JP2011181322A - Lead accumulator - Google Patents

Lead accumulator Download PDF

Info

Publication number
JP2011181322A
JP2011181322A JP2010043927A JP2010043927A JP2011181322A JP 2011181322 A JP2011181322 A JP 2011181322A JP 2010043927 A JP2010043927 A JP 2010043927A JP 2010043927 A JP2010043927 A JP 2010043927A JP 2011181322 A JP2011181322 A JP 2011181322A
Authority
JP
Japan
Prior art keywords
electrode plate
cell
inter
lead
joint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010043927A
Other languages
Japanese (ja)
Other versions
JP5533033B2 (en
Inventor
Masaru Kojima
優 小島
Kazuhiko Shimoda
一彦 下田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2010043927A priority Critical patent/JP5533033B2/en
Publication of JP2011181322A publication Critical patent/JP2011181322A/en
Application granted granted Critical
Publication of JP5533033B2 publication Critical patent/JP5533033B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Connection Of Batteries Or Terminals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lead accumulator having a high capacity, as well as, a high vibration resistance. <P>SOLUTION: The lead accumulator includes a plurality of groups of polar plates made of polar plates of different polarity, which are alternately combined with separators disposed therebetween; a battery container having a plurality of cell chambers for housing the plurality of groups of polar plates; a connection body for collectively connecting the ear portions of the polar plates of the same polarity on both cell chamber sides; a lid; and an electrolyte, wherein the connection body includes an inter-cell connection portion (thickness t) for connecting the cell chambers that are adjacent to each other; a polar plate collector portion for collectively connecting the ear portions of the polar plates; and a bonding portion for bonding the inter-cell connection portion and the polar plate collector portion, wherein the bonding portion includes: a first bonding portion for bonding the underside of the inter-cell connection portion and the side of the polar plate collector portion; and a round-shaped second bonding portion (radius r) for bonding the side of the inter-cell connection portion and a top surface of the polar plate collector portion, and the relationship among t, r and total weight B (kg) per polar plate group 1 which is dried after being fully charged is represented by r/t/B>0.48 (kg<SP>-1</SP>). <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は鉛蓄電池に関するものである。   The present invention relates to a lead-acid battery.

鉛蓄電池は自動車のセルスタータに用いられるが、近年の環境配慮型の自動車の普及に伴って、これらの自動車に搭載される鉛蓄電池についても、小型化、高容量化、長寿命化および高耐久性が要求されるようになっている。   Lead-acid batteries are used in automobile cell starters, but with the recent spread of environmentally-friendly automobiles, lead-acid batteries installed in these automobiles have also become smaller, higher capacity, longer life and higher durability. Sex is required.

鉛蓄電池は、鉛合金からなる格子に鉛を主体としたペーストを充填してなる正極および負極を、セパレータを介して交互に組み合わせて極板群を形成し、複数のセル室を有する電槽にこの極板群を挿入し、隣り合うセル室の極板群を直列に接続して電槽の上部を蓋で封口した後、電解液を注入することで構成されている。格子の上辺の一部から突出した部位にペーストを充填しないことで、正極および負極にそれぞれ集電用の耳部を形成し、セル室を跨ぐ形で設けた接続体の一方のセル室側に正極の耳部を集合接続し、他方のセル室側に負極の耳部を集合接続することで、隣り合うセル室どうしが直列に接続される。   A lead-acid battery is a battery case having a plurality of cell chambers in which a positive electrode and a negative electrode formed by filling a lead alloy paste with a lead-based paste are alternately combined via a separator to form a group of electrode plates. The electrode plate group is inserted, the electrode plate groups of adjacent cell chambers are connected in series, the upper part of the battery case is sealed with a lid, and then an electrolyte is injected. By not filling the part protruding from a part of the upper side of the lattice with paste, each of the positive electrode and the negative electrode is formed with a current collecting ear, and on one cell chamber side of the connection body provided in a shape straddling the cell chamber Adjacent cell chambers are connected in series by collectively connecting the ears of the positive electrode and collectively connecting the ears of the negative electrode to the other cell chamber side.

一般的な接続体は、隣り合うセル室どうしを繋ぐセル間接続部と、同じ極性の極板の耳部を集合接続する極板集電部と、セル間接続部と極板集電部とを接合する接合部とからなる。   A general connection body includes an inter-cell connection part that connects adjacent cell chambers, an electrode plate current collector part that collectively connects ears of electrode plates of the same polarity, an inter-cell connection part, and an electrode plate current collector part. It consists of the junction part which joins.

極板と接続体とを接続する方法には、キャストーン法とバーニング法とがある。キャストーン法は、極板集電部とセル間接続部が一体となった鋳型に溶解鉛を流し、そこに極板の耳部を浸漬させた後に冷却し、成型する方法である。バーニング法は、極板集電部とセル間接続部を別々に成型させた後、極板の耳部と極板集電部とセル間接続部とを溶接する方法である。いずれの方法を採った場合でも、極板集電部とセル間接続部の形状(主に接続形状)は、鉛蓄電池の耐久性(特に耐振動性)に影響を与える。   As a method for connecting the electrode plate and the connection body, there are a cast-on method and a burning method. The caston method is a method in which molten lead is poured into a mold in which an electrode plate current collector and an inter-cell connection portion are integrated, and the electrode plate is immersed and cooled, and then molded. The burning method is a method in which the electrode plate current collector and the inter-cell connecting part are separately molded, and then the electrode plate ear part, the electrode plate current collecting part, and the inter-cell connecting part are welded. Regardless of which method is employed, the shape (mainly the connection shape) of the electrode plate current collector and the inter-cell connection portion affects the durability (particularly vibration resistance) of the lead storage battery.

鉛蓄電池は充放電の繰り返しに伴って正極が体積膨張する。この膨張が極板集電部に負荷を与えてセル間接続部との間に歪を生じさせ、鉛蓄電池に振動を与えることで接続体が破断することがある。   In the lead storage battery, the positive electrode undergoes volume expansion with repeated charging and discharging. This expansion may cause a load between the electrode plate current collectors and cause distortion between the connection portions between cells, and the connection body may be broken by applying vibration to the lead storage battery.

そこで特許文献1のように、接続体の極板集電部(特許文献1では電極集電部)を極板の体積膨張に応じて上方向に彎曲可能とする構成が考えられている。具体的には、第一の発明と記されたように極板集電部の厚みを工夫したものや、第二の発明と記されたようにセル間接続部にスリットを設けたものが挙げられている。   Therefore, as in Patent Document 1, a configuration is conceivable in which the electrode plate current collector (electrode current collector in Patent Document 1) of the connection body can be bent upward in accordance with the volume expansion of the electrode plate. Specifically, there are those in which the thickness of the electrode plate current collector is devised as described as the first invention, and those in which the slits are provided in the inter-cell connection portions as described in the second invention. It has been.

特開平02−094254号公報Japanese Patent Laid-Open No. 02-094254

しかしながら特許文献1の構造は、接続体の破断を排除することはできるものの、セル間接続部の直下、すなわちセル室どうしを仕切る隔壁の近傍には極板集電部がないために極板が配置されないことが前提となっている。このため、セル室の全空間を有効利用して極板を多く配置し、高容量化を図ることができない。   However, although the structure of Patent Document 1 can eliminate the breakage of the connection body, the electrode plate is not provided because there is no electrode plate current collector immediately below the inter-cell connection part, that is, in the vicinity of the partition wall partitioning the cell chambers. It is assumed that they will not be placed. For this reason, it is impossible to increase the capacity by arranging a large number of electrode plates by effectively using the entire space of the cell chamber.

本発明は上述した課題を解決するものであって、高容量でかつ耐振動性が高い鉛蓄電池を提供することを目的とする。   This invention solves the subject mentioned above, and it aims at providing a high capacity | capacitance and high vibration resistance lead acid battery.

前述の課題を解決するために、請求項1に記載の発明は、セパレータを介して極性の異なる極板を交互に組み合わせた複数の極板群と、この複数の極板群を収納する複数のセル室を有する電槽と、双方のセル室側でそれぞれ同じ極性の極板の耳部を集合接続する接続体と、蓋と、電解液とからなる鉛蓄電池であって、接続体は、隣り合うセル室どうしを繋ぐセル間接続部と、極板の耳部を集合接続する極板集電部と、セル間接続部と極板集電部とを接合する接合部とからなり、接合部は、セル間接続部の底面と極板集電部の側面とを接合する第1の接合部と、セル間接続部の側面とこの第1の接合部および/または極板集電部の上面とを接合するR形状の第2の接合部とからなり、セル間接続部の厚みtと第2の接合部6のR形状の半径rと満充電後に乾燥させた極板群1つ当りの極板の総重量B(kg)との関係がr/t/B≧0.48(kg-1)であることを特徴とする。 In order to solve the above-mentioned problem, the invention according to claim 1 is characterized in that a plurality of electrode plate groups in which electrode plates having different polarities are alternately combined via a separator, and a plurality of electrode plate groups that house the plurality of electrode plate groups. A lead-acid battery comprising a battery case having a cell chamber, a connecting body that collectively connects ears of electrode plates of the same polarity on both cell chamber sides, a lid, and an electrolyte solution. It consists of an inter-cell connecting part that connects the matching cell chambers, an electrode plate current collecting part that collectively connects the ears of the electrode plate, and a joint part that joins the inter-cell connecting part and the electrode plate current collecting part. Are a first joint that joins the bottom surface of the inter-cell connection portion and the side surface of the electrode plate current collector, and a side surface of the inter-cell connection portion and the top surface of the first joint portion and / or the electrode plate current collector portion. And a R-shaped second joint portion that joins to each other, and a thickness t of the inter-cell connecting portion and an R-shaped radius r of the second joint portion 6 Wherein the relationship between the total weight B (kg) of the electrode plate per one electrode group was dried after charging is r / t / B ≧ 0.48 ( kg -1).

また請求項2に記載の発明は、請求項1に記載の発明において、アンチモンを実質的に含まず錫を含む鉛合金で接続体を構成したことを特徴とする。   The invention described in claim 2 is characterized in that, in the invention described in claim 1, the connection body is constituted by a lead alloy which does not substantially contain antimony and contains tin.

本発明の鉛蓄電池に用いる接続体は、セル間接続部の直下に極板集電部を配置せず、セル間接続部の底面と極板集電部の側面を第一の接合部によって接合している。この構造を採用すれば、セル間接続部の直下にも極板を配置して極板の耳部を極板集電部に集合接続できる。すなわち特許文献1と比べてより多くの極板を配置できるので、高容量化が可能になる。   The connection body used for the lead storage battery of the present invention does not dispose the electrode plate current collector directly below the inter-cell connection part, and joins the bottom surface of the inter-cell connection part and the side surface of the electrode plate current collector by the first joint part. is doing. If this structure is adopted, an electrode plate can be arranged directly below the inter-cell connection part, and the ears of the electrode plate can be collectively connected to the electrode plate current collector. That is, since a larger number of electrode plates can be arranged as compared with Patent Document 1, it is possible to increase the capacity.

加えて本発明の鉛蓄電池は、以下に示す2つの特徴の相乗効果によって、特許文献1と同レベルの高い耐振動性を発揮できる。   In addition, the lead storage battery of the present invention can exhibit the same level of vibration resistance as that of Patent Document 1 due to the synergistic effect of the following two characteristics.

第1の特徴は、セル間接続部の側面と第1の接合部および/または極板集電部の上面とを接合するR形状の第2の接合部を設け、この第2の接合部の半径rとセル間接続部の厚みtとの関係を適正化したことである。耐振動性を向上させるためにはそれぞれの部材に掛かる最大応力値を下げて疲労強度を高める必要がある。振動という繰返し負荷を与えると、鉛のような延性材料でもさほど大きな塑性変形を示さず、部材の形状によっては掛かる最大応力値が高くなるため振動に伴って局所的な亀裂が生じ、この亀裂を起点として破断に至る。この不具合を避けるためには、鉛合金からなる接続体の構造を、局所的な亀裂が発生し難いものにする必要がある。本発明者らが鋭意検討した結果、R形状の第2の接合部を無作為に設けるだけでなく半径rを大きくしてセル間接続部の厚みtとの比r/tを大きくすることで、僅かな重量増で接続体に局所的な亀裂を発生し難くでき、疲労強度が向上することを知見した。第1の特徴はこの知見を活用したものであって、接続体全体としては局所的な亀裂を抑えられる形状である一方、極板集電部については一定荷重の負荷に対して強い(塑性領域が広い)鉛の材料特性を利用し、極板の体積膨張(一定荷重の負荷)に対して塑性変形できる形状としたものである。但し実際の鉛蓄電池における本発明の効果の有無は、極板集電部から垂下する極板の総重量に影響されることになる。   The first feature is that an R-shaped second joint that joins the side surface of the inter-cell connecting portion and the upper surface of the first joint and / or the electrode plate current collector is provided. This is to optimize the relationship between the radius r and the thickness t of the connection part between cells. In order to improve the vibration resistance, it is necessary to increase the fatigue strength by lowering the maximum stress value applied to each member. When a cyclic load of vibration is applied, even ductile materials such as lead do not show much plastic deformation, and depending on the shape of the member, the maximum stress applied increases, so local cracks occur due to vibration, and this crack is Breaks as the starting point. In order to avoid this problem, it is necessary to make the structure of the connection body made of the lead alloy difficult to cause local cracks. As a result of intensive studies by the present inventors, not only randomly providing R-shaped second joints, but also increasing the radius r to increase the ratio r / t to the thickness t of the inter-cell connection part. It has been found that a slight increase in weight makes it difficult for local cracks to occur in the connection body and improves the fatigue strength. The first feature utilizes this knowledge, and the whole connected body has a shape capable of suppressing local cracks, while the electrode plate current collector is strong against a constant load (plastic region). However, the material characteristics of lead are utilized, and the electrode plate has a shape that can be plastically deformed with respect to the volume expansion (load of a constant load) of the electrode plate. However, the presence or absence of the effect of the present invention in an actual lead storage battery is affected by the total weight of the electrode plates hanging from the electrode plate current collector.

第2の特徴は、極板集電部の長辺すべてに沿って(セル間接続部の直下にも極板を配置して)極板の耳部を接続することで、極板群がセル室どうしを仕切る隔壁に接しやすくしたことである。高容量化を目論んでセル間接続部の直下にも極板を配置し、極板群と隔壁とが所定の摩擦係数を有するようにすると、両者間に十分な隙間がある場合と比べて、振動波の伝播による極板群の振動自体が起こりにくくなるため、接続体に掛かる応力が低下するようになる。   The second feature is that the electrode plate group is connected to the cell by connecting the ears of the electrode plate along all the long sides of the electrode plate current collector (with the electrode plate arranged immediately below the inter-cell connecting portion). It is easier to touch the partition that separates the rooms. In order to increase the capacity, the electrode plate is also arranged directly below the inter-cell connection part, and when the electrode plate group and the partition have a predetermined friction coefficient, compared to a case where there is a sufficient gap between them, Since the vibration of the electrode plate group itself due to the propagation of the vibration wave is less likely to occur, the stress applied to the connection body is reduced.

本発明は、耐食性向上を目論んでアンチモンを実質的に含まず錫を含む鉛合金(Pb−Sn)で接続体を構成した場合に特に有効であり、これによって耐食性と耐振動性の双方に優れた高容量型の鉛蓄電池を実現できるようになる。   The present invention is particularly effective when a connection body is composed of a lead alloy (Pb-Sn) containing substantially no antimony and containing tin for the purpose of improving the corrosion resistance. High capacity lead-acid batteries can be realized.

以上のように本発明によれば、セル間接続部の直下にも極板を配置できるために高容量化が可能で、かつ第2の接合部の構造とあいまって高い耐振動性も確保できる鉛蓄電池を提供できる。   As described above, according to the present invention, since the electrode plate can be arranged directly below the inter-cell connection portion, the capacity can be increased, and the high vibration resistance can be secured together with the structure of the second joint portion. A lead storage battery can be provided.

(a)本発明の鉛蓄電池の特徴部分を示す部分斜視図、(b)A面に沿った断面図、(c)B面に沿った断面図、(d)C面に沿った断面図(A) Partial perspective view showing the characteristic part of the lead storage battery of the present invention, (b) Cross sectional view along A plane, (c) Cross sectional view along B plane, (d) Cross sectional view along C plane (a)第2の接合部の半径rとセル間接続部の厚みtとの比r/tと接続体に掛かる最大応力値との関係をシミュレーションした結果を示す図、(b)第1の接合部が極板集電部に接する長さsと接続体に掛かる最大応力値との関係をシミュレーションした結果を示す図、(c)セル間接続部の厚みtと接続体に掛かる最大応力値との関係をシミュレーションした結果を示す図(A) The figure which shows the result of having simulated the relationship between ratio r / t of the radius r of a 2nd junction part, and the thickness t of the connection part between cells, and the maximum stress value concerning a connection body, (b) 1st The figure which shows the result of having simulated the relationship between the length s which a junction part contacts an electrode plate current collection part, and the maximum stress value concerning a connection body, (c) The thickness t of the connection part between cells, and the maximum stress value concerning a connection body That shows the result of simulating the relationship 第2の接合部の半径rとセル間接続部の厚みtとの比r/tと耐振動性との関係を実際の鉛蓄電池にて評価した結果を示す図The figure which shows the result of having evaluated the relationship between the ratio r / t of the radius r of the 2nd junction part, and the thickness t of the connection part between cells, and vibration resistance with the actual lead acid battery. (a)D23サイズにおいて図3の結果に極板の総重量Bの影響を加味してまとめた図、(b)D26サイズにおいて図3の結果に極板の総重量Bの影響を加味してまとめた図(A) In the D23 size, the result of FIG. 3 is added to the result of FIG. 3, and (b) In the D26 size, the effect of the total weight B of the electrode plate is added to the result of FIG. Summary figure 図4の要部を拡大した図The figure which expanded the principal part of FIG.

以下に、本発明を実施するための形態について、図を用いて説明する。   Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.

図1は本発明の鉛蓄電池の特徴部分を示すものであって、(a)は部分斜視図、(b)は(a)に示すA面に沿った断面図、(c)は(a)に示すB面に沿った断面図、(d)は(a)に示すC面に沿った断面図である。セパレータ(図示せず)を介して極性の異なる極板1(正極および負極)を交互に組み合わせた複数の極板群を、電槽(図示せず)の複数のセル室の中に収納し、このセル室を跨ぐ形状である接続体7で互いを電気的に接続し、電槽の開口部に蓋を設けて電解液を各セル室に注入することで、本発明の鉛蓄電池が構成される。   FIG. 1 shows a characteristic part of the lead-acid battery of the present invention, where (a) is a partial perspective view, (b) is a cross-sectional view along the A plane shown in (a), and (c) is (a). (D) is sectional drawing along the C surface shown to (a). A plurality of electrode plate groups in which electrode plates 1 (positive electrode and negative electrode) having different polarities are alternately combined via separators (not shown) are housed in a plurality of cell chambers of a battery case (not shown), The lead storage battery of the present invention is configured by electrically connecting each other with the connecting body 7 having a shape straddling the cell chamber, providing a lid at the opening of the battery case, and injecting the electrolyte into each cell chamber. The

接続体7は、隣り合うセル室どうしを繋ぐセル間接続部4と、極板1の耳部2を集合接続する極板集電部3とセル間接続部4と極板集電部3とを接合する接合部(図1(b)〜(d)においてハッチングで表記)とからなる。なお一般的な鉛蓄電池では、接続体7は一方のセル室側で極板集電部3に集合接続されているのは正極の耳部2であり、他方のセル室側で極板集電部3に集合接続されているのは負極の耳部2である。このような接続を行うことで、鉛蓄電池はセル室の分だけ直列に接続されることになる。   The connection body 7 includes an inter-cell connection portion 4 that connects adjacent cell chambers, an electrode plate current collector 3 that collectively connects the ear portions 2 of the electrode plate 1, an inter-cell connection portion 4, and an electrode plate current collector 3. Are joined together (indicated by hatching in FIGS. 1B to 1D). In a general lead-acid battery, the connection body 7 is connected to the electrode plate current collector 3 on one cell chamber side, and is connected to the electrode ear 2 of the positive electrode, and the electrode plate current collector on the other cell chamber side. What is collectively connected to the portion 3 is the ear 2 of the negative electrode. By making such a connection, the lead storage battery is connected in series by the amount corresponding to the cell chamber.

接続体7は、セル間接続部4の底面と極板集電部3の側面とを接合する第1の接合部5と、セル間接続部4の側面と第1の接合部5および/または極板集電部3の上面とを接合するR形状の第2の接合部6とで構成し、第2の接合部6の半径rとセル間接続部4の厚みtとの関係を適正化したことを特徴とする。耐振動性を向上させるためにはそれぞれの部材に掛かる最大応力値を下げて疲労強度を高める必要があるが、振動という繰返し負荷を与えると、鉛のような延性材料でも大きな塑性変形を示さず、接続体7の形状によっては掛かる最大応力値が高くなるため振動に伴って局所的な亀裂が生じ、この亀裂を起点として破断に至る。この不具合を避けるためには、鉛合金からなる接続体7の構造を、局所的な亀裂が発生し難いものにする必要がある。第2の接合部6の半径rを大きくしてセル間接続部の厚みtとの比r/tを大きくすることで、接続体7は僅かな重量増で局所的な亀裂が発生し難いものとなる(最大応力値が下がり疲労強度が向上する)。本発明ではこの知見を活用し、接続体7全体としては局所的な亀裂を抑えられる形状である一方、極板集電部3については一定荷重の負荷に対して強い(塑性領域が広い)鉛の材料特性を利用し、極板1の体積膨張(一定荷重の負荷)に対して十分に塑性変形できる形状とした。特に図1(b)および(c)に示すように、第2の接続部6をセル間接続部4のA面とB面の双方から張り出すように設けることで、本発明の効果をより高めることができる。但し実際の鉛蓄電池における本発明の効果の有無は、後に詳述するように、極板集電部3から垂下する極板1の総重量に影響されることになる。   The connection body 7 includes a first joint 5 that joins the bottom surface of the inter-cell connection portion 4 and the side surface of the electrode plate current collector 3, a side surface of the inter-cell connection portion 4, the first joint portion 5, and / or It is composed of an R-shaped second joint 6 that joins the upper surface of the electrode plate current collector 3, and optimizes the relationship between the radius r of the second joint 6 and the thickness t of the inter-cell connection 4. It is characterized by that. In order to improve the vibration resistance, it is necessary to increase the fatigue strength by reducing the maximum stress value applied to each member. However, when a repeated load of vibration is applied, ductile materials such as lead do not show large plastic deformation. Depending on the shape of the connection body 7, the maximum stress value to be applied becomes high, so that a local crack is generated along with the vibration, and the fracture starts from this crack. In order to avoid this problem, it is necessary to make the structure of the connection body 7 made of a lead alloy difficult to cause local cracks. By increasing the radius r of the second joint 6 and increasing the ratio r / t to the thickness t of the inter-cell connection portion, the connection body 7 is less likely to cause local cracks with a slight increase in weight. (Maximum stress value decreases and fatigue strength improves). In the present invention, this knowledge is utilized, and the connection body 7 as a whole can suppress local cracks, while the electrode plate current collector 3 is a lead that is strong against a load of a constant load (wide plastic region). Thus, the shape of the electrode plate 1 can be sufficiently plastically deformed with respect to the volume expansion (constant load). In particular, as shown in FIGS. 1B and 1C, by providing the second connection portion 6 so as to protrude from both the A surface and the B surface of the inter-cell connection portion 4, the effect of the present invention is further improved. Can be increased. However, the presence or absence of the effect of the present invention in an actual lead-acid battery is affected by the total weight of the electrode plate 1 depending from the electrode plate current collector 3 as will be described in detail later.

また接続体7は、セル間接続部4の直下に極板集電部3を配置せず、セル間接続部4の底面と極板集電部3の側面を第一の接合部5によって接合している。この構造を採用すれば、セル間接続部4の直下にも極板1を配置して極板1の耳部2を極板集電部3に集合接続できる。すなわち特許文献1と比べてより多くの極板1を配置できるので、高容量化が可能になる。この構成を採ることによって、極板群がセル室どうしを仕切る隔壁(図示せず)に接しやすくなる。極板群と隔壁とが所定の摩擦係数を有すると、両者間に十分な隙間がある場合と比べて、振動波の伝播による極板群の振動自体が起こりにくくなる。よって接続体7に掛かる応力が低下するようになる。   In addition, the connecting body 7 does not arrange the electrode plate current collector 3 immediately below the inter-cell connection portion 4, and the first joint portion 5 joins the bottom surface of the inter-cell connection portion 4 and the side surface of the electrode plate current collector portion 3. is doing. If this structure is adopted, the electrode plate 1 can be arranged immediately below the inter-cell connection portion 4 and the ear portion 2 of the electrode plate 1 can be collectively connected to the electrode plate current collecting portion 3. That is, since a larger number of electrode plates 1 can be arranged as compared with Patent Document 1, it is possible to increase the capacity. By adopting this configuration, the electrode plate group can easily come into contact with partition walls (not shown) that partition the cell chambers. When the electrode plate group and the partition wall have a predetermined coefficient of friction, vibration of the electrode plate group due to propagation of the vibration wave is less likely to occur than when there is a sufficient gap between them. Accordingly, the stress applied to the connection body 7 is reduced.

以上の2つの特徴の相乗効果によって、本発明の鉛蓄電池は、特許文献1と同レベルの高い耐振動性を発揮できる。   Due to the synergistic effect of the above two features, the lead storage battery of the present invention can exhibit the same level of vibration resistance as that of Patent Document 1.

本発明の正極において、活物質には鉛粉を用いることができ、活物質および添加物を充填する格子にはPb−Ca−Sn合金を用いることができる。   In the positive electrode of the present invention, lead powder can be used for the active material, and a Pb—Ca—Sn alloy can be used for the lattice filled with the active material and additives.

本発明の負極において、活物質には鉛粉を用いることができ、添加物にはカーボン、硫酸バリウム、リグニン化合物を用いることができ、活物質および添加物を充填する格子にはPb−Ca−Sn合金を用いることができる。   In the negative electrode of the present invention, lead powder can be used for the active material, carbon, barium sulfate, and lignin compound can be used for the additive, and Pb—Ca— can be used for the lattice filled with the active material and additive. Sn alloy can be used.

本発明のセパレータには、ポリエチレンなどの樹脂を用いることができる。   A resin such as polyethylene can be used for the separator of the present invention.

本発明の電槽および蓋には、ポリプロピレンなどの樹脂を用いることができる。   Resin such as polypropylene can be used for the battery case and the lid of the present invention.

本発明の電解液には、比重1.25〜1.30の硫酸を用いることができる。   For the electrolytic solution of the present invention, sulfuric acid having a specific gravity of 1.25 to 1.30 can be used.

本発明の接続体7には、種々の鉛合金を用いることができる。なお耐食性向上を目論んでアンチモンを実質的に含まず錫を含む鉛合金(Pb−Sn)で接続体7を構成した場合、耐食性と耐振動性の双方に優れた高容量型の鉛蓄電池を実現できるようになる。   Various lead alloys can be used for the connection body 7 of the present invention. If the connection body 7 is made of a lead alloy (Pb-Sn) that does not substantially contain antimony and contains tin in order to improve corrosion resistance, a high-capacity lead-acid battery that is excellent in both corrosion resistance and vibration resistance is realized. become able to.

次に、実施例によって本発明の効果を説明する。   Next, the effects of the present invention will be described with reference to examples.

(シミュレーション)
実際の鉛蓄電池を用いた試験に先立って行ったシミュレーションについて記す。
(simulation)
A simulation performed prior to a test using an actual lead storage battery will be described.

図2は、接続体7の諸形状と接続体7に掛かる最大応力値との関係をシミュレーションした結果を示す図であって、(a)は第2の接合部6の半径rとセル間接続部4の厚みtとの比、(b)は第1の接合部5が極板集電部3に接する長さS、(c)はセル間接続部4の厚みtをそれぞれ検討した結果である。シミュレーションは、有限要素法を用いて接続体7のみに上下方向の負荷を与える設定で行った。   FIG. 2 is a diagram showing the result of simulating the relationship between the various shapes of the connection body 7 and the maximum stress value applied to the connection body 7, wherein (a) shows the radius r of the second joint 6 and the connection between cells. The ratio to the thickness t of the portion 4, (b) is the length S at which the first joint 5 is in contact with the electrode plate current collector 3, and (c) is the result of examining the thickness t of the inter-cell connecting portion 4. is there. The simulation was performed using a finite element method with a setting that applies a load in the vertical direction only to the connection body 7.

なお図2では、最大応力値の尺度として、任意にr、tおよびSを変化させた接続体7に掛かる最大応力値(σMAX)を、標準条件すなわちr=2、t=4、L=40(ここでLとは極板集電部3の長さ)、r/t=0.5、S/L=0.55の接続体7に掛かる最大応力値(σS)で除した比(σmax/σs)を用いた。すなわち比σmax/σsが小さいほど、接続体7が耐振動性に優れた設計であるといえる。 In FIG. 2, as a measure of the maximum stress value, the maximum stress value (σ MAX ) applied to the connection body 7 in which r, t, and S are arbitrarily changed is represented by standard conditions, that is, r = 2, t = 4, L = 40 (where L is the length of the electrode plate current collector 3), ratio divided by the maximum stress value (σ S ) applied to the connection body 7 at r / t = 0.5, S / L = 0.55 (Σ max / σ s ) was used. That is, it can be said that the smaller the ratio σ max / σ s is, the better the connection body 7 is designed to have vibration resistance.

また図2では、重量増減の尺度として、任意にr、tおよびSを変化させた接続体7の重量を標準条件の接続体7の重量で除した比を用いた。   In FIG. 2, a ratio obtained by dividing the weight of the connection body 7 in which r, t, and S are arbitrarily changed by the weight of the connection body 7 under the standard conditions is used as a scale for increasing or decreasing the weight.

図2(a)から、第2の接合部6の半径rをセル間接続部4の厚みtに対して大きくすれば、僅かな重量増にもかかわらず、接続体7の最大応力値を大幅に低減させることができる。これに対して、図2(b)のように第1の接合部5が極板集電部3に接する長さSを増しても、第1の接合部5の体積増加に伴って接続体7の重量が増すにもかかわらず最大応力値は低減されない。さらに図2(c)のようにセル間接続部4の厚みを増した場合、最大応力値は低減するものの接続体7が大幅な重量増を伴うことになる。これらのシミュレーションの結果から、第2の接合部6の半径rとセル間接続部4の厚みtとの比を適正化することが、他の部位の検討と比べて効果が高いことがわかった。   From FIG. 2A, if the radius r of the second joint portion 6 is increased with respect to the thickness t of the inter-cell connection portion 4, the maximum stress value of the connection body 7 is greatly increased despite a slight increase in weight. Can be reduced. On the other hand, even if the length S at which the first joint 5 is in contact with the electrode plate current collector 3 is increased as shown in FIG. Although the weight of 7 is increased, the maximum stress value is not reduced. Further, when the thickness of the inter-cell connection portion 4 is increased as shown in FIG. 2C, the connection body 7 is accompanied by a significant increase in weight although the maximum stress value is reduced. From the results of these simulations, it was found that optimizing the ratio of the radius r of the second joint 6 and the thickness t of the inter-cell connection 4 is more effective than the examination of other parts. .

そこで上述したシミュレーション結果を実証するために、実際の鉛蓄電池を構成して耐振動性試験を行った。   Therefore, in order to verify the simulation results described above, an actual lead storage battery was constructed and a vibration resistance test was performed.

(実際の鉛蓄電池での試験)
正極は、鉛合金(Pb−Ca−Sn)からなる格子に鉛粉からなるペーストを充填して作製した。負極は、鉛合金(Pb−Ca−Sn)からなる格子に鉛、カーボン、硫酸バリウムおよびリグニン化合物からなるペーストを充填して作製した。この正極と負極とを、ポリエチレン製のセパレータを介して交互に組み合わせて複数の極板群を作製し、複数のセル室を有するポリプロピレン製の電槽に挿入した。
(Test with actual lead-acid battery)
The positive electrode was produced by filling a lattice made of a lead alloy (Pb—Ca—Sn) with a paste made of lead powder. The negative electrode was prepared by filling a lattice made of a lead alloy (Pb—Ca—Sn) with a paste made of lead, carbon, barium sulfate and a lignin compound. The positive electrode and the negative electrode were alternately combined through a polyethylene separator to produce a plurality of electrode plate groups, which were inserted into a polypropylene battery case having a plurality of cell chambers.

接続体7にはアンチモンを実質的に含まず錫を含む鉛合金(Pb−Sn)を用い、図1のように極板集電部3、セル間接続部4、第1の接合部5および第2の接合部6からなる構造とした。その際、セル間接続部4の厚みtを4mm一定とし、第2の接合部6の半径rを種々変更させた。そして極板集電部3に同じ極性の極板1の耳部2を集合溶接し、隣り合うセル室のセル間接続部4どうしを接続することで複数の極板群を直列に接続し、電槽の開口部をポリプロピレン製の蓋で封口した後、電解液として比重1.28の硫酸を注入することで、JIS D5301におけるD23サイズ(極板1の総重量B=1.540kg)およびD26サイズ(極板1の総重量B=1.885kg)の鉛蓄電池を作製した。   As the connection body 7, a lead alloy (Pb-Sn) containing substantially no antimony and containing tin is used. As shown in FIG. 1, the electrode plate current collector 3, the inter-cell connection 4, the first joint 5 and A structure including the second joint portion 6 was adopted. At that time, the thickness t of the inter-cell connecting portion 4 was kept constant at 4 mm, and the radius r of the second joint portion 6 was variously changed. Then, the electrode plate current collector 3 is collectively welded to the ear portion 2 of the electrode plate 1 of the same polarity, and a plurality of electrode plate groups are connected in series by connecting the inter-cell connection portions 4 of the adjacent cell chambers. After sealing the opening of the battery case with a lid made of polypropylene, sulfuric acid having a specific gravity of 1.28 is injected as an electrolyte, so that D23 size (total weight B of electrode plate B = 1.540 kg) and D26 in JIS D5301 A lead-acid battery having a size (total weight B of electrode plate 1 = 1.85 kg) was produced.

上述した接続体7の設計条件ごとに鉛蓄電池を複数個用意し、JIS D5301に示された方法で耐振動性試験に供した。具体的には日本工業規格値(振動加速度29.4(m/s2))を超える振動加速度49.0(m/s2)に達するまで鉛蓄電池に付与する振動加速度を徐々に高めながら、最初の1個が放電不可能となったときの振動加速度と、振動加速度49.0(m/s2)に達するまでに放電不可能になった鉛蓄電池の個数の割合(不良率)とを記録した。なお全ての鉛蓄電池が耐振動性49.0(m/s2)を満たした条件については、振動加速度の限界値を求めるために、最初の1個が放電不可能になるまで振動加速度をさらに高めた。 A plurality of lead storage batteries were prepared for each design condition of the connection body 7 described above, and subjected to a vibration resistance test by the method shown in JIS D5301. Specifically, while gradually increasing the vibration acceleration applied to the lead-acid battery until reaching a vibration acceleration of 49.0 (m / s 2 ) exceeding the Japanese Industrial Standard value (vibration acceleration of 29.4 (m / s 2 )), The vibration acceleration when the first one becomes impossible to discharge, and the ratio (defective rate) of the number of lead-acid batteries that became unable to discharge before reaching the vibration acceleration of 49.0 (m / s 2 ). Recorded. For all lead-acid batteries satisfying the vibration resistance of 49.0 (m / s 2 ), the vibration acceleration is further increased until the first one cannot be discharged in order to obtain the limit value of vibration acceleration. Increased.

このようにして得られた試験結果を、縦軸を最初の1個が放電不可能となったときの振動加速度(耐振動性の尺度)と不良率(振動加速度49.0(m/s2)に達するまでに放電不可能になった鉛蓄電池の個数の割合)、横軸をシミュレーションで得られた知見に基づき比r/tとしてまとめ、図3に示した。 The test results obtained in this manner are plotted with the vibration acceleration (measurement of vibration resistance) and the defect rate (vibration acceleration 49.0 (m / s 2 ) when the first one cannot be discharged on the vertical axis. The ratio of the number of lead-acid batteries that have become incapable of discharging before reaching ()), the horizontal axis is summarized as the ratio r / t based on the knowledge obtained by simulation, and is shown in FIG.

両サイズともに所定の比r/tを境に耐振動性が向上する(49.0(m/s2)に達するまでに放電不可能となる割合が激減する)ものの、所定の比r/tはサイズによって異なり、D26サイズは1であるもののD23サイズでは0.8となった。 In both sizes, the vibration resistance is improved at a predetermined ratio r / t (the rate at which discharge is impossible before reaching 49.0 (m / s 2 ) is drastically reduced), but the predetermined ratio r / t The D26 size was 1 but the D23 size was 0.8.

そこで得られた試験結果を基に、極板集電部3から垂下する極板1の総重量Bで比r/tをさらに除した値(r/t/B)を横軸とし、図4(a)(D23サイズ)、図4(b)(D26サイズ)および図5(図4の要部となる変化の大きい箇所の拡大図)に示した。   On the basis of the test results obtained there, the horizontal axis represents a value (r / t / B) obtained by further dividing the ratio r / t by the total weight B of the electrode plate 1 suspended from the electrode plate current collector 3. This is shown in (a) (D23 size), FIG. 4 (b) (D26 size) and FIG.

図4(a)(b)および図5からわかるように、接続体7のみ考慮したシミュレーションの知見に実際の鉛蓄電池の構成条件(極板集電部3から垂下する極板1の総重量B)を加味することで、鉛蓄電池のサイズが異なっても、同一の比r/t/Bを境に耐振動性が向上することがわかる。   As can be seen from FIGS. 4A and 4B and FIG. 5, the actual lead storage battery configuration conditions (the total weight B of the electrode plate 1 hanging from the electrode plate current collector 3) are based on the knowledge of the simulation considering only the connection body 7. ), It can be seen that the vibration resistance is improved with the same ratio r / t / B as the boundary even if the size of the lead-acid battery is different.

本発明の鉛蓄電池は、極板集電部3の長辺すべてに沿って極板1の耳部2を接続することで、極板群とセル室どうしを仕切る隔壁とが所定の摩擦係数を有するようにしている。この構成を採ることで、耐振動試験において振動波の伝播による極板群の振動自体が起こりにくくなるため、接続体7に掛かる応力が低下するものの、極板群の重量に比例して極板群の振動は大きくなる。すなわち本発明が言及する効果を示す構成は、図4(a)(b)および図5中において丸で示される、比r/t/Bが0.48を超えるものが対象となる。   In the lead storage battery of the present invention, the ear plate 2 of the electrode plate 1 is connected along all the long sides of the electrode plate current collector 3, so that the electrode plate group and the partition wall that partitions the cell chambers have a predetermined coefficient of friction. To have. By adopting this configuration, the vibration of the electrode group due to the propagation of the vibration wave is less likely to occur in the vibration resistance test. Therefore, although the stress applied to the connection body 7 is reduced, the electrode plate is proportional to the weight of the electrode group. The group vibration becomes large. That is, the configuration showing the effect referred to by the present invention is the one having a ratio r / t / B exceeding 0.48, which is indicated by a circle in FIGS. 4 (a) and 4 (b) and FIG.

なお比r/t/Bが0.48以下の比較例(図4(a)(b)および図5において×で示す)もののうち49.0(m/s2)に達するまでに放電不可能となった鉛蓄電池を試験後に分解したところ、全て極板集電部3とセル間接続部4との境界(第1の接合部5あるいは第2の接合部6)が破断していた。これに対して、比R/t/Bが0.48を超える実施例のうち49.0(m/s2)を超えた耐振動性試験で放電不可能となった鉛蓄電池を試験後に分解したところ、全て極板1の耳部2が破断していた。すなわち実施例の鉛蓄電池の耐振動性が振動加速度58(m/s2)付近で頭打ちしているのは、接続体7自体の破断に起因したものではない。 In the comparative example (indicated by x in FIGS. 4 (a), 4 (b) and 5) where the ratio r / t / B is 0.48 or less, it is impossible to discharge until reaching 49.0 (m / s 2 ). When the lead storage battery became disassembled after the test, the boundary (first joint 5 or second joint 6) between the electrode plate current collector 3 and the inter-cell connection 4 was all broken. On the other hand, among the examples in which the ratio R / t / B exceeds 0.48, a lead-acid battery that cannot be discharged in a vibration resistance test exceeding 49.0 (m / s 2 ) is disassembled after the test. As a result, the ears 2 of the electrode plate 1 were all broken. That is, the fact that the vibration resistance of the lead-acid battery of the example has peaked near the vibration acceleration 58 (m / s 2 ) is not due to the fracture of the connection body 7 itself.

電解液が浸漬していない箇所で破断が起こった場合、内部短絡によってスパークが発生して電槽が破損する可能性がある。本発明の鉛蓄電池は、49.0(m/s2)を満たす耐振動性を示すだけでなく、万一49.0(m/s2)を超える振動が起こっても、ユーザーが最低液面線の管理を行ってさえいれば極板1の耳部2は電解液に浸漬するためにスパークは発生しないので、この管理を行っても電解液に浸漬しない箇所(極板集電部3とセル間接続部4の境界)で破断する比較例とは異なり、フェールセーフな構成となる。 When a breakage occurs at a place where the electrolytic solution is not immersed, a spark may occur due to an internal short circuit and the battery case may be damaged. Lead-acid battery of the present invention not only shows the vibration resistance satisfying 49.0 (m / s 2), take place the vibration exceeding Should 49.0 (m / s 2), the user is minimum fluid Since the ear part 2 of the electrode plate 1 is immersed in the electrolytic solution as long as the surface line is managed, no spark is generated. Therefore, a portion that is not immersed in the electrolytic solution even if this management is performed (the electrode collector part 3 Unlike the comparative example that breaks at the boundary of the inter-cell connecting portion 4), the configuration is a fail-safe.

また実施例の鉛蓄電池のうち49.0(m/s2)を超えた耐振動性試験で放電不可能となったものは、全て正極の耳部2が破断していた。正極電位下において酸化されて(部分的に二酸化鉛となって)振動により破断しやすくなった影響も考えられるが、極板1の重量(正極>負極)の影響を勘案すると、シミュレーションの知見(比r/t)をさらに極板1の総重量Bで除すること(比r/t/B)の妥当性を示す結果であるといえる。 Further, in all of the lead storage batteries of the examples, those that could not be discharged in the vibration resistance test exceeding 49.0 (m / s 2 ) had the lug 2 of the positive electrode broken. The effect of oxidation (partially lead dioxide) and easy breakage due to vibration is also conceivable, but considering the influence of the weight of the electrode plate 1 (positive electrode> negative electrode), the knowledge of the simulation ( It can be said that the result shows the validity of dividing (ratio / t) by the total weight B of the electrode plate 1 (ratio / t / B).

なお本発明における「極板1の総重量B」は、JIS D5301に規定された条件で満充電を行った後に鉛蓄電池を分解して極板1を取り出し、電解液を洗浄除去して乾燥した後の重量から求めた。鉛蓄電池は充電深さのばらつきに起因して極板1の重量が変動するので、上述した方法で極板1の重量を定義する必要がある。   Note that the “total weight B of the electrode plate 1” in the present invention is that after fully charged under the conditions specified in JIS D5301, the lead-acid battery is disassembled, the electrode plate 1 is taken out, the electrolyte is washed away and dried. It was determined from the later weight. Since the weight of the electrode plate 1 fluctuates due to the variation in the charging depth of the lead storage battery, it is necessary to define the weight of the electrode plate 1 by the method described above.

本発明の鉛蓄電池は、耐振動性に優れるため、振動が掛かりやすい車載用のセルスタータおよび駆動電源として好ましく、利用可能性は極めて高い。   Since the lead storage battery of the present invention is excellent in vibration resistance, it is preferable as an in-vehicle cell starter and a driving power source that are susceptible to vibration, and its applicability is extremely high.

1 極板
2 耳部
3 極板集電部
4 セル間接続部
5 第1の接合部
6 第2の接合部
7 接続体
DESCRIPTION OF SYMBOLS 1 Electrode plate 2 Ear part 3 Electrode plate current collection part 4 Inter-cell connection part 5 1st junction part 6 2nd junction part 7 Connection body

Claims (2)

セパレータを介して極性の異なる極板を交互に組み合わせた複数の極板群と、この複数の極板群を収納する複数のセル室を有する電槽と、一方のセル室側で一方の極性の極板の耳部を集合接続しつつ他方のセル室側で他方の極性の極板の耳部を集合接続する接続体と、蓋と、電解液とからなる鉛蓄電池であって、
前記接続体は、隣り合う前記セル室どうしを繋ぐセル間接続部と、前記極板の耳部を集合接続する極板集電部と、前記セル間接続部と前記極板集電部とを接合する接合部とからなり、
前記接合部は、前記セル間接続部の底面と前記極板集電部の側面とを接合する第1の接合部と、前記セル間接続部の側面とこの第1の接合部および/または前記極板集電部の上面とを接合するR形状の第2の接合部とからなり、
前記セル間接続部の厚みtと、前記第2の接合部6のR形状の半径rと、満充電後に乾燥させた前記極板群1つ当りの前記極板の総重量B(kg)との関係が、r/t/B>0.48(kg-1)であることを特徴とする鉛蓄電池。
A plurality of electrode plate groups in which electrode plates of different polarities are alternately combined via a separator, a battery case having a plurality of cell chambers for storing the plurality of electrode plate groups, and one cell chamber side having one polarity A lead-acid battery comprising a connecting body for collectively connecting the ears of the other polarity electrode plate on the other cell chamber side while collectively connecting the ears of the electrode plate, a lid, and an electrolyte solution,
The connection body includes an inter-cell connecting portion that connects adjacent cell chambers, an electrode plate current collecting portion that collectively connects ear portions of the electrode plates, and an inter-cell connecting portion and the electrode plate current collecting portion. Consisting of joints to be joined,
The joint includes a first joint that joins a bottom surface of the inter-cell connection portion and a side surface of the electrode plate current collector, a side surface of the inter-cell connection portion, the first joint portion, and / or the It comprises an R-shaped second joint that joins the upper surface of the electrode plate current collector,
A thickness t of the inter-cell connecting portion, an R-shaped radius r of the second joint 6, and a total weight B (kg) of the electrode plates per one electrode plate group dried after full charge The relationship is r / t / B> 0.48 (kg −1 ).
アンチモンを実質的に含まず錫を含む鉛合金で前記接続体を構成したことを特徴とする、請求項1記載の鉛蓄電池。 2. The lead acid battery according to claim 1, wherein the connecting body is made of a lead alloy substantially free of antimony and containing tin.
JP2010043927A 2010-03-01 2010-03-01 Lead acid battery Active JP5533033B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010043927A JP5533033B2 (en) 2010-03-01 2010-03-01 Lead acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010043927A JP5533033B2 (en) 2010-03-01 2010-03-01 Lead acid battery

Publications (2)

Publication Number Publication Date
JP2011181322A true JP2011181322A (en) 2011-09-15
JP5533033B2 JP5533033B2 (en) 2014-06-25

Family

ID=44692640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010043927A Active JP5533033B2 (en) 2010-03-01 2010-03-01 Lead acid battery

Country Status (1)

Country Link
JP (1) JP5533033B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020080282A1 (en) 2018-10-16 2020-04-23 株式会社Gsユアサ Lead storage battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6489259A (en) * 1987-09-30 1989-04-03 Matsushita Electric Ind Co Ltd Lead-acid battery
JPH01189860A (en) * 1988-01-25 1989-07-31 Japan Storage Battery Co Ltd Lead-acid battery
JP2006140032A (en) * 2004-11-12 2006-06-01 Matsushita Electric Ind Co Ltd Lead-acid battery
JP2009238630A (en) * 2008-03-27 2009-10-15 Shin Kobe Electric Mach Co Ltd Lead storage battery
JP2010032499A (en) * 2008-06-23 2010-02-12 Dainippon Printing Co Ltd Radiation detector using gas amplication and method for manufacturing same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6489259A (en) * 1987-09-30 1989-04-03 Matsushita Electric Ind Co Ltd Lead-acid battery
JPH01189860A (en) * 1988-01-25 1989-07-31 Japan Storage Battery Co Ltd Lead-acid battery
JP2006140032A (en) * 2004-11-12 2006-06-01 Matsushita Electric Ind Co Ltd Lead-acid battery
JP2009238630A (en) * 2008-03-27 2009-10-15 Shin Kobe Electric Mach Co Ltd Lead storage battery
JP2010032499A (en) * 2008-06-23 2010-02-12 Dainippon Printing Co Ltd Radiation detector using gas amplication and method for manufacturing same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020080282A1 (en) 2018-10-16 2020-04-23 株式会社Gsユアサ Lead storage battery

Also Published As

Publication number Publication date
JP5533033B2 (en) 2014-06-25

Similar Documents

Publication Publication Date Title
JP6727965B2 (en) Lead acid battery
WO2014162674A1 (en) Lead acid storage battery
JP6168163B2 (en) Lead acid battery
JP6762895B2 (en) Lead-acid battery
JPWO2012120768A1 (en) Lead acid battery
JP6844610B2 (en) Lead-acid battery
JP6043734B2 (en) Lead acid battery
JPWO2012127789A1 (en) Lead acid battery
JP5533033B2 (en) Lead acid battery
JP5150012B1 (en) Lead acid battery
JP2013191351A (en) Lead acid battery
JP2014075288A (en) Lead-acid battery
JP6197426B2 (en) Lead acid battery
JP6318852B2 (en) Lead acid battery
JP2009170129A (en) Lead storage battery and its manufacturing method
JP7365014B2 (en) lead acid battery
JP6778388B2 (en) Lead-acid battery
JP5880876B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP7037865B2 (en) Lead-acid battery
JP6954879B2 (en) Lead-acid battery
JP7185981B2 (en) Grids and lead-acid batteries
JP6497460B2 (en) Lead acid battery
JP2007273403A (en) Control valve type lead-acid battery and its charging method
JP5504383B1 (en) Lead acid battery
JP2013197003A (en) Lead acid battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121005

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20121218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131216

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20140107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140304

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140401

R151 Written notification of patent or utility model registration

Ref document number: 5533033

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140414

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350