JP2011179995A - Tunneling system, horizontal direction measuring method - Google Patents

Tunneling system, horizontal direction measuring method Download PDF

Info

Publication number
JP2011179995A
JP2011179995A JP2010045045A JP2010045045A JP2011179995A JP 2011179995 A JP2011179995 A JP 2011179995A JP 2010045045 A JP2010045045 A JP 2010045045A JP 2010045045 A JP2010045045 A JP 2010045045A JP 2011179995 A JP2011179995 A JP 2011179995A
Authority
JP
Japan
Prior art keywords
horizontal direction
horizontal
measuring
magnetic field
receiving coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010045045A
Other languages
Japanese (ja)
Inventor
Hidenori Hino
英則 日野
Junichiro Imai
純一郎 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airec Engineering Corp
Original Assignee
Airec Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Airec Engineering Corp filed Critical Airec Engineering Corp
Priority to JP2010045045A priority Critical patent/JP2011179995A/en
Publication of JP2011179995A publication Critical patent/JP2011179995A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Excavating Of Shafts Or Tunnels (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To measure a horizontal direction of a tunneling machine. <P>SOLUTION: A horizontal direction measuring method measures above ground the horizontal direction of the tunneling machine excavating underground in a non-open cut manner. The horizontal direction measuring method includes the steps of installing a transmitting portion in a leading body of the tunneling machine, the transmitting portion generating a magnetic field so that a line of magnetic force is oriented in the horizontal direction different from an advance direction of the leading body by a predetermined angle; and performing a magnetic field measurement step and horizontal direction detection step above ground. The magnetic measurement step horizontally maintains a normal line direction of an interlinkage surface of a receiving coil which detects the line of magnetic force, and measures a voltage generated at the receiving coil, while variably turning the normal line direction of the interlinkage surface. The horizontal direction detection step detects the horizontal direction which is different by the predetermined angle from the horizontal direction perpendicular to the normal line direction of the interlinkage surface when the measured voltage is minimized. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、非開削で地中を掘削するトンネル掘進機と地上で前記トンネル掘進機の水平方向を測定する水平方向測定装置とで構成されるトンネル掘進システムと、トンネル掘進機の水平方向を地上で測定する水平方向測定方法に関する。   The present invention relates to a tunnel excavation system comprising a tunnel excavator that excavates underground with no excavation and a horizontal direction measuring device that measures the horizontal direction of the tunnel excavator on the ground, and the horizontal direction of the tunnel excavator in the ground. It is related with the horizontal direction measuring method measured by.

図1はトンネル掘進機の構成を示す図、図2は非開削で地中を掘削するトンネル掘進機を地上側から見た平面図である。従来のトンネル掘進機90は、先導体95とヒューム管500とで構成される。先導体95は、掘削部100と発信部900を有する。図2は、トンネル掘進機90が点線で示した位置から、実線で示した位置まで移動した様子を示している。一点鎖線は設計上のトンネルを形成する位置(計画線810)を示しており、点線は実際にトンネル掘進機90が進む軌跡(軌跡820)を示している。非開削で地中を掘削する場合、土質の変化などの影響もあり、トンネル掘進機90が計画線810の真下を進むとは限らない。したがって、計画線810に近づくように掘削部100の向きを制御するために、何らかの方法でトンネル掘進機90の水平位置を測定しなければならない。位置を検知する方法には、レーザターゲット法(先導体95の末端に取り付けられたターゲット面に、トンネルの入口からレーザを照射して位置を検知する方法)、電磁法(発信部から出された電波を用いて位置を検知する方法)、プリズム方式(トンネルの曲線部分に受光器ユニットを配置し、トンネルの入口から先導体の位置を検知する方式)などが知られている。   FIG. 1 is a diagram showing the configuration of a tunnel excavator, and FIG. 2 is a plan view of the tunnel excavator excavating the ground without excavation as seen from the ground side. A conventional tunneling machine 90 includes a leading conductor 95 and a fume pipe 500. The leading conductor 95 includes the excavation unit 100 and the transmission unit 900. FIG. 2 shows a state where the tunnel excavator 90 has moved from the position indicated by the dotted line to the position indicated by the solid line. An alternate long and short dash line indicates a position where a tunnel is designed (planned line 810), and a dotted line indicates a trajectory (trajectory 820) that the tunnel excavator 90 actually travels. When excavating the ground without excavation, there is an influence such as a change in soil quality, and the tunnel excavator 90 does not always travel directly below the planned line 810. Therefore, in order to control the direction of the excavation unit 100 to approach the planned line 810, the horizontal position of the tunnel excavator 90 must be measured by some method. As a method for detecting the position, a laser target method (a method for detecting a position by irradiating a laser beam from a tunnel entrance to a target surface attached to the end of the leading conductor 95), an electromagnetic method (from a transmitter) A method of detecting a position using radio waves), a prism system (a system in which a photoreceiver unit is arranged on a curved portion of a tunnel, and a position of a leading conductor is detected from the entrance of the tunnel) are known.

特許文献1、2には、電磁法によりトンネル掘進機の水平位置を測定する方法が示されている。図3〜5は、特許文献2に示されたトンネル掘進機の水平位置を測定する方法を説明するための図である。図3は従来のトンネル掘進機を横から見た図、図4は図3のA−A線でのトンネル掘進機の断面と位置測定装置の構成を示した図、図5は位置測定装置の原理を説明するための図である。発信部900は、発信部900内のコイル910の鎖交面の法線方向を垂直方向にし、垂直方向に磁力線920が向くように磁界を発生させる。位置測定装置950は、地表800に配置され、第1受信コイル951−A、第2受信コイル951−B、第1電圧測定部952−A、第2電圧測定部952−Bを備えている。第1受信コイル951−Aと第2受信コイル951−Bとは、鎖交面の法線方向が水平かつ一致するように、距離Lだけ離して配置されている(図4参照)。そして、第1電圧測定部952−Aで測定された電圧をV、第2電圧測定部952−Bで測定された電圧をVとすると、トンネル掘進機90の発信部900は、第1受信コイル951−Aと第2受信コイル951−Bの真ん中から
(L/2)×(V−V)/(V+V
だけずれた位置にあることが測定される(図5参照)。
Patent Documents 1 and 2 disclose a method for measuring the horizontal position of a tunnel machine by an electromagnetic method. 3-5 is a figure for demonstrating the method to measure the horizontal position of the tunnel machine shown by patent document 2. FIG. 3 is a side view of a conventional tunnel excavator, FIG. 4 is a cross-sectional view of the tunnel excavator along the line AA in FIG. 3, and a configuration of the position measuring device. FIG. It is a figure for demonstrating a principle. Transmitting section 900 generates a magnetic field so that the normal direction of the interlinkage surface of coil 910 in transmitting section 900 is the vertical direction, and magnetic lines of force 920 are directed in the vertical direction. The position measurement device 950 is disposed on the ground surface 800 and includes a first reception coil 951-A, a second reception coil 951-B, a first voltage measurement unit 952-A, and a second voltage measurement unit 952-B. The first receiving coil 951-A and the second receiving coil 951-B are arranged apart by a distance L so that the normal direction of the interlinkage plane is horizontal and coincides (see FIG. 4). When the voltage measured by the first voltage measuring unit 952-A is V A and the voltage measured by the second voltage measuring unit 952-B is V B , the transmitting unit 900 of the tunnel machine 90 is From the middle of the receiving coil 951-A and the second receiving coil 951-B (L / 2) × (V A −V B ) / (V A + V B )
It is measured that the position is shifted by a distance (see FIG. 5).

特公昭58−11030号公報Japanese Examined Patent Publication No. 58-11030 特公平2−59932号公報Japanese Patent Publication No. 2-59932

しかしながら、従来技術の測定対象はトンネル掘進機90の水平位置であり、その測定間隔は1.2m程度であった。また、トンネル掘進機の方向は過去の水平位置と現在の水平位置から予測するしかなかった。したがって、軌道修正の遅れにより、蛇行やオーバーランが生じるという課題がある。特に、土質変化直後は、トンネル掘進機90の挙動(方向の調整がどの程度効くのか)が推定しにくいので、この課題が顕著になる。例えば、硬い土質から柔らかい土質に変化した場合、舵が効きにくくなる。また、硬い土質と柔らかい土質の境界面が進行方向に対して傾いている場合、境界面ではトンネル掘進機90は柔らかい土質側に曲がりやすくなる。   However, the measurement object of the prior art is the horizontal position of the tunnel machine 90, and the measurement interval is about 1.2 m. Moreover, the direction of the tunnel machine could only be predicted from the past horizontal position and the current horizontal position. Therefore, there is a problem that meandering or overrun occurs due to a delay in the trajectory correction. In particular, immediately after the soil change, it is difficult to estimate the behavior of the tunnel excavator 90 (how much the adjustment of the direction is effective), so this problem becomes remarkable. For example, when changing from hard soil to soft soil, the rudder is less effective. Further, when the boundary surface between the hard soil and the soft soil is inclined with respect to the traveling direction, the tunnel excavator 90 is easily bent toward the soft soil side at the boundary surface.

本発明は、トンネル掘進機90の軌道修正を効率的にするために、水平方向自体を測定できるようにすることを目的とする。   An object of the present invention is to make it possible to measure the horizontal direction in order to make the correction of the trajectory of the tunnel excavator 90 efficient.

本発明の水平方向測定方法は、非開削で地中を掘削するトンネル掘進機の水平方向を地上で測定する。水平方向測定方法では、トンネル掘進機の先導体内に、当該先導体の進行方向に対してあらかじめ定めた角度だけ異なる水平方向に磁力線が向くように磁界を発生させる発信部を取り付けておく。そして、地上で、磁界測定ステップと水平方向検出ステップを行う。磁界測定ステップは、磁界を検出する受信コイルの鎖交面の法線方向を水平に維持して、鎖交面の法線方向が変化するように回転させながら、受信コイルに生じる電圧を測定する。水平方向検出ステップは、測定した電圧が最小となるときの鎖交面の法線方向に垂直な水平方向に対して前記あらかじめ定めた角度だけ異なる水平方向を検出する。なお、あらかじめ定めた角度は、例えば0度(進行方向と同じ)、または90度(進行方向と垂直な方向)にすれば、水平方向が分かりやすい。また、水平方向検出ステップで検出した方向と計画線とがなす角を測定する水平角測定ステップも有してもよい。   The horizontal direction measuring method of the present invention measures the horizontal direction of a tunnel machine that excavates underground with non-open cutting. In the horizontal direction measurement method, a transmitter for generating a magnetic field is attached in a leading conductor of a tunnel machine so that magnetic field lines are directed in different horizontal directions with respect to a traveling direction of the leading conductor. Then, a magnetic field measurement step and a horizontal direction detection step are performed on the ground. The magnetic field measurement step measures the voltage generated in the receiving coil while maintaining the normal direction of the interlinkage plane of the receiving coil for detecting the magnetic field to be horizontal and rotating it so that the normal direction of the interlinkage plane changes. . The horizontal direction detecting step detects a horizontal direction that differs by a predetermined angle with respect to a horizontal direction perpendicular to a normal line direction of the interlinkage plane when the measured voltage is minimum. If the predetermined angle is, for example, 0 degrees (the same as the traveling direction) or 90 degrees (a direction perpendicular to the traveling direction), the horizontal direction is easily understood. Moreover, you may also have the horizontal angle measurement step which measures the angle which the direction detected in the horizontal direction detection step and the plan line make.

本発明のトンネル掘進システムと水平方向測定方法によれば、過去に測定された水平位置の情報を利用しなくても、現在のトンネル掘進機の水平方向が分かる。また、前工程で与えた方向の修正量の効き具合を確認できる。したがって、適切にトンネル掘進機の方向を制御でき、蛇行やオーバーランがおこりにくくなる。   According to the tunnel excavation system and the horizontal direction measuring method of the present invention, the current horizontal direction of the tunnel excavator can be known without using the horizontal position information measured in the past. In addition, the effectiveness of the correction amount in the direction given in the previous process can be confirmed. Therefore, the direction of the tunnel machine can be controlled appropriately, and it becomes difficult for meandering and overrun.

トンネル掘進機の構成を示す図。The figure which shows the structure of a tunnel machine. 非開削で地中を掘削するトンネル掘進機を地上側から見た平面図。The top view which looked at the tunnel digging machine which excavates underground with non-open cutting from the ground side. 従来のトンネル掘進機を横から見た図。The figure which looked at the conventional tunnel machine from the side. 図3のA−A線でのトンネル掘進機の断面と位置測定装置の構成を示した図。The figure which showed the cross section of the tunnel excavation machine in the AA line of FIG. 3, and the structure of the position measuring apparatus. 位置測定装置の原理を説明するための図。The figure for demonstrating the principle of a position measuring apparatus. 実施例1のトンネル掘進機を横から見た図。The figure which looked at the tunnel excavator of Example 1 from the side. 図6のB−B線でのトンネル掘進機の断面図。Sectional drawing of the tunnel digging machine in the BB line of FIG. 水平方向測定装置を用いて測定している様子を示す平面図。The top view which shows a mode that it is measuring using a horizontal direction measuring apparatus. 水平方向測定装置の原理を説明するための図。The figure for demonstrating the principle of a horizontal direction measuring apparatus. 実施例1の水平方向測定装置の機能構成例を示す図。3 is a diagram illustrating a functional configuration example of a horizontal direction measuring apparatus according to Embodiment 1. FIG. 実施例1の水平方向測定方法の処理フローを示す図。FIG. 3 is a diagram illustrating a processing flow of the horizontal direction measurement method according to the first embodiment. 試作した発信コイルの構成を示す図。The figure which shows the structure of the prototype transmission coil. 実施例1の図7に相当する図であって、発信部の断面を示す図。FIG. 9 is a diagram corresponding to FIG. 7 of the first embodiment and showing a cross section of a transmission unit. 発信コイルを発信部の筺体がない状態で据え置いた3.5m上方での磁界の様子を測定した結果を示す図。The figure which shows the result of having measured the mode of the magnetic field in 3.5m upper direction which set the transmitting coil stationary in the state without the housing of a transmission part. 受信コイルの鎖交面の接線方向と磁力線の方向とのなす角と、受信コイルに生じる電圧の関係を示す図。The figure which shows the relationship between the angle which the tangent direction of the chain | linkage surface of a receiving coil and the direction of a line of magnetic force make, and the voltage which arises in a receiving coil. 受信コイルに生じる電圧と土被りとの関係を示す図。The figure which shows the relationship between the voltage which arises in a receiving coil, and earth covering. 図15の発信コイルを、そのまま配置した場合と、発信部の筺体内に配置した場合の測定結果を示す図。The figure which shows the measurement result at the time of arrange | positioning the transmission coil of FIG. 15 as it is, and arrange | positioning in the housing of a transmission part. 水平方向測定装置の具体例を示す図。The figure which shows the specific example of a horizontal direction measuring apparatus. 実施例1の図7に相当する発信部の断面を示す図。The figure which shows the cross section of the transmission part corresponded in FIG. 実施例1の図8に相当する水平方向測定装置を用いて測定している様子を示す平面図。The top view which shows a mode that it measures using the horizontal direction measuring apparatus corresponded in FIG. 8 of Example 1. FIG.

以下、本発明の実施の形態について、詳細に説明する。なお、同じ機能を有する構成部には同じ番号を付し、重複説明を省略する。   Hereinafter, embodiments of the present invention will be described in detail. In addition, the same number is attached | subjected to the structure part which has the same function, and duplication description is abbreviate | omitted.

実施例1のトンネル掘進機も外観は図1と同じであり、非開削で地中を掘削するトンネル掘進機を地上側から見た平面図は図2と同じである。図6は、実施例1のトンネル掘進機を横から見た図、図7は図6のB−B線でのトンネル掘進機の断面図、図8は水平方向測定装置を用いて測定している様子を示す平面図、図9は水平方向測定装置の原理を説明するための図、図10は実施例1の水平方向測定装置の機能構成例を示す図、図11は実施例1の水平方向測定方法の処理フローを示す図である。トンネル掘進機10は、先導体15内に、先導体15の進行方向に対してあらかじめ定めた角度だけ異なる水平方向に磁力線220が向くように磁界を発生させる発信部200を備える。図6〜8では、あらかじめ定めた角度は0度である。つまり、図6〜8では、発信コイル210の鎖交面の法線方向は進行方向と一致しており、トンネル掘進機10の真上では進行方向と磁力線の方向とは一致している。水平方向測定装置300は、受信コイル310、電圧測定部320、回転手段330、方向検出手段340を備える。受信コイル310は、発信部200が発生させた磁界を検出する。電圧測定部320は、受信コイル310に生じた誘導起電圧を測定する。回転手段330は、受信コイル310の鎖交面の法線方向を水平に維持しながら、鎖交面の法線方向が変化するように回転させる。方向検出手段340は、電圧測定部320で測定した電圧が最小となるときの鎖交面の法線方向に垂直な水平方向に対してあらかじめ定めた角度だけ異なる水平方向(発信部200の進行方向)を検出する。また、水平方向測定装置300は、方向検出手段340で検出した水平方向222と計画線810とがなす角を測定する水平角測定手段350も備えてもよい。   The appearance of the tunnel excavator of the first embodiment is the same as that of FIG. 1, and the plan view of the tunnel excavator excavating the underground without excavation is the same as FIG. 6 is a side view of the tunnel excavator of the first embodiment, FIG. 7 is a cross-sectional view of the tunnel excavator along the line BB in FIG. 6, and FIG. 8 is measured using a horizontal direction measuring device. FIG. 9 is a diagram for explaining the principle of the horizontal direction measuring apparatus, FIG. 10 is a diagram showing an example of the functional configuration of the horizontal direction measuring apparatus of the first embodiment, and FIG. 11 is a horizontal view of the horizontal direction of the first embodiment. It is a figure which shows the processing flow of a direction measuring method. The tunnel machine 10 includes a transmitter 200 that generates a magnetic field in the leading conductor 15 so that the magnetic field lines 220 are directed in horizontal directions that differ by a predetermined angle with respect to the traveling direction of the leading conductor 15. 6-8, the predetermined angle is 0 degree. That is, in FIGS. 6 to 8, the normal direction of the interlinkage plane of the transmission coil 210 coincides with the traveling direction, and the traveling direction coincides with the direction of the magnetic force lines immediately above the tunnel excavator 10. The horizontal direction measuring apparatus 300 includes a receiving coil 310, a voltage measuring unit 320, a rotating unit 330, and a direction detecting unit 340. The reception coil 310 detects the magnetic field generated by the transmission unit 200. The voltage measuring unit 320 measures an induced electromotive voltage generated in the receiving coil 310. The rotating means 330 rotates the normal direction of the interlinkage plane to change while maintaining the normal direction of the interlinkage plane of the receiving coil 310 to be horizontal. The direction detection unit 340 is configured to change the horizontal direction (the traveling direction of the transmission unit 200) by a predetermined angle with respect to the horizontal direction perpendicular to the normal direction of the interlinkage plane when the voltage measured by the voltage measurement unit 320 is minimum. ) Is detected. The horizontal direction measuring apparatus 300 may also include a horizontal angle measuring unit 350 that measures an angle formed by the horizontal direction 222 detected by the direction detecting unit 340 and the planned line 810.

次に、図8、9、11を参照しながら、水平方向測定方法の処理フローについて説明する。まず、トンネル掘進機10の先導体15内に、先導体15の進行方向に対してあらかじめ定めた角度だけ異なる水平方向に磁力線が向くように磁界を発生させる発信部200を取り付けておく。なお、上述のとおり、図8ではあらかじめ定めた角度は0°である。そして、地上で、磁界測定ステップ(S330)と水平方向検出ステップ(S340)を行う。磁界測定ステップ(S330)では、磁界を検出する受信コイル310の鎖交面の法線方向を水平に維持して、鎖交面の法線方向が変化するように回転させながら、受信コイルに生じる電圧を測定する。図9は、受信コイル310の鎖交面の接線方向と磁力線220の方向とのなす角θと、受信コイルに生じる誘導起電圧の関係を示している。横軸が受信コイル310の鎖交面の接線方向と磁力線220の方向とのなす角θ、縦軸が受信コイルに生じる誘導起電圧を示している。受信コイル310に生じる電圧は、受信コイル310の鎖交面を横切る磁力線220の数に比例する。したがって、生じる電圧Vθは、θ=90°のときの電圧をV(θ=90)としたときに、
θ=V(θ=90)×sinθ
となる。そして、θ=0°のときには電圧はVθ=0となる。水平方向検出ステップ(S340)では、測定した電圧が最小となるときの鎖交面の法線方向に垂直な水平方向に対して前記あらかじめ定めた角度だけ異なる水平方向を検出する。図8の場合は、あらかじめ定めた角度は0°(進行方向と同じ)なので、受信コイル310の水平な接線方向が進行方向となる。また、図9から分かるように、電圧Vθ=0となる角度付近では電圧Vθの変化量が大きい。したがって、高精度にトンネル掘進機10の水平方向を検出できる。なお、理論的には水平な接線方向は、進行方向と後退方向の2方向がある。しかし、実際にはトンネル掘進機の大まかな進行方向は分かっているので、進行方向と後退方向とを間違うことはあり得ない。さらに、水平方向検出ステップで検出した方向と計画線とがなす角を測定する水平角測定ステップ(S350)も有してもよい。
Next, the processing flow of the horizontal direction measuring method will be described with reference to FIGS. First, a transmitter 200 that generates a magnetic field is attached in the leading conductor 15 of the tunnel excavator 10 so that the magnetic field lines are directed in horizontal directions that differ by a predetermined angle with respect to the traveling direction of the leading conductor 15. As described above, the predetermined angle in FIG. 8 is 0 °. Then, a magnetic field measurement step (S330) and a horizontal direction detection step (S340) are performed on the ground. In the magnetic field measurement step (S330), the normal direction of the interlinkage plane of the reception coil 310 that detects the magnetic field is maintained horizontal, and is generated in the reception coil while being rotated so that the normal direction of the interlinkage plane changes. Measure the voltage. FIG. 9 shows the relationship between the angle θ formed between the tangential direction of the interlinkage plane of the receiving coil 310 and the direction of the magnetic force line 220 and the induced electromotive voltage generated in the receiving coil. The horizontal axis indicates the angle θ formed between the tangential direction of the interlinkage surface of the receiving coil 310 and the direction of the magnetic force line 220, and the vertical axis indicates the induced electromotive voltage generated in the receiving coil. The voltage generated in the receiving coil 310 is proportional to the number of magnetic field lines 220 that cross the interlinkage plane of the receiving coil 310. Therefore, the generated voltage is V (θ = 90) when the voltage at θ = 90 ° is V (θ = 90) .
V θ = V (θ = 90) × sin θ
It becomes. When θ = 0 °, the voltage is V θ = 0. In the horizontal direction detection step (S340), a horizontal direction different from the horizontal direction perpendicular to the normal direction of the interlinkage plane when the measured voltage is minimum is detected by the predetermined angle. In the case of FIG. 8, since the predetermined angle is 0 ° (same as the traveling direction), the horizontal tangential direction of the receiving coil 310 is the traveling direction. Further, as can be seen from FIG. 9, the change amount of the voltage V θ is large near the angle where the voltage V θ = 0. Therefore, the horizontal direction of the tunnel machine 10 can be detected with high accuracy. Theoretically, there are two horizontal tangential directions: a forward direction and a backward direction. However, since the rough traveling direction of the tunnel machine is known in practice, it is impossible to make a mistake between the traveling direction and the backward direction. Furthermore, a horizontal angle measuring step (S350) for measuring an angle formed by the direction detected in the horizontal direction detecting step and the planned line may be included.

従来のトンネル掘進システムでは、トンネル掘進機の水平方向を過去の水平位置231と現在の水平位置221から推測しなければならなかった(図2参照)。一方、実施例1のトンネル掘進システムでは、トンネル掘進機の水平方向222を現在の測定結果のみから求めることができる。また、過去に測定した水平方向232に基づいて行った方向の修正量の効き具合を確認できる。したがって、適切にトンネル掘進機の方向を制御でき、蛇行やオーバーランがおこりにくくなる。
[具体例]
次に、本発明のトンネル掘進システムに必要な構成要素ついて具体的に説明する。図12は試作した発信コイルの構成を示す図、図13は実施例1の図7に相当する図であって、発信部の断面を示す図である。図12(A)は発信コイル211の鎖交面側から見た図であって、図12(B)は図12(A)のC−C線での断面を示す図である。発信コイル211は、フェライトコア2111に巻線2112を巻いた構造である。
In the conventional tunnel excavation system, the horizontal direction of the tunnel excavator must be estimated from the past horizontal position 231 and the current horizontal position 221 (see FIG. 2). On the other hand, in the tunnel excavation system according to the first embodiment, the horizontal direction 222 of the tunnel excavator can be obtained only from the current measurement result. Further, the effectiveness of the correction amount in the direction performed based on the horizontal direction 232 measured in the past can be confirmed. Therefore, the direction of the tunnel machine can be controlled appropriately, and it becomes difficult for meandering and overrun.
[Concrete example]
Next, components necessary for the tunnel excavation system of the present invention will be specifically described. FIG. 12 is a diagram showing a configuration of a prototype transmission coil, and FIG. 13 is a diagram corresponding to FIG. 7 of the first embodiment, and is a diagram showing a cross section of the transmission unit. FIG. 12A is a view as seen from the interlinkage surface side of the transmission coil 211, and FIG. 12B is a view showing a cross section taken along the line CC in FIG. The transmission coil 211 has a structure in which a winding 2112 is wound around a ferrite core 2111.

図14は、発信コイル211を発信部の筺体がない状態で据え置いたときの3.5m上方での磁界の様子を測定した結果である。測定間隔を300mmとし、75点で測定した。図14から分かるように、発信コイル211の上部の±0.5m程度の範囲では、磁力線の向きは発信コイル211の鎖交面の法線方向に一致している。したがって、水平方向測定装置を、発信部の厳密な真上に配置できなかったとしても、ほぼ真上に配置できればトンネル掘進機の水平方向を正確に測定できることがわかる。   FIG. 14 shows the result of measuring the state of the magnetic field above 3.5 m when the transmitter coil 211 is left without the transmitter body. The measurement interval was 300 mm, and measurement was performed at 75 points. As can be seen from FIG. 14, in the range of about ± 0.5 m above the transmission coil 211, the direction of the magnetic lines of force coincides with the normal direction of the linkage surface of the transmission coil 211. Therefore, even if the horizontal direction measuring device cannot be arranged directly above the transmitter, it can be understood that the horizontal direction of the tunnel excavator can be accurately measured if it can be arranged almost directly above.

図15は、受信コイルの鎖交面の接線方向と磁力線の方向とのなす角と、受信コイルに生じる電圧の関係を示す図である。横軸が受信コイル鎖交面の接線方向と磁力線の方向とのなす角、縦軸が受信コイルに生じる電圧を示している。図14で示した実験と同じように発信コイル211を用いた。図15から分かるように、角度が0°の近傍で、電圧の変化量が大きい。したがって、高い精度で角度が0°となる方向を検知できる。図16は、受信コイルに生じる電圧と土被りとの関係を示す図である。実線は、実験によって測定されたデータ同士をつないだ線であり、点線は予測される特性である。この結果から、受信コイルに生じる電圧は土被りの三乗根にほぼ比例して減衰することが分かった。図17は、図15の発信コイル211を、そのまま配置した場合と、発信部の筺体内に配置した場合の測定結果を示している。発信部の筺体は抵抗が大きく透磁率が低いステンレスで形成されている。しかし、筺体での磁界の減衰は避けられないので、図17に示したように発信部に収容した場合の方が電圧は低くなっている。しかし、いずれの場合も最も電圧が低くなる角度の誤差は1°未満であり、十分な精度で測定できることが分かる。   FIG. 15 is a diagram illustrating a relationship between an angle formed by the tangential direction of the interlinkage plane of the receiving coil and the direction of the magnetic field lines and a voltage generated in the receiving coil. The horizontal axis indicates the angle formed by the tangential direction of the receiving coil linkage surface and the direction of the magnetic field lines, and the vertical axis indicates the voltage generated in the receiving coil. The transmitter coil 211 was used in the same manner as the experiment shown in FIG. As can be seen from FIG. 15, the amount of change in voltage is large near an angle of 0 °. Therefore, the direction in which the angle is 0 ° can be detected with high accuracy. FIG. 16 is a diagram illustrating the relationship between the voltage generated in the receiving coil and the earth covering. A solid line is a line connecting data measured by experiments, and a dotted line is a predicted characteristic. From this result, it was found that the voltage generated in the receiving coil attenuates in proportion to the third root of the earth covering. FIG. 17 shows the measurement results when the transmitting coil 211 of FIG. 15 is arranged as it is and when it is arranged in the housing of the transmitting unit. The casing of the transmission part is made of stainless steel having high resistance and low magnetic permeability. However, since attenuation of the magnetic field in the housing is inevitable, the voltage is lower when housed in the transmitter as shown in FIG. However, in any case, the error of the angle at which the voltage is the lowest is less than 1 °, and it can be seen that the measurement can be performed with sufficient accuracy.

図18は、水平方向測定装置の具体例を示す図である。この水平方向測定装置300’は、受信コイル310、信号処理部301、石突き331、マーカー341を備える。受信コイル310の巻数や大きさは、発信部200で発生させる磁界の強さ、トンネル掘進機が形成するトンネルの深度などを考慮して設計すればよい。信号処理部301は、内部に電圧測定部320、水平角測定手段350(図示していない)を有している。また、信号処理部301には、電圧測定部320や水平角測定手段350の出力を表示するディスプレイ321、受信コイル310の鎖交面の法線方向が水平に保てていることを確認するための気泡管332、取っ手333、電池322なども具備されている。水平方向測定装置300’では、石突き331と気泡管332と取っ手333で回転手段が構成されている。作業者は取っ手333を持ち、気泡管332で水平を確認しながら石突き331を中心に受信コイル310を回転させればよい。また、水平方向測定装置300’では、ディスプレイ321とマーカー341と取っ手333で方向検出手段が構成されている。作業者は取っ手333を持ち、受信コイル310の向きを変えながら生じる電圧が最小となる向きをディスプレイ321で確認する。そして、生じる電圧が最小の向きのときにマーカー341で路上にマークを付ける。このようにすれば、方向を検出できる。
[変形例]
実施例1では、発信部が発生させる磁界の磁力線の向きは、先導体の進行方向と一致していた。しかし、必ずしも一致させる必要はない。磁力線の向きと先導体の進行方向の違いをあらかじめ定めた角度にしておけば、先導体の進行方向は分かるからである。例えば本変形例では、あらかじめ定めた角度を90°とする。図19は、実施例1の図7に相当する発信部の断面を示す図、図20は、実施例1の図8に相当する水平方向測定装置を用いて測定している様子を示す平面図である。発信部200”は、発信コイル210”を備えており、進行方向と90°の水平方向に磁力線220”が向くように磁界を発生させる。そして、水平方向測定装置300の受信コイル310に生じる電圧が最小となるときの受信コイル310の鎖交面の法線方向を進行方向とすればよい。
FIG. 18 is a diagram illustrating a specific example of a horizontal direction measuring apparatus. This horizontal direction measuring apparatus 300 ′ includes a receiving coil 310, a signal processing unit 301, a stone bump 331, and a marker 341. The winding number and size of the receiving coil 310 may be designed in consideration of the strength of the magnetic field generated by the transmitter 200, the depth of the tunnel formed by the tunnel excavator, and the like. The signal processing unit 301 includes a voltage measurement unit 320 and a horizontal angle measurement unit 350 (not shown) inside. In addition, the signal processing unit 301 confirms that the normal direction of the linkage surface of the display 321 and the receiving coil 310 that displays the output of the voltage measuring unit 320 and the horizontal angle measuring unit 350 is kept horizontal. A bubble tube 332, a handle 333, a battery 322, and the like are also provided. In the horizontal direction measuring apparatus 300 ′, a stone thrust 331, a bubble tube 332, and a handle 333 constitute rotating means. The operator may hold the handle 333 and rotate the receiving coil 310 around the stone bump 331 while confirming the level with the bubble tube 332. In the horizontal direction measuring apparatus 300 ′, the display 321, the marker 341, and the handle 333 constitute a direction detecting unit. The operator holds the handle 333 and confirms on the display 321 the direction in which the generated voltage is minimized while changing the direction of the receiving coil 310. A mark is placed on the road with the marker 341 when the generated voltage is in the minimum direction. In this way, the direction can be detected.
[Modification]
In Example 1, the direction of the magnetic force lines of the magnetic field generated by the transmitter coincides with the traveling direction of the leading conductor. However, it is not always necessary to match. This is because if the difference between the direction of the magnetic field lines and the traveling direction of the leading conductor is set to a predetermined angle, the traveling direction of the leading conductor can be determined. For example, in this modification, the predetermined angle is 90 °. 19 is a diagram illustrating a cross-section of the transmitter corresponding to FIG. 7 of the first embodiment, and FIG. 20 is a plan view illustrating a state in which measurement is performed using the horizontal direction measuring apparatus corresponding to FIG. 8 of the first embodiment. It is. The transmitting unit 200 ″ includes a transmitting coil 210 ″, and generates a magnetic field so that the magnetic lines of force 220 ″ are directed in the horizontal direction of 90 ° with respect to the traveling direction. The voltage generated in the receiving coil 310 of the horizontal direction measuring apparatus 300 The normal direction of the interlinkage surface of the receiving coil 310 when the value is minimized may be the traveling direction.

10、90 トンネル掘進機 15、95 先導体
100 掘削部
200、200’、200”、900 発信部
210、210’、210”、910 発信コイル
211 発信コイル 300 水平方向測定装置
301 信号処理部 310 受信コイル
320 電圧測定部 321 ディスプレイ
322 電池 330 回転手段
332 気泡管 333 取っ手
340 方向検出手段 341 マーカー
350 水平角測定手段 500 ヒューム管
950 位置測定装置 951 受信コイル
952 電圧測定部 2111 フェライトコア
2112 巻線
10, 90 Tunnel excavator 15, 95 Lead conductor 100 Excavator 200, 200 ′, 200 ″, 900 Transmitter 210, 210 ′, 210 ″, 910 Transmitter coil 211 Transmitter coil 300 Horizontal direction measuring device 301 Signal processor 310 Reception Coil 320 Voltage measuring unit 321 Display 322 Battery 330 Rotating unit 332 Bubble tube 333 Handle 340 Direction detecting unit 341 Marker 350 Horizontal angle measuring unit 500 Hume tube 950 Position measuring device 951 Reception coil 952 Voltage measuring unit 2111 Ferrite core 2112 Winding

Claims (4)

非開削で地中を掘削するトンネル掘進機と地上で前記トンネル掘進機の水平方向を測定する水平方向測定装置とで構成されるトンネル掘進システムであって、
前記トンネル掘進機は、
先導体内に、当該先導体の進行方向に対してあらかじめ定めた角度だけ異なる水平方向に磁力線が向くように磁界を発生させる発信部
を備え、
前記水平方向測定装置は、
前記磁界を検出する受信コイルと、
前記受信コイルに生じた電圧を測定する電圧測定部と、
前記受信コイルの鎖交面の法線方向を水平に維持しながら、前記鎖交面の法線方向が変化するように回転させる回転手段と、
前記電圧測定部で測定した電圧が最小となるときの前記鎖交面の法線方向に垂直な水平方向に対して前記あらかじめ定めた角度だけ異なる水平方向が検出できる方向検出手段と
を備える
ことを特徴とするトンネル掘進システム。
A tunnel excavation system comprising a tunnel excavator that excavates underground with non-open cutting and a horizontal direction measuring device that measures the horizontal direction of the tunnel excavator on the ground,
The tunnel machine is
A transmitter that generates a magnetic field in a leading conductor so that the magnetic lines of force are directed in a horizontal direction that differs by a predetermined angle with respect to the traveling direction of the leading conductor,
The horizontal direction measuring device is:
A receiving coil for detecting the magnetic field;
A voltage measuring unit for measuring a voltage generated in the receiving coil;
Rotating means for rotating so that the normal direction of the interlinkage plane changes while maintaining the normal direction of the interlinkage plane of the receiving coil horizontal;
Direction detecting means capable of detecting a horizontal direction different from the horizontal direction perpendicular to the normal direction of the interlinkage plane when the voltage measured by the voltage measuring unit is minimum, by a predetermined angle. A unique tunnel excavation system.
請求項1記載のトンネル掘進システムであって、
前記水平方向測定装置は、
さらに、前記方向検出手段で検出した方向と計画線とがなす角を測定する水平角測定手段も備える
ことを特徴とするトンネル掘進システム。
The tunnel excavation system according to claim 1,
The horizontal direction measuring device is:
Further, the tunnel excavation system further includes horizontal angle measuring means for measuring an angle formed by the direction detected by the direction detecting means and the planned line.
非開削で地中を掘削するトンネル掘進機の水平方向を地上で測定する水平方向測定方法であって、
前記トンネル掘進機の先導体内に、当該先導体の進行方向に対してあらかじめ定めた角度だけ異なる水平方向に磁力線が向くように磁界を発生させる発信部を取り付けておき、
地上で、
前記磁界を検出する受信コイルの鎖交面の法線方向を水平に維持して、前記鎖交面の法線方向が変化するように回転させながら、前記受信コイルに生じる電圧を測定する磁力線測定ステップと、
前記測定した電圧が最小となるときの前記鎖交面の法線方向に垂直な水平方向に対して前記あらかじめ定めた角度だけ異なる水平方向を検出する水平方向検出ステップと、
を有する水平方向測定方法。
A horizontal direction measuring method for measuring the horizontal direction of a tunnel machine that excavates underground with non-open cutting,
In the leading conductor of the tunnel machine, a transmitter for generating a magnetic field is attached so that the magnetic field lines are directed in different horizontal directions by a predetermined angle with respect to the traveling direction of the leading conductor,
On the ground,
Magnetic field line measurement for measuring the voltage generated in the receiving coil while maintaining the normal direction of the interlinkage plane of the receiving coil for detecting the magnetic field to be horizontal and rotating so that the normal direction of the interlinkage plane changes. Steps,
A horizontal direction detecting step of detecting a horizontal direction different from the horizontal direction perpendicular to the normal direction of the interlinkage plane when the measured voltage is minimized by a predetermined angle;
A horizontal direction measuring method.
請求項3記載の水平方向測定方法であって、
さらに、前記水平方向検出ステップで検出した方向と計画線とがなす角を測定する水平角測定ステップも
有することを特徴とする水平方向測定方法。
The horizontal direction measuring method according to claim 3,
The horizontal direction measuring method further includes a horizontal angle measuring step of measuring an angle formed by the direction detected in the horizontal direction detecting step and the planned line.
JP2010045045A 2010-03-02 2010-03-02 Tunneling system, horizontal direction measuring method Pending JP2011179995A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010045045A JP2011179995A (en) 2010-03-02 2010-03-02 Tunneling system, horizontal direction measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010045045A JP2011179995A (en) 2010-03-02 2010-03-02 Tunneling system, horizontal direction measuring method

Publications (1)

Publication Number Publication Date
JP2011179995A true JP2011179995A (en) 2011-09-15

Family

ID=44691644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010045045A Pending JP2011179995A (en) 2010-03-02 2010-03-02 Tunneling system, horizontal direction measuring method

Country Status (1)

Country Link
JP (1) JP2011179995A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113551655A (en) * 2021-07-20 2021-10-26 杭州伟业建设集团有限公司 Tunnel surpasses owes detection device and detecting system who digs

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04350294A (en) * 1991-04-09 1992-12-04 Furukawa Electric Co Ltd:The Detection of propulsion direction of propulsion machine used for propulsion execution
JPH09166404A (en) * 1995-12-15 1997-06-24 Osaka Gas Co Ltd Method and device for specifying position of object
JPH10300459A (en) * 1997-05-01 1998-11-13 Nippon Telegr & Teleph Corp <Ntt> Azimuth measuring apparatus of excavating propulsion machine
JPH1165653A (en) * 1997-08-25 1999-03-09 Kubota Corp Receiving device for controlling propulsion object steering and method for using the same
JPH1183421A (en) * 1997-09-05 1999-03-26 Dainippon Ink & Chem Inc Measuring method for depth of underground buried object
JP2007113385A (en) * 2005-09-22 2007-05-10 Juro Hamada Excavating direction control device of shield machine in jacking shield method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04350294A (en) * 1991-04-09 1992-12-04 Furukawa Electric Co Ltd:The Detection of propulsion direction of propulsion machine used for propulsion execution
JPH09166404A (en) * 1995-12-15 1997-06-24 Osaka Gas Co Ltd Method and device for specifying position of object
JPH10300459A (en) * 1997-05-01 1998-11-13 Nippon Telegr & Teleph Corp <Ntt> Azimuth measuring apparatus of excavating propulsion machine
JPH1165653A (en) * 1997-08-25 1999-03-09 Kubota Corp Receiving device for controlling propulsion object steering and method for using the same
JPH1183421A (en) * 1997-09-05 1999-03-26 Dainippon Ink & Chem Inc Measuring method for depth of underground buried object
JP2007113385A (en) * 2005-09-22 2007-05-10 Juro Hamada Excavating direction control device of shield machine in jacking shield method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113551655A (en) * 2021-07-20 2021-10-26 杭州伟业建设集团有限公司 Tunnel surpasses owes detection device and detecting system who digs

Similar Documents

Publication Publication Date Title
JP3466625B2 (en) Positioning of independent underground boring machines
EP2952936B1 (en) Underground utility line locator and method for use
JP2012103212A (en) Underground radar
JP2011179995A (en) Tunneling system, horizontal direction measuring method
JP2007255032A (en) Throw-in method and throw-in system of throw-in material, and construction method of water bottom structure
JP5060382B2 (en) Pipe burial position measurement system, pipe burial position measurement method
JPS5811030B2 (en) How to detect horizontal position of shield machine
JP5438068B2 (en) Obstacle search device for excavator and obstacle search method for excavator
JP2002242574A (en) Drilling method
CN113566686B (en) Method and device for verifying burial depth position based on oversized burial depth pipeline
JP5815266B2 (en) Embedded object exploration method and buried object exploration device
US7539577B2 (en) Method of data acquisition during survey of buried linear conductors
JP2009103579A (en) Apparatus, method and program for specifying buried position
WO2007038940A1 (en) A boring head, a method and an apparatus for accomplishing a conveyance line boring operation
JP5535303B2 (en) Obstacle search device for excavator and obstacle search method for excavator
JP2003121151A (en) Method and apparatus for prospecting position in excavation body
JP2757058B2 (en) Underground excavator relative position detector
JP2006010628A (en) Detector for detecting object
JP2005308445A (en) Survey method and survey system of buried pipe in the earth
JP2003240552A (en) Method and device for propelling head position/direction measurement
JP2002339407A (en) Civil engineering work system
JPH0735971B2 (en) Position detection device for excavator
JP7269860B2 (en) Buried object exploration system
JP3007663B2 (en) Buried pipe detection method
JP2875784B2 (en) Underground propulsion device position detection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20121127

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20130822

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130827

A02 Decision of refusal

Effective date: 20131217

Free format text: JAPANESE INTERMEDIATE CODE: A02