JP7037865B2 - Lead-acid battery - Google Patents

Lead-acid battery Download PDF

Info

Publication number
JP7037865B2
JP7037865B2 JP2019106163A JP2019106163A JP7037865B2 JP 7037865 B2 JP7037865 B2 JP 7037865B2 JP 2019106163 A JP2019106163 A JP 2019106163A JP 2019106163 A JP2019106163 A JP 2019106163A JP 7037865 B2 JP7037865 B2 JP 7037865B2
Authority
JP
Japan
Prior art keywords
negative electrode
lead
electrode plate
positive electrode
separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019106163A
Other languages
Japanese (ja)
Other versions
JP2020202025A (en
Inventor
亮 田井中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Original Assignee
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd filed Critical Furukawa Battery Co Ltd
Priority to JP2019106163A priority Critical patent/JP7037865B2/en
Priority to CN202020164223.2U priority patent/CN211507742U/en
Publication of JP2020202025A publication Critical patent/JP2020202025A/en
Application granted granted Critical
Publication of JP7037865B2 publication Critical patent/JP7037865B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Cell Separators (AREA)
  • Secondary Cells (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Description

本発明は、鉛蓄電池に関する。 The present invention relates to a lead storage battery.

鉛蓄電池には液式のものと制御弁式のものがあり、液式鉛蓄電池では、負極板および正極板がセパレータを介して交互に配置された極板群が、電解液の入った電槽のセル室内に収納されている。
従来のエンジン車に使用する液式鉛蓄電池は、十分な充電状態(充電率が高い状態、過充電状態を含む)で使用されることが多かった。しかし、近年、充電制御車やアイドリングストップ車両が主流になりつつある。また、地球環境問題や高齢ドライバーによる事故増加を背景に、エコ車両、衝突軽減ブレーキ、車両自動制御といった技術も注目され、この技術を備えた車両では、電装品の使用が増加している。このような事情から、近年の車両に搭載された液式鉛蓄電池は、不十分な充電状態である部分充電状態(PSOC:Partial State Of Charge)で使用されることが多くなっている。
There are two types of lead-acid batteries, liquid-type and control valve-type. In liquid-type lead-acid batteries, a group of electrode plates in which negative electrode plates and positive electrode plates are alternately arranged via a separator is an electric tank containing an electrolytic solution. It is stored in the cell room of.
Liquid lead-acid batteries used in conventional engine vehicles are often used in a sufficiently charged state (including a high charge rate state and an overcharged state). However, in recent years, charge control vehicles and idling stop vehicles are becoming mainstream. In addition, with the background of global environmental problems and the increase in accidents caused by elderly drivers, technologies such as eco-friendly vehicles, collision mitigation brakes, and automatic vehicle control are attracting attention, and the use of electrical components is increasing in vehicles equipped with these technologies. Under these circumstances, liquid lead-acid batteries mounted on vehicles in recent years are often used in a partially charged state (PSOC: Partial State Of Charge), which is an insufficiently charged state.

充電初期の液式鉛蓄電池では、充電反応により生じた硫酸イオンが、極板内部から極板近傍に存在する電解液に向けて絶え間なく放出されている。これに伴い、極板近傍に存在する電解液の硫酸濃度が高くなる。つまり、極板内部から外部(極板近傍)に絶え間なく濃硫酸が供給され続ける。この濃硫酸は、極板から離れた部分に存在する電解液(希硫酸)よりも比重が大きいため、重力に従って下降し、電槽の下部に溜まる。その結果、電槽内の電解液は上部と下部で比重差がある状態になる(電解液の成層化)。 In the liquid lead-acid battery at the initial stage of charging, sulfate ions generated by the charging reaction are continuously released from the inside of the plate toward the electrolytic solution existing in the vicinity of the plate. Along with this, the sulfuric acid concentration of the electrolytic solution existing in the vicinity of the electrode plate increases. That is, concentrated sulfuric acid is continuously supplied from the inside of the plate to the outside (near the plate). Since this concentrated sulfuric acid has a higher specific gravity than the electrolytic solution (dilute sulfuric acid) existing in the portion away from the electrode plate, it descends according to gravity and accumulates in the lower part of the electric tank. As a result, the electrolytic solution in the electric tank has a specific gravity difference between the upper part and the lower part (stratification of the electrolytic solution).

充電初期では、液式鉛蓄電池に供給された電力のほとんどが充電反応に使用されて、電解液を構成する水の電気分解に使用される割合は少ない。しかし、充電率が高くなるに連れて、液式鉛蓄電池に供給された電力が電解液を構成する水の電気分解に使用される割合が高くなる。水の電気分解で生じたガスは、極板の内部から外部(極板近傍の電解液中)に放出される。
充電率が100%になった後も液式鉛蓄電池に電力を供給し続ける(過充電状態になる)と、供給された電力は充電反応には使用されず、電解液を構成する水の電気分解にのみ使用されるため、極板内部から大量のガスが発生する。そして、この大量のガスが、極板内部から極板近傍の電解液中へ放出されて、下部に溜まった濃硫酸を上方へ押し上げる作用を発揮し、電解液が攪拌されて、電槽内の電解液の成層化が解消される。
In the initial stage of charging, most of the electric power supplied to the liquid lead-acid battery is used for the charging reaction, and the ratio of the electric power used for the electrolysis of the water constituting the electrolytic solution is small. However, as the charge rate increases, the ratio of the electric power supplied to the liquid lead-acid battery used for electrolysis of the water constituting the electrolytic solution increases. The gas generated by the electrolysis of water is released from the inside of the plate to the outside (in the electrolytic solution near the plate).
If power is continuously supplied to the liquid lead-acid battery (overcharged state) even after the charge rate reaches 100%, the supplied power is not used for the charging reaction, and the electricity of the water constituting the electrolytic solution is used. Since it is used only for decomposition, a large amount of gas is generated from the inside of the electrode plate. Then, this large amount of gas is released from the inside of the electrode plate into the electrolytic solution near the electrode plate, exerts an action of pushing up the concentrated sulfuric acid accumulated in the lower part, and the electrolytic solution is agitated in the electric tank. The stratification of the electrolytic solution is eliminated.

そのため、液式鉛蓄電池が十分な充電状態で使用される場合には、電解液の成層化はさほど大きな問題とならないが、充電率が低い状態で使用される場合には、上述のガスによる電解液の成層化の解消は期待できない。電解液の成層化が解消されないと、負極板下部のサルフェーションが進行して、液式鉛蓄電池の寿命が短くなる。
これに対して、特許文献1には、負極板の表面に、ガラス、パルプ及びポリオレフィンからなる材料群から選択された少なくとも1つの材料の繊維で構成された不織布を当接させることで、充電時に硫酸鉛から溶出してくる硫酸イオンの下降を防止して、成層化が起こるのを防ぐことが記載されている。
Therefore, when the liquid lead-acid battery is used in a sufficiently charged state, the stratification of the electrolytic solution is not a big problem, but when it is used in a state where the charge rate is low, the above-mentioned electrolysis by the gas is used. Elimination of liquid stratification cannot be expected. If the stratification of the electrolytic solution is not eliminated, sulfation at the lower part of the negative electrode plate progresses, and the life of the liquid lead-acid battery is shortened.
On the other hand, in Patent Document 1, a non-woven fabric composed of fibers of at least one material selected from the material group consisting of glass, pulp and polyolefin is brought into contact with the surface of the negative electrode plate during charging. It is described that the fall of sulfate ions eluted from lead sulfate is prevented to prevent stratification from occurring.

一方、特許文献2には、エキスパンド格子を正極格子に用いた鉛蓄電池において、急放電特性を向上するために、エキスパンド網目部の見掛の体積に対してエキスパンド網目体積が占める割合を増加させるとともに、袋状セパレータ表面(正極板と対向する面)に設けたリブの高さを低くすることが記載されている。また、この場合、正極板と袋状セパレータとの接触およびこれによるセパレータの劣化が生じやすくなるが、これを抑制し、寿命特性と急放電特性に優れた鉛蓄電池を提供するために、リブの高さを0.6mm以下とし、リブの間隔をエキスパンド格子のマス目幅寸法以下することが記載されている。 On the other hand, in Patent Document 2, in a lead storage battery using an expanded lattice as a positive electrode lattice, in order to improve the rapid discharge characteristics, the ratio of the expanded mesh volume to the apparent volume of the expanded mesh portion is increased. , It is described that the height of the rib provided on the surface of the bag-shaped separator (the surface facing the positive electrode plate) is lowered. Further, in this case, contact between the positive electrode plate and the bag-shaped separator and deterioration of the separator due to the contact are likely to occur, but in order to suppress this and provide a lead storage battery having excellent life characteristics and rapid discharge characteristics, the ribs are provided. It is described that the height is 0.6 mm or less, and the rib spacing is equal to or less than the grid width dimension of the expanded grid.

特許文献3には、液式鉛蓄電池のセパレータが記載され、このセパレータは、負極板に面する表面上に負極板の幅方向に沿って延びるリブ(横断リブ)を有し、正極板に面する表面上に縦のリブを有することが記載されている。さらに、横切ったリブ高さは、好ましくは約0.02~0.30mm、最も好ましくは約0.075~0.15mmである、との記載もある。
しかし、特許文献1~3には、積層体のセル室内での圧迫力については記載されていない。
Patent Document 3 describes a separator for a liquid lead-acid battery, which has ribs (transverse ribs) extending along the width direction of the negative electrode plate on the surface facing the negative electrode plate and faces the positive electrode plate. It is described as having vertical ribs on the surface to be used. Further, there is a description that the rib height across is preferably about 0.02 to 0.30 mm, most preferably about 0.075 to 0.15 mm.
However, Patent Documents 1 to 3 do not describe the compressive force of the laminated body in the cell chamber.

特許第5500315号公報Japanese Patent No. 5500315 特開2006-140034号公報Japanese Unexamined Patent Publication No. 2006-140034 特表2013-541167号公報Special Table 2013-541167 Gazette

本発明の課題は、部分充電状態で使用される場合に電解液の成層化が抑制されて、寿命が長くなることが期待できる新規な鉛蓄電池を提供することである。 An object of the present invention is to provide a novel lead-acid battery which can be expected to have a long life by suppressing stratification of an electrolytic solution when used in a partially charged state.

上記課題を解決するために、本発明の一態様の鉛蓄電池は下記の構成(1)~(6)を有する。
(1)セル室と、セル室に電解液と共に収納された極板群と、を備える。
(2)極板群は、交互に配置された正極板および負極板と、正極板と負極板との間に配置されたセパレータと、からなる積層体を有する。
(3)セパレータの正極板と対向する面に、セル室の上下方向に対応する第一方向に延びる筋状の突起の突起である縦リブが、正極板の幅方向に対応する第二方向に間隔を開けて複数形成されている。
(4)セパレータの負極板と対向する面に、縦リブよりも突出高さが小さく第二方向に延びる線状の突起である横リブが、第一方向に縦リブの配置間隔よりも小さい間隔を開けて複数形成されている。
(5)横リブの突出高さは0.05mm以上0.5mm以下である。
(6)積層体のセル室内での圧迫力は2.5kPa以上10.0kPa以下である。
In order to solve the above problems, the lead storage battery according to one aspect of the present invention has the following configurations (1) to (6).
(1) A cell chamber and a group of electrode plates stored together with an electrolytic solution in the cell chamber are provided.
(2) The electrode plate group has a laminated body composed of positive electrode plates and negative electrode plates arranged alternately, and separators arranged between the positive electrode plates and the negative electrode plates.
(3) On the surface of the separator facing the positive electrode plate, vertical ribs, which are protrusions of streaky protrusions extending in the first direction corresponding to the vertical direction of the cell chamber, are formed in the second direction corresponding to the width direction of the positive electrode plate. Multiple pieces are formed at intervals.
(4) On the surface of the separator facing the negative electrode plate, the horizontal ribs, which are linear protrusions having a smaller protrusion height than the vertical ribs and extending in the second direction, are spaced smaller than the vertical ribs in the first direction. It is formed more than once by opening.
(5) The protruding height of the lateral rib is 0.05 mm or more and 0.5 mm or less.
(6) The compression force of the laminated body in the cell chamber is 2.5 kPa or more and 10.0 kPa or less.

本発明によれば、部分充電状態で使用される場合に電解液の成層化が抑制されて、寿命が長くなることが期待できる新規な鉛蓄電池が提供される。 According to the present invention, there is provided a novel lead-acid battery which can be expected to have a long life by suppressing stratification of an electrolytic solution when used in a partially charged state.

実施形態の極板群を構成する袋状セパレータの外面(正極板と対向する面)を示す平面図である。It is a top view which shows the outer surface (the surface which faces a positive electrode plate) of the bag-shaped separator which constitutes the electrode plate group of an embodiment. 袋状セパレータを示す部分断面図であって、図1のA-A断面図に対応する。It is a partial cross-sectional view showing a bag-shaped separator, and corresponds to the AA cross-sectional view of FIG. 実施形態の極板群を構成する積層体を示す部分断面図であって、袋状セパレータは図1のB-B断面図に対応する。It is a partial cross-sectional view which shows the laminated body which comprises the electrode plate group of an embodiment, and the bag-shaped separator corresponds to the BB sectional view of FIG. 実施形態の極板群を構成する負極板の格子状基板を示す正面図である。It is a front view which shows the grid-like substrate of the negative electrode plate which constitutes the electrode plate group of an embodiment. 横リブと格子状基板の孔との関係を示す図であって、図4の部分拡大図に対応する。It is a figure which shows the relationship between the horizontal rib, and the hole of a grid-like substrate, and corresponds to the partially enlarged view of FIG. 実施例の試験で得られた、積層体の圧迫力と成層化度合いとの関係を示すグラフである。It is a graph which shows the relationship between the compression force of a laminated body and the degree of stratification obtained in the test of an Example. 実施例の試験で得られた、横リブの数と放電持続時間との関係を示すグラフである。It is a graph which shows the relationship between the number of lateral ribs and the discharge duration obtained in the test of an Example.

以下、本発明の実施形態について説明するが、本発明は以下に示す実施形態に限定されない。以下に示す実施形態では、本発明を実施するために技術的に好ましい限定がなされているが、この限定は本発明の必須要件ではない。
[全体構成の説明]
実施形態の鉛蓄電池は、従来公知のモノブロックタイプの電槽と、蓋と、六個の極板群を有する。電槽は、隔壁により六個のセル室に区画されている。六個のセル室は電槽の長手方向に沿って配列されている。各セル室に一つの極板群が配置されている。各極板群は、積層体と、正極ストラップと、負極ストラップと、正極ストラップから立ち上がる正極中間極柱と、負極ストラップから立ち上がる負極中間極柱と、を有する。積層体は、複数枚の正極板および負極板と、複数の袋状セパレータからなる。
Hereinafter, embodiments of the present invention will be described, but the present invention is not limited to the embodiments shown below. In the embodiments shown below, technically preferable limitations are made for carrying out the present invention, but these limitations are not essential requirements of the present invention.
[Explanation of the overall configuration]
The lead-acid battery of the embodiment has a conventionally known monoblock type battery case, a lid, and a group of six plates. The battery case is divided into six cell chambers by a partition wall. The six cell chambers are arranged along the longitudinal direction of the battery case. One electrode plate group is arranged in each cell chamber. Each electrode plate group has a laminate, a positive electrode strap, a negative electrode strap, a positive electrode intermediate pole column rising from the positive electrode strap, and a negative electrode intermediate pole pillar rising from the negative electrode strap. The laminate is composed of a plurality of positive electrode plates and a negative electrode plate, and a plurality of bag-shaped separators.

正極板は、正極活物質を含む合剤(正極合剤)が保持された正極基板と、正極基板から上側に突出する耳部を有する。負極板は、負極活物質を含む合剤(負極合剤)が保持された負極基板と、負極基板から上側に突出する耳部を有する。複数枚の正極板および負極板は、セパレータを介して交互に配置されている。積層体を構成する負極板の枚数Mnは正極板の枚数Mpよりも一枚多い。
負極板は袋状セパレータ内に収納されている。そして、負極板が入った複数の袋状セパレータと複数枚の正極板とを交互に重ねることで、正極板と負極板との間にセパレータが配置された状態の積層体となっている。この積層体の各セル室内での圧迫力は2.5kPa以上10.0kPa以下になっている。
The positive electrode plate has a positive electrode substrate in which a mixture containing a positive electrode active material (positive electrode mixture) is held, and an ear portion protruding upward from the positive electrode substrate. The negative electrode plate has a negative electrode substrate in which a mixture containing a negative electrode active material (negative electrode mixture) is held, and an ear portion protruding upward from the negative electrode substrate. A plurality of positive electrode plates and negative electrode plates are alternately arranged via a separator. The number M n of the negative electrode plates constituting the laminated body is one more than the number M p of the positive electrode plates.
The negative electrode plate is housed in a bag-shaped separator. Then, by alternately stacking a plurality of bag-shaped separators containing a negative electrode plate and a plurality of positive electrode plates, the laminate is in a state where the separator is arranged between the positive electrode plate and the negative electrode plate. The compression force of this laminated body in each cell chamber is 2.5 kPa or more and 10.0 kPa or less.

[一態様の特徴部分について]
図1~5を用いて特徴部分を説明する。これらの図においては、セル室の上下方向に対応する第一方向をZで示し、セル室の配列方向をXで示し、正極板の幅方向に対応する第二方向をYで示す。また、図3には、正極板1、負極板2、およびセパレータ3からなる積層体10の一部が示されている。
[About the characteristic part of one aspect]
The characteristic portion will be described with reference to FIGS. 1 to 5. In these figures, the first direction corresponding to the vertical direction of the cell chamber is indicated by Z, the arrangement direction of the cell chamber is indicated by X, and the second direction corresponding to the width direction of the positive electrode plate is indicated by Y. Further, FIG. 3 shows a part of the laminated body 10 including the positive electrode plate 1, the negative electrode plate 2, and the separator 3.

〔セパレータについて〕
図1~3に示すように、袋状セパレータ3は、基部31と、複数の縦リブ32と、複数の横リブ33と、複数の小突起34とで構成されている。縦リブ32は、基部31の外面(正極板1と対向する面)311に形成され、Z方向(第一方向)に延びている。複数の縦リブ32は、Y方向(第二方向)に間隔を開けて、互いに平行に配置されている。最も小突起34に近い縦リブ32とその隣の縦リブ32との配置間隔Δ11は、それ以外の縦リブ32同士の配置間隔Δ1よりも大きい。
横リブ33は、縦リブ32よりも突出高さが小さい突起であって、基部31の内面(負極板2と対向する面)312に形成され、Z方向に間隔を開けてY方向に延びている。横リブ33の配置間隔Δ2は、縦リブ32の配置間隔Δ1よりも小さい。
なお、配置間隔は、図2に示すように隣り合うリブの頂部から頂部までの距離と定義する。
[About the separator]
As shown in FIGS. 1 to 3, the bag-shaped separator 3 is composed of a base 31, a plurality of vertical ribs 32, a plurality of horizontal ribs 33, and a plurality of small protrusions 34. The vertical rib 32 is formed on the outer surface (the surface facing the positive electrode plate 1) 311 of the base portion 31 and extends in the Z direction (first direction). The plurality of vertical ribs 32 are arranged parallel to each other with a space in the Y direction (second direction). The arrangement interval Δ11 between the vertical rib 32 closest to the small protrusion 34 and the vertical rib 32 adjacent to the vertical rib 32 is larger than the arrangement interval Δ1 between the other vertical ribs 32.
The horizontal rib 33 is a protrusion having a protrusion height smaller than that of the vertical rib 32, is formed on the inner surface (the surface facing the negative electrode plate 2) 312 of the base 31, and extends in the Y direction with a gap in the Z direction. There is. The arrangement interval Δ2 of the horizontal ribs 33 is smaller than the arrangement interval Δ1 of the vertical ribs 32.
The arrangement interval is defined as the distance from the top of the adjacent ribs to the top as shown in FIG.

基部331の厚さ(X方向の寸法)tは0.1mm以上0.3mm以下である。縦リブ32の突出高さ(X方向の寸法)T1は、0.4mm以上0.8mm以下である。縦リブ32の幅(Y方向の寸法)W1は、0.4mm以上0.7mm以下である。縦リブ32の配置間隔Δ1は8.0mmである。横リブ33の突出高さ(X方向の寸法)T2は、0.05mm以上0.5mm以下である。横リブ33の幅(Z方向の寸法)W2は、0.2mm以上0.6mm以下である。横リブ33の配置間隔Δ2は、横リブ33の幅W2以上とし、0.24mm以上0.62mm以下である。小突起334の突出高さ(X方向の寸法)は、0.05mm以上0.5mm以下である。
セパレータ3は袋状であり、基部31のY方向の両端部がシール部311aである。小突起334は、板状セパレータを袋状にするためのギヤシールの際に、シール部331aに形成されたものである。
The thickness (dimension in the X direction) t of the base portion 331 is 0.1 mm or more and 0.3 mm or less. The protruding height (dimension in the X direction) T1 of the vertical rib 32 is 0.4 mm or more and 0.8 mm or less. The width (dimension in the Y direction) W1 of the vertical rib 32 is 0.4 mm or more and 0.7 mm or less. The arrangement interval Δ1 of the vertical ribs 32 is 8.0 mm. The protruding height (dimension in the X direction) T2 of the lateral rib 33 is 0.05 mm or more and 0.5 mm or less. The width (dimension in the Z direction) W2 of the lateral rib 33 is 0.2 mm or more and 0.6 mm or less. The arrangement interval Δ2 of the horizontal ribs 33 is 0.24 mm or more and 0.62 mm or less, with the width W2 or more of the horizontal ribs 33. The protrusion height (dimension in the X direction) of the small protrusion 334 is 0.05 mm or more and 0.5 mm or less.
The separator 3 has a bag shape, and both ends of the base 31 in the Y direction are sealing portions 311a. The small protrusion 334 is formed on the seal portion 331a at the time of gear sealing for forming the plate-shaped separator into a bag shape.

〔負極板と横リブとの関係について〕
図4に示すように、負極板2は、負極集電体21と負極合剤22で構成されている。負極集電体21は、長方形のエキスパンドメタルからなる格子状基板211と、格子状基板211から上側に突出する耳部212と、で構成されている。格子状基板211は網目状の孔211aを有する。負極集電体21は、主として鉛を含む合金で形成されている。格子状基板211の全ての孔211aの中および格子状基板211の表裏面の全体に、負極合剤22が保持されている。なお、図4は、負極合剤22を部分的に除去して、負極集電体21の一部を露出させた図になっている。
図5に示すように、格子状基板211を構成する孔211aのZ方向の寸法の最大値Kは6mm以上12mm以下の範囲にある。また、Z方向で各孔211aの範囲に存在する横リブ33の数は、平均で8本以上24本以下である。
[Relationship between the negative electrode plate and the horizontal rib]
As shown in FIG. 4, the negative electrode plate 2 is composed of a negative electrode current collector 21 and a negative electrode mixture 22. The negative electrode current collector 21 is composed of a grid-like substrate 211 made of a rectangular expanded metal and a selvage portion 212 protruding upward from the grid-like substrate 211. The grid-like substrate 211 has a mesh-like hole 211a. The negative electrode current collector 21 is mainly made of an alloy containing lead. The negative electrode mixture 22 is held in all the holes 211a of the grid-like substrate 211 and in the entire front and back surfaces of the grid-like substrate 211. Note that FIG. 4 is a diagram in which the negative electrode mixture 22 is partially removed to expose a part of the negative electrode current collector 21.
As shown in FIG. 5, the maximum value K of the dimension in the Z direction of the holes 211a constituting the grid-like substrate 211 is in the range of 6 mm or more and 12 mm or less. Further, the number of lateral ribs 33 existing in the range of each hole 211a in the Z direction is 8 or more and 24 or less on average.

<作用、効果>
この実施形態の鉛蓄電池は、セパレータ3の負極板2と対向する面312に横リブ33が存在することで、横リブ33がないものと比較して、硫酸イオンの沈降が抑制されて成層化を抑制できる効果が得られるとともに、負極合剤22と横リブ33との間にも硫酸を保持できることで、鉛蓄電池の反応性を向上できる効果が得られる。
また、この実施形態の鉛蓄電池は、横リブ33の突出高さが0.05mm以上0.5mm以下であり、積層体10の各セル室内での圧迫力が2.5kPa以上10.0kPa以下になっている。さらに、格子状基板211を構成する複数の孔211aのZ方向の寸法の最大値Kが6mm以上12mm以下であって、Z方向で一つの孔211aの範囲に存在する横リブ33の数が、平均で8本以上24本以下になっている。これらのことにより、この実施形態の鉛蓄電池は、部分充電状態で使用される場合に電解液の成層化が抑制される効果が高く、寿命が長くなることが期待できる。
<Action, effect>
In the lead-acid battery of this embodiment, the presence of the horizontal rib 33 on the surface 312 of the separator 3 facing the negative electrode plate 2 suppresses the sedimentation of sulfate ions and stratifies the lead-acid battery as compared with the one without the horizontal rib 33. Sulfuric acid can be retained between the negative electrode mixture 22 and the lateral rib 33, so that the effect of improving the reactivity of the lead storage battery can be obtained.
Further, in the lead storage battery of this embodiment, the protruding height of the lateral rib 33 is 0.05 mm or more and 0.5 mm or less, and the compression force of the laminated body 10 in each cell chamber is 2.5 kPa or more and 10.0 kPa or less. It has become. Further, the maximum value K of the dimensions of the plurality of holes 211a constituting the grid-like substrate 211 in the Z direction is 6 mm or more and 12 mm or less, and the number of horizontal ribs 33 existing in the range of one hole 211a in the Z direction is determined. The average number is 8 or more and 24 or less. As a result, the lead-acid battery of this embodiment is highly effective in suppressing the stratification of the electrolytic solution when used in a partially charged state, and can be expected to have a long life.

これに対して、横リブ33の突出高さが0.05mm未満であると、硫酸イオンの沈降を抑制する作用が実質的に得られないとともに、負極板2と横リブ33との間に存在する硫酸の量が著しく少なくなるため、反応性の向上効果も実質的に得られない。
横リブ33の突出高さが高い(X方向の寸法が大きい)ほど、硫酸イオンの沈降を抑制する作用と硫酸を保持する作用は高くなる。しかし、0.5mmを超えると、規格品の電槽を使用する場合には積層体10の厚さ(X方向の寸法)が厚くなり過ぎて、セル室に積層体10を挿入する際に、セパレータ3や正極板1に疵が生じるなどの挿入不良が発生し易くなる。
On the other hand, if the protruding height of the lateral rib 33 is less than 0.05 mm, the effect of suppressing the sedimentation of sulfate ions cannot be substantially obtained, and the lateral rib 33 exists between the negative electrode plate 2 and the lateral rib 33. Since the amount of sulfuric acid to be added is significantly reduced, the effect of improving the reactivity cannot be substantially obtained.
The higher the protruding height of the lateral rib 33 (the larger the dimension in the X direction), the higher the action of suppressing the sedimentation of sulfate ions and the action of retaining sulfuric acid. However, if it exceeds 0.5 mm, the thickness of the laminated body 10 (dimension in the X direction) becomes too thick when a standard electric tank is used, and when the laminated body 10 is inserted into the cell chamber, the laminated body 10 becomes too thick. Insertion defects such as defects in the separator 3 and the positive electrode plate 1 are likely to occur.

また、積層体10の各セル室内での圧迫力が2.5kPa未満であると、硫酸イオンの沈降が抑制される作用が実質的に得られず、10.0kPaを超える値としても、硫酸イオンの沈降が抑制される作用は増加しない。
また、格子状基板211を構成する複数の孔211aのZ方向の寸法の最大値Kが6mm未満であると、負極合剤22を複数の孔211aに充填することが困難になり、12mmを超えると、各孔211aに負極合剤22が十分に充填された状態になりにくい。
Further, if the compression force of the laminated body 10 in each cell chamber is less than 2.5 kPa, the effect of suppressing the sedimentation of sulfate ions cannot be substantially obtained, and even if the value exceeds 10.0 kPa, sulfate ions can be obtained. The effect of suppressing sedimentation does not increase.
Further, if the maximum value K of the dimensions in the Z direction of the plurality of holes 211a constituting the lattice-shaped substrate 211 is less than 6 mm, it becomes difficult to fill the plurality of holes 211a with the negative electrode mixture 22, and the thickness exceeds 12 mm. Then, it is difficult for the negative electrode mixture 22 to be sufficiently filled in each hole 211a.

そして、負極板2の格子状基板211として、Z方向の寸法の最大値Kが6mm以上12mm以下の孔211aを備えた格子状基板211を用いた場合、Z方向で一つの孔211aの範囲に存在する横リブ33の数が平均で8本未満であると、硫酸イオンの沈降が抑制される作用が実質的に得られない。24本を超えると、横リブ33により孔211aが塞がれる面積が大きくなり過ぎて、負極板2と横リブ33との間に保持できる硫酸の量が極端に少なくなるため、硫酸イオンの沈降が抑制される作用が低下する。 When a grid-like substrate 211 having holes 211a having a maximum value K of 6 mm or more and 12 mm or less in the Z direction is used as the grid-like substrate 211 of the negative electrode plate 2, it is within the range of one hole 211a in the Z direction. If the number of lateral ribs 33 present is less than 8 on average, the effect of suppressing the sedimentation of sulfate ions cannot be substantially obtained. If the number exceeds 24, the area where the holes 211a are closed by the horizontal ribs 33 becomes too large, and the amount of sulfuric acid that can be held between the negative electrode plate 2 and the horizontal ribs 33 becomes extremely small, so that the sulfate ions settle. The effect of suppressing is reduced.

<製法>
実施形態の鉛蓄電池は、従来公知の方法によって、例えば以下の方法で製造することができる。
先ず、極板群を構成する化成前の正極板1と負極板2を作製する。正極板1は従来品と同じものを作製する。負極板2は、負極集電体21として、格子状基板211の孔211aのZ方向の寸法の最大値K(以下、「寸法K」とも称する。)が6mm以上12mm以下のものを用意する。
次に、上記構造および寸法の袋状のセパレータを入手するか、一面に縦リブ32が形成され、他面に横リブ33が形成された状態の板状のセパレータを入手して、袋状のセパレータ3を作製する。板状のセパレータの状態でのZ方向の寸法は、負極板2の格子状基板211の二倍程度である。板状のセパレータを、基部31の横リブ33が形成されている面を内側にして、Z方向の半分の位置で折り曲げて基部31同士を重ね、基部31のY方向の両端をギヤシールすることで、袋状のセパレータ3が得られる。
<Manufacturing method>
The lead-acid battery of the embodiment can be manufactured by, for example, the following method by a conventionally known method.
First, the positive electrode plate 1 and the negative electrode plate 2 before chemical formation that form the electrode plate group are manufactured. The positive electrode plate 1 is the same as the conventional product. As the negative electrode plate 2, a negative electrode current collector 21 having a maximum value K (hereinafter, also referred to as “dimension K”) of the dimension of the hole 211a of the grid-like substrate 211 in the Z direction is 6 mm or more and 12 mm or less is prepared.
Next, obtain a bag-shaped separator having the above structure and dimensions, or obtain a plate-shaped separator having a vertical rib 32 formed on one surface and a horizontal rib 33 formed on the other surface, and obtain a bag-shaped separator. The separator 3 is manufactured. The dimension in the Z direction in the state of the plate-shaped separator is about twice that of the grid-like substrate 211 of the negative electrode plate 2. By bending the plate-shaped separator at the half position in the Z direction with the side on which the lateral rib 33 of the base 31 is formed inside, the bases 31 are overlapped with each other, and both ends of the base 31 in the Y direction are gear-sealed. , A bag-shaped separator 3 is obtained.

そして、化成前の負極板2を袋状のセパレータ3の中に入れたものと正極板1を交互に積層することで、積層体(ストラップ未形成の極板群)10を得る。
次に、この積層体をCOS(キャストオンストラップ)方式の鋳造装置を用い、正極板の耳部同士を接続した正極ストラップ、負極板の耳部同士を接続した負極ストラップ、正極ストラップから立ち上がる正極中間極柱および正極端子極柱、負極ストラップから立ち上がる負極中間極柱または負極端子極柱を形成して極板群とする。この極板群を六個作製した後、各極板群を電槽の各セル室に収容する。
Then, the laminated body (strap-unformed electrode plate group) 10 is obtained by alternately laminating the negative electrode plate 2 before chemical conversion in the bag-shaped separator 3 and the positive electrode plate 1.
Next, using a COS (cast-on-strap) casting device for this laminated body, a positive electrode strap connecting the ears of the positive electrode plates, a negative electrode strap connecting the ears of the negative electrode plates, and a positive electrode intermediate rising from the positive electrode strap. A pole column, a positive electrode terminal pole pillar, a negative electrode intermediate pole pillar rising from a negative electrode strap, or a negative electrode terminal pole pillar are formed to form a electrode plate group. After producing six of these electrode plates, each electrode group is housed in each cell chamber of the electric tank.

次に、極板群が電槽の各セル室に収容された状態で、セル室間の隔壁を介して隣り合う正極中間極柱および負極中間極柱に対して抵抗溶接を行って、隣接するセル室間を電気的に直列に接続する。次に、電槽の上面と蓋の下面を熱で溶かして蓋を電槽に載せ、熱溶着により電槽に蓋を固定する。なお、蓋を電槽に載せる際に、負極端子極柱および正極端子極柱を、それぞれインサート成形により蓋に一体に形成された鉛合金製のブッシングの貫通穴に挿入して溶接一体化し、端子とする。
その後、蓋を貫通する穴として設けた注液穴からセル室内に、電解液(硫酸水溶液に硫酸アルミニウムを添加することでアルミニウムイオンを含んでいる)を注入する。その後、注液穴を塞ぐことなどの通常の工程を行うことにより、未化成の鉛蓄電池を組み立てる。その後、通常の条件で電槽化成を行って、完成品とする。
Next, in a state where the electrode plates are housed in each cell chamber of the electric tank, resistance welding is performed to the adjacent positive electrode intermediate pole pillar and the negative electrode intermediate pole pillar via the partition wall between the cell chambers, and the plates are adjacent to each other. The cell chambers are electrically connected in series. Next, the upper surface of the electric tank and the lower surface of the lid are melted by heat, the lid is placed on the electric tank, and the lid is fixed to the electric tank by heat welding. When the lid is placed on the battery case, the negative electrode terminal pole pillar and the positive electrode terminal pole pillar are inserted into the through holes of the lead alloy bushing integrally formed on the lid by insert molding and welded together to integrate the terminals. And.
After that, the electrolytic solution (which contains aluminum ions by adding aluminum sulfate to the sulfuric acid aqueous solution) is injected into the cell chamber through the injection hole provided as a hole penetrating the lid. After that, a non-chemical lead-acid battery is assembled by performing a normal process such as closing the injection hole. After that, the electric tank is chemically formed under normal conditions to obtain a finished product.

[横リブの突出高さの違いによる効果を調べる試験]
<試験電池の作製>
実施形態の鉛蓄電池と同じ構造の鉛蓄電池として、サンプルNo.1-1~No.1-7の鉛蓄電池を作製した。
サンプルNo.1-1~No.1-7の鉛蓄電池はD32型のアイドリングストップ用液式鉛蓄電池であって、表1に示すように、それぞれ、セパレータ3の横リブ33の突出高さT2が異なる積層体を有する。それ以外の構成は全て同じである。
先ず、サンプルNo.1-2~No.1-7の鉛蓄電池では、セパレータ3として、基部31の厚さtが0.2mm、縦リブ32の幅が0.6mm、縦リブ32の突出高さT1が0.6mm、縦リブ32の配置間隔が8.0mm、横リブ33の幅が0.3mm、横リブ33の配置間隔が0.5mm、横リブ33の突出高さT2が各サンプルで表1に示す値のものを用意した。なお、横リブの突出高さは、セパレータを作製する際に横リブ形成用の溝の深さを変更することで変更できる。また、サンプルNo.1-1の鉛蓄電池では、横リブの無いセパレータを用意した。
[Test to investigate the effect of the difference in the protruding height of the lateral rib]
<Making test batteries>
As a lead-acid battery having the same structure as the lead-acid battery of the embodiment, the lead-acid batteries of Samples No. 1-1 to No. 1-7 were produced.
The lead-acid batteries of Samples No. 1-1 to No. 1-7 are D32 type liquid lead-acid batteries for idling stop, and as shown in Table 1, the protruding height T2 of the lateral rib 33 of the separator 3, respectively. Has different laminates. All other configurations are the same.
First, in the lead-acid batteries of Samples No. 1-2 to No. 1-7, as the separator 3, the thickness t of the base 31 is 0.2 mm, the width of the vertical rib 32 is 0.6 mm, and the protruding height of the vertical rib 32. The T1 is 0.6 mm, the arrangement interval of the vertical ribs 32 is 8.0 mm, the width of the horizontal ribs 33 is 0.3 mm, the arrangement intervals of the horizontal ribs 33 is 0.5 mm, and the protrusion height T2 of the horizontal ribs 33 is each sample. The values shown in Table 1 are prepared in. The protruding height of the horizontal rib can be changed by changing the depth of the groove for forming the horizontal rib when the separator is manufactured. For the lead-acid battery of sample No. 1-1, a separator without horizontal ribs was prepared.

次に、正極集電体として、JIS-Dサイズのパンチング基板を用意した。そして、正極集電体の格子状基板に、通常の方法で作製した正極活物質を含む合剤(正極合剤)を充填し、熟成乾燥させて、化成前の正極板を得た。
負極集電体21としては、エキスパンドメタルであって、格子状基板211の孔211aの寸法Kが10mmであるものを用意した。寸法Kが10mmであって横リブ33の幅が0.3mmで横リブ33の配置間隔が0.5mmであることにより、Z方向で一つの孔221aに存在する横リブ33の数の平均値が20本となる。そして、格子状基板211に通常の方法で作製した負極活物質を含む合剤(負極合剤22)を充填し、熟成乾燥させて、化成前の負極板2を得た。
Next, a JIS-D size punching substrate was prepared as a positive electrode current collector. Then, the lattice-shaped substrate of the positive electrode current collector was filled with a mixture (positive electrode mixture) containing a positive electrode active material prepared by a usual method, and aged and dried to obtain a positive electrode plate before chemical conversion.
As the negative electrode current collector 21, an expanded metal having a hole 211a of the lattice-shaped substrate 211 having a dimension K of 10 mm was prepared. Since the dimension K is 10 mm, the width of the horizontal ribs 33 is 0.3 mm, and the arrangement interval of the horizontal ribs 33 is 0.5 mm, the average value of the number of horizontal ribs 33 existing in one hole 221a in the Z direction. Will be 20. Then, the lattice-shaped substrate 211 was filled with a mixture (negative electrode mixture 22) containing a negative electrode active material prepared by a usual method, and aged and dried to obtain a negative electrode plate 2 before chemical conversion.

次に、負極板2を袋状のセパレータ3の中に入れた後、正極板7枚と負極板が入ったセパレータ8枚を、交互に積層して積層体10を得た。この積層体10を六個用意し、COS(キャストオンストラップ)方式の鋳造装置を用いて、各積層体10の正極板1および負極板2にストラップおよび中間極柱、またはストラップおよび端子極柱を形成することで、各セル用の極板群を得た。得られた各極板群を電槽の各セル室に収容した。また、積層体10のセル室内での圧迫力は7.0kPaとした。 Next, after the negative electrode plate 2 was placed in the bag-shaped separator 3, seven positive electrode plates and eight separators containing the negative electrode plates were alternately laminated to obtain a laminated body 10. Six of these laminated bodies 10 are prepared, and a strap and an intermediate pole column, or a strap and a terminal pole pillar are attached to the positive electrode plate 1 and the negative electrode plate 2 of each laminated body 10 by using a COS (cast-on-strap) type casting device. By forming, a group of electrode plates for each cell was obtained. Each of the obtained electrode plates was housed in each cell chamber of the electric tank. Further, the compression force of the laminated body 10 in the cell chamber was set to 7.0 kPa.

なお、極板群を各セル室に収容する際に、サンプルNo.1-1~1-6の鉛蓄電池では積層体の挿入不良が生じなかったが、サンプルNo.1-7の鉛蓄電池では積層体10の挿入不良が生じた。
次に、隣接するセル室間の中間極柱同士の抵抗溶接、電槽と蓋の熱溶着、注液穴から各セル室内への電解液の注入、および注液穴を液口栓で塞ぐなどの通常の工程を行うことにより、D23型のアイドリングストップ用液式鉛蓄電池を組み立てた。その後、通常の方法で電槽化成を行うことで、電槽化成後の比重を1.285(20℃換算値)とした。
When the electrode plates were housed in each cell chamber, the lead-acid batteries of Samples No. 1-1 to 1-6 did not have a defective insertion of the laminate, but the lead-acid batteries of Sample No. 1-7 did not have a defective insertion. A defective insertion of the laminated body 10 occurred.
Next, resistance welding between intermediate pole columns between adjacent cell chambers, heat welding of the battery case and lid, injection of electrolytic solution from the injection holes into each cell chamber, and closing the injection holes with a liquid spout, etc. A D23 type liquid lead-acid battery for idling stop was assembled by performing the usual process of. Then, by carrying out the electric tank chemical formation by a usual method, the specific density after the electric tank chemical formation was set to 1.285 (20 ° C. conversion value).

<試験および評価>
得られた各鉛蓄電池について、以下の方法で試験を行った。
(高率放電特性試験)
電池工業会規格 SBA S 0101 8.4.3 コールドクランキング電流試験に則り、各鉛蓄電池を-18℃雰囲気下で24時間静置した後、610Aの定電流放電を行い、30秒目の電圧値を読み取った。そして、この電圧値がサンプルNo.1-1の鉛蓄電池の電圧値よりも高かった場合は、横リブを設けたことによる高率放電特性向上効果が得られたと判断して、表1に「○」と表示し、サンプルNo.1-1の鉛蓄電池の電圧値以下であった場合は、横リブを設けたことによる高率放電特性向上効果が得られなかったと判断して、表1に「×」と表示した。
また、上述の積層体10の挿入性能の結果も、不良の場合は「×」で良好な場合は「○」と表1に表示した。
<Test and evaluation>
Each of the obtained lead-acid batteries was tested by the following method.
(High rate discharge characteristic test)
Battery Industry Association Standard SBA S 0101 8.4.3 According to the cold cranking current test, each lead-acid battery was allowed to stand for 24 hours in an atmosphere of -18 ° C, then discharged at a constant current of 610 A, and the voltage at the 30th second. Read the value. When this voltage value was higher than the voltage value of the lead-acid battery of sample No. 1-1, it was judged that the effect of improving the high rate discharge characteristics was obtained by providing the horizontal ribs, and Table 1 shows " If the voltage value of the lead-acid battery of sample No. 1-1 or less is displayed, it is judged that the effect of improving the high rate discharge characteristics could not be obtained by providing the horizontal ribs, and Table 1 shows. Displayed as "x".
Further, the result of the insertion performance of the above-mentioned laminated body 10 is also shown in Table 1 as "x" in the case of a defect and "◯" in the case of a good result.

Figure 0007037865000001
Figure 0007037865000001

表1に示すように、本発明の実施例に相当する横リブ33の突出高さT2が0.05mm以上0.50mm以下であるセパレータ3を用いたNo.1-3~No.1-6の鉛蓄電池では、積層体10の挿入性能が良好であるとともに、高率放電特性向上効果も得られた。
これに対して、横リブ33の突出高さT2が0.03mmであるセパレータ3を用いたNo.1-2の鉛蓄電池では、積層体10の挿入性能は良好であったが、高率放電特性向上効果は得られなかった。また、横リブ33の突出高さT2が0.07mmであるセパレータ3を用いたNo.1-7の鉛蓄電池では、高率放電特性向上効果は得られたが、積層体10の挿入性能が不良であった。
As shown in Table 1, No. 1-3 to No. 1-6 using the separator 3 in which the protruding height T2 of the lateral rib 33 corresponding to the embodiment of the present invention is 0.05 mm or more and 0.50 mm or less. In the lead-acid battery of No. 1, the insertion performance of the laminated body 10 was good, and the effect of improving the high rate discharge characteristics was also obtained.
On the other hand, in the No. 1-2 lead-acid battery using the separator 3 in which the protruding height T2 of the horizontal rib 33 is 0.03 mm, the insertion performance of the laminated body 10 was good, but the high rate discharge was performed. No characteristic improvement effect was obtained. Further, in the No. 1-7 lead-acid battery using the separator 3 in which the protruding height T2 of the horizontal rib 33 is 0.07 mm, the effect of improving the high rate discharge characteristics was obtained, but the insertion performance of the laminated body 10 was improved. It was bad.

[積層体の圧迫力の違いによる効果を調べる試験]
<試験電池の作製>
実施形態の鉛蓄電池と同じ構造の鉛蓄電池として、サンプルNo.2-1~No.2-30の鉛蓄電池を作製した。なお、積層体10のセル室内での圧迫力を異なるものとするために、セル室と積層体10との間に厚さの異なるスペーサーを設けた。
サンプルNo.2-1~No.2-10の鉛蓄電池は、D32型のアイドリングストップ用液式鉛蓄電池であって、横リブ33の高さT2が0.05mmのセパレータを用いている。また、サンプルNo.2-1~No.2-10の鉛蓄電池は、表2に示すように、積層体10の圧迫力が異なるが、それ以外の構成は全て同じである。
サンプルNo.2-11~No.2-20の鉛蓄電池は、D32型のアイドリングストップ用液式鉛蓄電池であって、横リブ33の突出高さT2が0.50mmであるセパレータを用いている。また、サンプルNo.2-11~No.2-20の鉛蓄電池は、表3に示すように、積層体10の圧迫力が異なるが、それ以外の構成は全て同じである。
サンプルNo.2-21~No.2-30の鉛蓄電池は、D32型のアイドリングストップ用液式鉛蓄電池であって、横リブの無いセパレータを用いている。また、サンプルNo.2-21~No.2-30の鉛蓄電池は、表4に示すように、積層体10の圧迫力が異なるが、それ以外の構成は全て同じである。
[Test to investigate the effect of the difference in the compression force of the laminated body]
<Making test batteries>
As a lead-acid battery having the same structure as the lead-acid battery of the embodiment, the lead-acid batteries of Samples No. 2-1 to No. 2-30 were produced. In addition, in order to make the compression force of the laminated body 10 different in the cell chamber, spacers having different thicknesses are provided between the cell chamber and the laminated body 10.
The lead-acid batteries of Samples No. 2-1 to No. 2-10 are D32 type liquid lead-acid batteries for idling stop, and use a separator having a horizontal rib 33 having a height T2 of 0.05 mm. Further, as shown in Table 2, the lead-acid batteries of Samples No. 2-1 to No. 2-10 have different compression forces of the laminated body 10, but all other configurations are the same.
The lead-acid batteries of Samples No. 2-11 to No. 2-20 are D32 type liquid lead-acid batteries for idling stop, and use a separator having a protruding height T2 of the lateral rib 33 of 0.50 mm. .. Further, as shown in Table 3, the lead-acid batteries of Samples No. 2-11 to No. 2-20 have different compression forces of the laminated body 10, but all other configurations are the same.
The lead-acid batteries of Samples No. 2-21 to No. 2-30 are D32 type liquid lead-acid batteries for idling stop, and use a separator without horizontal ribs. Further, as shown in Table 4, the lead-acid batteries of Samples No. 2-21 to No. 2-30 have different compression forces of the laminated body 10, but all other configurations are the same.

<試験および評価>
得られた各鉛蓄電池について、以下の方法で試験を行った。
(PSOCサイクル試験)
10.4Aでの定電流放電(CC放電)を1時間行った後、50A、14.3Vでの定電流定電圧充電(CC-CV充電)を30分行う。これを一回の工程として、この工程を150回繰り返す試験を行った。
この試験後に、各鉛蓄電池の成層化度合いの違いを調べた。具体的には、先ず、各鉛蓄電池の各セル室において、上部と下部での電解液の比重を測定し、両測定値から比重差を算出し、全セル室での比重差の平均値を算出して、その値を成層化度合いとした。次に、横リブの無いセパレータを用い、積層体10の圧迫力が0.0kPaであるNo.2-21の成層化度合いを100として、各鉛蓄電池の成層化度合いの相対値を算出した。その結果も表2~4に示す。
<Test and evaluation>
Each of the obtained lead-acid batteries was tested by the following method.
(PSOC cycle test)
After performing constant current discharge (CC discharge) at 10.4 A for 1 hour, constant current constant voltage charge (CC-CV charge) at 50 A and 14.3 V is performed for 30 minutes. With this as one step, a test was conducted in which this step was repeated 150 times.
After this test, the difference in the degree of stratification of each lead-acid battery was investigated. Specifically, first, in each cell chamber of each lead-acid battery, the specific densities of the electrolytic solution in the upper part and the lower part are measured, the specific gravity difference is calculated from both measured values, and the average value of the specific gravity difference in all the cell chambers is calculated. It was calculated and the value was taken as the degree of stratification. Next, using a separator without horizontal ribs, the relative value of the stratification degree of each lead storage battery was calculated with the stratification degree of No. 2-21 having a compression force of 0.0 kPa of the laminate 10 as 100. The results are also shown in Tables 2-4.

Figure 0007037865000002
Figure 0007037865000002

Figure 0007037865000003
Figure 0007037865000003

Figure 0007037865000004
Figure 0007037865000004

表4に示すように、横リブの無いセパレータを用いた場合、積層体10の圧迫力が0.0kPa~14.0kPaのいずれの場合でも、成層化度合いは100で同じであった。また、横リブ33の突出高さT2が0.05mmのセパレータ3を用いたサンプルNo.2-1~No.2-10の鉛蓄電池と、横リブ33の突出高さT2が0.50mmのセパレータ3を用いたサンプルNo.2-11~No.2-20の鉛蓄電池について、積層体10の圧迫力と成層化度合いとの関係を、図6にグラフで示す。 As shown in Table 4, when the separator without the horizontal ribs was used, the degree of stratification was the same at 100 regardless of the compression force of the laminated body 10 of 0.0 kPa to 14.0 kPa. Further, the lead-acid batteries of Samples No. 2-1 to No. 2-10 using the separator 3 having a protrusion height T2 of the horizontal rib 33 of 0.05 mm and the protrusion height T2 of the horizontal rib 33 of 0.50 mm. For the lead-acid batteries of Samples No. 2-11 to No. 2-20 using the separator 3, the relationship between the compression force of the laminated body 10 and the degree of stratification is shown in a graph in FIG.

図6のグラフから分かるように、横リブの突出高さが0.05mm以上0.50mm以下であるセパレータを用いたNo.2-1~No.2-20の鉛蓄電池において、本発明の実施例に相当する積層体10のセル室内での圧迫力が2.5kPa以上10.0kPa以下である鉛蓄電池では、成層化度合いの低減効果が高かった。積層体10のセル室内での圧迫力が2.5kPa未満では成層化度合いの低減効果がほとんど得られず、10.0kPaを超えても成層化度合いの低減効果は飽和する。積層体10のセル室内での圧迫力は5.5kPa以上10.0kPa以下であることが好ましい。 As can be seen from the graph of FIG. 6, the present invention is carried out in the lead-acid batteries No. 2-1 to No. 2-20 using a separator having a lateral rib protrusion height of 0.05 mm or more and 0.50 mm or less. In the lead-acid battery having a compression force of 2.5 kPa or more and 10.0 kPa or less in the cell chamber of the laminated body 10 corresponding to the example, the effect of reducing the degree of stratification was high. If the compression force of the laminated body 10 in the cell chamber is less than 2.5 kPa, the effect of reducing the degree of stratification is hardly obtained, and even if it exceeds 10.0 kPa, the effect of reducing the degree of stratification is saturated. The compression force of the laminated body 10 in the cell chamber is preferably 5.5 kPa or more and 10.0 kPa or less.

[寸法Kの違いによる効果を調べる試験]
実施形態の鉛蓄電池と同じ構造の鉛蓄電池として、サンプルNo.3-1~No.3-7の鉛蓄電池を作製した。
D32型のアイドリングストップ用液式鉛蓄電池を構成する負極板として、図4に示す形状の負極板2であって、格子状基板211の孔211aのZ方向の寸法の最大値K(寸法K、図5を参照)が異なるもの(サンプルNo.3-1~No.3-6)を用意して、負極合剤22の充填性およびコマ落ち性を調べる試験を行った。
具体的に、充填性については、通常の方法で負極合剤22を格子状基板211に充填した際に、充填されていない孔211aが一つもなければ良好(○)と判断し、一つでもあれば不良(×)と判断した。コマ落ち性については、全ての孔211aに負極合剤22が充填されている状態とした負極板2を、鉛蓄電池の搬送時の振動状態に応じた条件で振動を付与する試験を行い、充填された負極合剤22の物が一部でも落ちてしまった孔211aが一つでもあれば、不良(×)と判断し、負極合剤22の落下が全くないものを良好(コマ落ちしない、○)と判断した。
各負極板の寸法Kと試験結果を表5に示す。
[Test to investigate the effect of different dimensions K]
As a lead-acid battery having the same structure as the lead-acid battery of the embodiment, the lead-acid batteries of Samples No. 3-1 to No. 3-7 were produced.
As the negative electrode plate constituting the D32 type liquid lead-acid battery for idling stop, the negative electrode plate 2 having the shape shown in FIG. (See FIG. 5) different samples (Samples No. 3-1 to No. 3-6) were prepared, and a test was conducted to examine the filling property and the frame dropping property of the negative electrode mixture 22.
Specifically, regarding the filling property, when the negative electrode mixture 22 is filled in the lattice-shaped substrate 211 by a normal method, it is judged that it is good (○) if there is no unfilled hole 211a, and even one. If there is, it is judged to be defective (x). Regarding the frame drop property, a test was conducted in which the negative electrode plate 2 in which all the holes 211a were filled with the negative electrode mixture 22 was subjected to a test in which vibration was applied under conditions according to the vibration state during transportation of the lead storage battery, and the filling was performed. If there is even one hole 211a in which even a part of the negative electrode mixture 22 has fallen, it is judged to be defective (x), and the one in which the negative electrode mixture 22 does not fall at all is good (frames do not fall, ○) was judged.
Table 5 shows the dimensions K of each negative electrode plate and the test results.

Figure 0007037865000005
Figure 0007037865000005

表5から分かるように、寸法Kが6mm以上12mm以下である格子状基板211を用いたサンプルNo.3-2~No.3-5の負極板2は、負極合剤22の充填性に優れるとともにコマ落ちしないものであった。これに対して、寸法Kが4mmである格子状基板211を用いたサンプルNo.3-1の負極板2は、負極合剤22の充填性が不良であった。また、寸法Kが14mmである格子状基板211を用いたサンプルNo.3-6の負極板2は、負極合剤22がコマ落ちするものであった。 As can be seen from Table 5, the negative electrode plates 2 of the samples No. 3-2 to No. 3-5 using the grid-like substrate 211 having the dimension K of 6 mm or more and 12 mm or less are excellent in the filling property of the negative electrode mixture 22. At the same time, the frames did not drop. On the other hand, the negative electrode plate 2 of sample No. 3-1 using the grid-like substrate 211 having a dimension K of 4 mm had poor filling property of the negative electrode mixture 22. Further, in the negative electrode plate 2 of sample No. 3-6 using the grid-like substrate 211 having a dimension K of 14 mm, the negative electrode mixture 22 dropped frames.

[横リブの本数の違いによる効果を調べる試験]
実施形態の鉛蓄電池と同じ構造の鉛蓄電池として、サンプルNo.4-1~No.4-16の鉛蓄電池を作製した。サンプルNo.4-1~No.4-16の鉛蓄電池は、横リブ33の突出高さT2が0.08mm、横リブ33の幅が0.2mmのセパレータ3を用い、積層体10のセル室内での圧迫力を5kPaとしている。
サンプルNo.4-1~No.4-8の鉛蓄電池は、D32型のアイドリングストップ用液式鉛蓄電池であって、表6に示すように、横リブ33の本数が異なるが、それ以外の構成は全て同じである。サンプルNo.4-1~No.4-8の鉛蓄電池は、負極板2を構成する格子状基板211の寸法Kが6mmである。
サンプルNo.4-9~No.4-16の鉛蓄電池は、D32型のアイドリングストップ用液式鉛蓄電池であって、表6に示すように、横リブ33の本数が異なるが、それ以外の構成は全て同じである。サンプルNo.4-9~No.4-16の鉛蓄電池は、負極板2を構成する格子状基板211の寸法Kが12mmである。
[Test to investigate the effect of the difference in the number of horizontal ribs]
As a lead-acid battery having the same structure as the lead-acid battery of the embodiment, the lead-acid batteries of Samples No. 4-1 to No. 4-16 were produced. For the lead-acid batteries of Samples No. 4-1 to No. 4-16, a separator 3 having a protruding height T2 of the horizontal rib 33 of 0.08 mm and a width of the horizontal rib 33 of 0.2 mm was used, and the cell of the laminated body 10 was used. The compression force in the room is 5 kPa.
The lead-acid batteries of Samples No. 4-1 to No. 4-8 are D32 type liquid lead-acid batteries for idling stop, and as shown in Table 6, the number of horizontal ribs 33 is different, but other than that. The configurations are all the same. The lead-acid batteries of Samples No. 4-1 to No. 4-8 have a dimension K of the grid-like substrate 211 constituting the negative electrode plate 2 of 6 mm.
The lead-acid batteries of Samples No. 4-9 to No. 4-16 are D32 type liquid lead-acid batteries for idling stop, and as shown in Table 6, the number of horizontal ribs 33 is different, but other than that. The configurations are all the same. The lead-acid batteries of Samples No. 4-9 to No. 4-16 have a dimension K of the grid-like substrate 211 constituting the negative electrode plate 2 of 12 mm.

<試験および評価>
得られた各鉛蓄電池について、以下の方法で試験を行った。
先ず、PSOCサイクル試験として、10.4Aでの定電流放電(CC放電)を1時間行った後、50A、14.3Vでの定電流定電圧充電(CC-CV充電)を30分行う工程を、150回繰り返した。次に、高率放電試験として、電池工業会規格 SBA S 0101 8.4.3 コールドクランキング電流試験に則り、各鉛蓄電池を-18℃雰囲気下で24時間静置した後、610Aの定電流放電を行い、この放電が終わるまでの時間(高率放電持続時間)を調べた。
そして、サンプルNo.4-1~No.4-8の鉛蓄電池では、サンプルNo.4-1の鉛蓄電池の高率放電持続時間を100として、サンプルNo.4-9~No.4-16の鉛蓄電池では、サンプルNo.4-9の鉛蓄電池の高率放電持続時間を100として、各鉛蓄電池の高率放電持続時間の相対値を算出した。その結果も表6に示す。
<Test and evaluation>
Each of the obtained lead-acid batteries was tested by the following method.
First, as a PSOC cycle test, a step of performing constant current discharge (CC discharge) at 10.4 A for 1 hour and then performing constant current constant voltage charge (CC-CV charge) at 50 A and 14.3 V for 30 minutes is performed. , 150 times repeated. Next, as a high-rate discharge test, each lead-acid battery was allowed to stand for 24 hours in an atmosphere of -18 ° C according to the battery industry association standard SBA S 0101 8.4.3 cold cranking current test, and then a constant current of 610 A. Discharge was performed, and the time until the end of this discharge (high rate discharge duration) was investigated.
Then, in the lead-acid batteries of Samples No. 4-1 to No. 4-8, the high rate discharge duration of the lead-acid batteries of Sample No. 4-1 is set to 100, and Samples No. 4-9 to No. 4-16 are set. In the lead-acid battery of No. 4, the relative value of the high-rate discharge duration of each lead-acid battery was calculated, assuming that the high-rate discharge duration of the lead-acid battery of sample No. 4-9 was 100. The results are also shown in Table 6.

Figure 0007037865000006
Figure 0007037865000006

また、サンプルNo.4-1~No.4-8の鉛蓄電池サンプルおよびサンプルNo.4-9~No.4-16の鉛蓄電池について、それぞれ、横リブ33の数と放電持続時間(相対値)との関係を、図7にグラフで示す。
図7のグラフから分かるように、負極板2を構成する格子状基板211の寸法Kが6mmの場合も12mmの場合も、本発明の実施例に相当するセパレータ3の横リブ33の数が8以上24以下である鉛蓄電池は、横リブの無いセパレータを用いた鉛蓄電池に対する高率放電持続時間の向上効果が高かった。セパレータの横リブの数が8未満である鉛蓄電池は、横リブの無いセパレータを用いた鉛蓄電池に対する高率放電持続時間の向上効果がほとんど得られず、24を超えても高率放電持続時間の向上効果は飽和する。セパレータ3の横リブ33の数は10以上24以下であることが好ましく、16以上24以下であることがより好ましい。
In addition, the number of horizontal ribs 33 and the discharge duration (relative values) for the lead-acid battery samples of samples No. 4-1 to No. 4-8 and the lead-acid batteries of samples No. 4-9 to No. 4-16, respectively. ) Is shown in a graph in FIG.
As can be seen from the graph of FIG. 7, the number of lateral ribs 33 of the separator 3 corresponding to the embodiment of the present invention is 8 regardless of whether the dimension K of the lattice-shaped substrate 211 constituting the negative electrode plate 2 is 6 mm or 12 mm. The lead-acid battery having a value of 24 or less has a high effect of improving the high rate discharge duration with respect to the lead-acid battery using the separator without the horizontal rib. Lead-acid batteries having less than 8 horizontal ribs on the separator have little effect on improving the high-rate discharge duration compared to lead-acid batteries using separators without horizontal ribs, and even if the number exceeds 24, the high-rate discharge duration is high. The improvement effect of is saturated. The number of lateral ribs 33 of the separator 3 is preferably 10 or more and 24 or less, and more preferably 16 or more and 24 or less.

1 正極板
2 負極板
21 負極集電体
211 負極板の格子状基板
211a 負極板の格子状基板の孔
212 負極板の耳部
22 負極合剤
3 セパレータ
31 セパレータの基部
32 セパレータの縦リブ
33 セパレータの横リブ
34 セパレータの小突起
10 積層体
1 Positive electrode plate 2 Negative electrode plate 21 Negative electrode current collector 211 Negative electrode plate grid-like substrate 211a Negative electrode plate lattice-like substrate hole 212 Negative electrode plate ear 22 Negative electrode mixture 3 Separator 31 Separator base 32 Separator vertical rib 33 Separator Horizontal ribs 34 Small protrusions on the separator 10 Laminated body

Claims (1)

セル室と、前記セル室に電解液と共に収納された極板群と、を備え、
前記極板群は、交互に配置された正極板および負極板と、前記正極板と前記負極板との間に配置されたセパレータと、からなる積層体を有し、
前記セパレータの前記正極板と対向する面に、前記セル室の上下方向に対応する第一方向に延びる筋状の突起である縦リブが、前記正極板の幅方向に対応する第二方向に間隔を開けて複数形成され、
前記セパレータの前記負極板と対向する面に、前記縦リブよりも突出高さが小さく前記第二方向に延びる線状の突起である横リブが、前記第一方向に前記縦リブの配置間隔よりも小さい間隔を開けて複数形成され、
前記横リブの突出高さは0.05mm以上0.5mm以下であり、
前記積層体の前記セル室内での圧迫力は2.5kPa以上10.0kPa以下であり、
前記負極板は、負極合剤が格子状基板に保持されたものであり、
前記格子状基板を構成する複数の孔の前記第一方向の寸法の最大値は6mm以上12mm以下であり、
前記第一方向で一つの前記孔の範囲に存在する前記横リブの数は、平均で8本以上24本以下である鉛蓄電池。
A cell chamber and a group of electrode plates stored together with the electrolytic solution in the cell chamber are provided.
The electrode plate group has a laminate composed of positive electrode plates and negative electrode plates arranged alternately, and separators arranged between the positive electrode plates and the negative electrode plates.
On the surface of the separator facing the positive electrode plate, vertical ribs, which are streaky protrusions extending in the first direction corresponding to the vertical direction of the cell chamber, are spaced apart in the second direction corresponding to the width direction of the positive electrode plate. Opened and formed multiple
On the surface of the separator facing the negative electrode plate, horizontal ribs having a protrusion height smaller than that of the vertical ribs and extending in the second direction are linear protrusions extending in the second direction from the arrangement interval of the vertical ribs. Also formed multiple with small intervals,
The protruding height of the lateral rib is 0.05 mm or more and 0.5 mm or less.
The compression force of the laminated body in the cell chamber is 2.5 kPa or more and 10.0 kPa or less.
The negative electrode plate is a negative electrode mixture held on a grid-like substrate.
The maximum value of the dimensions of the plurality of holes constituting the grid-like substrate in the first direction is 6 mm or more and 12 mm or less.
A lead-acid battery having an average number of horizontal ribs of 8 or more and 24 or less in the range of one hole in the first direction .
JP2019106163A 2019-06-06 2019-06-06 Lead-acid battery Active JP7037865B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019106163A JP7037865B2 (en) 2019-06-06 2019-06-06 Lead-acid battery
CN202020164223.2U CN211507742U (en) 2019-06-06 2020-02-12 Lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019106163A JP7037865B2 (en) 2019-06-06 2019-06-06 Lead-acid battery

Publications (2)

Publication Number Publication Date
JP2020202025A JP2020202025A (en) 2020-12-17
JP7037865B2 true JP7037865B2 (en) 2022-03-17

Family

ID=72401527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019106163A Active JP7037865B2 (en) 2019-06-06 2019-06-06 Lead-acid battery

Country Status (2)

Country Link
JP (1) JP7037865B2 (en)
CN (1) CN211507742U (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005197145A (en) 2004-01-09 2005-07-21 Furukawa Battery Co Ltd:The Separator with rib for lead acid storage battery, and lead acid storage battery using that separator
JP2013508917A (en) 2009-10-20 2013-03-07 ダラミック エルエルシー Battery separator having transverse ribs and related methods
JP2017062958A (en) 2015-09-25 2017-03-30 株式会社Gsユアサ Lead storage battery
WO2019087686A1 (en) 2017-10-31 2019-05-09 株式会社Gsユアサ Lead storage battery
WO2019087681A1 (en) 2017-10-31 2019-05-09 株式会社Gsユアサ Lead storage battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005197145A (en) 2004-01-09 2005-07-21 Furukawa Battery Co Ltd:The Separator with rib for lead acid storage battery, and lead acid storage battery using that separator
JP2013508917A (en) 2009-10-20 2013-03-07 ダラミック エルエルシー Battery separator having transverse ribs and related methods
JP2017062958A (en) 2015-09-25 2017-03-30 株式会社Gsユアサ Lead storage battery
WO2019087686A1 (en) 2017-10-31 2019-05-09 株式会社Gsユアサ Lead storage battery
WO2019087681A1 (en) 2017-10-31 2019-05-09 株式会社Gsユアサ Lead storage battery

Also Published As

Publication number Publication date
CN211507742U (en) 2020-09-15
JP2020202025A (en) 2020-12-17

Similar Documents

Publication Publication Date Title
KR101139665B1 (en) Lead storage battery
US20150380773A1 (en) Flooded lead-acid battery
JPWO2005107004A1 (en) Lead acid battery
EP3352285B1 (en) Lead storage battery
JP2021111491A (en) Liquid type lead storage battery
JP6762895B2 (en) Lead-acid battery
JP5182467B2 (en) Control valve type lead storage battery manufacturing method
US20190393512A1 (en) Battery grid
JP2021163612A (en) Lead-acid battery
WO2017159299A1 (en) Lead storage battery
JP7037865B2 (en) Lead-acid battery
CN107112598B (en) lead-acid battery
JP2017079094A (en) Lead battery
JP2023079571A (en) liquid lead acid battery
JP6921037B2 (en) Lead-acid battery
JP7011025B2 (en) Liquid lead-acid battery
JP2000340252A (en) Lead-acid battery and its manufacture
JP7219366B1 (en) liquid lead acid battery
JP7011024B2 (en) Liquid lead-acid battery
JP7011023B2 (en) Liquid lead-acid battery
JPWO2019087679A1 (en) Lead-acid battery
JP6982671B2 (en) Liquid lead-acid battery
JP7065126B2 (en) Liquid lead-acid battery
JP6998441B2 (en) Liquid lead-acid battery
JP6520249B2 (en) Method of manufacturing lead storage battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211019

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220304

R150 Certificate of patent or registration of utility model

Ref document number: 7037865

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150