JP2011183311A - Method and apparatus for producing chemical reaction product - Google Patents

Method and apparatus for producing chemical reaction product Download PDF

Info

Publication number
JP2011183311A
JP2011183311A JP2010051839A JP2010051839A JP2011183311A JP 2011183311 A JP2011183311 A JP 2011183311A JP 2010051839 A JP2010051839 A JP 2010051839A JP 2010051839 A JP2010051839 A JP 2010051839A JP 2011183311 A JP2011183311 A JP 2011183311A
Authority
JP
Japan
Prior art keywords
reaction
raw material
flow
cooling
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010051839A
Other languages
Japanese (ja)
Other versions
JP5507296B2 (en
Inventor
Yasunori Ichikawa
靖典 市川
Tsuyoshi Arai
強 荒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2010051839A priority Critical patent/JP5507296B2/en
Publication of JP2011183311A publication Critical patent/JP2011183311A/en
Application granted granted Critical
Publication of JP5507296B2 publication Critical patent/JP5507296B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and apparatus for producing a chemical reaction product, which accurately control rapid generation of reaction heat even when a diameter of a reaction flow path or concentration of a raw material liquid is increased in order to perform high flow rate treatment, thereby attaining yield improvement of an objective reaction product and industrialization. <P>SOLUTION: In the apparatus for producing a chemical reaction product, when two or more raw material liquids are made to join together at a confluence part of the reaction flow paths from respective supply paths and are caused to perform exothermic reaction, production of byproducts except an objective reaction product due to influence of reaction heat is suppressed. The apparatus 10 includes: a dividing means 12 which divides at least one raw material liquid among two or more raw material liquids L1, L2 and forms a double layer flow L in which raw material liquids L1, L2 are alternately arranged, at the confluence part 24A of the reaction flow paths 24, thereby making the raw material liquids L1, L2 react with each other in a thin layer state; an external cooling means 22 for cooling from outside of the reaction flow paths 24; and an internal cooling means 20 for cooling center fluid flowing at least at a center part among the double laminar flow L in advance before being jointed to the reaction flow paths 24. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、化学反応物の製造方法及び製造装置に係り、特に、急激な発熱を伴う反応熱の影響による副反応によって目的反応物以外の副反応物が生成されるのを抑制する化学反応物の製造方法及び製造装置に関する。   The present invention relates to a method and apparatus for producing a chemical reactant, and in particular, a chemical reactant that suppresses generation of a side reactant other than a target reactant due to a side reaction caused by the influence of reaction heat accompanied by a sudden exotherm. The present invention relates to a manufacturing method and a manufacturing apparatus.

反応熱による急激な発熱を伴う発熱反応としては、ハロゲン−リチウム交換反応、ニトロ化反応、重合反応等がある。この中で例えば、ハロゲン−リチウム交換反応を利用して製造するリチウム化合物は、高付加価値の最終製品を合成する際の中間体として産業用途において有用な物質であり、医薬品、農薬、液晶、電子写真、染料等の各種分野で製造されている。   Examples of the exothermic reaction accompanied by a rapid exotherm due to reaction heat include a halogen-lithium exchange reaction, a nitration reaction, and a polymerization reaction. Among them, for example, a lithium compound produced by using a halogen-lithium exchange reaction is a substance useful for industrial use as an intermediate in the synthesis of a high-value-added final product. Manufactured in various fields such as photography and dyestuffs.

しかし、ハロゲン−リチウム交換反応は、目的反応物であるリチウム化合物の反応性が高く、しかも反応熱による急激な発熱を伴う発熱反応であるため過剰反応が生じ易く、副反応によって目的反応物以外の副反応物が生成され易い。したがって、過剰反応が生じないように、反応熱を精密に制御することが必要になる。   However, in the halogen-lithium exchange reaction, the reactivity of the lithium compound as the target reactant is high, and it is an exothermic reaction accompanied by a rapid exotherm due to the heat of reaction. Side reaction products are easily generated. Therefore, it is necessary to precisely control the heat of reaction so that excessive reaction does not occur.

このことから、ハロゲン−リチウム交換反応は、従来、−78℃の超低温条件で、しかも一方の原料液の液滴を他方の原料液中に滴下することにより発熱を抑えることにより急激な発熱を伴う反応熱を制御している。   From this, the halogen-lithium exchange reaction has been accompanied by rapid heat generation by suppressing heat generation by dropping a droplet of one raw material liquid into the other raw material liquid under an ultra-low temperature condition of -78 ° C. The reaction heat is controlled.

しかし、従来の滴下方法は、超低温設備が必要になるため設備コストやランニングコストの点で問題がある。また、滴下方法は、滴下反応時間に長時間必要とされ、熱に不安定な目的反応物であるリチウム化合物が劣化し易いと共に、生成された目的反応物が未反応の原料液と反応して副生成物が生成され易いという問題がある。   However, since the conventional dripping method requires an ultra-low temperature facility, there is a problem in terms of facility cost and running cost. In addition, the dropping method requires a long time for the dropping reaction time, and the lithium compound that is a target reactant that is unstable to heat tends to deteriorate, and the generated target reactant reacts with an unreacted raw material liquid. There is a problem that by-products are easily generated.

即ち、発熱反応の影響による副生成物の生成を抑制するには、反応熱を精密に制御することに加えて、反応を短時間(瞬時反応)で終わらせることが重要となる。   That is, in order to suppress the formation of by-products due to the influence of the exothermic reaction, it is important to finish the reaction in a short time (instantaneous reaction) in addition to precisely controlling the heat of reaction.

このことから、特許文献1には、超低温設備が必要なく、且つ低コストでハロゲン−リチウム交換反応を行う製造方法が提案されている。特許文献1の製造方法では、
ハロゲン化合物と有機リチウム試薬とを、熱交換効率に優れたマイクロリアクター等の連続反応器を少なくとも1つ用いて反応させるようにしたものである。これにより、マイクロリアクターの外部から比較的穏やかな冷却条件で冷却しても反応熱による急激な発熱を抑えることができるので、リチウム化合物を高収率で得ることができるとされている。即ち、特許文献1の方法は、マイクロリアクターの熱交換効率の良さと、瞬時反応を行うことができる特徴を利用することで目的反応物を高収率で得られるようにしたものである。
For this reason, Patent Document 1 proposes a production method in which an ultra-low temperature facility is not required and a halogen-lithium exchange reaction is performed at low cost. In the manufacturing method of Patent Document 1,
A halogen compound and an organic lithium reagent are reacted with each other using at least one continuous reactor such as a microreactor having excellent heat exchange efficiency. Thereby, even if it cools on the comparatively gentle cooling conditions from the exterior of a microreactor, since rapid heat_generation | fever by reaction heat can be suppressed, it is supposed that a lithium compound can be obtained with a high yield. That is, the method of Patent Document 1 uses the good heat exchange efficiency of the microreactor and the feature that allows instantaneous reaction to obtain the target reactant in a high yield.

特開2005−104871号公報JP 2005-104871 A

しかしながら、特許文献1の場合には、良好な伝熱性を確保するために反応流路の流路径を細くせざるを得ないために原料液を高流量で流すことができず処理量が上がらないという問題がある。原料液の濃度を高めることによっても処理量を上げることができるが、高濃度の原料液同士を反応させると更に急激な発熱を伴い温度制御が難しくなる。したがって、特許文献1の方法では、生産性が重要視される工業化への適用が難しい。   However, in the case of Patent Literature 1, since the diameter of the reaction channel must be reduced in order to ensure good heat transfer, the raw material liquid cannot be flowed at a high flow rate, and the throughput is not increased. There is a problem. The amount of treatment can also be increased by increasing the concentration of the raw material liquid, but if high concentration raw material liquids are reacted with each other, the temperature control becomes difficult with more rapid heat generation. Therefore, the method of Patent Document 1 is difficult to apply to industrialization where productivity is regarded as important.

マイクロリアクターの特徴は、反応流路の流路径が細く、反応流路壁面と反応流路を流れる流体との接触面積が大きいために、反応流路の外部からの冷却でも熱交換効率が良いことである。しかし、量産化のために流路径を太くすると、伝熱面積は2乗、体積は3乗で変化することから、熱交換効率が急激に悪化するためにスケールアップできないという問題がある。この対策としてマイクロリアクターの数を増やすナンバリングアップという手法が提案されているが、実験室スケールのマイクロリアクターを工業化スケールにスケールアップするには何千、何万ものマイクロリアクターを準備する必要があり、現実的ではない。   The characteristics of the microreactor are that the diameter of the reaction channel is small and the contact area between the reaction channel wall and the fluid flowing through the reaction channel is large, so that heat exchange efficiency is good even when cooling from the outside of the reaction channel It is. However, if the flow path diameter is increased for mass production, the heat transfer area changes to the second power and the volume changes to the third power. Therefore, there is a problem that the heat exchange efficiency is rapidly deteriorated and the scale cannot be increased. As a countermeasure, a method of numbering up to increase the number of microreactors has been proposed, but in order to scale up laboratory scale microreactors to industrial scale, it is necessary to prepare thousands or tens of thousands of microreactors, Not realistic.

本発明はこのような事情に鑑みてなされたもので、高流量処理を行うために反応流路の流路径を太くしたり原料液を高濃度にしたりしても反応熱の急激な発熱を精密に制御することができるので、目的反応物の収率向上を図ることができるだけでなく工業化を実現することができる化学反応物の製造方法及び製造装置を提供することを目的とする。   The present invention has been made in view of such circumstances, and in order to perform high flow rate processing, even if the diameter of the reaction channel is increased or the concentration of the raw material liquid is increased, the rapid generation of reaction heat is precisely detected. Therefore, it is an object of the present invention to provide a method and an apparatus for producing a chemical reactant that can not only improve the yield of the target reactant but also realize industrialization.

本発明の化学反応物の製造方法は前記目的を達成するために、複数の原料液をそれぞれの供給路から反応流路の合流部に合流させて発熱反応させる際に、反応熱の影響により目的反応物以外の副反応物が生成されるのを抑制する化学反応物の製造方法において、前記複数の原料液の少なくとも1つの原料液を分割して、前記反応流路の合流部において原料液同士が交互に配列した複層流を形成することにより原料液同士を薄層状態で反応させる原料液の分割工程と、前記複層流のうちの少なくとも中央部を流れる中央流体を前記反応流路に合流させる前に予め冷却することにより前記反応流路の内部から前記反応熱を冷却する内部冷却工程と、を備えたことを特徴とする。   In order to achieve the above-mentioned object, the method for producing a chemical reactant of the present invention is based on the influence of reaction heat when an exothermic reaction is performed by joining a plurality of raw material liquids from the respective supply channels to the junction of the reaction channel. In the method for producing a chemical reactant that suppresses the generation of by-products other than the reactants, at least one of the plurality of raw material liquids is divided and the raw material liquids are separated from each other at the junction of the reaction channel. Forming a multi-layer flow in which the raw material liquids are arranged in a thin layer state by forming a multi-layer flow, and a central fluid flowing through at least the central portion of the multi-layer flow into the reaction flow path And an internal cooling step for cooling the reaction heat from the inside of the reaction flow path by cooling in advance before joining.

本発明は、原料液の分割工程と反応熱の内部冷却工程とを組み合わせるようにしたので、反応熱の冷却を効果的に且つ精密に制御することができる。   In the present invention, since the raw material liquid dividing step and the reaction heat internal cooling step are combined, the cooling of the reaction heat can be controlled effectively and precisely.

即ち、原料液の分割工程では、反応流路の合流部において原料液同士が交互に配列した複層流を形成して薄膜状態で反応させることにより、反応熱の急激な発熱を緩和することができる。   That is, in the dividing step of the raw material liquid, the rapid generation of reaction heat can be alleviated by forming a multi-layer flow in which the raw material liquids are alternately arranged at the merging portion of the reaction channel and reacting in a thin film state. it can.

そして、内部冷却工程では複層流のうちの少なくとも中央部を流れる中央流体を反応流路に合流させる前に予め冷却することにより、反応流路の内部から反応熱を冷却する。   Then, in the internal cooling step, the reaction fluid is cooled from the inside of the reaction channel by cooling in advance before the central fluid flowing in at least the central part of the multilayer flow is joined to the reaction channel.

このように、原料液を分割して反応熱の急激な発熱を緩和すると共に、反応流路の内部から反応熱を冷却することにより、反応熱の急激な発熱を精密に制御できるので、反応熱の影響により目的反応物以外の副反応物が生成されるのを抑制することができる。特に、分割工程を設けたことにより、複層流を構成する各流体における1流体ごとの径方向断面積が小さくなるので、高流量処理を行うために反応流路の流路径を太くしても、分割された流体ごとに見た場合にマイクロリアクターでの反応と同様である。具体的には、複層流を構成する各流体の径方向断面積が1mm以下であることが好ましい。 In this way, by dividing the raw material liquid to mitigate the rapid heat generation of the reaction heat and cooling the reaction heat from the inside of the reaction channel, the rapid heat generation of the reaction heat can be precisely controlled. It is possible to suppress the generation of by-products other than the target reactant due to the influence of the above. In particular, by providing the dividing step, the radial cross-sectional area for each fluid in each fluid constituting the multi-layer flow is reduced. Therefore, even if the reaction channel diameter is increased in order to perform a high flow rate process. When viewed for each divided fluid, it is the same as the reaction in the microreactor. Specifically, it is preferable that the radial cross-sectional area of each fluid constituting the multilayer flow is 1 mm 2 or less.

したがって、本発明の化学反応物の製造方法では、高流量処理を行うために反応流路の流路径を太くしたり原料液を高濃度にしたりしても反応熱の急激な発熱を効果的に抑制することができるので、副反応部の生成を抑制できる。これにより、目的反応物の収率向上を図ることができるだけでなく工業化を実現することができる。   Therefore, in the method for producing a chemical reactant according to the present invention, even if the diameter of the reaction channel is increased or the concentration of the raw material liquid is increased in order to perform a high flow rate treatment, it is possible to effectively generate a sudden increase in reaction heat. Since it can suppress, the production | generation of a side reaction part can be suppressed. Thereby, not only the yield of the target reactant can be improved, but also industrialization can be realized.

本発明においては、前記反応流路の外側から該反応流路を冷却して前記反応流路の外部から前記反応熱を冷却する外部冷却工程を更に備えることが好ましい。   In the present invention, it is preferable to further include an external cooling step of cooling the reaction channel from the outside of the reaction channel and cooling the reaction heat from the outside of the reaction channel.

反応流路の内部と外部との両方から冷却することで、反応流路の径方向断面での反応熱分布が小さくなるので、反応場が安定し、副反応物の生成を一層抑制できる。   By cooling from both the inside and outside of the reaction channel, the reaction heat distribution in the radial cross section of the reaction channel is reduced, so that the reaction field is stabilized and the generation of side reactants can be further suppressed.

そして、前記内部冷却工程では、前記複層流を構成する各流体について、前記反応流路の中央部から離れる流体ほど冷却程度を小さくすることが好ましい。   And in the said internal cooling process, it is preferable to make cooling degree small about the fluid which comprises the said multilayer flow, the fluid which leaves | separates from the center part of the said reaction flow path.

これにより、前記外部冷却工程では、前記反応流路の両壁面側から前記中央部に向けて冷却するので、前記内部冷却工程が外部冷却工程と逆方向(中央部から両側壁面方向)に冷却すれば、複層流の流路幅方向の液温度を均一化することができる。   Thus, in the external cooling step, cooling is performed from both wall surfaces of the reaction channel toward the central portion, so that the internal cooling step is cooled in a direction opposite to the external cooling step (from the central portion toward both side wall surfaces). For example, the liquid temperature in the channel width direction of the multilayer flow can be made uniform.

本発明においては、前記複層流を構成する各流体が前記反応流路に合流する際の流速を均一化する流速均一化工程、を更に備えることが好ましい。   In the present invention, it is preferable to further include a flow velocity equalizing step for equalizing the flow velocity when each fluid constituting the multilayer flow merges with the reaction flow path.

これにより、複層流を構成する各流体が反応流路に合流する際に渦流が発生しにくくなるので、発熱反応を行う反応場を安定化させることができる。この結果、副反応物の生成を一層抑制することができる。   Thereby, since it becomes difficult to generate a vortex | eddy_current when each fluid which comprises a multilayer flow joins a reaction flow path, the reaction field which performs exothermic reaction can be stabilized. As a result, the generation of by-products can be further suppressed.

なお、流速均一化工程で流速を均一化するためには、分割工程における複数の原料液の分割数を調整したり、複数の原料液の濃度を調整したりすることで達成できる。また、反応流路に連通するそれぞれの供給路の径方向断面積を異ならせることによっても達成できるので、好ましい方法を適宜選択すればよい。   In addition, in order to equalize the flow rate in the flow rate equalization step, it can be achieved by adjusting the number of divisions of the plurality of raw material liquids in the division step or adjusting the concentration of the plurality of raw material solutions. Moreover, since it can also be achieved by making the radial cross-sectional areas of the respective supply paths communicating with the reaction flow path different, a preferable method may be selected as appropriate.

また、前記反応流路を中心線として前記それぞれの供給路を左右対称に形成することで、対向する流体の速度ベクトルの方向が逆向きで大きさが等しくなるようにすることが好ましい。   Further, it is preferable that the respective supply paths are formed symmetrically about the reaction flow path as a center line so that the direction of the velocity vector of the opposing fluid is opposite and equal in magnitude.

これにより、反応流路の合流部において渦流が一層発生しにくくなるので、発熱反応を行う反応場を安定化させることができる。
本発明においては、前記反応はハロゲン−リチウム交換反応、ニトロ化反応、重合反応の何れかであることが好ましい。
As a result, eddy currents are less likely to be generated at the confluence portion of the reaction flow path, and the reaction field for performing the exothermic reaction can be stabilized.
In the present invention, the reaction is preferably any one of a halogen-lithium exchange reaction, a nitration reaction, and a polymerization reaction.

本発明は、発熱反応によって化学反応物を製造する全てに適用可能であるが、これらの反応において特に有効だからである。   The present invention is applicable to all chemical reaction products produced by exothermic reaction, but is particularly effective in these reactions.

本発明の化学反応物の製造装置は前記目的を達成するために、複数の原料液をそれぞれの供給路から反応流路の合流部に合流させて発熱反応させる際に、反応熱の影響により目的反応物以外の副反応物が生成されるのを抑制する化学反応物の製造装置において、前記複数の原料液の少なくとも1つの原料液を分割して、前記反応流路の合流部において原料液同士が交互に配列した複層流を形成することにより原料液同士を薄層状態で反応させる原料液の分割手段と、前記複層流のうちの少なくとも中央部を流れる中央流体を前記反応流路に合流させる前に予め冷却することにより前記反応流路の内部から前記反応熱を冷却する内部冷却手段と、を備えたことを特徴とする。   In order to achieve the above-mentioned object, the chemical reaction product production apparatus of the present invention has an object that is caused by the influence of reaction heat when an exothermic reaction is performed by joining a plurality of raw material liquids from the respective supply channels to the junction of the reaction channel. In the chemical reaction product manufacturing apparatus that suppresses generation of by-products other than the reactants, at least one of the plurality of raw material liquids is divided, and the raw material liquids are separated from each other at the junction of the reaction channel. The raw material liquid dividing means for reacting the raw material liquids in a thin layer state by forming a multi-layer flow in which the multi-layer flows are alternately arranged, and the central fluid flowing at least in the central portion of the multi-layer flow is used as the reaction channel. An internal cooling means for cooling the reaction heat from the inside of the reaction flow path by cooling in advance before joining.

本発明においては、前記反応流路の外側から該反応流路を冷却して前記反応流路の外部から前記反応熱を冷却する外部冷却手段を更に備えることが好ましい。   In the present invention, it is preferable to further include an external cooling means for cooling the reaction channel from the outside of the reaction channel and cooling the reaction heat from the outside of the reaction channel.

これは、本発明を装置発明として構成したものである。   This constitutes the present invention as an apparatus invention.

本発明の化学反応物の製造方法及び製造装置によれば、高流量処理を行うために反応流路の流路径を太くしたり原料液を高濃度にしたりしても反応熱の急激な発熱を精密に制御することができるので、目的反応物の収率向上を図ることができるだけでなく工業化を実現することができる。   According to the method and apparatus for producing a chemical reactant of the present invention, even if the diameter of the reaction channel is increased or the concentration of the raw material liquid is increased in order to perform a high flow rate treatment, the reaction heat is rapidly generated. Since it can be precisely controlled, not only can the yield of the target reactant be improved, but also industrialization can be realized.

本発明の化学反応物の製造装置の一例であり、反応器として6方リアクターを用いた斜視図The perspective view which is an example of the manufacturing apparatus of the chemical reaction material of this invention, and used the 6-way reactor as a reactor 製造装置を平面的に見た概念図Conceptual diagram of the manufacturing equipment in plan view 反応流路の合流部における縮流を説明する説明図Explanatory drawing explaining the constriction flow in the confluence part of the reaction channel 反応流路の合流部に合流する5流体の流速を均一化する説明図Explanatory drawing that equalizes the flow rate of the five fluids that join the junction of the reaction channel 供給路の径方向断面積を変えて5流体の流速を均一化する説明図Explanatory drawing that equalizes the flow rate of five fluids by changing the radial cross-sectional area of the supply path 反応器の別態様として3方リアクターの概念図Conceptual diagram of a three-way reactor as another embodiment of the reactor 実施例に反応器としてT字型リアクターを用いた場合を説明する説明図Explanatory drawing explaining the case where a T-shaped reactor is used as a reactor in an Example

以下、添付図面に従って本発明の化学反応物の製造方法及び製造装置の好ましい実施の形態について詳説する。   Hereinafter, preferred embodiments of a method for producing a chemical reaction product and a production apparatus of the present invention will be described in detail with reference to the accompanying drawings.

図1は、本発明の化学反応物の製造装置10の一例として、反応器として6方リアクターを使用した場合の斜視図である。また、図2は、製造装置10を平面的に見た概念図である。なお、図1では後記する分割手段及び希釈手段は省略して図示してある。   FIG. 1 is a perspective view of a case where a six-way reactor is used as a reactor as an example of the chemical reaction product production apparatus 10 of the present invention. FIG. 2 is a conceptual view of the manufacturing apparatus 10 as viewed in plan. In FIG. 1, the dividing means and the diluting means, which will be described later, are omitted.

本実施の形態では、2種類の原料液L1,L2(図2参照)を用い、原料液L1を3流体に分割し、原料液L2を2流体に分割する例で説明する。   In the present embodiment, an example will be described in which two kinds of raw material liquids L1 and L2 (see FIG. 2) are used, the raw material liquid L1 is divided into three fluids, and the raw material liquid L2 is divided into two fluids.

図1に示すように、製造装置10は、主として、発熱反応を行う2種類の原料液L1,L2を分割する第1及び第2の分割手段12(12A,12B)(図2参照)と、分割された原料液L1,L2を反応させる6方リアクター14と、分割された原料液L1,L2を6方リアクター14に送液するそれぞれの送液手段16(16A,16B,16C、16D、16E)と、各送液手段16と6方リアクター14とを連結する複数の送液管18(18A、18B、18C、18D、18E)と、各送液管18に設けられて原料液L1,L2自体を冷却することにより6方リアクター14の内部から反応熱を冷却する内部冷却手段20(20A、20B、20C、20D、20E)と、6方リアクター14を上下から挟むことにより、6方リアクター14の外部から反応熱を冷却する外部冷却手段21(21A,21B)と、で構成される。   As shown in FIG. 1, the manufacturing apparatus 10 mainly includes first and second dividing means 12 (12A, 12B) (see FIG. 2) for dividing two kinds of raw material liquids L1, L2 that perform an exothermic reaction, The six-way reactor 14 for reacting the divided raw material liquids L1 and L2, and the respective liquid feeding means 16 (16A, 16B, 16C, 16D, and 16E) for feeding the divided raw material liquids L1 and L2 to the six-way reactor 14 ), A plurality of liquid feeding pipes 18 (18A, 18B, 18C, 18D, 18E) for connecting the liquid feeding means 16 and the six-way reactor 14, and raw material liquids L1, L2 provided in each liquid feeding pipe 18 The internal cooling means 20 (20A, 20B, 20C, 20D, 20E) for cooling the reaction heat from the inside of the 6-way reactor 14 by cooling itself and the 6-way reactor 14 from above and below, External cooling means 21 for cooling the heat of reaction from the outside of the coater 14 and (21A, 21B), in constructed.

分割手段12は、液体を精度良く分割できるものであれば、どのようなものでもよい。   The dividing means 12 may be any device as long as it can divide the liquid with high accuracy.

6方リアクター14は、基板14Aと蓋板14Bとが合わさって形成され、基板14Aの合わせ面には、複数本(本実施の形態では5本)の供給溝及び1本の反応溝が刻設される。そして、基板14Aに蓋板14Bが合わさって一体化されることによって、5本の供給路22(22A,22B,22C,22D,22E)及び1本の反応流路24が形成される。図2において、反応流路24に対向配置される供給路を第1供給路22Aとし、以下時計回り方向に、第2供給路22B、第3供給路22C、第4供給路22D、第5供給路22Eと言うことにする。   The six-way reactor 14 is formed by combining a substrate 14A and a cover plate 14B, and a plurality of (five in the present embodiment) supply grooves and one reaction groove are engraved on the mating surface of the substrate 14A. Is done. Then, the supply plate 22 (22A, 22B, 22C, 22D, 22E) and one reaction flow channel 24 are formed by integrating the cover plate 14B with the substrate 14A. In FIG. 2, a supply path disposed opposite to the reaction flow path 24 is a first supply path 22A, and hereinafter, a second supply path 22B, a third supply path 22C, a fourth supply path 22D, and a fifth supply are clockwise. Let's say it is Road 22E.

また、蓋板14Bと上側の外部冷却手段21Aには、各送液管18を各供給路22に連結するための貫通孔が形成され、各供給路22の先端部とそれぞれ連結される。反応流路24の流路断面積は、分割手段12(12A,12B)によって分割される分割数によって設定することが好ましい。即ち、分割された各流体における1流体の径方向断面積が1mm以下になるように反応流路24の流路断面積を設定する。例えば、原料液L1,L2を合計で5流体に分割する場合には、反応流路24の流路断面積の最大が5mmになるように設定する。したがって、分割数が多いほど、太い径の反応流路24にすることが可能となる。 Further, through holes for connecting the liquid feeding pipes 18 to the supply paths 22 are formed in the cover plate 14B and the upper external cooling means 21A, and are connected to the distal ends of the supply paths 22, respectively. The channel cross-sectional area of the reaction channel 24 is preferably set by the number of divisions divided by the dividing means 12 (12A, 12B). That is, the channel cross-sectional area of the reaction channel 24 is set so that the radial cross-sectional area of one fluid in each divided fluid is 1 mm 2 or less. For example, when the raw material liquids L1 and L2 are divided into five fluids in total, the maximum cross-sectional area of the reaction flow path 24 is set to 5 mm 2 . Therefore, the larger the number of divisions, the thicker the reaction channel 24 can be made.

6方リアクター14は、マイクロドリル加工、マイクロ放電加工、めっきを利用したモールディング、射出成形、ドライエッチング、ウエットエッチング、及びホットエンボス加工等の精密加工技術を利用して製作することができる。また、上記の如く反応流路24の流路径を等価直径で1.0mm以上として、一般的なマイクロリアクターにおける反応流路(マイクロ流路)に比べて拡大化できるので、汎用的な旋盤、ボール盤を用いる機械加工技術も利用できる。   The six-way reactor 14 can be manufactured using precision processing techniques such as micro drilling, micro electric discharge machining, molding using plating, injection molding, dry etching, wet etching, and hot embossing. Moreover, since the channel diameter of the reaction channel 24 is 1.0 mm or more in equivalent diameter as described above, the reaction channel 24 can be enlarged as compared with a reaction channel (microchannel) in a general microreactor. Machining techniques using can also be used.

6方リアクター14の材料としては、特に限定されるものではなく、上述の加工技術を適用できるものであればよい。具体的には、金属材料(鉄、アルミニウム、ステンレススチール、チタン、各種の金属等)、樹脂材料(アクリル樹脂、PDMS等)、ガラス(シリコン、パイレックス(登録商標)、石英ガラス等)や、石英ガラスやパイレックス(登録商標)ガラスにパリレン(パラキシレン蒸着)処理を行ったもの、フッ素系又は炭化水素系のシランカップリング処理を行ったものを好適に使用できる。   The material of the six-way reactor 14 is not particularly limited as long as the above processing technique can be applied. Specifically, metal materials (iron, aluminum, stainless steel, titanium, various metals, etc.), resin materials (acrylic resin, PDMS, etc.), glass (silicon, Pyrex (registered trademark), quartz glass, etc.), quartz Glass or Pyrex (registered trademark) glass subjected to parylene (paraxylene vapor deposition) treatment, or fluorine or hydrocarbon silane coupling treatment can be suitably used.

また、6方リアクター14は、後記するように、2種類の原料液L1,L2を分割した5流体が合流部で縮流する縮流状態を視覚により観察できるように、透明な材料で製作することが好ましい。   Further, as will be described later, the six-way reactor 14 is made of a transparent material so that the contracted state in which the five fluids obtained by dividing the two types of raw material liquids L1 and L2 contract at the joining portion can be visually observed. It is preferable.

送液手段16は、小容量の液体を精度良く送液できるものであればよく、例えばマイクロシリンジポンプを好適に使用することができる。   The liquid feeding means 16 may be any one that can accurately deliver a small volume of liquid. For example, a microsyringe pump can be preferably used.

内部冷却手段20及び外部冷却手段21の冷却温度制御そのものは、従来からの温度制御技術でもペルチェ素子に代表される新規な温度制御技術でも可能であり、適切な冷却機構と温度センシング機構の選択、ならびに外部制御系の構成を組み合わせて最適な方法を選択することができる。   The cooling temperature control itself of the internal cooling means 20 and the external cooling means 21 can be performed by a conventional temperature control technique or a new temperature control technique represented by a Peltier element, and selection of an appropriate cooling mechanism and temperature sensing mechanism. In addition, the optimum method can be selected by combining the configurations of the external control systems.

また、6方リアクター14には、反応流路24の終端から外部に排出される反応液LMの排出管26(図1参照)が設けられ、蓋板14B及び上側の外部冷却手段21Aに形成された貫通孔を介して反応流路24の終端部に接続される。   Further, the six-way reactor 14 is provided with a discharge pipe 26 (see FIG. 1) for the reaction liquid LM discharged from the end of the reaction channel 24 to the outside, and is formed in the cover plate 14B and the upper external cooling means 21A. The reaction channel 24 is connected to the terminal portion through the through-hole.

次に、上記の如く構成された化学反応物の製造装置10を使用して本発明の製造方法を説明する。   Next, the manufacturing method of the present invention will be described using the chemical reaction product manufacturing apparatus 10 configured as described above.

図2に示すように、発熱反応を行う2種類の原料液L1,L2のうち、原料液L1は第1の分割手段12Aによって3流体L1a,L1b,L1cに3分割される。一方、原料液L2は、第2の分割手段12Bによって2流体L2a,L2bに2分割される。   As shown in FIG. 2, of the two types of raw material liquids L1 and L2 that perform an exothermic reaction, the raw material liquid L1 is divided into three fluids L1a, L1b, and L1c by the first dividing means 12A. On the other hand, the raw material liquid L2 is divided into two fluids L2a and L2b by the second dividing means 12B.

分割された3流体L1a〜L1cは、第1供給路22A、第3供給路22C、及び第4供給路22Dに送液される一方、分割された2流体L2a,L2bは、第2供給路22B、第5供給路22Eに送液される。これにより、反応流路24の合流部24Aにおいて、中央部と反応流路24の両壁面側とを流れる原料液1同士の間に原料液2が挟まれたサンドイッチ状の5層流からなる複層流L(図3参照)を形成する。この複層流Lが反応流路24を流れながら原料液同士が反応して発熱する。   The divided three fluids L1a to L1c are fed to the first supply path 22A, the third supply path 22C, and the fourth supply path 22D, while the divided two fluids L2a and L2b are supplied to the second supply path 22B. The solution is fed to the fifth supply path 22E. As a result, in the merging portion 24A of the reaction flow path 24, a composite material composed of a sandwich-like five-layer flow in which the raw material liquid 2 is sandwiched between the raw material liquids 1 flowing between the central portion and both wall surfaces of the reaction flow path 24 is obtained. A laminar flow L (see FIG. 3) is formed. While the multi-layer flow L flows through the reaction flow path 24, the raw material liquids react to generate heat.

かかる発熱反応において、各流路22A〜22Eの途中には、内部冷却手段20A〜20Eがそれぞれ設けられ、反応流路24の中央部を流れる中央流体L1aを反応流路24に合流させる前に予め冷却される。また、6方リアクター14の全体が外部冷却手段21で冷却される。これにより、反応流路24の外部からの熱交換による冷却の遅れを、反応流路24の内部から流体を直接冷却することで補うことができるので、反応熱を効果的に冷却することができる。また、反応流路24の径方向断面において冷却の遅れがなくなるので、反応熱を制御し易くなる。特に、分割工程を設けたことにより、複層流Lを構成する各流体における1流体ごとの径方向断面積が小さくなるので、高流量処理を行うために反応流路24の流路断面積を大きくして流路径を太くしても、分割された流体ごとに見た場合にマイクロリアクターでの反応と同様である。具体的には、上記したように複層流を構成する各流体の径方向断面積が1mm以下であることが好ましい。これにより、反応熱の急激な発熱を制御できるので、反応熱の影響により目的反応物以外の副反応物が生成されるのを抑制することができる。 In such an exothermic reaction, internal cooling means 20A to 20E are provided in the middle of each of the flow paths 22A to 22E, and before the central fluid L1a flowing through the central portion of the reaction flow path 24 is joined to the reaction flow path 24 in advance. To be cooled. Further, the entire six-way reactor 14 is cooled by the external cooling means 21. Thereby, the delay in cooling due to heat exchange from the outside of the reaction channel 24 can be compensated by directly cooling the fluid from the inside of the reaction channel 24, so that the reaction heat can be effectively cooled. . In addition, since there is no cooling delay in the radial cross section of the reaction channel 24, the reaction heat can be easily controlled. In particular, by providing the dividing step, the radial cross-sectional area for each fluid in each of the fluids constituting the multi-layer flow L becomes small. Even if the flow path diameter is increased by increasing the size, the reaction is similar to that in the microreactor when viewed for each divided fluid. Specifically, as described above, it is preferable that the radial cross-sectional area of each fluid constituting the multilayer flow is 1 mm 2 or less. Thereby, since rapid heat generation of the reaction heat can be controlled, it is possible to suppress generation of a side reaction product other than the target reaction product due to the influence of the reaction heat.

なお、上述の内部冷却では、反応流路24の中央部を流れる流体L1aのみを冷却したが、複層流Lを構成する5流体L1a〜L2b全てを冷却することが好ましい。この場合には、複層流Lを構成する各流体L1a〜L2bについて、反応流路24の中央部から離れる流体ほど冷却程度を小さくすることが好ましい。これにより、6方リアクター14を外部冷却手段21で冷却する外部冷却と相俟って複層流Lの径方向断面の液温度を均一化することができる。このように、複層流Lを構成する5流体L1a〜L2bの反応流路24の存在場所ごとに、予め冷却温度を制御することで、反応性が良く、1つの6方リアクター14での処理量を飛躍的に増やすことが可能となり、ナンバリングアップのコストに比べて大幅なコスト削減となる。この場合、反応流路24の両壁面から遠い流体(中央部を流れる流体)と近い流体のそれぞれについて、反応による発熱量と冷却による冷却量とを予め予備試験やシミュレーション等により求め、求めた結果に応じて、複層流Lの径方向断面の液温度を均一化するように各流体L1a〜L2bを冷却することが好ましい。   In the internal cooling described above, only the fluid L1a flowing through the central portion of the reaction channel 24 is cooled, but it is preferable to cool all the five fluids L1a to L2b constituting the multilayer flow L. In this case, with respect to each of the fluids L1a to L2b constituting the multi-layer flow L, it is preferable to reduce the cooling degree as the fluid moves away from the central portion of the reaction channel 24. Thereby, the liquid temperature of the radial cross section of the multilayer flow L can be made uniform in combination with the external cooling in which the six-way reactor 14 is cooled by the external cooling means 21. In this way, by controlling the cooling temperature in advance for each location where the reaction flow paths 24 of the five fluids L1a to L2b constituting the multi-layer flow L are present, the reactivity is good and the processing in one six-way reactor 14 is performed. The amount can be increased dramatically, and the cost can be greatly reduced compared to the numbering up cost. In this case, for each of the fluid far from both wall surfaces of the reaction flow path 24 (fluid flowing in the center portion) and the fluid close to each other, the amount of heat generated by the reaction and the amount of cooling by the cooling are obtained in advance by preliminary tests, simulations, and the like. Accordingly, it is preferable to cool each of the fluids L1a to L2b so that the liquid temperature in the radial cross section of the multilayer flow L is made uniform.

また、反応流路24の径方向断面積は、5本の供給路22A〜22Eの径方向断面積の合計値よりも小さくなるように形成されることが好ましい。これにより、図3に示すように、反応流路24の合流部24Aに合流して形成される複層流Lは、縮流して薄膜化する。したがって、反応流路24において原料液L1,L2同士を薄層状態で発熱反応させることができるので、反応熱の急激な発熱を緩和することができる。   The radial cross-sectional area of the reaction channel 24 is preferably formed to be smaller than the total value of the radial cross-sectional areas of the five supply channels 22A to 22E. As a result, as shown in FIG. 3, the multi-layer flow L formed by merging with the merging portion 24 </ b> A of the reaction flow path 24 is contracted and thinned. Therefore, since the raw material liquids L1 and L2 can be caused to react exothermically in a thin layer state in the reaction flow path 24, rapid heat generation of the reaction heat can be reduced.

この場合、図4に示すように、反応流路24の合流部24Aに合流する5流体L1a〜L2bの流速V1,V2を均一化することが好ましい。これにより、5流体L1a〜L2bが反応流路24の合流部24Aに合流する際に渦流が発生しにくくなるので、反応場が安定する。したがって、副反応物の生成を一層抑制することができる。反応流路24に合流する際に渦流が発生すると、反応流路24での発熱反応が不安定になるので、反応場が不安定になると共に反応熱を精密で制御しにくくなる。この結果、生成された目的生成物が反応熱の影響により未反応の原料液と反応してしまい副反応物が生成され易くなる。また、渦流によって複層流が破壊されてしまうので、内部から反応熱を冷却する際の制御精度が悪くなる。   In this case, as shown in FIG. 4, it is preferable to make the flow rates V1 and V2 of the five fluids L1a to L2b joining the joining portion 24A of the reaction channel 24 uniform. Accordingly, since the vortex is less likely to occur when the five fluids L1a to L2b join the joining portion 24A of the reaction channel 24, the reaction field is stabilized. Therefore, generation of side reaction products can be further suppressed. If a vortex is generated when joining the reaction channel 24, the exothermic reaction in the reaction channel 24 becomes unstable, so that the reaction field becomes unstable and the reaction heat becomes difficult to control precisely. As a result, the generated target product reacts with the unreacted raw material liquid due to the influence of reaction heat, and a side reaction product is easily generated. Further, since the multi-layer flow is destroyed by the vortex, the control accuracy when cooling the reaction heat from the inside is deteriorated.

反応流路24に合流する5流体L1a〜L2bの流速を均一化する方法としては、原料液L1,L2の分割数を調整することで5流体L1a〜L2bの流量を同じにする方法を好適に採用できる。しかし、原料液L1,L2の分割を調整するだけでは5流体L1a〜L2bの流速を均一化できない場合もあるので、図2の分割手段12A,12Bの前に原料液L1,L2を希釈する希釈手段28A,28Bを設けることが好ましい。これにより、原料液L1,L2の濃度調整を行うことで反応流路24に流入する原料液1及び原料液2の供給量をそれぞれ変えることができるので、分割調整と組み合わせれば流速の均一化が容易になる。   As a method for equalizing the flow rates of the five fluids L1a to L2b that join the reaction flow path 24, a method is preferably used in which the flow rates of the five fluids L1a to L2b are made the same by adjusting the number of divisions of the raw material liquids L1 and L2. Can be adopted. However, since the flow rates of the five fluids L1a to L2b may not be equalized only by adjusting the division of the raw material liquids L1 and L2, dilution for diluting the raw material liquids L1 and L2 before the dividing means 12A and 12B in FIG. It is preferable to provide means 28A, 28B. Thereby, the supply amount of the raw material liquid 1 and the raw material liquid 2 flowing into the reaction flow path 24 can be changed by adjusting the concentration of the raw material liquids L1 and L2, respectively. Becomes easier.

また、反応流路24の合流部24Aにおいて渦流を発生させないためには、図2に示すように、反応流路24を中心線30(2点鎖線)として、それぞれの供給路22A〜22Eを左右対称に形成することで、対向する流体の速度ベクトルの方向が逆向きで大きさが等しくなるようにすることが好ましい。例えば、図2では、第2供給路22Bと第4供給路22Dが対向配置されることにより、対向する流体L2aと流体L1cとの速度ベクトルの向きが逆で大きさが等しくなる。更に、第3供給路22Cと第5供給路22Eとが対向配置されることにより、対向する流体L1bと流体L2bとの速度ベクトルの向きが逆で大きさが等しくなる。これにより、対向する流体の運動エネルギーを互いに打ち消しあうことができるので、合流部24Aでの渦流の発生を確実に抑制できる。   Further, in order not to generate a vortex in the merging portion 24A of the reaction channel 24, as shown in FIG. 2, the reaction channel 24 is a center line 30 (two-dot chain line), and the supply channels 22A to 22E are left and right. It is preferable to form them symmetrically so that the direction of the velocity vector of the opposing fluid is opposite and equal in magnitude. For example, in FIG. 2, the second supply path 22B and the fourth supply path 22D are arranged to face each other, so that the directions of the velocity vectors of the fluid L2a and the fluid L1c facing each other are opposite and equal in size. Further, the third supply path 22C and the fifth supply path 22E are arranged to face each other, so that the directions of the velocity vectors of the fluid L1b and the fluid L2b facing each other are opposite and equal in size. Thereby, since the kinetic energy of the fluid which opposes can be mutually canceled, generation | occurrence | production of the vortex | eddy_current in the junction part 24A can be suppressed reliably.

また、図5に示すように、それぞれの供給路22の径方向断面積を異ならせることにより、反応流路24に合流する各流体L1a〜L2bの流速を同じにすることも可能である。図5では原料液L1が供給される第1、第3、及び第4の供給路22A,22C,22Dの径方向断面積を、原料液L2が供給される第2及び第5の供給路22B,22Eの径方向断面積よりも小さくすることで、5流体L1a〜L2bの流速が同じになるようにした場合である。   Further, as shown in FIG. 5, the flow rates of the fluids L <b> 1 a to L <b> 2 b that join the reaction flow path 24 can be made the same by making the radial cross-sectional areas of the respective supply paths 22 different. In FIG. 5, the radial cross-sectional areas of the first, third, and fourth supply paths 22A, 22C, and 22D to which the raw material liquid L1 is supplied are shown as second and fifth supply paths 22B to which the raw material liquid L2 is supplied. , 22E is made smaller than the radial cross-sectional area so that the flow rates of the five fluids L1a to L2b are the same.

なお、本実施の形態では2種類の原料液L1,L2の例で説明したが、発熱反応を行う反応系であれば原料液の数は限定されない。また、反応器として6方リアクター14の例で説明したが、供給路が2本以上ある反応器であれば本発明の製造方法を適用できる。   In this embodiment, the example of the two types of raw material liquids L1 and L2 has been described. However, the number of raw material liquids is not limited as long as the reaction system performs an exothermic reaction. Moreover, although the example of the six-way reactor 14 has been described as a reactor, the production method of the present invention can be applied to a reactor having two or more supply paths.

図6は分割手段も組み込んだ3方リアクター32の一例であり、原料液L1を2分割する場合である。図6に示すように、3方リアクター32は、反応流路34と、原料液L1を2本の分岐流路36A,36Bに分割して反応流路34の合流部34Aに合流させる第1の流路36と、原料液L2を合流部34Aに合流させる第2の流路38とで構成される。この3方リアクター32の場合にも、図1及び図2で説明したと同様に、原料液L1,L2の少なくとも1方を内部冷却する内部冷却手段20、及び3方リアクターを外部から冷却する外部冷却手段21が設けられる。   FIG. 6 is an example of a three-way reactor 32 that also incorporates a dividing means, and shows a case where the raw material liquid L1 is divided into two. As shown in FIG. 6, the three-way reactor 32 divides the reaction channel 34 and the raw material liquid L1 into two branch channels 36 </ b> A and 36 </ b> B and joins them to the junction 34 </ b> A of the reaction channel 34. The flow path 36 and the second flow path 38 that joins the raw material liquid L2 to the merge section 34A are configured. In the case of the three-way reactor 32, as described with reference to FIGS. 1 and 2, the internal cooling means 20 for internally cooling at least one of the raw material liquids L1 and L2, and the external for cooling the three-way reactor from the outside. Cooling means 21 is provided.

[実施例]
次に本発明の化学反応物の製造方法のより具体的な実施例を説明する。
[Example]
Next, more specific examples of the method for producing a chemical reaction product of the present invention will be described.

下記に示す試験1〜試験4の条件によって(3−メトキシフェニル)トリメチルシランを合成する試験を行った。   A test for synthesizing (3-methoxyphenyl) trimethylsilane was performed under the conditions of Test 1 to Test 4 shown below.

(試験1)
試験1は、反応器として図7(A)に示すT字型ミキサー40を用い、T字型ミキサー40の外部からのみ冷却して反応熱を冷却すると共に、原料液L1,L2の流速が異なる場合である。
(Test 1)
Test 1 uses a T-shaped mixer 40 shown in FIG. 7A as a reactor, cools the reaction heat by cooling only from the outside of the T-shaped mixer 40, and the flow rates of the raw material liquids L1 and L2 are different. Is the case.

試験1では、図7(A)に示したT字型ミキサー40(SUS316製、流路内径0.8mm、流路断面積0.5mm2)を用い、3−ブロモアニソール溶液(原料液L1)と、n−ブチルリチウム溶液(原料液L2)とを、それぞれの供給路42、44から反応流路46の合流部46Aに送液して衝突させることによりハロゲン−リチウム交換反応を行った。 In Test 1, a T-shaped mixer 40 (made of SUS316, flow path inner diameter 0.8 mm, flow path cross-sectional area 0.5 mm 2 ) shown in FIG. Then, the n-butyllithium solution (raw material liquid L2) was fed from the respective supply passages 42 and 44 to the confluence 46A of the reaction passage 46 and collided with each other, thereby performing a halogen-lithium exchange reaction.

原料液L1は、3−ブロモアニソールの2.46gを、テトラヒドロフランで全量が50mLになるように希釈し、濃度0.26mol/Lになるように調整した。   The raw material liquid L1 was adjusted to a concentration of 0.26 mol / L by diluting 2.46 g of 3-bromoanisole with tetrahydrofuran so that the total amount became 50 mL.

原料液L2は、n−ヘキサン溶液に1.58mol/Lになるように溶解されている市販試薬を購入し、n−ブチルリチウムの含量を滴定で求めて使用した。   As the raw material liquid L2, a commercially available reagent dissolved in an n-hexane solution at 1.58 mol / L was purchased, and the content of n-butyllithium was determined by titration and used.

また、上記原料液L1及びL2とは別に、100mLの二口フラスコに、クロロトリメチルシランの1.5gと、テトラヒドロフランの9mLを加えて攪拌したものを用意した。   Separately from the raw material liquids L1 and L2, a 100 mL two-necked flask was prepared by adding 1.5 g of chlorotrimethylsilane and 9 mL of tetrahydrofuran and stirring them.

そして、原料液L1と原料液L2は、ガラスシリンジに吸い上げた後、それぞれHARVARD APPARATUS INC.社製のPHD2000型計量ポンプ、及びKd Scientific社製のModel100型計量ポンプを用いて、反応流路46の合流部46Aに送液した。原料液L1と原料液2の送液流量は、それぞれ5.0mL/分、1.0mL/分で行った。即ち、それぞれの供給路42、44の流路断面積は同じなので、原料液L1と原料液L2の流速は5:1の関係になる。   Then, after the raw material liquid L1 and the raw material liquid L2 are sucked into the glass syringe, the PHD2000 type metering pump made by HARVARD APPARATUS INC. And the Model100 type metering pump made by Kd Scientific are used in the reaction channel 46, respectively. The solution was fed to the junction 46A. The liquid feeding flow rates of the raw material liquid L1 and the raw material liquid 2 were 5.0 mL / min and 1.0 mL / min, respectively. That is, since the flow passage cross-sectional areas of the supply passages 42 and 44 are the same, the flow rates of the raw material liquid L1 and the raw material liquid L2 are in a relationship of 5: 1.

T字型ミキサー40の反応流路46で反応させた反応液LMは、最初の1分間はドレン側に捨て、その後に三方バルブ(図示せず)を切り替えて、前述の100mlの二口フラスコ側に7分間通過させた。これにより、(3−メトキシフェニル)トリメチルシランを合成した。この反応において、T字型ミキサー40、及びそこからの配管(図示せず)を外部から25℃に冷却し、T字型ミキサー40から流出する液温度を測定した結果、液温度は25℃であった。   The reaction solution LM reacted in the reaction channel 46 of the T-shaped mixer 40 is discarded to the drain side for the first minute, and then the three-way valve (not shown) is switched to the above-mentioned 100 ml two-necked flask side. For 7 minutes. Thereby, (3-methoxyphenyl) trimethylsilane was synthesized. In this reaction, the T-shaped mixer 40 and piping (not shown) therefrom were cooled to 25 ° C. from the outside, and the liquid temperature flowing out of the T-shaped mixer 40 was measured. As a result, the liquid temperature was 25 ° C. there were.

そして、得られた(3−メトキシフェニル)トリメチルシランの溶液を定量分析した。その結果、収率は78%であった。   The obtained (3-methoxyphenyl) trimethylsilane solution was quantitatively analyzed. As a result, the yield was 78%.

なお、図7(B)は、ANSYS社製のFUENT6.3を用いて、反応流路46の合流部46Aにおける状態をシミュレーションした結果であり、原料液L1,L2の流速が異なることで、合流部に渦流48(白い部分)が発生している。   FIG. 7B is a result of simulating the state in the merging portion 46A of the reaction channel 46 using FUNENT 6.3 manufactured by ANSYS, and the flow rates of the raw material liquids L1 and L2 are different. A vortex 48 (white portion) is generated in the part.

(試験2)
試験2は、試験1と同様に反応器の外部からのみ冷却すると共に原料液L1,L2の流速が異なる場合であるが、反応器として6方リアクターを用いることにより、原料液L1,L2を分割して薄層状態で反応させたものである。
(Test 2)
Test 2 is a case where cooling is performed only from the outside of the reactor and the flow rates of the raw material liquids L1 and L2 are different as in Test 1, but the raw material liquids L1 and L2 are divided by using a six-way reactor as the reactor. And reacted in a thin layer state.

ハロゲン−リチウム交換反応を行う反応器として、5つの供給路と1つの反応流路を有する図1の6方リアクター14(SUS316製、流路内径1.5mm、流路断面積1.77mm2)を用いたが、内部冷却手段20を使用しないで行った。 As a reactor for performing a halogen-lithium exchange reaction, the six-way reactor 14 of FIG. 1 having five supply channels and one reaction channel (manufactured by SUS316, channel inner diameter 1.5 mm, channel cross-sectional area 1.77 mm 2 ). However, the internal cooling means 20 was not used.

そして、原料液L1の総流量である25.0mL/分を3分割し、反応流路24の径方向断面の中央と両サイドを流れる3つの流体を形成した(1流体につき8.3mL/分)。一方、原料液L2の総流量である5.0mL/分を2分割し、2つの流体に分解した(1流体につき2.5mL/分)。そして、原料液L1と原料液L2とが交互に配列されるようにした。即ち、それぞれの供給路22A〜22Eの流路断面積は同じなので、原料液L1と原料液L2の流速は8.3:2.5の関係になる。   Then, 25.0 mL / min, which is the total flow rate of the raw material liquid L1, was divided into three to form three fluids flowing through the center and both sides of the radial cross section of the reaction channel 24 (8.3 mL / min per fluid). ). On the other hand, the total flow rate of the raw material liquid L2 of 5.0 mL / min was divided into two and decomposed into two fluids (2.5 mL / min per fluid). And the raw material liquid L1 and the raw material liquid L2 were arranged alternately. That is, since the flow path cross-sectional areas of the respective supply paths 22A to 22E are the same, the flow rates of the raw material liquid L1 and the raw material liquid L2 are in a relationship of 8.3: 2.5.

6方リアクター14の反応流路24からの反応液LMは、試験1と同様に、最初の1分間はドレン側に捨て、その後に三方バルブ(図示せず)を切り替えて、前述の100mlの二口フラスコ側に7分間通過させた。この反応において、6方リアクター14、及びそこからの配管(図示せず)を外部から25℃に冷却し、6方リアクターから流出する液温度を測定した結果、液温度は25℃であった。   The reaction liquid LM from the reaction flow path 24 of the 6-way reactor 14 is discarded to the drain side for the first minute as in Test 1, and then the three-way valve (not shown) is switched, and the 100 ml of the above-mentioned 100 ml It was allowed to pass through the mouth flask side for 7 minutes. In this reaction, the 6-way reactor 14 and the piping (not shown) therefrom were cooled to 25 ° C. from the outside, and the liquid temperature flowing out from the 6-way reactor was measured. As a result, the liquid temperature was 25 ° C.

そして、得られた(3−メトキシフェニル)トリメチルシランの溶液を定量分析した。その結果、収率は88%であった。   The obtained (3-methoxyphenyl) trimethylsilane solution was quantitatively analyzed. As a result, the yield was 88%.

(試験3)
試験3は、試験2を更に改良したものであり、内部冷却手段20を用いて、反応流路24の中央に合流する中央流体を予め冷却して、反応流路24の外部と内部の両方から反応熱を冷却した場合である。
(Test 3)
Test 3 is a further improvement of Test 2, in which the internal fluid 20 is used to cool the central fluid that joins the center of the reaction channel 24 in advance and from both inside and outside the reaction channel 24. This is when the heat of reaction is cooled.

ハロゲン−リチウム交換反応を行う反応器として、試験2と同じ6方リアクター14を使用した。   The same 6-way reactor 14 as in Test 2 was used as a reactor for performing the halogen-lithium exchange reaction.

そして、原料液L1の総流量である25.0mL/分を3分割し、反応流路の径方向断面の中央と両サイドを流れる3つの流体を形成した。そして、3分割した流体うち反応流路の中央に合流する中央流体を6方リアクター14に送液する前に予め内部冷却手段20で冷却し、6方リアクター14の入口での液温が0℃になるようにした。   Then, 25.0 mL / min, which is the total flow rate of the raw material liquid L1, was divided into three to form three fluids flowing through the center and both sides of the radial cross section of the reaction channel. The central fluid that joins the center of the reaction channel among the three divided fluids is cooled in advance by the internal cooling means 20 before being sent to the six-way reactor 14, and the liquid temperature at the inlet of the six-way reactor 14 is 0 ° C. I tried to become.

一方、原料液L2の総流量である5.0mL/分を2分割し、2つの流体に分解し、原料液L1と原料液L2とが交互に配列されるようにした。そして、分割した2流体を6方リアクター14に送液する前に予め内部冷却手段20で冷却し、6方リアクター14の入口での液温が15℃になるようにした。   On the other hand, 5.0 mL / min, which is the total flow rate of the raw material liquid L2, was divided into two parts and decomposed into two fluids so that the raw material liquid L1 and the raw material liquid L2 were alternately arranged. The divided two fluids were cooled in advance by the internal cooling means 20 before being sent to the six-way reactor 14 so that the liquid temperature at the inlet of the six-way reactor 14 was 15 ° C.

6方リアクター14の反応流路24からの反応液LMは、試験1と同様に、最初の1分間はドレン側に捨て、その後に三方バルブ(図示せず)を切り替えて、前述の100mlの二口フラスコ側に7分間通過させた。この反応において、6方リアクター14、及びそこからの配管(図示せず)を外部から25℃に冷却し、6方リアクター14から流出する液温度を測定した結果、液温度は25℃であった。   The reaction liquid LM from the reaction flow path 24 of the 6-way reactor 14 is discarded to the drain side for the first minute as in Test 1, and then the three-way valve (not shown) is switched, and the 100 ml of the above-mentioned 100 ml It was allowed to pass through the mouth flask side for 7 minutes. In this reaction, the 6-way reactor 14 and the piping (not shown) therefrom were cooled to 25 ° C. from the outside, and the liquid temperature flowing out from the 6-way reactor 14 was measured. As a result, the liquid temperature was 25 ° C. .

そして、得られた(3−メトキシフェニル)トリメチルシランの溶液を定量分析した。その結果、収率は96%であった。   The obtained (3-methoxyphenyl) trimethylsilane solution was quantitatively analyzed. As a result, the yield was 96%.

(試験4)
試験4は、試験3を更に改良したものであり、供給路の径方向断面積を変えることによって、原料液L1及び原料液L2を分割した各流体が反応流路に合流する流速が全て同じになるようした。このため、原料液L1が供給される第1、第3、及び第4の供給路22A、22C、33Dを内径1.5mm、流路断面積1.77mmとし、原料液L2が供給される第2及び第5の供給路22B、22Eを内径0.83mm、流路断面積0.54mmとし、全ての流路から合流部24Aに供給される流速が均一になるようにした。
(Test 4)
Test 4 is a further improvement of Test 3, and by changing the radial cross-sectional area of the supply path, the flow rates at which the fluids obtained by dividing the raw material liquid L1 and the raw material liquid L2 merge into the reaction flow path are all the same. I was going to be. Therefore, the first, third, and fourth supply paths 22A, 22C, and 33D to which the raw material liquid L1 is supplied have an inner diameter of 1.5 mm and a flow path cross-sectional area of 1.77 mm 2 , and the raw material liquid L2 is supplied. The second and fifth supply paths 22B and 22E have an inner diameter of 0.83 mm and a channel cross-sectional area of 0.54 mm 2 so that the flow velocity supplied from all the channels to the merging portion 24A is uniform.

6方リアクター14の反応流路24からの反応液LMは、試験1と同様に、最初の1分間はドレン側に捨て、その後に三方バルブ(図示せず)を切り替えて、前述の100mlの二口フラスコ側に7分間通過させた。この反応において、6方リアクター14、及びそこからの配管(図示せず)を外部から25℃に冷却し、6方リアクターから流出する液温度を測定した結果、液温度は25℃であった。   The reaction liquid LM from the reaction flow path 24 of the 6-way reactor 14 is discarded to the drain side for the first minute as in Test 1, and then the three-way valve (not shown) is switched, and the 100 ml of the above-mentioned 100 ml It was allowed to pass through the mouth flask side for 7 minutes. In this reaction, the 6-way reactor 14 and the piping (not shown) therefrom were cooled to 25 ° C. from the outside, and the liquid temperature flowing out from the 6-way reactor was measured. As a result, the liquid temperature was 25 ° C.

そして、得られた(3−メトキシフェニル)トリメチルシランの溶液を定量分析した。その結果、収率は98%であった。   The obtained (3-methoxyphenyl) trimethylsilane solution was quantitatively analyzed. As a result, the yield was 98%.

[試験結果の考察]
試験1の収率は78%であり試験2の収率は86%であった。
[Consideration of test results]
The yield of test 1 was 78% and the yield of test 2 was 86%.

これに対して、本発明の製造方法を実施した試験3の結果から分かるように、原料液L1、L2を分割して反応流路24において薄層状態で反応させると共に、反応流路24を外部と内部の両方から冷却することで、ハロゲン−リチウム交換反応における副反応物の生成を抑制でき、その結果、(3−メトキシフェニル)トリメチルシランの収率を96%まで上げることができた。   On the other hand, as can be seen from the result of Test 3 in which the production method of the present invention was performed, the raw material liquids L1 and L2 were divided and reacted in a thin layer state in the reaction channel 24, and the reaction channel 24 was externally By cooling from both the inside and the inside, it was possible to suppress the formation of by-products in the halogen-lithium exchange reaction, and as a result, the yield of (3-methoxyphenyl) trimethylsilane could be increased to 96%.

更には、本発明の製造方法の更に好ましい試験4の結果から分かるように、試験3の条件に更に反応流路の合流部に合流する各流体の流速を均一化することで、(3−メトキシフェニル)トリメチルシランの収率を98%まで上げることができた。   Furthermore, as can be seen from the result of the more preferable test 4 of the production method of the present invention, by further equalizing the flow rate of each fluid that joins the joining part of the reaction flow channel to the condition of test 3, (3-methoxy The yield of phenyl) trimethylsilane could be increased to 98%.

なお、本実施例では、ハロゲン−リチウム交換反応の例で説明したが、ニトロ化反応、重合反応等の発熱反応にも本発明を提供できる。   In this embodiment, the example of the halogen-lithium exchange reaction has been described. However, the present invention can also be provided for exothermic reactions such as nitration reaction and polymerization reaction.

10…化学反応物の製造装置、12…分割手段、14…6方リアクター、18…送液管、20…内部冷却手段、21…外部冷却手段、22…供給路、24…反応流路、24A…反応流路の合流部、26…排出管、28…希釈手段、30…中心線、32…3方リアクター、34…反応流路、36…第1の流路、38…第2の流路、40…T字型リアクター、42、44…供給路、46…反応流路   DESCRIPTION OF SYMBOLS 10 ... Chemical reaction material manufacturing apparatus, 12 ... Dividing means, 14 ... 6-way reactor, 18 ... Liquid feeding pipe, 20 ... Internal cooling means, 21 ... External cooling means, 22 ... Supply path, 24 ... Reaction flow path, 24A ... Merging portion of reaction channel, 26 ... Drain pipe, 28 ... Dilution means, 30 ... Center line, 32 ... 3-way reactor, 34 ... Reaction channel, 36 ... First channel, 38 ... Second channel , 40 ... T-shaped reactor, 42, 44 ... supply path, 46 ... reaction flow path

Claims (13)

複数の原料液をそれぞれの供給路から反応流路の合流部に合流させて発熱反応させる際に、反応熱の影響により目的反応物以外の副反応物が生成されるのを抑制する化学反応物の製造方法において、
前記複数の原料液の少なくとも1つの原料液を分割して、前記反応流路の合流部において原料液同士が交互に配列した複層流を形成することにより原料液同士を薄層状態で反応させる原料液の分割工程と、
前記複層流のうちの少なくとも中央部を流れる中央流体を前記反応流路に合流させる前に予め冷却することにより前記反応流路の内部から前記反応熱を冷却する内部冷却工程と、を備えたことを特徴とする化学反応物の製造方法。
A chemical reactant that suppresses the generation of side reactants other than the target reactant due to the influence of reaction heat when an exothermic reaction is caused by joining a plurality of raw material liquids from the respective supply channels to the junction of the reaction channel. In the manufacturing method of
By dividing at least one raw material liquid of the plurality of raw material liquids and forming a multi-layer flow in which the raw material liquids are alternately arranged at the junction of the reaction flow path, the raw material liquids are reacted in a thin layer state. Dividing the raw material liquid;
An internal cooling step of cooling the reaction heat from the inside of the reaction flow path by pre-cooling the central fluid flowing through at least the central portion of the multilayer flow before joining the reaction flow path. A method for producing a chemical reaction product.
前記反応流路の外側から該反応流路を冷却して前記反応流路の外部から前記反応熱を冷却する外部冷却工程を更に備えたことを特徴とする請求項1に記載の化学反応物の製造方法。   2. The chemical reaction product according to claim 1, further comprising an external cooling step of cooling the reaction flow channel from the outside of the reaction flow channel to cool the reaction heat from the outside of the reaction flow channel. Production method. 前記内部冷却工程では、前記複層流を構成する各流体について、前記反応流路の中央部から離れる流体ほど冷却程度を小さくすることを特徴とする請求項1又は2に記載の化学反応物の製造方法。   3. The chemical reaction product according to claim 1, wherein in the internal cooling step, the degree of cooling of each fluid constituting the multilayer flow is reduced as the fluid moves away from the central portion of the reaction flow path. Production method. 前記複層流を構成する各流体が前記反応流路に合流する際の流速を均一化する流速均一化工程、更に備えたことを特徴とする請求項1〜3の何れか1に記載の化学反応物の製造方法。   The chemistry according to any one of claims 1 to 3, further comprising a flow velocity equalizing step for equalizing a flow velocity when each fluid constituting the multilayer flow joins the reaction channel. A method for producing a reactant. 前記流速均一化工程では、前記分割工程における複数の原料液の分割数を調整することによって、前記反応流路に合流する各流体の流速を均一化することを特徴とする請求項4に記載の化学反応物の製造方法。   5. The flow rate homogenizing step equalizes the flow rate of each fluid that joins the reaction flow path by adjusting the number of divisions of the plurality of raw material liquids in the dividing step. A method for producing a chemical reactant. 前記流速均一化工程では、前記複数の原料液の濃度を調整して前記反応流路に合流する複数の原料液の供給量を変えることによって、前記反応流路に合流する各流体の流速を均一化することを特徴とする請求項4に記載の化学反応物の製造方法。   In the flow velocity equalization step, the flow rates of the fluids that join the reaction flow path are made uniform by adjusting the concentrations of the plurality of raw material liquids and changing the supply amounts of the plurality of raw material liquids that join the reaction flow path. The method for producing a chemical reaction product according to claim 4, wherein: 前記流速均一化工程では、前記複数の原料液の分割数及び濃度を調整することによって、前記反応流路に合流する各流体の流速を均一化することを特徴とする請求項4に記載の化学反応物の製造方法。   5. The chemistry according to claim 4, wherein in the flow rate uniformization step, the flow rate of each fluid that joins the reaction flow path is made uniform by adjusting the number and concentration of the plurality of raw material liquids. A method for producing a reactant. 前記流速均一化工程では、前記それぞれの供給路の径方向断面積を異ならせることによって、前記反応流路に合流する各流体の流速を均一化することを特徴とする請求項4に記載の化学反応物の製造方法。   5. The chemical flow according to claim 4, wherein, in the flow velocity uniformizing step, the flow velocity of each fluid that merges with the reaction flow path is made uniform by making the radial cross-sectional areas of the respective supply paths different. A method for producing a reactant. 前記反応流路を中心線として前記それぞれの供給路を左右対称に形成することで、対向する流体の速度ベクトルの方向が逆向きで大きさが等しくなるようにすることを特徴とする請求項1〜8の何れか1に記載の化学反応物の製造方法。   2. The respective flow paths are formed symmetrically about the reaction flow path as a center line so that the direction of the velocity vector of the opposing fluid is opposite and equal in size. The manufacturing method of the chemical reactant of any one of -8. 前記複層流を構成する各流体の径方向断面積が1mm以下であることを特徴とする請求項1〜9の何れか1に記載の化学反応物の製造方法。 10. The method for producing a chemical reactant according to claim 1, wherein a radial cross-sectional area of each fluid constituting the multilayer flow is 1 mm 2 or less. 前記反応はハロゲン−リチウム交換反応、ニトロ化反応、重合反応の何れかであることを特徴とする請求項1〜9の何れか1に記載の化学反応物の製造方法。   The method for producing a chemical reaction product according to any one of claims 1 to 9, wherein the reaction is any one of a halogen-lithium exchange reaction, a nitration reaction, and a polymerization reaction. 複数の原料液をそれぞれの供給路から反応流路の合流部に合流させて発熱反応させる際に、反応熱の影響により目的反応物以外の副反応物が生成されるのを抑制する化学反応物の製造装置において、
前記複数の原料液の少なくとも1つの原料液を分割して、前記反応流路の合流部において原料液同士が交互に配列した複層流を形成することにより原料液同士を薄層状態で反応させる原料液の分割手段と、
前記複層流のうちの少なくとも中央部を流れる中央流体を前記反応流路に合流させる前に予め冷却することにより前記反応流路の内部から前記反応熱を冷却する内部冷却手段と、を備えたことを特徴とする化学反応物の製造装置。
A chemical reactant that suppresses the generation of side reactants other than the target reactant due to the influence of reaction heat when an exothermic reaction is caused by joining a plurality of raw material liquids from the respective supply channels to the junction of the reaction channel. In the manufacturing equipment of
By dividing at least one raw material liquid of the plurality of raw material liquids and forming a multi-layer flow in which the raw material liquids are alternately arranged at the junction of the reaction flow path, the raw material liquids are reacted in a thin layer state. Means for dividing the raw material liquid;
An internal cooling means for cooling the reaction heat from the inside of the reaction channel by precooling the central fluid flowing through at least the central part of the multilayer flow before joining the reaction channel. An apparatus for producing a chemical reaction product.
前記反応流路の外側から該反応流路を冷却して前記反応流路の外部から前記反応熱を冷却する外部冷却手段を更に備えたことを特徴とする請求項12に記載の化学反応物の製造装置。   The chemical reaction product according to claim 12, further comprising an external cooling means for cooling the reaction channel from outside the reaction channel and cooling the reaction heat from outside the reaction channel. Manufacturing equipment.
JP2010051839A 2010-03-09 2010-03-09 Method and apparatus for producing chemical reactant Active JP5507296B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010051839A JP5507296B2 (en) 2010-03-09 2010-03-09 Method and apparatus for producing chemical reactant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010051839A JP5507296B2 (en) 2010-03-09 2010-03-09 Method and apparatus for producing chemical reactant

Publications (2)

Publication Number Publication Date
JP2011183311A true JP2011183311A (en) 2011-09-22
JP5507296B2 JP5507296B2 (en) 2014-05-28

Family

ID=44790236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010051839A Active JP5507296B2 (en) 2010-03-09 2010-03-09 Method and apparatus for producing chemical reactant

Country Status (1)

Country Link
JP (1) JP5507296B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11514574A (en) * 1995-11-06 1999-12-14 バイエル・アクチエンゲゼルシヤフト Method and apparatus for performing a chemical reaction in a microstructured thin layer mixer
JP2005224764A (en) * 2004-02-16 2005-08-25 Fuji Photo Film Co Ltd Reaction process using microreactor, and microreactor
JP2005224765A (en) * 2004-02-16 2005-08-25 Fuji Photo Film Co Ltd Reaction process using microreactor, and microreactor
JP2005262053A (en) * 2004-03-17 2005-09-29 Fuji Photo Film Co Ltd Method of performing compound reaction in micro-reactor and micro-reactor therefor
JP2006263558A (en) * 2005-03-23 2006-10-05 Fuji Photo Film Co Ltd Method for producing chemical substance
JP2007098225A (en) * 2005-09-30 2007-04-19 Fujifilm Corp Fluid device
JP2008043912A (en) * 2006-08-21 2008-02-28 Hitachi Ltd Microreactor
JP2008246349A (en) * 2007-03-29 2008-10-16 Fujifilm Corp Microfluid device
JP2010000428A (en) * 2008-06-19 2010-01-07 Hitachi Plant Technologies Ltd Microreactor

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11514574A (en) * 1995-11-06 1999-12-14 バイエル・アクチエンゲゼルシヤフト Method and apparatus for performing a chemical reaction in a microstructured thin layer mixer
JP2005224764A (en) * 2004-02-16 2005-08-25 Fuji Photo Film Co Ltd Reaction process using microreactor, and microreactor
JP2005224765A (en) * 2004-02-16 2005-08-25 Fuji Photo Film Co Ltd Reaction process using microreactor, and microreactor
JP2005262053A (en) * 2004-03-17 2005-09-29 Fuji Photo Film Co Ltd Method of performing compound reaction in micro-reactor and micro-reactor therefor
JP2006263558A (en) * 2005-03-23 2006-10-05 Fuji Photo Film Co Ltd Method for producing chemical substance
JP2007098225A (en) * 2005-09-30 2007-04-19 Fujifilm Corp Fluid device
JP2008043912A (en) * 2006-08-21 2008-02-28 Hitachi Ltd Microreactor
JP2008246349A (en) * 2007-03-29 2008-10-16 Fujifilm Corp Microfluid device
JP2010000428A (en) * 2008-06-19 2010-01-07 Hitachi Plant Technologies Ltd Microreactor

Also Published As

Publication number Publication date
JP5507296B2 (en) 2014-05-28

Similar Documents

Publication Publication Date Title
Noël et al. Beyond organometallic flow chemistry: the principles behind the use of continuous-flow reactors for synthesis
JP6145851B2 (en) Multi-channel microreactor design
JP6234959B2 (en) Microreactor system
Kakuta et al. Microfabricated devices for fluid mixing and their application for chemical synthesis
Yamaguchi et al. 3‐D simulation and visualization of laminar flow in a microchannel with hair‐pin curves
Aoki et al. Design method for micromixers considering influence of channel confluence and bend on diffusion length
US20110171082A1 (en) Reactor and reaction plant
JP4466682B2 (en) Fluid mixing device
Raza et al. Unbalanced split and recombine micromixer with three-dimensional steps
JP2009000592A (en) Reactor and reaction system
JP2005046652A (en) Microreactor
Schwolow et al. Kinetic and scale-up investigations of a Michael addition in microreactors
JP2008501517A (en) Microstructure design to optimize mixing and pressure drop
JP2012526649A (en) Small reactor for continuous reaction
Chen et al. Inducing 3D vortical flow patterns with 2D asymmetric actuation of artificial cilia for high-performance active micromixing
Shi et al. Rapid and steady concentration gradient generation platform for an antimicrobial susceptibility test
KR101274810B1 (en) Fluid path structure, reactor, and reaction method using the reactor
JP5507296B2 (en) Method and apparatus for producing chemical reactant
JP4660510B2 (en) Reactor and reaction method using the reactor
Kölbl et al. On the use of the Iodide Iodate Reaction Method for assessing mixing times in continuous flow mixers
Kang et al. Scalable Subsecond Synthesis of Drug Scaffolds via Aryllithium Intermediates by Numbered-up 3D-Printed Metal Microreactors
Yang et al. Generation of two-dimensional concentration-gradient droplet arrays on a two-layer chip for screening of protein crystallization conditions
Kabay et al. Microfluidic roadmap for translational nanotheranostics
Sotowa et al. Fluid flow behavior and the rate of an enzyme reaction in deep microchannel reactor under high-throughput condition
Nakajima et al. Microfluidic System Enabling Multistep Tuning of Extraction Time Periods for Kinetic Analysis of Droplet-Based Liquid–Liquid Extraction

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140310

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140319

R150 Certificate of patent or registration of utility model

Ref document number: 5507296

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250