添加で粘度および凝固温度を調整するが、塩基度CaO/SiO2が0.75より小さいまたは1.33より大きい場合、本発明範囲の1300℃における粘度4.0poiseおよび凝固温度1250℃を超えてしまい、パウダーの消費量が減り、凝固シェルと鋳型の潤滑が悪化する。凝固シェルと鋳型の焼き付きが発生すると凝固シェルが引きちぎれ溶湯が漏れ出し、ブレイクアウトトラブルの原因となる。ブレイクアウトに至らない凝固シェルの引きちぎれでも、スラブ表面に大きな横割れを生じ、研削歩留が悪化する。また、塩基度CaO/SiO2が0.75未満の場合、溶融パウダー中のSがFe-Ni合金およびNi合金溶湯への移行しやすくなる。上記理由で、塩基度CaO/SiO2が0.75~1.33の範囲に定めた。好ましくは、0.84~1.26、より好ましくは0.94~1.19である。
Basicity CaO / SiO 2 : 0.75 to 1.33
The CaO-SiO 2 powder has a low viscosity and solidification temperature in the vicinity of basicity CaO / SiO 2 = 1, and a high viscosity and solidification temperature when the basicity CaO / SiO 2 is higher or lower than in the vicinity of 1. The viscosity and solidification temperature are adjusted by adding Na 2 O, F, K 2 O, but if the basicity CaO / SiO 2 is less than 0.75 or greater than 1.33, the
1300℃における粘度:1.0~4.0poise
1300℃における粘度が1.0poise未満だと、溶融パウダーの流動性が良すぎて、パウダーの消費量が多くなり、鋳型と凝固シェルとの間に流入した溶融パウダーの厚みに不均一が起き、メニスカスでの冷却が不均一になり、縦割れを助長してしまう。一方、1300℃における粘度が4.0poiseを超えて高いと、溶融パウダーの流動性が悪化するので、パウダーの消費量が減り、凝固シェルと鋳型の潤滑が悪化する。凝固シェルと鋳型の焼き付きが発生すると凝固シェルが引きちぎれ溶湯が漏れ出し、ブレイクアウトトラブルの原因となる。ブレイクアウトに至らない凝固シェルの引きちぎれでも、スラブ表面に大きな横割れを生じ、研削歩留が悪化する。したがって、1300℃における粘度を1.0~4.0poiseと定めた。好ましくは1.5~3.0poise、より好ましくは、1.7~2.5poiseである。
Viscosity at 1300 ° C: 1.0-4.0 poise
If the viscosity at 1300 ° C. is less than 1.0 poise, the fluidity of the molten powder is too good, the consumption of the powder increases, and the thickness of the molten powder flowing between the mold and the solidified shell becomes uneven. Cooling in the meniscus becomes uneven and promotes vertical cracking. On the other hand, if the viscosity at 1300 ° C. is higher than 4.0 poise, the fluidity of the molten powder deteriorates, so that the consumption of the powder decreases and the lubrication of the solidified shell and the mold deteriorates. When seizure occurs between the solidified shell and the mold, the solidified shell is torn off and the molten metal leaks out, causing breakout trouble. Even if the solidified shell is torn off without breaking out, large lateral cracks will occur on the slab surface and the grinding yield will deteriorate. Therefore, the viscosity at 1300 ° C. was set to 1.0 to 4.0 poise. It is preferably 1.5 to 3.0 poise, and more preferably 1.7 to 2.5 poise.
凝固温度:1000~1250℃
凝固温度が1000℃未満であると、溶融パウダーの消費量が多くなり、鋳型と凝固シェルとの間に流入した溶融パウダーの厚みに不均一が起き、メニスカスでの冷却が不均一になり、縦割れを助長してしまう。一方、凝固温度が1250℃を超えて高いと、パウダーの消費量が減り、凝固シェルと鋳型の潤滑が悪化する。凝固シェルと鋳型の焼き付きが発生すると凝固シェルが引きちぎれ溶湯が漏れ出し、ブレイクアウトトラブルの原因となる。ブレイクアウトに至らない凝固シェルの引きちぎれでも、スラブ表面に大きな横割れを生じ、研削歩留が悪化する。そのため、凝固温度は1000~1250℃と規定した。好ましくは、1050~1230℃、より好ましくは、1100~1200℃である。
Coagulation temperature: 1000-1250 ° C
When the solidification temperature is less than 1000 ° C., the consumption of the molten powder becomes large, the thickness of the molten powder flowing between the mold and the solidification shell becomes uneven, the cooling in the meniscus becomes uneven, and the vertical direction becomes uneven. It promotes cracking. On the other hand, when the solidification temperature is higher than 1250 ° C., the consumption of powder is reduced and the lubrication of the solidification shell and the mold is deteriorated. When seizure occurs between the solidified shell and the mold, the solidified shell is torn off and the molten metal leaks out, causing breakout trouble. Even if the solidified shell is torn off without breaking out, large lateral cracks will occur on the slab surface and the grinding yield will deteriorate. Therefore, the solidification temperature is defined as 1000 to 1250 ° C. It is preferably 1050 to 1230 ° C, more preferably 1100 to 1200 ° C.
本発明はNiを30wt%以上含むFe-Ni系合金またはNi基合金に適応される発明であり、さらにFe-Ni系合金またはNi基合金はS:0.0001~0.0050wt%、P:0.0001~0.0150wt%であることが望ましい発明である。Fe-Ni系合金またはNi基合金のSおよびPの化学成分を限定した理由を以下に説明する。 The present invention is an invention applied to a Fe—Ni-based alloy or Ni-based alloy containing 30 wt% or more of Ni, and further, the Fe—Ni-based alloy or Ni-based alloy is S: 0.0001 to 0.0050 wt%, P :. It is a desirable invention that the content is 0.0001 to 0.0150 wt%. The reason for limiting the chemical composition of S and P of the Fe—Ni based alloy or Ni-based alloy will be described below.
S:0.0001~0.0050wt%
Sは凝固過程でデンドライト柱間および粒界に偏析する元素であり、さらに粒界脆化をもたらす元素であるため、スラブ表面の微割れを防止するためには重要な元素である。0.0001wt%より脱硫工程でSを低下させるには、Alおよび/またはSiを多く添加し、脱酸の強化が必要である。脱酸の強化することにより耐火物およびスラグからMgOが還元され、溶湯中のMg濃度が高くなり、非金属介在物MgO・Al2O3が多量に生成する。非金属介在物MgO・Al2O3は連続鋳造時の浸漬ノズル内に付着し、粗大化した後、脱落し、溶湯に流され鋳型内に侵入し、凝固シェルに付着する。そのため、大きな非金属介在物MgO・Al2O3は5mm程度の大きさがあり、スラブ表層に微細な割れが多数発生し、研削にて除去が必要になり歩留が悪化する。また、Sが0.0050wt%を超える濃度では、デンドライト柱間および粒界に偏析するSにより、デンドライト樹幹および粒界が脆化し、スラブ表面割れが顕著となるため、上限は0.0050wt%とした。上記理由により、0.0001~0.050wt%と規定した。好ましくは、0.0002~0.0040wt%、より好ましくは、0.0003~0.0030wt%。
S: 0.0001 to 0.0050 wt%
S is an element that segregates between dendrite columns and at grain boundaries during the solidification process, and is an element that causes grain boundary embrittlement. Therefore, S is an important element for preventing fine cracks on the slab surface. In order to reduce S in the desulfurization step from 0.0001 wt%, it is necessary to add a large amount of Al and / or Si to strengthen the desulfurization. By strengthening deoxidation, MgO is reduced from refractories and slag, the Mg concentration in the molten metal increases, and a large amount of non-metal inclusions MgO and Al 2 O 3 are generated. The non-metal inclusions MgO and Al 2 O 3 adhere to the dipping nozzle during continuous casting, coarsen, then fall off, flow into the molten metal, enter the mold, and adhere to the solidified shell. Therefore, the large non-metal inclusions MgO and Al 2O 3 have a size of about 5 mm, and a large number of fine cracks occur on the surface layer of the slab, which needs to be removed by grinding and the yield deteriorates. Further, when the concentration of S exceeds 0.0050 wt%, the dendrite trunk and grain boundaries become brittle due to the segregation between the dendrite columns and the grain boundaries, and the slab surface cracks become remarkable. Therefore, the upper limit is 0.0050 wt%. did. For the above reason, it is defined as 0.0001 to 0.050 wt%. It is preferably 0.0002 to 0.0040 wt%, more preferably 0.0003 to 0.0030 wt%.
P:0.0001~0.0150wt%
Pは凝固過程でデンドライト柱間および粒界に偏析する元素であり、さらに粒界脆化をもたらす元素であるため、スラブ表面の微割れを防止するためには重要な元素である。但しPはスクラップなどの原料から不純物として混入するため、低Pの原料を選別して使用する必要がある。また、Pは製鋼工程における脱りん精錬で十分除去する必要がある。ただし、Pを0.0001wt%より低下させるには、高価な純金属の原料の使用および長時間の脱りん精錬での負荷によるコスト上昇を招くため、下限は0.0001wt%とした。また、P:0.0150wt%を超える濃度では、スラブ表面の割れが顕著となるため、上限は0.0150wt%とした。好ましくは0.0002~0.0100wt%、より好ましくは、0.0005~0.0050wt%である。
P: 0.0001 to 0.0150 wt%
P is an element that segregates between dendrite columns and at grain boundaries during the solidification process, and is an element that causes grain boundary embrittlement. Therefore, it is an important element for preventing fine cracks on the slab surface. However, since P is mixed as an impurity from raw materials such as scrap, it is necessary to select and use low P raw materials. Further, P needs to be sufficiently removed by dephosphorization refining in the steelmaking process. However, in order to reduce P to 0.0001 wt% or less, the lower limit is set to 0.0001 wt% because the cost increases due to the use of expensive pure metal raw materials and the load of long-term dephosphorization refining. Further, at a concentration exceeding P: 0.0150 wt%, cracking on the slab surface becomes remarkable, so the upper limit is set to 0.0150 wt%. It is preferably 0.0002 to 0.0100 wt%, more preferably 0.0005 to 0.0050 wt%.
さらに本発明では、上記Fe-Ni系合金またはNi基合金を、本発明のモールドパウダーで連続鋳造する方法も提案する。すなわち、連続鋳造スラブの引き抜き速度:400~900mm/分、溶湯の過熱度:5~50℃の条件下で、上記Fe-Ni系合金またはNi基合金を本発明のモールドパウダーで連続鋳造する連続鋳造方法である。 Further, the present invention also proposes a method of continuously casting the Fe—Ni based alloy or Ni-based alloy with the mold powder of the present invention. That is, under the conditions of a continuous casting slab drawing speed: 400 to 900 mm / min and a molten metal superheat degree: 5 to 50 ° C., the Fe—Ni alloy or Ni-based alloy is continuously cast with the mold powder of the present invention. It is a casting method.
引き抜き速度:400~900mm/分
引き抜き速度が400mm/分未満と遅いと、鋳型への溶湯供給量が低下するので、熱供給が減る。それにより、モールドパウダーの溶融層が減少し、凝固シェルと鋳型の潤滑が悪化し、凝固シェルと鋳型の焼き付きが発生により、凝固シェルが引きちぎれ溶湯が漏れ出し、ブレイクアウトトラブルの原因となる。幸いに溶湯の漏れ出しが少量でブレイクアウトトラブルに至らない場合でも、凝固シェルの引きちぎれ部分はスラブ表面の重研削を行う必要があるため研削歩留が低下する。逆に900mm/分を超えて速いと、熱供給が多くなるので、パウダーの溶融が速くなるため、凝固シェルと鋳型に流れ込む溶融モールドパウダー層が厚くなる。溶融モールドパウダーは凝固シェルと鋳型との熱伝達の役割をするが、溶融モールドパウダーが厚くなることにより凝固シェルから鋳型への抜熱が低下し、鋳型内での凝固シェル厚みの発達が遅くなる。さらに引き抜き速度が900mm/分を超えて早い場合、凝固シェルが鋳型に滞在する時間も短いため、鋳型での抜熱も少なくなる。その結果、凝固シェル厚みは薄くなり、鋳型以降の二次冷却のロール間で溶湯静圧によるバルジングによる変形によりスラブ表面に割れを引き起こす。上記理由により、引き抜き速度は400~900mm/分とした。好ましくは、450~850mm/分、より好ましくは500~800mm/分である。
Extraction speed: 400 to 900 mm / min If the extraction speed is as slow as less than 400 mm / min, the amount of molten metal supplied to the mold decreases, and the heat supply decreases. As a result, the molten layer of the mold powder is reduced, the lubrication between the solidified shell and the mold is deteriorated, and the solidified shell and the mold are seized, the solidified shell is torn off and the molten metal leaks out, which causes a breakout trouble. Fortunately, even if a small amount of molten metal leaks and does not lead to breakout trouble, the torn part of the solidified shell needs to be heavily ground on the surface of the slab, resulting in a decrease in grinding yield. On the other hand, if the speed exceeds 900 mm / min, the heat supply increases and the powder melts faster, so that the solidified shell and the molten mold powder layer flowing into the mold become thicker. The molten mold powder plays a role of heat transfer between the solidified shell and the mold, but the thickening of the molten mold powder reduces the heat removal from the solidified shell to the mold and slows down the development of the solidified shell thickness in the mold. .. Further, when the withdrawal speed is faster than 900 mm / min, the solidification shell stays in the mold for a short time, so that the heat withdrawn from the mold is also reduced. As a result, the thickness of the solidified shell becomes thin, and the slab surface is cracked due to deformation due to bulging due to static pressure of the molten metal between the rolls for secondary cooling after the mold. For the above reasons, the pulling speed was set to 400 to 900 mm / min. It is preferably 450 to 850 mm / min, more preferably 500 to 800 mm / min.
溶湯の過熱度:5~50℃
溶湯の過熱度は、連続鋳造中のタンディッシュで測定した溶湯の温度を、溶湯の液相線温度からの差分の温度で定義する。過熱度が5℃より低いと、溶湯の粘度が上昇し、タンディッシュ内および鋳型内での非金属介在物の浮上除去が不足し、凝固シェルへの非金属介在物の付着が多くなる。そのため、スラブ表層には非金属介在物が原因である微細な割れが多数発生し、研削にて除去が必要になり歩留が悪化する。逆に過熱度が50℃を超えると、凝固シェル厚みは薄くなり、鋳型以降の二次冷却のロール間で溶湯静圧によるバルジングによる変形によりスラブ表面に割れを引き起こす。上記理由により、溶湯の過熱度は5~50℃とした。好ましくは20~45℃、より好ましくは30~40℃である。
Superheat of molten metal: 5 to 50 ° C
The degree of superheat of the molten metal is defined by the temperature of the molten metal measured by the tundish during continuous casting by the temperature difference from the liquidus temperature of the molten metal. When the degree of superheat is lower than 5 ° C., the viscosity of the molten metal increases, the floating removal of non-metal inclusions in the tundish and the mold is insufficient, and the adhesion of non-metal inclusions to the solidification shell increases. Therefore, a large number of fine cracks caused by non-metal inclusions occur on the surface layer of the slab, which needs to be removed by grinding and the yield deteriorates. On the contrary, when the degree of superheat exceeds 50 ° C., the thickness of the solidified shell becomes thin, and the slab surface is cracked due to deformation due to bulging due to static pressure of the molten metal between the rolls for secondary cooling after the mold. For the above reason, the degree of superheat of the molten metal was set to 5 to 50 ° C. It is preferably 20 to 45 ° C, more preferably 30 to 40 ° C.
次に実施例を提示して、本発明の構成および作用効果をより、明らかにするが、本発明は以下の実施例にのみ限定されるものではない。容量60トンの電気炉により、フェロニッケル、純ニッケル、鉄屑、Fe-Ni合金屑などを原料として、溶解した。その後、AODおよび/またはVODにおいて精錬を行い、その後、取鍋に出湯して、温度調整ならびに成分調整を行い、連続鋳造機によりスラブを製造した。連続鋳造機の鋳型サイズは、200mm厚み×1000~1600mm幅で行った。鋳造したFe-Ni系合金またはNi基合金は、36wt%Ni-Fe合金、42wt%Ni-Fe合金、45wt%Ni-Fe合金、50.5wt%Ni-Fe合金、76.5wt%Ni-15.5wt%Cr-6.5wt%Fe合金、77wt%Ni-4wt%Mo-5wt%Cu-Fe合金、99.5wt%Ni合金である。 Next, examples will be presented to further clarify the configuration and effects of the present invention, but the present invention is not limited to the following examples. In an electric furnace with a capacity of 60 tons, ferronickel, pure nickel, iron scraps, Fe—Ni alloy scraps and the like were melted as raw materials. Then, refining was performed in AOD and / or VOD, and then hot water was discharged to a ladle to adjust the temperature and composition, and a slab was manufactured by a continuous casting machine. The mold size of the continuous casting machine was 200 mm thick × 1000 to 1600 mm width. The cast Fe-Ni alloy or Ni-based alloy is 36 wt% Ni-Fe alloy, 42 wt% Ni-Fe alloy, 45 wt% Ni-Fe alloy, 50.5 wt% Ni-Fe alloy, 76.5 wt% Ni-15. It is a .5 wt% Cr-6.5 wt% Fe alloy, a 77 wt% Ni-4 wt% Mo-5 wt% Cu-Fe alloy, and a 99.5 wt% Ni alloy.
鋳造したスラブ長辺面の表面の厚み1%分をグラインダーで研削することにより表面の酸化層を除去後、浸透探傷試験を行い観察された長さまたは幅が1mm以上の割れの個数および総長さをカウントした。表1~3に得られたFe-Ni系合金またはNi基合金の化学成分、連続鋳造に使用したモールドパウダー組成、モールドパウダー物性、連続鋳造条件、浸透探傷試験で測定した割れ個数、総割れ長さおよび探傷面積あたりの総割れ長さを示す。 After removing the oxide layer on the surface by grinding 1% of the surface thickness of the cast slab long side surface with a grinder, a penetrant inspection test was performed and the number and total length of cracks with an observed length or width of 1 mm or more. Was counted. Chemical composition of Fe-Ni alloy or Ni-based alloy obtained in Tables 1 to 3, mold powder composition used for continuous casting, physical properties of mold powder, continuous casting conditions, number of cracks measured by penetrant inspection test, total crack length The total crack length per flaw detection area is shown.
ここで各成分および物性値の測定方法を記す。
合金成分:
蛍光X線分析装置を用いて定量分析を行い、合金の酸素濃度は不活性ガスインパルス融解赤外線吸収法で定量分析を行った。なお、表1に示した残部は、FeならびにC、Co、W、V、N、H、O等の不可避的不純物である。
Here, the measuring method of each component and the physical property value is described.
Alloy composition:
Quantitative analysis was performed using a fluorescent X-ray analyzer, and the oxygen concentration of the alloy was quantitatively analyzed by the inert gas impulse melting infrared absorption method. The balance shown in Table 1 is Fe and unavoidable impurities such as C, Co, W, V, N, H, and O.
モールドパウダー成分:
モールドパウダー中に含まれるC量は、C源として添加したC原料の重量比から求めた。また、それ以外の成分の組成は、化学分析により定量分析した。なお、表1に示した各成分の合計が100%未満であるのは、これらの成分以外にも、Fe2O3、MgO等の不可避的不純物を含むことなどのためである。
Mold powder component:
The amount of C contained in the mold powder was determined from the weight ratio of the C raw material added as the C source. The composition of other components was quantitatively analyzed by chemical analysis. The total of each component shown in Table 1 is less than 100% because it contains unavoidable impurities such as Fe 2 O 3 and Mg O in addition to these components.
モールドパウダーの粘度および凝固温度:
モールドパウダーの粘度は、回転円筒法により測定した。すなわち、鉄坩堝にパウダーを装入し、縦型抵抗炉内で1300℃に加熱して溶解し、鉄製のロータを挿入して、回転したときの負荷から粘度を測定した。次いで、上記粘度測定後、温度を降下していき、急激に粘度の値が高くなる温度を凝固温度とした。
Mold powder viscosity and solidification temperature:
The viscosity of the mold powder was measured by the rotary cylinder method. That is, powder was charged into an iron crucible, heated to 1300 ° C. in a vertical resistance furnace to melt it, an iron rotor was inserted, and the viscosity was measured from the load when rotating. Then, after the viscosity measurement, the temperature was lowered, and the temperature at which the viscosity value suddenly increased was defined as the solidification temperature.
総割れ長さ:
スラブ表面をグラインダーで研削し、表面の酸化被膜を除去した後、浸透探傷試験を実施して、目視にて観察された長さまたは幅が3mm以上の割れの個数および長さをカウントして評価した。総割れ長さはすべての割れ長さを合計して算出した。研削量は一律に厚みの1%分として等価な評価を行った。探傷面積m2はスラブ幅×スラブ長さ5mで行った。スラブ幅は1.0m、1.3m、1.6mの三種類で評価した。割れの測定は、表面のみで行った。
Total crack length:
After grinding the surface of the slab with a grinder to remove the oxide film on the surface, a penetrant inspection test is performed to count and evaluate the number and length of cracks with a visually observed length or width of 3 mm or more. did. The total crack length was calculated by summing up all crack lengths. The amount of grinding was uniformly evaluated as 1% of the thickness. The flaw detection area m 2 was measured by slab width × slab length 5 m. The slab width was evaluated in three types of 1.0 m, 1.3 m, and 1.6 m. Cracks were measured only on the surface.
探傷面積当たりの総割れ長さ:
総割れ長さを、探傷面積で割った探傷面積あたりの総割れ長さを算出して評価した。評価基準は以下の通りとした。
◎:割れなし
〇:総割れ長さ:100mm/探傷面積m2以下
△:総割れ長さ:100mm/探傷面積m2より長く、200mm/探傷面積m2以下
×:総割れ長さ:200mm/探傷面積m2より長い
なお、探傷面積あたりの総割れ長さが100mm/探傷面積m2以下であると、その後の処理が割れ部分のみを対象とした部分研削で済み、100mm/探傷面積m2より長く200mm/探傷面積m2以下であると、熱間圧延時の曲がり防止のため、スラブ全面研削を追加で2%分を要する必要があり、200mm/探傷面積m2以上であるとスラブ全面研削を追加で5%分を要する必要があり、歩留低下および製造工程追加によりコストおよびリードタイムに重大なロスが生じる。
Total crack length per flaw detection area:
The total crack length was evaluated by dividing the total crack length by the flaw detection area to calculate the total crack length per flaw detection area. The evaluation criteria are as follows.
◎: No crack 〇: Total crack length: 100 mm / flaw detection area m 2 or less △: Total crack length: 100 mm / flaw detection area m longer than 2 , 200 mm / flaw detection area m 2 or less ×: Total crack length: 200 mm / Longer than the flaw detection area m 2 If the total crack length per flaw detection area is 100 mm / flaw detection area m 2 or less, the subsequent processing can be partial grinding only for the cracked portion, and 100 mm / flaw detection area m 2 If it is longer and 200 mm / flaw detection area m 2 or less, it is necessary to additionally require 2% of slab full surface grinding to prevent bending during hot rolling, and if it is 200 mm / scratch detection area m 2 or more, the entire slab surface needs to be ground. An additional 5% of grinding must be required, resulting in significant cost and lead time losses due to reduced yield and additional manufacturing processes.
スラブ研削歩留:
すべての縦割れ、横割れを研削にて除去し,浸透探傷試験で割れなしの確認後、スラブ重量を測定し、スラブの歩留も測定した。
Slab grinding yield:
All vertical cracks and horizontal cracks were removed by grinding, and after confirming no cracks in the penetrant inspection test, the slab weight was measured and the slab yield was also measured.
発明例、参考例の1~14は、本発明の範囲を満足していたためにスラブ表面に割れが少なく、研削歩留も良好であった。特に、発明例1~8は好ましい範囲であるため、割れの発生数はわずかで、割れ評価は◎評価または○評価で良好であり、SLG歩留も97%以上と良好であった。 In the examples of the invention and the reference examples 1 to 14, since the scope of the present invention was satisfied, the surface of the slab had few cracks and the grinding yield was good. In particular, since Invention Examples 1 to 8 were in a preferable range, the number of cracks generated was small, the crack evaluation was good in the ⊚ or ◯ evaluation, and the SLG yield was as good as 97% or more.
参考例9は、合金成分のS=0.0084%と高く、縦割れが144mm/探傷面積m2の長さ発生した。割れ評価△であり、研削歩留96.1%となった。 In Reference Example 9, S of the alloy component was as high as 0.0084%, and vertical cracks were generated with a length of 144 mm / flaw detection area m 2 . The crack evaluation was Δ, and the grinding yield was 96.1%.
参考例10は、合金成分のP=0.0190%と高く、縦割れが152mm/探傷面積m2の長さ発生した。割れ評価△であり、研削歩留96.0%となった。 In Reference Example 10, P of the alloy component was as high as 0.0190%, and vertical cracks were generated with a length of 152 mm / flaw detection area m 2 . The crack evaluation was Δ, and the grinding yield was 96.0%.
参考例11は、合金成分のS=0.0072%およびP=0.0188%と高く、縦割れが168mm/探傷面積m2の長さ発生した。割れ評価△であり、研削歩留95.6%となった。 In Reference Example 11, the alloy components were as high as S = 0.0072% and P = 0.0188%, and vertical cracks were generated with a length of 168 mm / flaw detection area m 2 . The crack evaluation was Δ, and the grinding yield was 95.6%.
発明例12は、引き抜き速度が950mm/分と早くおよび溶湯の過熱温度が65℃と高いため、バルジングが起き、縦割れおよび横割れが134mm/探傷面積m2の長さ発生した。割れ評価△であり、研削歩留96.3%となった。 In Invention Example 12, since the drawing speed was as fast as 950 mm / min and the overheating temperature of the molten metal was as high as 65 ° C., bulging occurred and vertical cracks and horizontal cracks occurred with a length of 134 mm / flaw detection area m 2 . The crack evaluation was Δ, and the grinding yield was 96.3%.
発明例13は、溶湯の過熱温度が3℃と低いため、非金属介在物が原因の微細な縦割れが多数発生し、116mm/探傷面積m2の長さとなった。割れ評価△であり、研削歩留96.7%となった。 In Invention Example 13, since the superheat temperature of the molten metal is as low as 3 ° C., a large number of fine vertical cracks due to non-metal inclusions occur, and the length is 116 mm / flaw detection area m 2 . The crack evaluation was Δ, and the grinding yield was 96.7%.
参考例14は、Fe-Ni合金の精錬時に過剰な脱酸を行ったためFe-Ni合金のS濃度がS=0.00003%と低く、非金属介在物MgO・Al2O3が多量に生成し、非金属介在物が原因の微細な縦割れが多数発生し、114mm/探傷面積m2の長さとなった。割れ評価△であり、研削歩留96.6%となった。 In Reference Example 14, the S concentration of the Fe—Ni alloy was as low as S = 0.00003% because excessive deoxidation was performed during the refining of the Fe—Ni alloy, and a large amount of non-metal inclusions MgO and Al 2 O 3 were generated. However, a large number of fine vertical cracks caused by non-metal inclusions occurred, resulting in a length of 114 mm / flaw detection area m 2 . The crack evaluation was Δ, and the grinding yield was 96.6%.
発明例、参考例9~14は、本発明の範囲内ではあるものの、Fe-Ni系合金またはNi基合金の成分および連続鋳造する方法が好ましい範囲ではないため、許容範囲内ではあるが割れが検出され、割れ評価は△評価であった。 Although the invention examples and the reference examples 9 to 14 are within the scope of the present invention, the components of the Fe—Ni based alloy or the Ni-based alloy and the continuous casting method are not within the preferable range, and therefore cracks are within the permissible range. It was detected and the crack evaluation was Δ evaluation.
一方、比較例15~22は本願発明の範囲を逸脱したものである。以下に各例について説明する。
比較例15は、モールドパウダーのS濃度がS=0.72%と高く、スラブ表面には長い縦割れが多数発生し、230mm/探傷面積m2の長さ発生した。割れ評価×であり、縦割れを除去するため、全面を再度研削したため、研削歩留94.4%となった。
On the other hand, Comparative Examples 15 to 22 deviate from the scope of the present invention. Each example will be described below.
In Comparative Example 15, the S concentration of the mold powder was as high as S = 0.72%, many long vertical cracks were generated on the slab surface, and a length of 230 mm / flaw detection area m 2 was generated. The crack evaluation was ×, and the entire surface was ground again in order to remove vertical cracks, resulting in a grinding yield of 94.4%.
比較例16は、モールドパウダーのP濃度がS=2.21%と高く、スラブ表面には長い縦割れが多数発生し、210mm/探傷面積m2の長さ発生した。割れ評価×であり、縦割れを除去するため、全面を再度研削したため、研削歩留94.8%となった。 In Comparative Example 16, the P concentration of the mold powder was as high as S = 2.21%, many long vertical cracks were generated on the surface of the slab, and a length of 210 mm / flaw detection area m 2 was generated. The crack evaluation was ×, and the entire surface was ground again in order to remove vertical cracks, resulting in a grinding yield of 94.8%.
比較例17は、モールドパウダーのS濃度がS=0.002%と低く、メニスカスに生成したパウダーの焼結体が原因の長い縦割れがスラブ表面に発生し、215mm/探傷面積m2となった。割れ評価×であり、縦割れを除去するため、全面を再度研削したため、研削歩留94.7%となった。 In Comparative Example 17, the S concentration of the mold powder was as low as S = 0.002%, and long vertical cracks caused by the sintered body of the powder generated in the meniscus were generated on the slab surface, resulting in 215 mm / flaw detection area m 2 . rice field. The crack evaluation was ×, and the entire surface was ground again in order to remove vertical cracks, resulting in a grinding yield of 94.7%.
比較例18は、モールドパウダーのP濃度がS=0.002%と低く、メニスカスに生成したパウダーの焼結体が原因の長い縦割れがスラブ表面に発生し、216mm/探傷面積m2となった。割れ評価×であり、縦割れを除去するため、全面を再度研削したため、研削歩留94.6%となった。 In Comparative Example 18, the P concentration of the mold powder was as low as S = 0.002%, and long vertical cracks caused by the sintered body of the powder generated in the meniscus were generated on the slab surface, resulting in 216 mm / flaw detection area m 2 . rice field. The crack evaluation was ×, and the entire surface was ground again in order to remove vertical cracks, resulting in a grinding yield of 94.6%.
比較例19は、モールドパウダーの塩基度CaO/SiO2が1.35と高く、さらに、Na2O、F、K2Oが低く、1300℃での粘度が4.22poiseおよび凝固温度が1275℃と高いモールドパウダーを使用した。凝固シェルと鋳型の焼き付き、凝固シェルが引きちぎれ、溶湯が漏れ出すブレイクアウトが発生し、鋳込み中止となった。 In Comparative Example 19, the basicity CaO / SiO 2 of the mold powder was as high as 1.35, and Na 2 O, F, and K 2 O were low, the viscosity at 1300 ° C. was 4.22 poise, and the solidification temperature was 1275 ° C. And used high mold powder. The solidified shell and the mold were seized, the solidified shell was torn off, and a breakout occurred in which the molten metal leaked out, and the casting was canceled.
比較例20は、モールドパウダーの塩基度CaO/SiO2が0.73と低く、さらに、Na2O、Fが高く、1300℃での粘度が0.92poiseおよび凝固温度が982℃と低いモールドパウダーを使用した。溶融パウダーの消費量が多くなり、メニスカスでの冷却が不均一になり、スラブ表面には縦割れが多数発生した。228mm/探傷面積m2となり、割れ評価×であった。縦割れを除去するため、全面を再度研削したため、研削歩留94.4%となった。 In Comparative Example 20, the mold powder has a low basicity CaO / SiO 2 of 0.73, a high Na 2O and F, a viscosity of 0.92 poise at 1300 ° C., and a low solidification temperature of 982 ° C. It was used. The consumption of the molten powder increased, the cooling with the meniscus became uneven, and many vertical cracks occurred on the slab surface. It was 228 mm / flaw detection area m 2 , and the crack evaluation was ×. Since the entire surface was ground again in order to remove vertical cracks, the grinding yield was 94.4%.
比較例21は、モールドパウダーのCがC=0.3%と低く、溶融パウダーの溶融が速すぎて、鋳型内面にベア呼ばれる焼結物が生成し、ベアの凸凹が原因で、スラブ表面に長い縦割れが多数発生した。207mm/探傷面積m2となり、割れ評価×であった。縦割れを除去するため、全面を再度研削したため、研削歩留94.9%となった。 In Comparative Example 21, the C of the mold powder was as low as C = 0.3%, the molten powder melted too quickly, a sintered product called a bear was formed on the inner surface of the mold, and the unevenness of the bear caused the surface of the slab. Many long vertical cracks occurred. It was 207 mm / flaw detection area m 2 , and the crack evaluation was ×. Since the entire surface was ground again in order to remove vertical cracks, the grinding yield was 94.9%.
比較例22は、モールドパウダーのCがC=3.8%と高く、溶融パウダーの溶融が遅すぎて、溶融パウダーの焼結物がメニスカスの凝固シェルに触れてしまい、スラブ表面に微細な縦割れが多数発生した。237mm/探傷面積m2となり、割れ評価×であった。縦割れを除去するため、全面を再度研削したため、研削歩留94.3%となった。 In Comparative Example 22, the C of the mold powder was as high as C = 3.8%, the molten powder melted too slowly, and the sintered product of the molten powder touched the solidified shell of the meniscus, resulting in fine vertical on the surface of the slab. Many cracks occurred. It was 237 mm / flaw detection area m 2 , and the crack evaluation was ×. Since the entire surface was ground again in order to remove vertical cracks, the grinding yield was 94.3%.
比較例23は、モールドパウダーのK2Oが2.23%と高く、Na2Oが7.3%と低く、さらにF濃度も本発明範囲内だが低い。溶融パウダーの粘度および凝固温度の調整をK2Oで行ったため、粘度および凝固温度は本発明範囲に入ったが、Na2OおよびFが低いため、結晶相のネフェリン(Na2O・Al2O3・2SiO2)およびカスピダイン(3CaO・2SiO2・CaF2)の生成が少なく、ガラス質のパウダーフィルムを生成し、放射伝熱による凝固シェルを急冷したため、スラブ表面に縦割れが多数発生した。総割れ長さ218mm/探傷面積m2となり、割れ評価×であった。縦割れを除去するため、全面を再度研削したため、研削歩留94.5%となった。 In Comparative Example 23, K 2 O of the mold powder is as high as 2.23%, Na 2 O is as low as 7.3%, and the F concentration is also within the range of the present invention but low. Since the viscosity and solidification temperature of the molten powder were adjusted with K 2 O, the viscosity and solidification temperature were within the range of the present invention, but since Na 2 O and F were low, the crystalline phase neferin (Na 2 O · Al 2 ) was used. O3.2SiO 2 ) and caspidyne (3CaO ・ 2SiO 2・ CaF 2 ) were produced in small amounts, a vitreous powder film was formed, and the solidified shell was rapidly cooled by heat transfer, resulting in many vertical cracks on the slab surface. .. The total crack length was 218 mm / flaw detection area m 2 , and the crack evaluation was ×. Since the entire surface was ground again in order to remove vertical cracks, the grinding yield was 94.5%.
本発明の技術によって提供される、Fe-Ni系合金またはNi基合金の連続鋳造に用いるモールドパウダーおよび本連続鋳造用モールドパウダーを用いた連続鋳造方法により、表面性状に優れるFe-Ni系合金またはNi基合金の連続鋳造スラブを得ることができる。鋳造スラブは表面性状に優れているため、研削歩留りが良好となり、生産性の向上、さらには、製造コストの低減が期待できる。 A Fe-Ni alloy having excellent surface properties or a continuous casting method using the mold powder used for continuous casting of Fe-Ni alloy or Ni-based alloy and the mold powder for continuous casting provided by the technique of the present invention. A continuously cast slab of Ni-based alloy can be obtained. Since the cast slab has excellent surface properties, it is expected that the grinding yield will be good, the productivity will be improved, and the manufacturing cost will be reduced.
1:鋳型、2:浸漬ノズル、3:溶湯、4:凝固シェル、5:溶融パウダー、6:モールドパウダー、7:サンプル採取の鉄棒、8:S、Pが濃化した凝固シェル
1: Mold, 2: Immersion nozzle, 3: Molten, 4: Coagulation shell, 5: Molten powder, 6: Mold powder, 7: Sample sampling iron rod, 8: Coagulation shell with concentrated S and P
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021142622A JP7032600B1 (en) | 2021-09-01 | 2021-09-01 | Mold powder for continuous casting and continuous casting method used for Fe—Ni based alloys or Ni-based alloys. |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021142622A JP7032600B1 (en) | 2021-09-01 | 2021-09-01 | Mold powder for continuous casting and continuous casting method used for Fe—Ni based alloys or Ni-based alloys. |
Publications (2)
Publication Number | Publication Date |
---|---|
JP7032600B1 true JP7032600B1 (en) | 2022-03-08 |
JP2023035623A JP2023035623A (en) | 2023-03-13 |
Family
ID=81212841
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021142622A Active JP7032600B1 (en) | 2021-09-01 | 2021-09-01 | Mold powder for continuous casting and continuous casting method used for Fe—Ni based alloys or Ni-based alloys. |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7032600B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI856765B (en) | 2022-09-09 | 2024-09-21 | 日商杰富意鋼鐵股份有限公司 | Slab steel, continuous casting method and method for manufacturing slab steel |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003094150A (en) * | 2001-09-19 | 2003-04-02 | Nippon Yakin Kogyo Co Ltd | CONTINUOUS CASTING POWDER AND CONTINUOUS CASTING METHOD FOR Ti AND Al STEEL |
JP2003094151A (en) * | 2001-09-19 | 2003-04-02 | Nippon Yakin Kogyo Co Ltd | POWDER FOR CONTINUOUS CASTING FOR Ni-GROUP ALLOY AND METHOD FOR CONTINUOUS CASTING |
CN103785805A (en) * | 2013-10-19 | 2014-05-14 | 河南通宇冶材集团有限公司 | Square billet low-medium carbon steel continuous casting crystallizer mold powder and production method thereof |
-
2021
- 2021-09-01 JP JP2021142622A patent/JP7032600B1/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003094150A (en) * | 2001-09-19 | 2003-04-02 | Nippon Yakin Kogyo Co Ltd | CONTINUOUS CASTING POWDER AND CONTINUOUS CASTING METHOD FOR Ti AND Al STEEL |
JP2003094151A (en) * | 2001-09-19 | 2003-04-02 | Nippon Yakin Kogyo Co Ltd | POWDER FOR CONTINUOUS CASTING FOR Ni-GROUP ALLOY AND METHOD FOR CONTINUOUS CASTING |
CN103785805A (en) * | 2013-10-19 | 2014-05-14 | 河南通宇冶材集团有限公司 | Square billet low-medium carbon steel continuous casting crystallizer mold powder and production method thereof |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI856765B (en) | 2022-09-09 | 2024-09-21 | 日商杰富意鋼鐵股份有限公司 | Slab steel, continuous casting method and method for manufacturing slab steel |
Also Published As
Publication number | Publication date |
---|---|
JP2023035623A (en) | 2023-03-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
BRPI0904814B1 (en) | method of manufacturing a steel product | |
JP6066412B2 (en) | Fe-Ni-Cr alloy having excellent surface properties and method for producing the same | |
WO2018066182A1 (en) | Fe-Cr-Ni ALLOY AND METHOD FOR PRODUCING SAME | |
US20220243310A1 (en) | Ultra-thin ultra-high strength steel wire, wire rod and method of producing wire rod | |
JP2006206967A (en) | Method for continuously casting free-cutting steel for machine structure | |
CN106480379A (en) | Fe Cr Ni Mo alloy and its manufacture method | |
JP6990337B1 (en) | Ni-based alloy with excellent surface properties and its manufacturing method | |
JP6869142B2 (en) | Stainless steel sheet and its manufacturing method | |
JP6787238B2 (en) | Manufacturing method of steel for machine structure | |
CN112981249B (en) | Smelting method of electrode bar base material for protective atmosphere electroslag remelting H13 steel | |
JP7408347B2 (en) | High Ni alloy and method for producing high Ni alloy | |
JP6937190B2 (en) | Ni-Cr-Mo-Nb alloy and its manufacturing method | |
CN111518987A (en) | Rare earth adding method for Cr12 cold work die steel refining | |
WO2023062855A1 (en) | Nickel alloy having excellent surface properties and manufacturing method thereof | |
TW202138587A (en) | Stainless steel, stainless steel material, and method for manufacturing stainless steel | |
JP7032600B1 (en) | Mold powder for continuous casting and continuous casting method used for Fe—Ni based alloys or Ni-based alloys. | |
JP6838997B2 (en) | Powder for continuous casting of steel and continuous casting method | |
JP4611153B2 (en) | Continuous casting powder for boron-containing stainless steel and continuous casting method | |
JP2017018978A (en) | Continuous casting powder for Al-containing steel and continuous casting method | |
JP4611327B2 (en) | Continuous casting powder for Ni-Cu alloy and continuous casting method | |
JP7492118B2 (en) | Steel product with low ductile MnS, steel slab, and manufacturing method thereof | |
JP7158614B1 (en) | Exothermic mold powder for continuous casting and continuous casting method | |
JP7288130B1 (en) | Ni-Cu alloy with excellent surface properties and method for producing the same | |
US20240240286A1 (en) | Ni-Cr-Mo ALLOY FOR WELDED TUBE HAVING SUPERIOR WORKABILITY AND CORROSION RESISTANCE | |
JP4805637B2 (en) | Continuous casting powder for Ni-Cr-Mo-Fe alloy and continuous casting method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20211018 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20211018 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20211207 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220204 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220222 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220224 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7032600 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |