JP2011181174A - Semiconductor device and test method thereof - Google Patents

Semiconductor device and test method thereof Download PDF

Info

Publication number
JP2011181174A
JP2011181174A JP2011097011A JP2011097011A JP2011181174A JP 2011181174 A JP2011181174 A JP 2011181174A JP 2011097011 A JP2011097011 A JP 2011097011A JP 2011097011 A JP2011097011 A JP 2011097011A JP 2011181174 A JP2011181174 A JP 2011181174A
Authority
JP
Japan
Prior art keywords
test
signal
circuit
speed
memory chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011097011A
Other languages
Japanese (ja)
Inventor
Takashi Hattori
孝 服部
Yumiko Hashizume
由美子 橋詰
Tatsuhiro Nishino
竜宏 西野
Koji Ikeda
浩司 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Electronics Corp
Original Assignee
Renesas Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Electronics Corp filed Critical Renesas Electronics Corp
Priority to JP2011097011A priority Critical patent/JP2011181174A/en
Publication of JP2011181174A publication Critical patent/JP2011181174A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Tests Of Electronic Circuits (AREA)
  • For Increasing The Reliability Of Semiconductor Memories (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor device and a test method thereof, for achieving a high-speed test at a desired operating frequency. <P>SOLUTION: An SiP 101 includes a logic chip 103A and a memory chip 103B. The memory chip 103B includes a memory circuit to be tested.The logic chip 103A includes an internal logic circuit 20 and a test processing circuit 21 electrically connected thereto. The test processing circuit 21 is connected with an access terminal of the memory circuit to test the memory circuit by supplying a test signal input from an external terminal 23n. The test processing circuit 21 has a high-speed test control circuit for adjusting a signal delay, and supplies in the high-speed test at an actual operating speed, the test signal supplied from the external terminal 23n to the access terminal through the high-speed test control circuit. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、ロジックチップとメモリチップとを共通のパッケージに搭載したSiP(System in a Package)型半導体装置及びそのテスト方法に関する。   The present invention relates to an SiP (System in a Package) type semiconductor device in which a logic chip and a memory chip are mounted in a common package, and a test method thereof.

半導体装置のテスト方法として、デバイスの内部に、テストパタン生成器、テストパタン圧縮器、及び比較器等を組込むことにより、自己テストを行う手法(BIST:Built In Self Test)がある。BISTでは、テストパタン生成器により、テスト対象回路に与えるテストパタンを発生させ、テストパタン圧縮器によりテスト対象回路からの出力パターンを圧縮し、比較器により、圧縮されたテストパタンを期待出力パターンと比較することでテスト対象回路のテストを行なうことができる。   As a test method of a semiconductor device, there is a method (BIST: Built In Self Test) in which a test pattern generator, a test pattern compressor, a comparator, and the like are incorporated in a device. In BIST, a test pattern generator generates a test pattern to be applied to a test target circuit, a test pattern compressor compresses an output pattern from the test target circuit, and a comparator compares the compressed test pattern with an expected output pattern. By comparing, the test target circuit can be tested.

例えば特許文献1には、ロジックチップとメモリチップとを共通のパッケージに搭載したSiP型半導体装置において、ロジックチップ内にメモリチップ試験回路(BIST回路)、及びセレクタ/入出力回路を内蔵することにより、上記BISTによるメモリチップのテストを可能にした半導体装置が記載されている。   For example, in Patent Document 1, in a SiP type semiconductor device in which a logic chip and a memory chip are mounted in a common package, a memory chip test circuit (BIST circuit) and a selector / input / output circuit are built in the logic chip. A semiconductor device that enables testing of a memory chip by the BIST is described.

図9は、特許文献1に記載の半導体装置の全体を示す図である。この半導体装置は、共通のパッケージ201内に、ロジックチップ202及びメモリチップ203を搭載したものである。ロジックチップ202は、論理回路202Aとメモリチップ試験回路204、及びセレクタ/入出力回路202Cを内蔵している。そして、論理回路202Aは、通常動作時に活性化させ、メモリチップ試験回路204はメモリチップ203のテスト時に活性化させるが、これをセレクタ/入出力回路202Cにより切り換えてメモリチップ203へアクセスする。   FIG. 9 is a diagram illustrating the entire semiconductor device described in Patent Document 1. In FIG. In this semiconductor device, a logic chip 202 and a memory chip 203 are mounted in a common package 201. The logic chip 202 includes a logic circuit 202A, a memory chip test circuit 204, and a selector / input / output circuit 202C. The logic circuit 202A is activated during the normal operation, and the memory chip test circuit 204 is activated during the test of the memory chip 203. This is switched by the selector / input / output circuit 202C to access the memory chip 203.

メモリチップ203のテスト方法は、ロジックチップ202内のメモリチップ試験回路204で、メモリチップ203に対するテストデータ、アドレス及び制御信号を生成し、かつメモリチップ203への書き込みデータと読み出しデータとの比較照合、及び比較結果を出力する。すなわち、この従来の半導体装置は、ロジックチップ202内にBISTを行うBIST回路を内蔵したものである。   The test method of the memory chip 203 is that the memory chip test circuit 204 in the logic chip 202 generates test data, an address and a control signal for the memory chip 203, and compares and collates the write data to the memory chip 203 and the read data. , And the comparison result is output. That is, this conventional semiconductor device has a BIST circuit that performs BIST in the logic chip 202.

図10は図9に示すメモリチップ試験回路204の内部構成図である。START入力信号及び制御データ信号249により、初期化回路246、セルフテスト回路247、試験モード設定回路248を順次動作させる。そして、メモリチップ制御回路241内でメモリチップ203に対するWRITEデータW−DATA、アドレスAdd及び制御信号CNTを生成し、これらの信号をメモリチップ203に供給することでWRITE動作を行う。また、メモリチップ203のREAD動作時には、判定回路242、ORゲート243、フリップフロップ244により、メモリチップ203から出力されるREADデータR−DATAとメモリチップ制御回路241で生成した期待値データEXVとの比較照合を行い、その結果を試験結果信号端子250へ出力する。   FIG. 10 is an internal block diagram of the memory chip test circuit 204 shown in FIG. In response to the START input signal and the control data signal 249, the initialization circuit 246, the self test circuit 247, and the test mode setting circuit 248 are sequentially operated. Then, WRITE data W-DATA, address Add, and control signal CNT for the memory chip 203 are generated in the memory chip control circuit 241, and the WRITE operation is performed by supplying these signals to the memory chip 203. Further, during the READ operation of the memory chip 203, the determination circuit 242, the OR gate 243, and the flip-flop 244 cause the READ data R-DATA output from the memory chip 203 and the expected value data EXV generated by the memory chip control circuit 241. Comparison comparison is performed, and the result is output to the test result signal terminal 250.

図11及び図12は、それぞれ図9に示すセレクタ/入出力回路202Cの第1及び第2の内部構成例である。通常動作時には論理回路202Aからのメモリアクセス信号S1を選択し、メモリチップ試験時には、メモリチップ試験回路204からのテスト用アクセス信号S2を選択し、論理回路試験時には機能マクロ231からの信号S3を選択することで、メモリチップ203へのアクセスを行う。   11 and 12 show first and second internal configuration examples of the selector / input / output circuit 202C shown in FIG. 9, respectively. The memory access signal S1 from the logic circuit 202A is selected during normal operation, the test access signal S2 from the memory chip test circuit 204 is selected during the memory chip test, and the signal S3 from the function macro 231 is selected during the logic circuit test. As a result, the memory chip 203 is accessed.

具体的には、図11に示すセレクタ/入出力回路202Cは、メモリアクセス信号S1と、テスト用アクセス信号S2と機能マクロ231からの信号S3のいずれかを選択するセレクタ回路251と、それらの信号を一旦保持する保持手段であるフリップフロップ252と、フリップフロップ252が保持する信号を出力端子223、224、225に出力する出力バッファ回路253とを有する。また、セレクタ回路251は、上記アクセス信号S1とテスト用アクセス信号S2に加えて、機能マクロ回路231からの信号S3も選択できるように構成される。セレクタ回路251は、図示しないセレクト信号に従って、いずれかの信号S1、S2、S3を選択する。   Specifically, the selector / input / output circuit 202C shown in FIG. 11 includes a selector circuit 251 that selects any one of the memory access signal S1, the test access signal S2, and the signal S3 from the function macro 231; Flip-flop 252 which is a holding means for temporarily holding the signal, and an output buffer circuit 253 for outputting a signal held by the flip-flop 252 to the output terminals 223, 224 and 225. The selector circuit 251 is configured to select the signal S3 from the function macro circuit 231 in addition to the access signal S1 and the test access signal S2. The selector circuit 251 selects one of the signals S1, S2, and S3 according to a select signal (not shown).

また、セレクタ/入出力回路202Cは、メモリチップ203からのリードデータDATAを入力する入力バッファ回路254とそれを保持するフリップフロップ255とを有する。フリップフロップ255の出力は、それぞれ論理回路202A、メモリチップ試験回路204、論理回路202A内の機能マクロ231に供給される。   The selector / input / output circuit 202C includes an input buffer circuit 254 that inputs read data DATA from the memory chip 203 and a flip-flop 255 that holds the input buffer circuit 254. The output of the flip-flop 255 is supplied to the logic circuit 202A, the memory chip test circuit 204, and the function macro 231 in the logic circuit 202A, respectively.

一方、図12に示すセレクタ/入出力回路202Cは、セレクタが、テスト用アクセス信号S2と論理回路試験時の信号S3のいずれかを選択するセレクタ251Bと、そのセレクタ251Bにより選択された信号と通常動作時の論理回路202Aからのアクセス信号S1のいずれかを選択するセレクタ251Aとに分けられている。そして,セレクタ251Aの出力が直接出力バッファ253に入力される。また、通常動作時のアクセス信号S1を一旦保持するフリップフロップ252と、メモリチップ試験回路からのテスト用アクセス信号S2を一旦保持するフリップフロップ255と、ウエハ状態での論理回路試験時の信号S3を一旦保持するフリップフロップ256とが、それぞれセレクタ251A、251Bの前段に設けられる。入力回路構成は,入力バッファ254の出力が、それぞれのフリップフロップ252、255、256に供給されるようになっている。   On the other hand, in the selector / input / output circuit 202C shown in FIG. 12, the selector 251B selects either the test access signal S2 or the signal S3 during the logic circuit test, and the signal selected by the selector 251B and the normal The selector 251A selects one of the access signals S1 from the logic circuit 202A during operation. The output of the selector 251A is directly input to the output buffer 253. Further, a flip-flop 252 that temporarily holds the access signal S1 during normal operation, a flip-flop 255 that temporarily holds the test access signal S2 from the memory chip test circuit, and a signal S3 during the logic circuit test in the wafer state. Flip-flops 256 that are temporarily held are provided in front of the selectors 251A and 251B, respectively. The input circuit configuration is such that the output of the input buffer 254 is supplied to each flip-flop 252, 255, 256.

ところで、このようなロジックチップとメモリチップとを共通のパッケージに搭載したSiP型半導体装置においては、メモリチップのメモリセル構成(ロウ/カラム構成)はメモリベンダ毎に異なる。また、同一ベンダのメモリであっても製造プロセス(対応するデザインルール)が異なるとロウ/カラム構成も異なる。そのため、1つのBIST回路でロウ/カラム構成が異なるメモリチップのテストを行うのは困難であった。このため、品質低下が懸念され、回路規模が増大してしまうという問題が生じる。これに対し、ロウ/カラム構成が異なるメモリチップでもテスト可能な手法として、外部端子からメモリチップへテスト信号を入力し、その後メモリチップからの出力信号をモニタする手段がある(例えば特許文献2参照)。   By the way, in such a SiP type semiconductor device in which a logic chip and a memory chip are mounted in a common package, the memory cell configuration (row / column configuration) of the memory chip differs for each memory vendor. In addition, even if the memory is from the same vendor, the row / column configuration is different if the manufacturing process (corresponding design rule) is different. Therefore, it is difficult to test a memory chip having a different row / column configuration with one BIST circuit. For this reason, there is a concern that the quality is lowered, and a problem arises that the circuit scale increases. On the other hand, as a method capable of testing even a memory chip having a different row / column configuration, there is means for inputting a test signal from an external terminal to the memory chip and then monitoring an output signal from the memory chip (see, for example, Patent Document 2). ).

図13は、特許文献2に記載の半導体装置を示す図である。図13に示すように、特許文献2に記載のSiP型半導体装置は、SiP型半導体装置310内に、ロジックチップ311及びメモリチップ312が搭載されたものである。このSiP型半導体装置310は、ロジックチップ311内にテスト回路316を内蔵することにより、外部端子を使用してメモリチップ312に対して比較的低速でのテストを可能にするものである。   FIG. 13 is a diagram illustrating a semiconductor device described in Patent Document 2. In FIG. As shown in FIG. 13, the SiP type semiconductor device described in Patent Document 2 has a logic chip 311 and a memory chip 312 mounted in a SiP type semiconductor device 310. This SiP type semiconductor device 310 incorporates a test circuit 316 in a logic chip 311 to enable a test at a relatively low speed for the memory chip 312 using an external terminal.

すなわち、ロジックチップ311は、ロジック回路315とテスト回路316を内蔵しており、外部接続端子への配線313によって外部端子に直接接続され、かつ配線317によってメモリチップ312と接続されている。外部接続端子内に設けたモード選択信号がテストモードを示す時は、ロジック回路315を介さず、配線318、テスト回路316、及び配線317を介し、外部接続端子からメモリ回路314へアクセスすることができる。これにより、寿命加速試験や、テストデータを伸張処理してメモリ回路314に書き込み、読み出したデータを縮退処理して良否判定を行うマルチビットテストを行う。また、電源投入時やその後においても、同様に配線318、テスト回路316、及び配線317を介して外部接続端子から直接メモリ回路314へアクセスし、自己診断(BIST)を行なうことも可能である。   That is, the logic chip 311 includes the logic circuit 315 and the test circuit 316, is directly connected to the external terminal by the wiring 313 to the external connection terminal, and is connected to the memory chip 312 by the wiring 317. When the mode selection signal provided in the external connection terminal indicates the test mode, the memory circuit 314 can be accessed from the external connection terminal via the wiring 318, the test circuit 316, and the wiring 317 without passing through the logic circuit 315. it can. Thus, a life acceleration test and a multi-bit test in which test data is expanded and written to the memory circuit 314, and read data is degenerated and pass / fail judgment is performed. Similarly, at the time of power-on or after that, the memory circuit 314 can be directly accessed from the external connection terminal via the wiring 318, the test circuit 316, and the wiring 317, and self-diagnosis (BIST) can be performed.

図14は、図13に示すテスト回路316の詳細構成を示すブロック図である。テスト回路316は、メモリテスト回路321と選択回路322で構成されており、配線317をメモリ回路314への共通のアクセス経路として使用している。通常動作時は、ロジック回路315の出力信号を配線319からテスト回路316を介して配線317に出力し、テスト時は配線318からテスト回路316を介して配線317上に必要なテスト信号(324〜329)の入出力を行う。テスト信号は、アクセス制御信号324、モード信号325、リード/ライトのアドレス信号326、テスト書込データ信号327、テストデータ信号328、及び判定結果信号329からなり、これらの信号によりメモリ回路314へアクセスし、寿命加速試験、マルチビットテスト、及び自己診断(BIST)を行う。   FIG. 14 is a block diagram showing a detailed configuration of the test circuit 316 shown in FIG. The test circuit 316 includes a memory test circuit 321 and a selection circuit 322, and uses the wiring 317 as a common access path to the memory circuit 314. During normal operation, an output signal of the logic circuit 315 is output from the wiring 319 to the wiring 317 via the test circuit 316, and at the time of testing, a necessary test signal (324 to 324) is transmitted from the wiring 318 to the wiring 317 via the test circuit 316. 329). The test signal includes an access control signal 324, a mode signal 325, a read / write address signal 326, a test write data signal 327, a test data signal 328, and a determination result signal 329, and the memory circuit 314 is accessed by these signals. The life acceleration test, the multi-bit test, and the self-diagnosis (BIST) are performed.

図15は図14に示すテスト回路316の具体的な回路構成例である。テスト回路316は、FF回路371、378、セレクタ372、374、デコード回路377、寿命加速試験回路375、縮退回路376、伸張回路373で構成されている。また、テスト回路316は、ロジック回路315及び外部接続端子との入出力を行い、実動作時(=ロジック回路315の出力)、テスト時(=外部接続端子からの信号を処理した信号)をセレクタ372により選択し、メモリ回路(DRAM)314へアクセスを行う。   FIG. 15 shows a specific circuit configuration example of the test circuit 316 shown in FIG. The test circuit 316 includes FF circuits 371 and 378, selectors 372 and 374, a decode circuit 377, a life acceleration test circuit 375, a degeneration circuit 376, and an expansion circuit 373. Further, the test circuit 316 performs input / output with the logic circuit 315 and the external connection terminal, and selects the selector at the time of actual operation (= output of the logic circuit 315) and at the time of test (= the signal processed from the external connection terminal). The selection is made by 372 and the memory circuit (DRAM) 314 is accessed.

特開2003−77296号公報JP 2003-77296 A 特開2004−158098号公報JP 2004-158098 A

しかしながら、上述したように、特許文献1に記載の半導体装置は、ロジックチップ内にメモリチップのテスト用BISTを用いたものである。よって、メモリチップをBISTによりテストする場合には、メモリチップの実動作速度でのテストが可能であるが、メモリチップのロウ/カラムの構成に対応したBIST回路を作成する必要がある。同じビット数のメモリでも製造プロセス(対応するデザインルール)によって最適なロウ数、カラム数の割合が変わる場合があり、マーチングテストやチェッカーボードテストなどの想定したロウ数及びカラム数に基づいて行うテストでは、1個のBISTで異なるロウ数/カラム数のメモリチップに対応することが困難だからである。   However, as described above, the semiconductor device described in Patent Document 1 uses a memory chip test BIST in a logic chip. Therefore, when testing a memory chip by BIST, it is possible to test at the actual operating speed of the memory chip, but it is necessary to create a BIST circuit corresponding to the row / column configuration of the memory chip. Even if the memory has the same number of bits, the ratio of the optimal number of rows and columns may change depending on the manufacturing process (corresponding design rule). This is because it is difficult to deal with memory chips having different numbers of rows / columns in one BIST.

また、特許文献2に記載の半導体装置は、テストモード時に外部端子からテスト信号を供給して、メモリチップのテストを行うためのテスト回路をロジックチップに内蔵したものである。よって、外部からテスト信号を入力できるので、ロウ数及びカラム数の如何にかかわらず、内部回路を変更することなく所望のテストが可能である。しかしながら、テスト時にテストデータ信号入力端子からメモリチップへ入力するテスト信号の信号遅延、及びメモリチップからテストデータ信号端子へ取り出すテスト結果信号の信号遅延が障害となって、メモリチップの実動作速度でのテストが困難となる場合が生じる。つまり、テスト周波数が高速になると、ロジックチップ内の信号遅延が障害となって、所望の動作周波数での高速テストが困難になるという問題点がある。   The semiconductor device described in Patent Document 2 includes a test circuit for supplying a test signal from an external terminal in a test mode to test a memory chip in a logic chip. Therefore, since a test signal can be input from the outside, a desired test can be performed without changing the internal circuit regardless of the number of rows and the number of columns. However, the signal delay of the test signal input from the test data signal input terminal to the memory chip during the test and the signal delay of the test result signal extracted from the memory chip to the test data signal terminal become obstacles, and the actual operation speed of the memory chip. It may be difficult to test. In other words, when the test frequency becomes high, signal delay in the logic chip becomes an obstacle, and there is a problem that high-speed testing at a desired operating frequency becomes difficult.

本発明にかかる半導体装置は、メモリチップとロジックチップとを備え半導体装置であって、前記ロジックチップは、内部ロジック回路と、前記内部ロジック回路及び前記メモリチップと接続され、外部端子から前記メモリチップにアクセスして前記メモリチップをテストするものである。 The semiconductor device according to the present invention, there is provided a semiconductor device comprising a memory chip and a logic chip, said logic chip is connected to the internal logic circuit, and the internal logic circuit and the memory chip, the memory from an external terminal The memory chip is tested by accessing the chip .

本発明においては、前記外部端子から前記メモリチップにアクセスしてテストする際に、テスト速度に応じた信号転送レートを選択することができる高速テスト制御回路を有する。よって、例えば実動作周波数での高速テストを実行する際においては、高速テストに応じた信号転送レートとするなどテスト速度に応じた信号転送レートを選択してメモリ回路をテストすることができる。ここで、メモリ回路をアクセスするとは、メモリ回路のリード及びライト動作の制御を行い、かつリードデータの観測が可能であることを示す。 The present invention includes a high-speed test control circuit capable of selecting a signal transfer rate according to a test speed when testing by accessing the memory chip from the external terminal. Therefore, for example, when executing a high-speed test at an actual operating frequency, the memory circuit can be tested by selecting a signal transfer rate corresponding to the test speed, such as a signal transfer rate corresponding to the high-speed test. Here, accessing the memory circuit indicates that the read and write operations of the memory circuit are controlled and the read data can be observed.

本発明によれば、所望の動作周波数での高速テストが可能である半導体装置及びそのテスト方法を提供することができる。   According to the present invention, it is possible to provide a semiconductor device and a test method thereof capable of performing a high-speed test at a desired operating frequency.

本発明の実施の形態1にかかる半導体装置を示すブロック図である。1 is a block diagram showing a semiconductor device according to a first embodiment of the present invention. 本発明の実施の形態1にかかる半導体装置におけるテスト処理回路21を示すブロック図である。1 is a block diagram showing a test processing circuit 21 in a semiconductor device according to a first embodiment of the present invention. FIG. テスト処理回路21の詳細を示すブロック図である3 is a block diagram showing details of a test processing circuit 21. FIG. 高速テスト調整回路の原理を説明する図である。It is a figure explaining the principle of a high-speed test adjustment circuit. 高速テスト調整回路の一例を示す図である。It is a figure which shows an example of a high-speed test adjustment circuit. 本発明の実施の形態にかかる半導体装置における高速テストモード時のタイミングチャートである。4 is a timing chart in a high-speed test mode in the semiconductor device according to the embodiment of the present invention. 本発明の実施の形態2にかかる半導体装置を示すブロック図である。It is a block diagram which shows the semiconductor device concerning Embodiment 2 of this invention. 本発明の実施の形態3にかかる半導体装置を示すブロック図である。It is a block diagram which shows the semiconductor device concerning Embodiment 3 of this invention. 特許文献1に記載の半導体装置の全体を示す図である。1 is a diagram illustrating an entire semiconductor device described in Patent Document 1. FIG. 図9に示すメモリチップ試験回路を示す図である。FIG. 10 is a diagram showing a memory chip test circuit shown in FIG. 9. 図9に示すセレクタ/入出力回路202Cの第1の内部構成例を示す図である。FIG. 10 is a diagram showing a first internal configuration example of a selector / input / output circuit 202C shown in FIG. 9; 図9に示すセレクタ/入出力回路202Cの第2の内部構成例を示す図である。FIG. 10 is a diagram showing a second internal configuration example of the selector / input / output circuit 202C shown in FIG. 9; 特許文献2に記載の半導体装置を示す図である。10 is a diagram showing a semiconductor device described in Patent Document 2. FIG. 図13に示すテスト回路316の詳細構成を示すブロック図である。FIG. 14 is a block diagram illustrating a detailed configuration of a test circuit 316 illustrated in FIG. 13. 図14に示すテスト回路316の具体例を示す図である。FIG. 15 is a diagram illustrating a specific example of the test circuit 316 illustrated in FIG. 14.

以下、本発明を適用した具体的な実施の形態について、図面を参照しながら詳細に説明する。この実施の形態は、本発明を、SiP型半導体装置におけるメモリチップのテストに適用したものである。   Hereinafter, specific embodiments to which the present invention is applied will be described in detail with reference to the drawings. In this embodiment, the present invention is applied to a test of a memory chip in a SiP type semiconductor device.

実施の形態1.
図1は本発明の実施の形態1にかかる半導体装置を示すブロック図である。本実施の形態にかかるSiP型半導体装置(以下、SiPという。)101は、有機基板(インターポーザ)102上に、ロジックチップ103Aとメモリチップ103Bとが搭載されている。
Embodiment 1 FIG.
FIG. 1 is a block diagram showing a semiconductor device according to Embodiment 1 of the present invention. In a SiP type semiconductor device (hereinafter referred to as SiP) 101 according to this embodiment, a logic chip 103A and a memory chip 103B are mounted on an organic substrate (interposer) 102.

ロジックチップ103Aは、内部ロジック回路20及びテスト処理回路21を内蔵し、かつ複数のテスト端子23、及び2つのテストモード選択端子24、24がそれぞれ外部端子として接続されている。このテスト端子23、及びテストモード選択端子24、24は、ユーザが使用する外部端子数との兼ね合いにより、外部専用端子、または外部兼用端子のどちらにも設定可能である。また、ロジックチップ103Aとメモリチップ103Bとは、バンプやワイヤなどで直接接続されているのみであり、メモリチップ103Bの各端子は外部端子として取り出されていないものとする。 The logic chip 103A includes an internal logic circuit 20 and a test processing circuit 21, and a plurality of test terminals 23 n and two test mode selection terminals 24 1 and 24 2 are connected as external terminals. The test terminal 23 n and the test mode selection terminals 24 1 and 24 2 can be set as either an external dedicated terminal or an external shared terminal depending on the number of external terminals used by the user. Further, it is assumed that the logic chip 103A and the memory chip 103B are only directly connected by bumps or wires, and the terminals of the memory chip 103B are not taken out as external terminals.

ここで、本実施の形態にかかるテスト処理回路21は、テスト回路121と、高速テスト制御回路122とを有する。テスト回路121は、特許文献2に記載のテスト回路316と同様の機能を有する。一方、高速テスト制御回路122は、SiP101において、テスト回路121を介してメモリチップ103Bのアクセス端子へ接続され、外部端子であるテスト端子23からメモリチップ103Bのリード及びライト動作を制御し、かつリードデータを観測する(アクセスする)ことでメモリチップ103Bのテストをする。そして、この高速テスト制御回路122は、テスト端子23とメモリチップ103Bとの間において、テスト速度に応じた信号転送レートを選択可能となっている。すなわち、実動作速度での高速テストの際には、テスト端子23とアクセス端子との間の信号転送レートを所望の信号転送レートとしたり、低速テストの際には、実動作速度より低い信号転送レートとしたりすることができる。このため、この高速テスト制御回路122は、詳細は後述するがテスト速度に応じた信号転送レートに合わせ、テスト信号のタイミングを調整することで、テスト信号の同期信号からの遅延の影響を低減する機能を有する。このことにより、メモリチップ103Bの高速テスト(実動作速度テスト)の困難度が低減される。また、外部端子であるテスト端子23から所望のテスト信号を供給することができ、メモリチップ103Bのロウ/カラム数にかかわらず、内部回路を変更することなく所望の高速テストが可能となる。 Here, the test processing circuit 21 according to the present embodiment includes a test circuit 121 and a high-speed test control circuit 122. The test circuit 121 has the same function as the test circuit 316 described in Patent Document 2. On the other hand, high-speed test control circuit 122, in SiP101, is connected to the access terminals of the memory chip 103B through the test circuit 121, and controls the read and write operations of the memory chip 103B from the test terminal 23 n which is an external terminal, and The memory chip 103B is tested by observing (accessing) the read data. The high-speed test control circuit 122 can select a signal transfer rate corresponding to the test speed between the test terminal 23 n and the memory chip 103B. That is, in the high-speed test at the actual operation speed, the signal transfer rate between the test terminal 23 n and the access terminal is set to a desired signal transfer rate, or in the low-speed test, the signal lower than the actual operation speed. Or a transfer rate. Therefore, although the details will be described later, the high-speed test control circuit 122 adjusts the timing of the test signal in accordance with the signal transfer rate corresponding to the test speed, thereby reducing the influence of the delay of the test signal from the synchronization signal. It has a function. This reduces the difficulty of the high-speed test (actual operation speed test) of the memory chip 103B. In addition, a desired test signal can be supplied from the test terminal 23 n which is an external terminal, and a desired high-speed test can be performed without changing the internal circuit regardless of the number of rows / columns of the memory chip 103B.

図2は上記テスト処理回路21を示すブロック図である。テスト処理回路21は、テスト回路121と高速テスト制御回路122とを有する。テスト回路121は、入出力切替回路B28を有し、高速テスト制御回路122は、テストモード切替回路25、入出力切替回路A26、及び信号切替回路27を有する。   FIG. 2 is a block diagram showing the test processing circuit 21. The test processing circuit 21 includes a test circuit 121 and a high-speed test control circuit 122. The test circuit 121 includes an input / output switching circuit B28, and the high-speed test control circuit 122 includes a test mode switching circuit 25, an input / output switching circuit A26, and a signal switching circuit 27.

テストモード選択端子24、24は、配線7、8を介して高速テスト制御回路122のテストモード切替回路25へ接続される。テストモード切替回路25の各出力信号は、入出力切替回路A26、入出力切替回路B28、信号切替回路27へ入力される。テストモード切替回路25は、テストモード選択端子24、24からの信号に基づき、メモリチップ103Bの単体テストモードをするか否か、及び低速テストモードもしくは高速テストモードかを選択して、入出力切替回路A26、入出力切替回路B28、信号切替回路27の各回路を所定のモードに設定する。 The test mode selection terminals 24 1 and 24 2 are connected to the test mode switching circuit 25 of the high-speed test control circuit 122 via the wirings 7 and 8. Each output signal of the test mode switching circuit 25 is input to the input / output switching circuit A 26, the input / output switching circuit B 28, and the signal switching circuit 27. Based on the signals from the test mode selection terminals 24 1 and 24 2 , the test mode switching circuit 25 selects whether to perform the unit test mode of the memory chip 103B and the low-speed test mode or the high-speed test mode. Each circuit of the switching circuit A26, the input / output switching circuit B28, and the signal switching circuit 27 is set to a predetermined mode.

また、入出力切替回路A26には、テスト端子23から配線1〜6を介して、それぞれデータ信号A、アドレス信号A、制御信号A、クロック信号A、I/O制御信号I1、I2が供給される。さらに、I/O制御信号I1は、入出力切替回路B28にも供給される。低速テストモード時には、I/O制御信号I2は無効とし、I/O制御信号I1によりデータ信号A、およびデータ信号Bのイネーブル切り替えを行い、メモリチップ103Bに対するデータ信号のWRITE/READ制御を行う。一方、高速テストモード時には、I/O制御信号I1によりデータ信号B、またI/O制御信号I2によりデータ信号Aのイネーブル切り替えを個別に行い、メモリチップ103Bに対するデータ信号のWRITE/READ制御を高速に行う。 Further, the input-output switching circuit A26 via line 1-6 from the test terminal 23 n, each of the data signal A, the address signal A, the control signal A, the clock signals A, I / O control signals I1, I2 is supplied Is done. Further, the I / O control signal I1 is also supplied to the input / output switching circuit B28. In the low-speed test mode, the I / O control signal I2 is invalidated, the data signal A and the data signal B are enabled by the I / O control signal I1, and the WRITE / READ control of the data signal to the memory chip 103B is performed. On the other hand, in the high-speed test mode, enable switching of the data signal B is individually performed by the I / O control signal I1 and the data signal A by the I / O control signal I2, and the WRITE / READ control of the data signal to the memory chip 103B is performed at high speed. To do.

入出力切替回路A26の出力信号であるデータ信号、アドレス信号、制御信号、及びクロック信号は、信号切替回路27に供給され、前記クロック信号は入出力切替回路B28へも供給される。信号切替回路27の出力信号であるデータ信号、アドレス信号、及び制御信号は、入出力切替回路B28に供給される。   A data signal, an address signal, a control signal, and a clock signal, which are output signals of the input / output switching circuit A26, are supplied to the signal switching circuit 27, and the clock signal is also supplied to the input / output switching circuit B28. A data signal, an address signal, and a control signal, which are output signals of the signal switching circuit 27, are supplied to the input / output switching circuit B28.

さらに内部ロジック回路20から、配線13〜17を介して、入出力切替回路B28へそれぞれ実動作時のデータ信号、アドレス信号、制御信号、クロック信号、及びデータイネーブル信号が供給される。また、内部ロジック回路20から、高速テスト制御回路122の入出力切替回路A26へ、配線18を介して実動作時のユーザモード信号が供給される。   Further, a data signal, an address signal, a control signal, a clock signal, and a data enable signal at the time of actual operation are supplied from the internal logic circuit 20 to the input / output switching circuit B28 via the wirings 13 to 17, respectively. Further, a user mode signal during actual operation is supplied from the internal logic circuit 20 to the input / output switching circuit A 26 of the high-speed test control circuit 122 via the wiring 18.

入出力切替回路B28は、テストモードの際には、信号切替回路27からのデータ信号、アドレス信号、制御信号及び入出力切替回路A26からのクロックを選択し、一方、実動作モード(ユーザモード)の際には、内部ロジック回路20からのデータ信号、アドレス信号、制御信号、及びクロック信号を選択し、配線9〜12を介してメモリチップ103Bへ供給する。   In the test mode, the input / output switching circuit B28 selects the data signal from the signal switching circuit 27, the address signal, the control signal, and the clock from the input / output switching circuit A26, while the actual operation mode (user mode). In this case, a data signal, an address signal, a control signal, and a clock signal from the internal logic circuit 20 are selected and supplied to the memory chip 103B via the wirings 9-12.

図3は図2に示すテスト処理回路21の詳細の一例を示す図である。上述したように、高速テスト制御回路122は、外部端子であるテスト端子23(23〜23)と接続される。そして、テスト端子23〜23を介してデータ信号A、アドレス信号A、制御信号Aが入力される。これらの信号は、それぞれバッファ31、32、33を介して、ANDゲート42、43、44の一方の入力端子に入力される。このANDゲート42、43、44の他方の入力端子には、外部端子であるテストモード選択端子24、及び24から入力されるテストモード選択信号I1及びテストモード選択信号I2を入力としたORゲート41の出力信号が入力される。 FIG. 3 is a diagram showing an example of the details of the test processing circuit 21 shown in FIG. As described above, the high-speed test control circuit 122 is connected to the test terminals 23 n (23 1 to 23 6 ) that are external terminals. Then, the data signal A, the address signal A, and the control signal A are input via the test terminals 23 1 to 23 3 . These signals are input to one input terminal of AND gates 42, 43, and 44 through buffers 31, 32, and 33, respectively. The other input terminals of the AND gates 42, 43 and 44 are ORed with the test mode selection signal I1 and the test mode selection signal I2 input from the test mode selection terminals 24 1 and 24 2 as external terminals as inputs. An output signal of the gate 41 is input.

さらにANDゲート42、43、44の出力信号は、セレクタ51、52、53の一方の入力端子に直接接続され、もう一方の入力端子には高速テスト調整回路47、48、49の出力が入力される。セレクタ51、52、53により、低速テストモードの際は、ANDゲート42、43、44の出力信号が選択され、また、高速テストモードの際は、高速テスト調整回路47、48、49の出力信号が選択される。このため、前記セレクタ51、52、53には、選択信号として、テストモード選択信号I2が供給される。さらに、セレクタ51、52、53の出力信号は、セレクタ54、56、57の一方の入力端子に供給され、前記セレクタ54、56、57の他方の入力端子は内部ロジック回路20からの信号が入力される。また選択信号として、前記ORゲート41の出力が供給され、テストモードの際には、セレクタ51、52、53の出力信号を選択し、実動作モードの際には内部ロジック回路20からの信号を選択出力する。このセレクタ54、56、57の出力信号は、バッファ60、62、63を介して、それぞれデータ信号B、アドレス信号B、制御信号Bとして、メモリチップ103Bへ出力される。   Further, the output signals of the AND gates 42, 43, and 44 are directly connected to one input terminal of the selectors 51, 52, and 53, and the outputs of the high-speed test adjustment circuits 47, 48, and 49 are input to the other input terminal. The The selectors 51, 52, 53 select the output signals of the AND gates 42, 43, 44 in the low speed test mode, and the output signals of the high speed test adjustment circuits 47, 48, 49 in the high speed test mode. Is selected. Therefore, a test mode selection signal I2 is supplied to the selectors 51, 52 and 53 as a selection signal. Further, the output signals of the selectors 51, 52, 53 are supplied to one input terminal of the selectors 54, 56, 57, and the other input terminal of the selectors 54, 56, 57 is inputted with a signal from the internal logic circuit 20. Is done. Further, the output of the OR gate 41 is supplied as a selection signal. The output signal of the selectors 51, 52, 53 is selected in the test mode, and the signal from the internal logic circuit 20 is selected in the actual operation mode. Select output. The output signals of the selectors 54, 56, and 57 are output to the memory chip 103B as the data signal B, the address signal B, and the control signal B through the buffers 60, 62, and 63, respectively.

また、データ信号Bは、メモリチップ103Bから供給され、バッファ59を介してANDゲート50の一方の入力端子、及び内部ロジック回路20に接続される。ANDゲート50の他方の入力端子には、ORゲート41の出力信号が供給される。さらに、ANDゲート50の出力信号は、セレクタ39の一方の入力端子に供給され、もう一方の入力端子には高速テスト調整回路46の出力信号が供給される。セレクタ39により、低速テストモードの際は、ANDゲート50の出力信号が選択され、また、高速テストモードの際は、高速テスト調整回路46の出力信号が選択される。このため、セレクタ39には、選択信号として、テストモード選択信号I2が供給されている。   The data signal B is supplied from the memory chip 103 </ b> B and connected to one input terminal of the AND gate 50 and the internal logic circuit 20 through the buffer 59. The output signal of the OR gate 41 is supplied to the other input terminal of the AND gate 50. Further, the output signal of the AND gate 50 is supplied to one input terminal of the selector 39, and the output signal of the high-speed test adjustment circuit 46 is supplied to the other input terminal. The selector 39 selects the output signal of the AND gate 50 in the low speed test mode, and selects the output signal of the high speed test adjustment circuit 46 in the high speed test mode. Therefore, the test mode selection signal I2 is supplied to the selector 39 as a selection signal.

さらに、セレクタ39の出力信号は、セレクタ37の一方の入力端子に供給され、他方の入力端子には配線18が接続され内部ロジック回路20のユーザモード信号が供給される。また選択信号としてORゲート41の出力信号が供給され、テストモード時にはセレクタ39の出力が、実動作モードのときには内部ロジック回路20のユーザモード信号が選択出力される。セレクタ37の出力は、バッファ30を介して、テスト端子23から出力される。 Further, the output signal of the selector 39 is supplied to one input terminal of the selector 37, the wiring 18 is connected to the other input terminal, and the user mode signal of the internal logic circuit 20 is supplied. The output signal of the OR gate 41 is supplied as a selection signal, and the output of the selector 39 is selected and output in the test mode, and the user mode signal of the internal logic circuit 20 is selected and output in the actual operation mode. The output of the selector 37 through the buffer 30, is output from the test terminal 23 1.

クロック信号Aは、外部端子であるテスト端子23から入力され、バッファ34を介してさらにANDゲート45の一方の入力端子に供給される。このANDゲート45の他方の入力端子には、ORゲート41の出力信号が供給される。さらに、ANDゲート45の出力信号は、高速テスト調整回路46、47、48、49のクロック入力信号となると共にセレクタ58の一方の入力端子に供給される。セレクタ58の他方の入力端子は配線16に接続され内部ロジック回路20のクロック信号が供給される。そして、選択信号としてORゲート41の出力信号が供給され、テストモード時にはテスト端子23からのクロック信号Aが選択出力され、実動作モードの時には、内部ロジック回路20のクロック信号が選択出力される。セレクタ58の出力は、バッファ64を介して、クロック信号Bとしてメモリチップ103Bへ供給される。 The clock signal A is input from the test terminal 23 4 is an external terminal, is supplied to one input terminal of the further AND gate 45 via the buffer 34. The output signal of the OR gate 41 is supplied to the other input terminal of the AND gate 45. Further, the output signal of the AND gate 45 becomes a clock input signal for the high-speed test adjustment circuits 46, 47, 48 and 49 and is supplied to one input terminal of the selector 58. The other input terminal of the selector 58 is connected to the wiring 16 and supplied with the clock signal of the internal logic circuit 20. The output signal of the OR gate 41 is supplied as a selection signal, the test mode clock signal A from the test terminal 23 4 is selectively outputted when the actual operation mode, the clock signal of the internal logic circuit 20 is selectively output . The output of the selector 58 is supplied to the memory chip 103B as the clock signal B through the buffer 64.

I/O制御信号I1、及びI/O制御信号I2は、外部端子であるテスト端子23、23から供給され、それぞれバッファ35、36を介し、セレクタ40に入力される。このセレクタ40には、選択信号として、テストモード選択信号I2が供給され、低速テストモード又は高速テストモードに応じてI/O選択信号I1、I2が選択出力される。
セレクタ40の出力は、セレクタ38の一方の入力端子に接続され、他方の入力端子は配線18と接続され内部ロジック回路20のユーザモード信号が供給される。このセレクタ38には、選択信号としてORゲート41の出力信号が供給され、テストモード時にはセレクタ40の出力が選択出力され、実動作モードのときには内部ロジック回路20のユーザモード信号が選択出力される。このセレクタ38の出力は、バッファ30のイネーブル信号となる。
I / O control signal I1, and I / O control signal I2 is supplied from the test terminal 23 5, 23 6, which is an external terminal, via the buffer 35 and 36, respectively, are input to the selector 40. The selector 40 is supplied with a test mode selection signal I2 as a selection signal, and I / O selection signals I1 and I2 are selectively output in accordance with the low speed test mode or the high speed test mode.
The output of the selector 40 is connected to one input terminal of the selector 38, the other input terminal is connected to the wiring 18, and the user mode signal of the internal logic circuit 20 is supplied. The selector 38 is supplied with the output signal of the OR gate 41 as a selection signal, the output of the selector 40 is selected and output in the test mode, and the user mode signal of the internal logic circuit 20 is selected and output in the actual operation mode. The output of the selector 38 becomes an enable signal for the buffer 30.

I/O制御信号I1が供給されるバッファ35の出力は、セレクタ55の一方の入力端子と接続され、他方の入力端子は配線17と接続され内部ロジック回路20のデータイネーブル信号が供給されている。このセレクタ55は選択信号としてORゲート41の出力が供給され、テストモード時には、I/O制御信号I1を選択出力し、実動作モード時には内部ロジック回路20のデータイネーブル信号が選択出力される。セレクタ55の出力は、インバータ61を介し、バッファ60のイネーブル信号となる。なお、上記回路構成例は、これに限定されるものではなく、所望の機能を実現可能であれば、任意の回路構成に変更可能である。   The output of the buffer 35 to which the I / O control signal I1 is supplied is connected to one input terminal of the selector 55, the other input terminal is connected to the wiring 17, and the data enable signal of the internal logic circuit 20 is supplied. . The selector 55 is supplied with the output of the OR gate 41 as a selection signal, selects and outputs the I / O control signal I1 in the test mode, and selectively outputs the data enable signal of the internal logic circuit 20 in the actual operation mode. The output of the selector 55 becomes an enable signal for the buffer 60 via the inverter 61. Note that the circuit configuration example is not limited to this, and can be changed to any circuit configuration as long as a desired function can be realized.

次に、高速テスト調整回路について説明する。ここでは先ず、本実施の形態における高速テスト調整回路の説明をする前にその原理について説明する。一般的に、PVT(プロセス、電圧、温度)バラツキに基づく素子特性変動に因る遅延時間のばらつき、及び信号配線の長さによる遅延時間の増大は、例えばフロップフロップのセットアップ時間の増大を招く。すなわち、従来は、遅延時間のバラツキ又は増大によって、フリップフロップのセットアップ時間が大きくなるなどして高速テストが困難であった。これに対し、本実施の形態においては、複数のRetiming用フリップフロップを高速テスト調整回路として設けることで、素子特性変動に因る遅延時間のバラツキを抑制する。このことにより、高速な信号を長距離に渡って伝播することを可能とし、結果高速テストを可能とするものである。   Next, the high-speed test adjustment circuit will be described. Here, first, the principle of the high-speed test adjustment circuit in this embodiment will be described before the description thereof. In general, variations in delay time due to variations in element characteristics due to variations in PVT (process, voltage, temperature), and an increase in delay time due to the length of a signal wiring lead to an increase in setup time of a flop-flop, for example. That is, conventionally, it has been difficult to perform a high-speed test due to an increase in the setup time of the flip-flop due to the variation or increase in the delay time. On the other hand, in this embodiment, by providing a plurality of Retiming flip-flops as a high-speed test adjustment circuit, variations in delay time due to variations in element characteristics are suppressed. This makes it possible to propagate a high-speed signal over a long distance and, as a result, enable a high-speed test.

図4は、高速テスト調整回路の原理を説明する図である。図4(a)に示すように、抵抗Ra、RbコンデンサCa、Cbを有する回路151にフリップフロップFFaが接続されている場合、PVTバラツキに基づく閾値などの素子特性の変動が右図に示すようにΔあるとする。そして、当該閾値の変動Δによる遅延時間の変動がΔT1であるとする。回路151の抵抗Ra、Rb、コンデンサCa、Cbの値が大きくなると、この遅延時間の変動ΔT1が大きくなり、例えばフリップフロップFFaのセットアップ時間が増大して高速テストを行なうことができない。   FIG. 4 is a diagram for explaining the principle of the high-speed test adjustment circuit. As shown in FIG. 4A, when the flip-flop FFa is connected to the circuit 151 having the resistors Ra and the Rb capacitors Ca and Cb, the variation in element characteristics such as the threshold value based on the PVT variation is shown in the right diagram. Is Δ. It is assumed that the delay time variation due to the threshold variation Δ is ΔT1. When the values of the resistors Ra and Rb and the capacitors Ca and Cb of the circuit 151 are increased, the delay time variation ΔT1 is increased, and for example, the setup time of the flip-flop FFa is increased, so that a high-speed test cannot be performed.

これに対し、図4(b)に示すように、回路151の間にFFbを設けると、回路152a、152bのようになる。これらの回路152a、152bの閾値の変動は右図に示すように、図4(a)と同じくΔであるが、フリップフロップFFb、FFcに対する遅延時間の変動がΔT2と短くなる。よってセットアップ時間を短くすることができ高速テストが可能となる。本実施の形態においては、この原理を利用し、高速テスト調整回路として、Retiming用のフリップフロップをロジックチップ103A内に必要に応じた数、配置することで、遅延時間の変動を抑制し、高速テストを可能とするものである。具体的には、本実施の形態においては、メモリの高速テストに使用するテスト信号のうち、データ信号、アドレス信号及び制御信号を高速テスト調整回路を介してメモリへ供給することで、高速テストを可能とする。なお、テストの際に使用するクロック信号は高速テスト調整回路を介さずそのままメモリへ供給する。   On the other hand, as shown in FIG. 4B, when FFb is provided between the circuits 151, circuits 152a and 152b are obtained. As shown in the right diagram, the fluctuations in the threshold values of these circuits 152a and 152b are Δ as in FIG. 4A, but the fluctuations in the delay time for the flip-flops FFb and FFc are as short as ΔT2. Therefore, the setup time can be shortened and a high-speed test can be performed. In this embodiment, by utilizing this principle, as a high-speed test adjustment circuit, as many flip-flops for Retiming as necessary are arranged in the logic chip 103A, thereby suppressing delay time fluctuation, It enables testing. Specifically, in the present embodiment, among the test signals used for the high-speed test of the memory, the data signal, the address signal, and the control signal are supplied to the memory via the high-speed test adjustment circuit, thereby performing the high-speed test. Make it possible. The clock signal used in the test is supplied to the memory as it is without going through the high-speed test adjustment circuit.

図5は図3内の高速テスト調整回路46〜49を示す一例である。本実施の形態における高速テスト調整回路は、複数段のフリップフロップから構成される。なお、図5においては、簡単のため、2つのフリップフロップ70、71のみを示す。クロック入力信号は、各フリップフロップ70、71のクロック入力へそれぞれ供給される。また、データ入力信号は、フリップフロップ70のデータ入力へ入力され、フリップフロップ70の出力をシフトレジスタ構成で接続されたフリップフロップ群を介し、最終段であるフリップフロップ71の出力からデータ出力信号として出力される。このフリップフロップの段数は所望のテスト周波数により任意に設定可能である。すなわち、フリップフロップによりデータ信号を順次転送することで、その間の信号遅延によるタイミングのずれを吸収する。よって、例えば高速テスト調整回路が配置される信号配線が長く、テスト周波数が高い場合には、信号遅延が大きくなるため、このフリップフロップの段数を増やせばよい。   FIG. 5 is an example showing the high-speed test adjustment circuits 46 to 49 in FIG. The high-speed test adjustment circuit in the present embodiment is composed of a plurality of stages of flip-flops. In FIG. 5, only two flip-flops 70 and 71 are shown for simplicity. The clock input signal is supplied to the clock input of each flip-flop 70, 71, respectively. Further, the data input signal is input to the data input of the flip-flop 70, and the output of the flip-flop 70 is converted into a data output signal from the output of the flip-flop 71 which is the final stage via the flip-flop group connected in a shift register configuration. Is output. The number of stages of the flip-flop can be arbitrarily set according to a desired test frequency. That is, the data signal is sequentially transferred by the flip-flop, thereby absorbing the timing shift due to the signal delay therebetween. Therefore, for example, when the signal wiring in which the high-speed test adjustment circuit is arranged is long and the test frequency is high, the signal delay becomes large. Therefore, the number of stages of this flip-flop may be increased.

次に、本実施の形態にかかるSiPの動作について説明する。先ず、メモリチップ103Bのテスト方法の概要について説明する。外部端子のテストモード選択端子24、24から、ロジックチップ103A内のテスト処理回路21に対し、実動作モードかメモリチップ103Bの単体テストモードかの設定を行い、テストモードである場合には、低速テストモードもしくは高速テストモードの設定を行う。次に、外部端子であるテスト端子23を使用し、メモリベンダ所有の高品質なテストプログラムを用いて、ロジックチップ103Aを経由して、メモリチップ103BへWRITE、READ動作を行い、メモリチップ103Bの良品/不良品の判定を行う。なお、テストプログラムは、低速テスト、高速テストに応じてテスト項目毎にそれぞれ存在する。 Next, the operation of the SiP according to the present embodiment will be described. First, an outline of a test method for the memory chip 103B will be described. The test mode selection terminals 24 1 and 24 2 of the external terminals are set to the test processing circuit 21 in the logic chip 103A as to the actual operation mode or the unit test mode of the memory chip 103B. Set the low-speed test mode or high-speed test mode. Next, using the test terminal 23 n which is an external terminal, using the high-quality test program owned by the memory vendor, the WRITE and READ operations are performed to the memory chip 103B via the logic chip 103A, and the memory chip 103B The product is judged as good / defective. A test program exists for each test item according to the low-speed test and the high-speed test.

次に、テスト処理回路21の動作について説明する。まず、テストモード選択端子24、24から、配線7、8を用いてテストモード選択信号I1、テストモード選択信号I2をテストモード切替回路25に入力し、実動作モード(ユーザモード)、低速テストモード、又は高速テストモードの各種モードの設定を行う。テストモード切替回路25は、入出力切替回路A26、信号切替回路27、入出力切替回路B28に対し、各モードの設定を行う。 Next, the operation of the test processing circuit 21 will be described. First, the test mode selection signal I1 and the test mode selection signal I2 are input from the test mode selection terminals 24 1 and 24 2 to the test mode switching circuit 25 using the wirings 7 and 8, and the actual operation mode (user mode) and low speed are input. Set various modes of test mode or high-speed test mode. The test mode switching circuit 25 sets each mode for the input / output switching circuit A26, the signal switching circuit 27, and the input / output switching circuit B28.

入出力切替回路A26は、テストモード切替回路25の出力信号より、実動作モードとテストモードとの切り替え設定を行う。低速テストまたは高速テストのテストモード時は、テスト端子23から配線1〜4を介して入力されるデータ信号A、アドレス信号A、制御信号A、クロック信号Aを、それぞれデータ信号、アドレス信号、制御信号、クロック信号として信号切替回路27へ出力する。また、配線5,6を用いて入力されるI/O制御信号I1、I/O制御信号I2により低速テスト又は高速テストのデータ信号Aのイネーブルを切り替える。本実施の形態においては、低速テストモードではI/O制御信号I1をイネーブル信号として使用し、高速テストモードではI/O制御信号I2をイネーブル信号として使用している。 The input / output switching circuit A26 performs switching setting between the actual operation mode and the test mode based on the output signal of the test mode switching circuit 25. In the test mode of the low-speed test or the high-speed test, the data signal A, the address signal A, the control signal A, and the clock signal A input from the test terminal 23 n via the wirings 1 to 4 are converted into the data signal, the address signal, The control signal and the clock signal are output to the signal switching circuit 27. Further, the enable of the data signal A for the low speed test or the high speed test is switched by the I / O control signal I1 and the I / O control signal I2 input using the wirings 5 and 6. In the present embodiment, the I / O control signal I1 is used as an enable signal in the low-speed test mode, and the I / O control signal I2 is used as an enable signal in the high-speed test mode.

一方、実動作モードのときは、配線18を介してユーザモード信号が高速テスト制御回路122へ供給される。この時、消費電力低減のため、データ信号A、アドレス信号A、制御信号A、クロック信号Aが内部でディスイネーブルされる。   On the other hand, in the actual operation mode, a user mode signal is supplied to the high-speed test control circuit 122 via the wiring 18. At this time, the data signal A, address signal A, control signal A, and clock signal A are internally disabled to reduce power consumption.

入出力切替回路A26の出力信号であるデータ信号、アドレス信号、制御信号、クロック信号は、信号切替回路27に入力される。この信号切替回路27は、高速テストであれば、前記データ信号、アドレス信号、制御信号を高速テスト調整回路経由で出力し、
低速テストモードであれば、上記各信号をスルーで出力する。この信号切替回路27の出力信号である前記データ信号、アドレス信号、制御信号は、入出力切替回路B28に入力される。
A data signal, an address signal, a control signal, and a clock signal, which are output signals of the input / output switching circuit A26, are input to the signal switching circuit 27. The signal switching circuit 27 outputs the data signal, the address signal, and the control signal via a high-speed test adjustment circuit for a high-speed test.
In the low-speed test mode, the above signals are output through. The data signal, address signal, and control signal, which are output signals of the signal switching circuit 27, are input to the input / output switching circuit B28.

入出力切替回路B28は、テストモード時は、前記信号切替回路27の出力である前記データ信号、アドレス信号、制御信号、及び前記入出力切替回路A26から出力されるクロック信号を配線9〜12を用いて、メモリチップ103Bへ出力する。なお、配線5を用いて入力されるI/O制御信号I1は、データ信号Bのイネーブル信号として使用される。   In the test mode, the input / output switching circuit B28 routes the data signal, the address signal, the control signal and the clock signal output from the input / output switching circuit A26 through the wirings 9 to 12 as the output of the signal switching circuit 27. And output to the memory chip 103B. The I / O control signal I1 input using the wiring 5 is used as an enable signal for the data signal B.

一方、実動作モードの時は、入出力切替回路B28は、配線13を介して内部ロジック回路20のデータ信号をやりとりし、配線14〜17を介して内部ロジック回路20から、それぞれアドレス信号、制御信号、クロック信号、データイネーブル信号を受け取り、メモリチップ103Bに出力する。なお、配線17のデータイネーブル信号は、データ信号Bのイネーブル信号として使用される。   On the other hand, in the actual operation mode, the input / output switching circuit B28 exchanges the data signal of the internal logic circuit 20 via the wiring 13, and the address signal and control from the internal logic circuit 20 via the wirings 14 to 17, respectively. The signal, clock signal, and data enable signal are received and output to the memory chip 103B. The data enable signal of the wiring 17 is used as an enable signal for the data signal B.

次に、メモリチップ103Bのテスト方式詳細について説明する。まず、外部端子であるテストモード選択端子24、24から、ロジックチップ103A内のテスト処理回路21に対し、テストモードの設定と、高速テストモード又は低速テストモードかの設定とを行なう。本実施の形態においては、テストモード選択信号I1、I2のいずれか一方が"H"、又は両方が"H"の状態とすることで、メモリチップ103Bの単体テストモードに設定することができる。また、テストモード選択信号I1が"H"で、かつテストモード選択信号I2が"L"の状態とすることで、低速テストモードの設定をすることができる。一方、テストモード選択信号I1が"L"又は"H"で、かつテストモード選択信号I2が"H"の状態とすることで高速テストモードの設定を行うことができる。 Next, details of the test method of the memory chip 103B will be described. First, the test mode selection terminals 24 1 and 24 2 which are external terminals set the test mode and the high-speed test mode or the low-speed test mode for the test processing circuit 21 in the logic chip 103A. In the present embodiment, the single test mode of the memory chip 103B can be set by setting either one of the test mode selection signals I1 and I2 to "H" or both to "H". Further, the low-speed test mode can be set by setting the test mode selection signal I1 to “H” and the test mode selection signal I2 to “L”. On the other hand, the high-speed test mode can be set by setting the test mode selection signal I1 to “L” or “H” and the test mode selection signal I2 to “H”.

低速テストモードは、メモリベンダ所有の高品質なテストプログラム中、比較的低速でテストする項目用(Loose Function Test、STATIC HOLD等)を行うテストモードである。低速テストモードにおいては、I/O制御信号I2は無効とし、I/O制御信号I1により、データ信号A、及びデータ信号Bのイネーブル切り替えを行い、メモリチップ103Bに対するデータ信号のWRITE/READ制御を行う。また、データ信号A、アドレス信号A、制御信号Aの各入力信号は、ロジックチップ103A内のテスト処理回路21をスルーで通過し、直接データ信号B、アドレス信号B、制御信号Bとして出力される。さらに、クロック信号Aも、直接クロック信号Bとして出力され、これらの信号を用いて、メモリチップ103Bに対するデータ信号のWRITE/READを行い、メモリチップ103Bの良品/不良品の判定を行う。   The low-speed test mode is a test mode for performing an item to be tested at a relatively low speed (Loose Function Test, STATIC HOLD, etc.) in a high-quality test program owned by a memory vendor. In the low-speed test mode, the I / O control signal I2 is invalidated, the data signal A and the data signal B are enabled by the I / O control signal I1, and the WRITE / READ control of the data signal to the memory chip 103B is performed. Do. Each input signal of the data signal A, the address signal A, and the control signal A passes through the test processing circuit 21 in the logic chip 103A and is directly output as the data signal B, the address signal B, and the control signal B. . Further, the clock signal A is also directly output as the clock signal B, and using these signals, the WRITE / READ of the data signal to the memory chip 103B is performed, and the non-defective / defective product of the memory chip 103B is determined.

なお、実動作時において、図3に示すANDゲート42、43、44、45は、消費電力低減のため、テストモード選択信号I1、I2の両信号を"L"の状態とすることで、データ信号A、アドレス信号A、制御信号A、クロック信号Aの各入力信号をディスイネーブルすることができる。また、低速テストモードでは、テスト処理回路21内の信号遅延等があっても、低速であるため、高速テスト調整回路等を使用せずとも十分同期がとれテストすることが可能となっている。   In the actual operation, the AND gates 42, 43, 44, and 45 shown in FIG. 3 set the data of the test mode selection signals I1 and I2 to the “L” state in order to reduce power consumption. Each input signal of the signal A, the address signal A, the control signal A, and the clock signal A can be disabled. In the low-speed test mode, even if there is a signal delay or the like in the test processing circuit 21, it is low-speed, so that it is possible to perform a test with sufficient synchronization without using a high-speed test adjustment circuit or the like.

一方、高速テストモードは、メモリベンダ所有の高品質なテストプログラム中、高速でテストする項目用(MARCH、BANK PING-PONG等)のテストモードである。I/O制御信号I1によりデータ信号B、またI/O制御信号I2によりデータ信号Aのイネーブル切り替えを個別に行い、メモリチップ103Bに対するデータ信号のWRITE/READ制御を高速に行う。また、WRITE時、データ信号A、アドレス信号A、制御信号Aの各入力信号は、ロジックチップ103A内のテスト処理回路21中にある高速テスト調整回路47、48、49を介し、クロック信号Aに同期してデータ信号B、アドレス信号B、制御信号Bへ出力される。   On the other hand, the high-speed test mode is a test mode for items to be tested at high speed (MARCH, BANK PING-PONG, etc.) in a high-quality test program owned by a memory vendor. The data signal B is individually switched by the I / O control signal I1 and the data signal A is switched by the I / O control signal I2, and the WRITE / READ control of the data signal to the memory chip 103B is performed at high speed. Further, at the time of WRITE, the input signals of the data signal A, the address signal A, and the control signal A are transferred to the clock signal A via the high-speed test adjustment circuits 47, 48, and 49 in the test processing circuit 21 in the logic chip 103A. Synchronously output to the data signal B, the address signal B, and the control signal B.

高速テスト調整回路47、48、49内には、所望の高速テスト周波数に対応するため、複数段のフリップフロップが内蔵され、上記クロック信号Aによりデータ信号A、アドレス信号A、制御信号Aを高速クロックで一時的にフリップフロップに格納、次クロックで出力することにより、ロジックチップ103A内に発生する物理的な信号遅延を短縮し、高速でメモリチップ103Bへの書き込みが可能となる。また、同様にREAD時においても、データ信号Bの入力信号は、高速テスト調整回路46を介し、クロック信号Aに同期してデータ信号Aへ出力される。   In the high-speed test adjustment circuits 47, 48, and 49, a plurality of flip-flops are incorporated in order to correspond to a desired high-speed test frequency, and the data signal A, address signal A, and control signal A are transferred at high speed by the clock signal A. By temporarily storing in the flip-flop with the clock and outputting with the next clock, the physical signal delay generated in the logic chip 103A can be shortened, and writing to the memory chip 103B can be performed at high speed. Similarly, at the time of READ, the input signal of the data signal B is output to the data signal A in synchronization with the clock signal A via the high-speed test adjustment circuit 46.

上記の通り、ロジックチップ103A内のテスト処理回路21中に、高速テスト調整回路を内蔵することにより、メモリチップ103Bに対するデータ信号のWRITE/READを高速に行い、メモリチップ103Bの良品/不良品の判定を行うことができる。   As described above, by incorporating a high-speed test adjustment circuit in the test processing circuit 21 in the logic chip 103A, the WRITE / READ of the data signal to the memory chip 103B is performed at high speed, and the non-defective / defective products of the memory chip 103B are detected. Judgment can be made.

図6は、高速テストモード時のタイミングチャート(WRITE to READ、CL=2、BL=1時)を示す図である。本例は、高速テスト調整回路内にフリップフロップを2段内蔵したものである。また、図6中の端子名、信号名は、図3に示したテスト処理回路21の端子名、信号名に相当する。   FIG. 6 is a timing chart in the high-speed test mode (WRITE to READ, CL = 2, BL = 1). In this example, two stages of flip-flops are incorporated in the high-speed test adjustment circuit. Further, the terminal names and signal names in FIG. 6 correspond to the terminal names and signal names of the test processing circuit 21 shown in FIG.

まず、高速テストモードに設定するため、テストモード選択信号I1を"L"(又は"H")、かつテストモード選択信号I2を"H"に設定する。次に、アドレス信号A、及び制御信号Aより、T1からT3サイクル順に「ACT」コマンド、「WRITE」コマンド、「READ」コマンドを入力する。   First, in order to set the high-speed test mode, the test mode selection signal I1 is set to “L” (or “H”), and the test mode selection signal I2 is set to “H”. Next, an “ACT” command, a “WRITE” command, and a “READ” command are input from the address signal A and the control signal A in the order of T1 to T3 cycles.

クロック信号Aにより、高速テスト調整回路48、49内F/F1、及びF/F2で各信号を2クロック分シフトさせ、アドレス信号B、及び制御信号Bとして出力し、メモリチップ103Bに上記各コマンドを書き込む。上記動作に合わせ、データ信号AよりT2サイクルでWRITEデータを入力し、クロック信号Aにより、高速テスト調整回路47内F/F1、及びF/F2でWRITEデータを2クロック分シフトさせ、T4サイクルでメモリチップ103BにWRITEデータを書き込む。この際、I/O制御信号I1をWRITE期間だけ(T4サイクル)イネーブル"L"にし、データ信号Bを出力モードにする。   In response to the clock signal A, the F / F1 and F / F2 in the high-speed test adjustment circuits 48 and 49 shift each signal by two clocks and output it as an address signal B and a control signal B. Write. In accordance with the above operation, the WRITE data is input from the data signal A in the T2 cycle, and the WRITE data is shifted by two clocks by the F / F1 and F / F2 in the high-speed test adjustment circuit 47 by the clock signal A. Write WRITE data to the memory chip 103B. At this time, the I / O control signal I1 is set to enable “L” only for the WRITE period (T4 cycle), and the data signal B is set to the output mode.

また、T7サイクルでメモリチップ103Bから出力されるREADデータは、本来高速でテストするのが理想であり、T7サイクル中のREADデータaで、WRITEデータとの一致/不一致の比較照合が求められる。しかし、実際にはロジックチップ103A内の信号遅延や外部負荷容量大による出力バッファ遅延等の影響により、T8サイクルのREADデータbまで遅延してしまう場合があり、高速でテストするのが困難となる。これに対し、高速テスト調整回路46を用いることにより、前記高速テスト調整回路46内F/F1で、T7サイクル中のREADデータを一時的に保持し、F/F2でREADデータをシフトさせ、2クロック後のT9サイクルで図6に示すデータ信号aとしてREADデータcを出力させる。このREADデータcと前記WRITEデータと比較し、一致/不一致を検出することにより、メモリチップ103Bの良品/不良品の判定を高速で行うことができる。この際、I/O制御信号I2をREAD期間だけ(T9サイクル)イネーブル"H"にし、データ信号Aを出力モードにすればよい。なお、上記説明では、特にメモリチップ103Bに対するREAD時の高速テストについて言及しているが、これに限らずWRITE時も同様である。   In addition, it is ideal that the READ data output from the memory chip 103B in the T7 cycle is originally tested at a high speed, and the comparison / matching of the WRITE data with the READ data a in the T7 cycle is required. However, in reality, there is a case where the delay is up to the T8 cycle READ data b due to the influence of the signal delay in the logic chip 103A, the output buffer delay due to the large external load capacity, etc., and it becomes difficult to test at high speed. . On the other hand, by using the high-speed test adjustment circuit 46, the F / F1 in the high-speed test adjustment circuit 46 temporarily holds the READ data during the T7 cycle, and the READ data is shifted by the F / F2 so that 2 In the T9 cycle after the clock, the READ data c is output as the data signal a shown in FIG. By comparing the READ data c with the WRITE data and detecting coincidence / non-coincidence, the non-defective / defective product of the memory chip 103B can be determined at high speed. At this time, the I / O control signal I2 is set to enable “H” only for the READ period (T9 cycle), and the data signal A is set to the output mode. In the above description, the high-speed test at the time of READ for the memory chip 103B is mentioned in particular. However, the present invention is not limited to this, and the same applies at the time of WRITE.

本実施の形態においては、テストモード選択端子24、24よりメモリチップ103Bに対するテストモードを設定し、テスト端子23からメモリベンダ所有のテストプログラムを使用してメモリチップ103Bのテストを行うことにより、BISTによるテスト方式で問題となっていた、メモリベンダ、及び使用プロセスにより異なるロウ/カラム構成の違いに左右されず、かつBIST回路の作成も必要なくメモリチップ103Bのテストが可能である。さらに、メモリベンダ所有のテストプログラムを用いてメモリチップ103Bの高速テストが行えるため、高品質なテストが可能である。 In the present embodiment, the test mode for the memory chip 103B is set from the test mode selection terminals 24 1 and 24 2 , and the test of the memory chip 103B is performed using the test program owned by the memory vendor from the test terminal 23 n. Therefore, the memory chip 103B can be tested without being affected by the difference in the row / column configuration which differs depending on the memory vendor and the process used, which has been a problem in the BIST test method, and without the need to create a BIST circuit. Further, since a high-speed test of the memory chip 103B can be performed using a test program owned by the memory vendor, a high-quality test can be performed.

また、図5の高速テスト調整回路を内蔵し、所望のテスト周波数に合わせてフリップフロップの段数を任意に変更することにより、従来困難であった外部端子を使用したメモリチップの高速テストの実現が可能である。   In addition, by incorporating the high-speed test adjustment circuit of FIG. 5 and arbitrarily changing the number of flip-flop stages according to a desired test frequency, it has been possible to realize a high-speed test of a memory chip using an external terminal, which has been difficult in the past. Is possible.

すなわち、図3において、例えばロジックチップ103Aのチップサイズが大きく、かつ端子配置の制約により、テスト端子23(データ信号A)などのテスト端子23とデータ信号Bの端子などのメモリチップ103Bへの出力又はメモリチップからの入力のための入出力端子との端子位置が物理的に離れている場合がある。この場合には、テスト端子23と上記入出力端子との間におけるゲート遅延及び配線遅延の影響が大きいことにより、上述したように、図6に示すT7のタイミングのREADデータaが高速テストにおいては、T8又はそれ以降のタイミングで出力されるなどする。このように、読み出されるタイミングが遅延するため、高速テストにおける所望の周波数でWRITEデータとの一致比較することが困難であった。これに対し、本実施の形態においては、高速テスト制御回路を設けることで、上記入出力端子とテスト端子23nとの間のゲート遅延及び配線遅延により生じる信号遅延を抑制することができる。 In other words, in FIG. 3, for example, the chip size of the logic chip 103A is large, and due to restrictions on terminal arrangement, the test terminal 23 n such as the test terminal 23 1 (data signal A) and the memory chip 103B such as the data signal B terminal are connected. In some cases, the terminal position of the input / output terminal for the output from the memory chip or the input from the memory chip is physically separated. In this case, since the influence of the gate delay and the wiring delay between the test terminal 23 n and the input / output terminal is large, the READ data a at the timing T7 shown in FIG. Is output at timing T8 or later. As described above, since the read timing is delayed, it is difficult to perform coincidence comparison with the WRITE data at a desired frequency in the high-speed test. In contrast, in the present embodiment, by providing a high-speed test control circuit, signal delay caused by gate delay and wiring delay between the input / output terminal and the test terminal 23n can be suppressed.

すなわち、ロジックチップ103Aのチップサイズが大きく、かつ端子配置の制約よりテスト端子23とメモリチップ103Bへの入出力端子の端子位置が物理的に離れている場合でも、ロジックチップ103Aのレイアウトを行う際、高速テスト時の周波数を考慮して、高速テスト調整回路内のフリップフロップを最適な位置に配置するのみで、ゲート遅延及び配線遅延の影響を容易に抑制することができる。また、T7のタイミングでメモリチップ103Bから出力されるREADデータaを、高速テスト調整回路を介すことで、所定のタイミング、すなわち本実施の形態においては、T9のタイミングのREADデータcとして取り出すことが可能となり、所望の周波数での高速テストが容易に可能となる。よって、実動作時の信号転送レートでのテストが可能となる。 That is, even when the large chip size of the logic chip 103A, and terminal positions of the input and output terminals to the test terminals 23 n and the memory chip 103B from constraints terminal arrangement is physically separated, the layout of the logic chip 103A At this time, the influence of the gate delay and the wiring delay can be easily suppressed only by arranging the flip-flop in the high-speed test adjustment circuit at an optimum position in consideration of the frequency during the high-speed test. Also, the READ data a output from the memory chip 103B at the timing of T7 is extracted as the READ data c at a predetermined timing, that is, the timing of T9 in this embodiment, through the high-speed test adjustment circuit. This makes it possible to easily perform a high-speed test at a desired frequency. Therefore, it becomes possible to perform a test at the signal transfer rate during actual operation.

実施の形態2.
図7は本発明の実施の形態2にかかる半導体装置を示す図である。図1に示す実施の形態1との違いは、ロジックチップ1個に対し、同一のデータバス上にメモリチップを2個接続した点である。メモリチップを2つ接続としても、テスト処理回路21を、メモリチップ103B、103Cに対してそれぞれ個別にREAD可能とする回路構成に変更するのみで、メモリチップ103B、103Cをそれぞれ個別に高速テストを行うことが容易に可能である。
Embodiment 2. FIG.
FIG. 7 is a diagram showing a semiconductor device according to the second embodiment of the present invention. A difference from the first embodiment shown in FIG. 1 is that two memory chips are connected to one logic chip on the same data bus. Even if two memory chips are connected, the test processing circuit 21 is changed to a circuit configuration that enables the individual reading of the memory chips 103B and 103C, and the high-speed testing of the memory chips 103B and 103C can be performed individually. Easy to do.

実施の形態3.
図8は本発明の実施の形態3にかかる半導体装置を示す図である。図7に示す実施の形態2との違いは、メモリチップ103B、103Cに対して、それぞれ一対一でテスト回路を接続できるよう、テスト処理回路21A、21Bの2つを備える点である。実施の形態2においてはメモリチップ103B、103Cをそれぞれ個別にテストしていたが、本実施の形態においては、メモリチップ103B、103Cに対し、同時に高速テストが可能となり、テスト時間の短縮を図ることができる。
Embodiment 3 FIG.
FIG. 8 is a diagram showing a semiconductor device according to the third embodiment of the present invention. The difference from the second embodiment shown in FIG. 7 is that two test processing circuits 21A and 21B are provided so that the test circuits can be connected to the memory chips 103B and 103C on a one-to-one basis. In the second embodiment, the memory chips 103B and 103C are individually tested. In this embodiment, the memory chips 103B and 103C can be simultaneously tested at a high speed, thereby reducing the test time. Can do.

以上説明したように、本発明によれば以下の効果を奏する。
1.BIST設計が不要でかつ、メモリベンタや、使用プロセスに左右されることなく、メモリチップのテストが可能となる
2.メモリチップを実動作周波数でテストすることが可能となる
3.全メモリベンダのメモリ専用テストプログラムの採用が可能となるため、チップの高品質を確保できる
4.BIST回路によるメモリチップのテスト方式より、回路規模が小さく、回路全体に対するオーバーヘッドが小さくなる
(例えば、従来のBIST回路は、約100Kgateであり、本実施の形態のテスト回路は約2Kgateなどで構成することが可能である。)
5.テスト専用外部端子が不要となるため、パッケージコストを低減することができる
As described above, the present invention has the following effects.
1. 1. BIST design is not required, and memory chips can be tested without being affected by memory vendors or processes used. 2. It becomes possible to test the memory chip at the actual operating frequency. Since it is possible to adopt memory-dedicated test programs from all memory vendors, high chip quality can be ensured. The circuit scale is smaller than the memory chip test method using the BIST circuit, and the overhead of the entire circuit is reduced (for example, the conventional BIST circuit has about 100 Kgate, and the test circuit of this embodiment is configured with about 2 Kgate, etc. Is possible.)
5. Package cost can be reduced because there is no need for external terminals for testing.

なお、本発明は上述した実施の形態のみに限定されるものではなく、本発明の要旨を逸脱しない範囲において種々の変更が可能であることは勿論である。   It should be noted that the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the present invention.

23〜23,23 テスト端子
24、24 テストモード選択端子
20 内部ロジック回路
21,21A,22B テスト処理回路
25 テストモード切替回路
26 入出力切替回路A
27 信号切替回路
28 入出力切替回路B
30〜36,59,60,62,63,64 バッファ
37〜40,51〜58 セレクタ
41〜45,50 ゲート
46〜49 高速テスト調整回路
61 インバータ
70,71 フリップフロップ
101 SiP
102 インターポーザ
103B,103C メモリチップ
103A ロジックチップ
121,121A,121B テスト回路
122,122A,122B 高速テスト制御回路
23 1 to 23 6 , 23 n Test terminals 24 1 , 24 2 Test mode selection terminal 20 Internal logic circuits 21, 21 A, 22 B Test processing circuit 25 Test mode switching circuit 26 Input / output switching circuit A
27 Signal switching circuit 28 Input / output switching circuit B
30 to 36, 59, 60, 62, 63, 64 Buffer 37 to 40, 51 to 58 Selector 41 to 45, 50 Gate 46 to 49 High-speed test adjustment circuit 61 Inverter 70, 71 Flip-flop 101 SiP
102 Interposer 103B, 103C Memory chip 103A Logic chip 121, 121A, 121B Test circuit 122, 122A, 122B High-speed test control circuit

Claims (15)

メモリチップとロジックチップとを備え半導体装置であって、
前記ロジックチップは、
内部ロジック回路と、
前記内部ロジック回路及び前記メモリチップと接続され、外部端子から前記メモリチップにアクセスして前記メモリチップをテストするテスト処理回路と
を備え、
前記テスト処理回路は、前記メモリチップをテストする際には、前記外部端子と前記メモリチップとの間の信号転送レートをテスト速度に応じて選択可能な高速テスト制御回路を有する半導体装置。
A semiconductor device including a memory chip and a logic chip,
The logic chip is
Internal logic circuit,
A test processing circuit connected to the internal logic circuit and the memory chip and accessing the memory chip from an external terminal to test the memory chip ;
The test processing circuit, when testing prior Symbol memory chip, a semiconductor device having a high-speed test control circuit selectable in accordance with signal transfer rate to the test speed between the external terminal and the memory chip.
前記高速テスト制御回路は、前記テスト処理回路がテストをする際に、前記信号転送レートを所望の信号転送レートとする高速テスト調整回路を有する請求項1記載の半導体装置。 The high-speed test control circuit, when the test processing circuit Gath strike, the semiconductor device according to claim 1, further comprising a high-speed test adjustment circuit for the signal transfer rate and the desired signal transfer rate. テスト時に、前記高速テスト制御回路は、前記外部端子からのテスト信号を、直接あるいは前記高速テスト調整回路を経由して、前記メモリチップに供給する
請求項1又は2記載の半導体装置。
The semiconductor device according to claim 1 or 2 , wherein during the test, the high-speed test control circuit supplies a test signal from the external terminal to the memory chip directly or via the high-speed test adjustment circuit. .
前記テスト処理回路は、第1のセレクタを有し、
前記第1のセレクタは、第1の選択信号に応じて、前記外部端子からのテスト信号と、前記高速テスト調整回路を介したテスト信号とのいずれか一方を選択出力する
請求項2又は3記載の半導体装置。
The test processing circuit has a first selector,
Wherein the first selector, in response to the first selection signal, the test signal from the external terminal, according to claim 2 or 3 selectively outputs one of the test signal through the pre-Symbol fast test adjustment circuit The semiconductor device described.
前記テスト処理回路は、第2のセレクタを有し、
前記第2のセレクタは、第2の選択信号に応じて、前記外部端子からのテスト信号と、前記内部ロジック回路からのユーザ信号とのいずれか一方を選択出力する
請求項1乃至4のいずれか1項記載の半導体装置。
The test processing circuit includes a second selector,
It said second selector in response to the second selection signal, either the test signal from the external terminal, before Symbol claims 1 to 4 selectively outputs one of the user signals from the internal logic circuit A semiconductor device according to claim 1.
前記高速テスト調整回路は、複数段のフリップフロップから構成される
ことを特徴とする請求項2乃至5のいずれか1項記載の半導体装置。
6. The semiconductor device according to claim 2, wherein the high-speed test adjustment circuit includes a plurality of stages of flip-flops.
前記複数段のフリップフロップはシリアル接続されている  The plurality of flip-flops are serially connected.
ことを特徴とする請求項6に記載の半導体装置。The semiconductor device according to claim 6.
前記複数段のフリップフロップには、外部端子より入力されたクロックが供給される  A clock input from an external terminal is supplied to the plurality of flip-flops.
ことを特徴とする請求項6乃至7のいずれか1項記載の半導体装置。The semiconductor device according to claim 6, wherein:
前記クロックが入力される外部端子は、前記内部ロジック回路のクロックとは別個に設けられている請求項8に記載の半導体装置。  The semiconductor device according to claim 8, wherein the external terminal to which the clock is input is provided separately from the clock of the internal logic circuit. 前記ロジックチップと接続された複数の前記メモリチップを有し、前記ロジックチップのテスト処理回路により前記複数のメモリチップを個別にテストすることを特徴とする請求項1乃至のいずれか1項記載の半導体装置。 A plurality of said memory chips connected to said logic chip, any one of claims 1 to 9, characterized in that to test individually the plurality of memory chip, the test processing circuit of the logic chip Semiconductor device. 前記ロジックチップ内に複数の前記テスト処理回路を有し、
前記複数のテスト処理回路に一対一で対応する複数のメモリチップを有することを特徴とする請求項1乃至10のいずれか1項記載の半導体装置。
A plurality of the test processing circuits in the logic chip;
The semiconductor device of any one of claims 1 to 10, characterized in that it comprises a plurality of memory chips to-one correspondence with the plurality of test processing circuit.
前記半導体装置は、SiP(System In Package)であることを特徴とする請求項1乃至12のいずれか1項記載の半導体装置。  13. The semiconductor device according to claim 1, wherein the semiconductor device is SiP (System In Package). モリチップと、内部ロジック回路、並びに前記メモリチップ及び内部ロジック回路に電気的に接続されたテスト処理回路を備えるロジックチップとを有し、前記テスト処理回路は、外部端子から入力されるテスト信号を前記メモリチップに供給することで当該メモリチップのテストを実行する半導体装置のテスト方法であって、
記テスト信号を、前記テスト処理回路に設けられた、前記外部端子と前記メモリ回路との間の信号転送レートをテスト速度に応じて選択可能な高速テスト制御回路を介して前記メモリチップに供給し、前記メモリチップをテストする半導体装置のテスト方法。
It has a main Morichippu, internal logic circuits, and a logic chip having a test processing circuitry electrically connected to the memory chip and the internal logic circuit, the test processing circuit, the test input from the external terminal a method of testing a semiconductor device to perform a test of the memory chip by supplying a signal to the memory chip,
Supplying pre Symbol test signal, the provided test processing circuit, to the external terminal and the said memory chip via the high-speed test control circuit selectable in accordance with signal transfer rate between the memory circuit to the test speed And testing a semiconductor device for testing the memory chip .
前記テスト処理回路が実動作速度で高速テストをする際には、前記高速テスト制御回路の高速テスト調整回路を使用し、前記外部端子と前記メモリチップとの間の信号転送レートを所望の信号転送レートとして前記高速テストを実行する
ことを特徴とする請求項13記載の半導体装置のテスト方法。
When the test processing circuit performs a high-speed test at an actual operation speed, a high-speed test adjustment circuit of the high-speed test control circuit is used, and a signal transfer rate between the external terminal and the memory chip is set to a desired signal transfer 14. The method of testing a semiconductor device according to claim 13 , wherein the high-speed test is executed as a rate.
前記テスト処理回路が前記実動作速度より遅い速度の低速テストをする際には、前記高速テスト制御回路により、前記外部端子と前記メモリチップとの間の信号転送レートを前記実動作速度より遅い信号転送レートとして前記低速テストを実行する
ことを特徴とする請求項13又は14記載の半導体装置のテスト方法。
When the test processing circuit performs a low-speed test at a speed slower than the actual operation speed, the high-speed test control circuit causes a signal transfer rate between the external terminal and the memory chip to be a signal slower than the actual operation speed. claim 13 or 14 test method of a semiconductor device, wherein performing said low speed test as the transfer rate.
JP2011097011A 2011-04-25 2011-04-25 Semiconductor device and test method thereof Pending JP2011181174A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011097011A JP2011181174A (en) 2011-04-25 2011-04-25 Semiconductor device and test method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011097011A JP2011181174A (en) 2011-04-25 2011-04-25 Semiconductor device and test method thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006078571A Division JP4949707B2 (en) 2006-03-22 2006-03-22 Semiconductor device and test method thereof

Publications (1)

Publication Number Publication Date
JP2011181174A true JP2011181174A (en) 2011-09-15

Family

ID=44692520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011097011A Pending JP2011181174A (en) 2011-04-25 2011-04-25 Semiconductor device and test method thereof

Country Status (1)

Country Link
JP (1) JP2011181174A (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0676566A (en) * 1992-03-26 1994-03-18 Nec Corp Semiconductor memory device
JPH09311160A (en) * 1996-05-24 1997-12-02 Oki Electric Ind Co Ltd Integrated circuit
JP2000111618A (en) * 1998-09-30 2000-04-21 Nec Ic Microcomput Syst Ltd Bist circuit and semiconductor integrated circuit
JP2002329395A (en) * 2001-04-27 2002-11-15 Mitsubishi Electric Corp Synchronous type semiconductor device
JP2003077296A (en) * 2001-09-05 2003-03-14 Fujitsu Ltd Semiconductor device which incorporates memory chip and logic chip, and in which test of memory chip can be performed
JP2004158098A (en) * 2002-11-06 2004-06-03 Renesas Technology Corp System-in-package type semiconductor device
JP4949707B2 (en) * 2006-03-22 2012-06-13 ルネサスエレクトロニクス株式会社 Semiconductor device and test method thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0676566A (en) * 1992-03-26 1994-03-18 Nec Corp Semiconductor memory device
JPH09311160A (en) * 1996-05-24 1997-12-02 Oki Electric Ind Co Ltd Integrated circuit
JP2000111618A (en) * 1998-09-30 2000-04-21 Nec Ic Microcomput Syst Ltd Bist circuit and semiconductor integrated circuit
JP2002329395A (en) * 2001-04-27 2002-11-15 Mitsubishi Electric Corp Synchronous type semiconductor device
JP2003077296A (en) * 2001-09-05 2003-03-14 Fujitsu Ltd Semiconductor device which incorporates memory chip and logic chip, and in which test of memory chip can be performed
JP2004158098A (en) * 2002-11-06 2004-06-03 Renesas Technology Corp System-in-package type semiconductor device
JP4949707B2 (en) * 2006-03-22 2012-06-13 ルネサスエレクトロニクス株式会社 Semiconductor device and test method thereof

Similar Documents

Publication Publication Date Title
JP4949707B2 (en) Semiconductor device and test method thereof
TWI462108B (en) Circuit and method for testing multi-device systems
US7484141B2 (en) Semiconductor device capable of performing test at actual operating frequency
JP2002109899A (en) Semiconductor storage device and semiconductor integrated circuit device equipped with the same
US7607055B2 (en) Semiconductor memory device and method of testing the same
US8108741B2 (en) Semiconductor memory device having mount test circuits and mount test method thereof
JP2009289374A (en) Semiconductor memory device and method for testing the same
JP4229652B2 (en) Semiconductor circuit device
TWI627422B (en) Semiconductor test device
US20120054562A1 (en) Semiconductor memory device
TWI655637B (en) Memory device
JP2006275616A (en) Semiconductor device and skew adjustment method
JP2009048674A (en) Semiconductor integrated circuit
JP2009099186A (en) Semiconductor device
US7315479B2 (en) Redundant memory incorporating serially-connected relief information storage
US9293226B2 (en) Memory test device and operating method thereof
US9618575B2 (en) Semiconductor device having plural data input/output terminals configured for write test and read test operations
US7064571B2 (en) Multiple-select multiplexer circuit, semiconductor memory device including a multiplexer circuit and method of testing the semiconductor memory device
US20090303806A1 (en) Synchronous semiconductor memory device
US7948912B2 (en) Semiconductor integrated circuit with test mode
JP2011181174A (en) Semiconductor device and test method thereof
JP5612249B2 (en) Semiconductor memory device
KR101023426B1 (en) Test Board
US7743291B2 (en) Semiconductor memory device
JP2011002377A (en) Semiconductor device and testing method for semiconductor device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121030

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130312