JP2011179552A - Piping repairing method - Google Patents

Piping repairing method Download PDF

Info

Publication number
JP2011179552A
JP2011179552A JP2010042680A JP2010042680A JP2011179552A JP 2011179552 A JP2011179552 A JP 2011179552A JP 2010042680 A JP2010042680 A JP 2010042680A JP 2010042680 A JP2010042680 A JP 2010042680A JP 2011179552 A JP2011179552 A JP 2011179552A
Authority
JP
Japan
Prior art keywords
pipe
repair
curable
piping
repair material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010042680A
Other languages
Japanese (ja)
Inventor
Satoshi Yanagiura
聡 柳浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2010042680A priority Critical patent/JP2011179552A/en
Publication of JP2011179552A publication Critical patent/JP2011179552A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a piping repairing method for easily repairing damage at any section of piping. <P>SOLUTION: When a fluid leaks from a damage point 2 of the piping 1, an escape pipe 3 having an inflow port 3a and an outflow port 3b is arranged outside the piping 1 so that the inflow port 3a faces the damage point 2. Then, a clearance between the escape pipe 3 and the piping 1 is blocked with an uncured curable repairing material 4 so that all of the fluid leaking from the damage point 2 to outside the piping 1 is made to flow through the escape pipe 3. When the curable repairing material 4 is hardened, the outflow port 3b is sealed. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

この発明は、圧力流体を搬送する配管に生じた損傷を、配管内に圧力がかかった状態で補修する配管補修方法に関するものである。   The present invention relates to a pipe repairing method for repairing damage caused to a pipe carrying a pressure fluid in a state where pressure is applied to the pipe.

従来の管破孔応急封止具は、管の外面に添えるのに適した形状の添え面を有する添え板と、添え面の周囲に沿って設けられたシール材と、添え板の反添え面側に立設された放散管と、放散管に設けられた遮断弁と、添え板を管外面に押し付けて固定するためのベルトとを有している(例えば、特許文献1参照)。   A conventional tube breakage emergency sealer includes an attachment plate having an attachment surface suitable for attaching to the outer surface of the tube, a sealing material provided along the periphery of the attachment surface, and an anti-attachment surface of the attachment plate It has a radiation pipe erected on the side, a shut-off valve provided on the radiation pipe, and a belt for pressing and fixing the attachment plate against the outer surface of the pipe (for example, see Patent Document 1).

また、従来の圧力流体の漏洩閉止方法では、排出ノズルを有するキャップ状当て部材を漏洩個所に配置する。そして、排出ノズルを開放したまま当て部材を保持し、その接合面を配管外面に接着する。この後、排出ノズルを閉じて当て部材を配管に緊縛する(例えば、特許文献2参照)。   Further, in the conventional pressure fluid leakage closing method, a cap-like contact member having a discharge nozzle is disposed at the leakage portion. And a contact member is hold | maintained with the discharge nozzle opened, and the joining surface is adhere | attached on piping outer surface. Thereafter, the discharge nozzle is closed, and the contact member is tightly bound to the pipe (for example, see Patent Document 2).

特開平9−229289号公報JP-A-9-229289 特開昭61−127996号公報Japanese Patent Laid-Open No. 61-127996

上記のような従来の配管補修方法では、管の外面に沿う形状の添え面を有する添え板やキャップ状当て部材が用いられているので、例えば直管側面など、損傷箇所の配管形状が単純で予め決まっている場合には適用し易いが、配管の分岐部分や曲率半径の小さい曲げ部分などに適用する場合、それぞれの形状に合った部材を用意する必要があり、部材作製が困難になる。   In the conventional pipe repairing method as described above, a splicing plate or a cap-shaped abutting member having a splicing surface along the outer surface of the pipe is used. When it is determined in advance, it is easy to apply, but when it is applied to a branched portion of a pipe or a bent portion having a small curvature radius, it is necessary to prepare a member suitable for each shape, and it is difficult to manufacture the member.

この発明は、上記のような課題を解決するためになされたものであり、配管のあらゆる箇所の損傷を容易に補修することができる配管補修方法を得ることを目的とする。   The present invention has been made in order to solve the above-described problems, and an object of the present invention is to obtain a pipe repair method capable of easily repairing damage at any location of the pipe.

この発明に係る配管補修方法は、流入口と流出口とを有する逃がし管を、流入口が損傷箇所に対向するように配管の外部に配置する工程、逃がし管と配管との間を未硬化状態の硬化性補修材で塞ぎ、損傷箇所から配管外に漏れている流体の全てを逃がし管に通す工程、硬化性補修材を硬化させる工程、及び逃がし管を閉じる工程を含む。   The pipe repair method according to the present invention includes a step of disposing an escape pipe having an inlet and an outlet outside the pipe so that the inlet faces the damaged portion, and an uncured state between the relief pipe and the pipe. And a step of passing all of the fluid leaking out of the pipe from the damaged portion through the escape pipe, a step of hardening the hardenable repair material, and a step of closing the escape pipe.

この発明の配管補修方法は、損傷箇所から漏れている流体を逃がし管で逃がし、未硬化状態の硬化性補修材が圧力で変形しないようにしつつ、逃がし管と配管との間を塞ぎ、硬化性補修材が硬化した後に逃がし管を閉じるので、損傷箇所の配管形状に沿う当て板等を用いずに配管補修が可能となり、配管のあらゆる箇所の損傷を容易に補修することができる。   The pipe repairing method of the present invention allows the fluid leaking from the damaged part to escape with the pipe, and prevents the curable repair material in the uncured state from being deformed by pressure, while closing the space between the pipe and the pipe to make it hardenable. Since the relief pipe is closed after the repair material is hardened, the pipe can be repaired without using a contact plate or the like along the pipe shape of the damaged part, and damage to any part of the pipe can be easily repaired.

この発明の実施の形態1による配管補修方法を配管の直管部に適用したときの断面を工程順に示す説明図である。It is explanatory drawing which shows the cross section when the piping repair method by Embodiment 1 of this invention is applied to the straight pipe part of piping in order of a process. 実施の形態1の配管補修方法を配管の分岐部に適用したときの断面を工程順に示す説明図である。It is explanatory drawing which shows a cross section when the piping repair method of Embodiment 1 is applied to the branch part of piping in order of a process. 実施の形態1の配管補修方法を配管の曲げ部の外周に適用したときの断面を工程順に示す説明図である。It is explanatory drawing which shows the cross section when the piping repair method of Embodiment 1 is applied to the outer periphery of the bending part of piping in order of a process. 実施の形態1の配管補修方法を配管の曲げ部の内周に適用したときの補修途中の状態を示す断面図である。It is sectional drawing which shows the state in the middle of repair when the piping repair method of Embodiment 1 is applied to the inner periphery of the bending part of piping. この発明の実施の形態2による配管補修方法を配管の直管部に適用したときの補修後の状態を示す断面図である。It is sectional drawing which shows the state after repair when the piping repair method by Embodiment 2 of this invention is applied to the straight pipe part of piping. この発明の実施の形態3による配管補修方法を配管の直管部に適用したときの断面を工程順に示す説明図である。It is explanatory drawing which shows the cross section when the pipe repair method by Embodiment 3 of this invention is applied to the straight pipe part of piping in order of a process. この発明の実施の形態4による配管補修方法を配管の直管部に適用したときの補修後の状態を示す断面図である。It is sectional drawing which shows the state after repair when the piping repair method by Embodiment 4 of this invention is applied to the straight pipe part of piping. 実施の形態3、4の配管補修方法の評価試験装置を示すブロック図である。It is a block diagram which shows the evaluation test apparatus of the piping repair method of Embodiment 3,4. 図8の装置による試験結果を示す表である。It is a table | surface which shows the test result by the apparatus of FIG.

以下、この発明を実施するための形態について、図面を参照して説明する。
実施の形態1.
図1はこの発明の実施の形態1による配管補修方法を配管の直管部に適用したときの断面を工程順に示す説明図である。図1(a)に示すように、配管1の損傷箇所2から流体が漏れている場合、図1(b)に示すように、流入口3aと流出口3bとを有する逃がし管(バイパス管)3を、流入口3aが損傷箇所2に対向するように配管1の外部に配置する。
Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.
Embodiment 1 FIG.
FIG. 1 is an explanatory view showing the sections in order of steps when the pipe repair method according to Embodiment 1 of the present invention is applied to a straight pipe portion of a pipe. As shown in FIG. 1 (a), when the fluid leaks from the damaged portion 2 of the pipe 1, as shown in FIG. 1 (b), an escape pipe (bypass pipe) having an inlet 3a and an outlet 3b. 3 is arranged outside the pipe 1 so that the inlet 3a faces the damaged portion 2.

この後、配管1の内圧をゼロに落とさず、流体が漏れている状態のまま、図1(c)に示すように、逃がし管3と配管1との間を未硬化状態の硬化性補修材(シール材)4で塞ぎ、損傷箇所2から配管1外に漏れている流体の全てを逃がし管3に通す。即ち、損傷箇所2からリークする流体の全てが逃がし管3を通って外部に排出されるようにする。   Thereafter, the internal pressure of the pipe 1 is not dropped to zero, and the fluid is leaking, and the curable repair material is in an uncured state between the escape pipe 3 and the pipe 1 as shown in FIG. (Sealing material) 4 is closed and all of the fluid leaking from the damaged portion 2 to the outside of the pipe 1 is released and passed through the pipe 3. That is, all of the fluid leaking from the damaged portion 2 is discharged to the outside through the escape pipe 3.

硬化性補修材4が硬化(又は固化)し、配管圧に耐性を持つようになったら、図1(d)に示すように、流出口3bを封止して逃がし管3を閉じる(閉管又は封管)。図1の例では、金属製の逃がし管3を用い、ピンチオフツールなどで逃がし管3をかしめることにより流出口3bを封止している。   When the curable repair material 4 is cured (or solidified) and has resistance to the pipe pressure, the outlet 3b is sealed and the escape pipe 3 is closed (closed pipe or Sealed tube). In the example of FIG. 1, a metal escape pipe 3 is used, and the outlet 3b is sealed by caulking the escape pipe 3 with a pinch-off tool or the like.

このような配管補修方法では、損傷箇所2から漏れている流体を逃がし管3で逃がし、未硬化状態の硬化性補修材4が圧力で変形しないようにしつつ、逃がし管3と配管1との間を塞ぎ、硬化性補修材4が硬化した後に流出口3bを封止するので、損傷箇所2の配管形状に沿う当て板等を用いずに配管補修が可能となり、配管1のあらゆる箇所の損傷を容易に補修することができる。   In such a pipe repair method, the fluid leaking from the damaged portion 2 is escaped by the escape pipe 3, and the curable repair material 4 in an uncured state is not deformed by pressure, while the relief pipe 3 and the pipe 1 are not deformed. Since the outlet 3b is sealed after the curable repair material 4 is hardened, the pipe can be repaired without using a contact plate or the like along the pipe shape of the damaged part 2, and damage to any part of the pipe 1 can be prevented. It can be repaired easily.

また、逃がし管3は、閉管可能なものであれば、配管1の形状にフィットしている必要はないので、異なる配管形状に対して共通部材として使用することができ、効率的である。   Further, the relief pipe 3 need not be fitted to the shape of the pipe 1 as long as it can be closed, and therefore can be used as a common member for different pipe shapes and is efficient.

さらに、圧力がかかった状態で損傷箇所2を補修することができるため、例えばフロンガス冷媒配管のように気体を流す配管1の補修に適している。   Furthermore, since the damaged part 2 can be repaired in a state where pressure is applied, it is suitable for repairing a pipe 1 through which a gas flows, such as a chlorofluorocarbon refrigerant pipe.

さらにまた、逃がし管3をかしめることにより流出口3bを封止したので、逃がし管3をコンパクトかつ軽量に構成することができ、これにより作業性の向上及びコストダウンが可能となる。   Furthermore, since the outlet 3b is sealed by caulking the escape pipe 3, the escape pipe 3 can be configured to be compact and lightweight, thereby improving workability and reducing costs.

ここで、逃がし管3としては、リーク流体を逃がす際に硬化前の硬化性補修材4が変形しないように、損傷箇所2に対して十分な径を有する低圧損のものを用いるのが好ましい。このような圧損が小さい逃がし管3を用いることにより、図1のように、逃がし管3の端部を配管1に接触させなくても、逃がし管3と配管1との間を未硬化の硬化性補修材4で容易に塞ぐことができる。従って、逃がし管3を配管1に接触させにくい場合にも、損傷箇所2を容易に補修することができる。勿論、可能であれば逃がし管3の端部を配管1に接触させてもよい。   Here, as the escape pipe 3, it is preferable to use a low pressure loss pipe having a sufficient diameter with respect to the damaged portion 2 so that the curable repair material 4 before hardening does not deform when leaking the leak fluid. By using the escape pipe 3 with such a small pressure loss, the uncured hardening between the escape pipe 3 and the pipe 1 can be achieved without bringing the end of the escape pipe 3 into contact with the pipe 1 as shown in FIG. It can be easily closed with the sex repair material 4. Therefore, even when it is difficult to make the escape pipe 3 contact the pipe 1, the damaged portion 2 can be repaired easily. Of course, the end of the escape pipe 3 may be brought into contact with the pipe 1 if possible.

以下、実施の形態1の配管補修方法を直管部以外に適用する例を説明する。図2は実施の形態1の配管補修方法を配管の分岐部に適用したときの断面を工程順に示す説明図である。図2(a)に示すように、配管1の90度T字部の角に生じた損傷箇所2から流体が漏れている場合、図2(b)に示すように、流入口3aが損傷箇所2に対向するように配管1の外部に逃がし管3を配置する。   Hereinafter, an example in which the pipe repair method according to the first embodiment is applied to a portion other than the straight pipe portion will be described. FIG. 2 is an explanatory view showing sections in order of steps when the pipe repair method of the first embodiment is applied to a branch portion of the pipe. As shown in FIG. 2 (a), when the fluid leaks from the damaged portion 2 generated at the corner of the 90-degree T-shaped portion of the pipe 1, the inlet 3a is damaged as shown in FIG. 2 (b). The escape pipe 3 is arranged outside the pipe 1 so as to face 2.

この後、図2(c)に示すように、逃がし管3と配管1との間を未硬化状態の硬化性補修材4で塞ぎ、損傷箇所2から配管1外に漏れている流体の全てを逃がし管3に通す。この後、硬化性補修材4が硬化したら、図2(d)に示すように、流出口3bを封止する。   Thereafter, as shown in FIG. 2C, the space between the escape pipe 3 and the pipe 1 is closed with an uncured curable repair material 4, and all of the fluid leaking from the damaged portion 2 to the outside of the pipe 1 is removed. Pass through escape tube 3. Thereafter, when the curable repair material 4 is cured, the outlet 3b is sealed as shown in FIG.

このように、実施の形態1の配管補修方法によれば、配管1の分岐部に損傷が生じた場合にも、損傷箇所2を容易に補修することができる。これに対して、プレートを配管外周に当てる従来の配管補修方法では、プレートが邪魔になり、分岐部の補修は困難である。   As described above, according to the pipe repair method of the first embodiment, the damaged portion 2 can be easily repaired even when the branch portion of the pipe 1 is damaged. On the other hand, in the conventional pipe repair method in which the plate is applied to the outer periphery of the pipe, the plate becomes an obstacle and it is difficult to repair the branch portion.

図3は実施の形態1の配管補修方法を配管の曲げ部の外周に適用したときの断面を工程順に示す説明図である。図3(a)に示すように、配管1の曲げ部の外周に生じた損傷箇所2から流体が漏れている場合、図3(b)に示すように、流入口3aが損傷箇所2に対向するように配管1の外部に逃がし管3を配置する。   FIG. 3 is an explanatory diagram showing sections in order of steps when the pipe repair method of the first embodiment is applied to the outer periphery of a bent part of a pipe. As shown in FIG. 3A, when the fluid leaks from the damaged portion 2 generated on the outer periphery of the bent portion of the pipe 1, the inlet 3a faces the damaged portion 2 as shown in FIG. The escape pipe 3 is arranged outside the pipe 1 as described above.

この後、図3(c)に示すように、逃がし管3と配管1との間を未硬化状態の硬化性補修材4で塞ぎ、損傷箇所2から配管1外に漏れている流体の全てを逃がし管3に通す。この後、硬化性補修材4が硬化したら、図3(d)に示すように、流出口3bを封止する。   Thereafter, as shown in FIG. 3 (c), the space between the escape pipe 3 and the pipe 1 is closed with an uncured curable repair material 4, and all of the fluid leaking out of the pipe 1 from the damaged portion 2 is removed. Pass through escape tube 3. Thereafter, when the curable repair material 4 is cured, the outlet 3b is sealed as shown in FIG.

このように、実施の形態1の配管補修方法によれば、配管1の曲げ部の外周に損傷が生じた場合にも、損傷箇所2を容易に補修することができる。   As described above, according to the pipe repair method of the first embodiment, the damaged portion 2 can be easily repaired even when the outer periphery of the bent portion of the pipe 1 is damaged.

図4は実施の形態1の配管補修方法を配管の曲げ部の内周に適用したときの補修途中の状態を示す断面図である。配管1の曲げ部の内周に生じた損傷箇所2から流体が漏れている場合、流入口3aが損傷箇所2に対向するように配管1の外部に逃がし管3を配置する。この後、逃がし管3と配管1との間を未硬化状態の硬化性補修材4で塞ぎ、損傷箇所2から配管1外に漏れている流体の全てを逃がし管3に通す(図4の状態)。この後、硬化性補修材4が硬化したら、流出口3bを封止する。   FIG. 4 is a cross-sectional view showing a state in the middle of repair when the pipe repair method of the first embodiment is applied to the inner periphery of the bent part of the pipe. When the fluid leaks from the damaged portion 2 generated in the inner periphery of the bent portion of the pipe 1, the escape pipe 3 is arranged outside the pipe 1 so that the inlet 3 a faces the damaged portion 2. Thereafter, the space between the escape pipe 3 and the pipe 1 is closed with an uncured curable repair material 4, and all of the fluid leaking from the damaged portion 2 to the outside of the pipe 1 is passed through the escape pipe 3 (the state shown in FIG. 4). ). Thereafter, when the curable repair material 4 is cured, the outlet 3b is sealed.

このように、実施の形態1の配管補修方法によれば、配管1の曲げ部の内周に損傷が生じた場合にも、曲げ部の内側に逃がし管3を挿入して、損傷箇所2を容易に補修することができる。   As described above, according to the pipe repair method of the first embodiment, even when the inner periphery of the bent portion of the pipe 1 is damaged, the escape pipe 3 is inserted inside the bent portion to It can be repaired easily.

ここで、硬化性補修材4としては、逃がし管3及び配管1に対する接着性を有する無溶剤系のものを用いるのが好ましい。例えば、エポキシ樹脂、ウレタン樹脂又はアクリレート樹脂等の硬化性樹脂、あるいはポリオレフィン又はポリアミド等のホットメルト型樹脂が硬化性補修材4として適用可能である。   Here, as the curable repair material 4, it is preferable to use a solvent-free material having adhesion to the escape pipe 3 and the pipe 1. For example, a curable resin such as an epoxy resin, a urethane resin, or an acrylate resin, or a hot-melt type resin such as polyolefin or polyamide is applicable as the curable repair material 4.

但し、未硬化状態での粘度が低いと、自己の形状を維持できず、適切な形状でのシーリングが不可能となるので、硬化性補修材4は、未硬化状態で流動性のないパテ状又は粘土状のものが好ましい。   However, if the viscosity in the uncured state is low, the self-shape cannot be maintained, and sealing in an appropriate shape becomes impossible. Therefore, the curable repair material 4 has a putty shape that is not fluid in the uncured state. Or a clay-like thing is preferable.

硬化性補修材4としてエポキシ樹脂を用いる場合、使用直前に2成分(例えば2液)を混合することにより、パテ状又は粘土状の状態を経て硬化するタイプのものを用いるのが好適である。   When an epoxy resin is used as the curable repair material 4, it is preferable to use a type that cures through a putty-like or clay-like state by mixing two components (for example, two liquids) immediately before use.

また、硬化性補修材4としてホットメルトタイプの樹脂を用いる場合、溶融粘度が高く、かつすぐに冷えて固まるものを選択する必要がある。具体的には、ホットメルト型樹脂は、溶融時の粘度が5Pa・s以上であるものが好ましい。   Further, when a hot melt type resin is used as the curable repair material 4, it is necessary to select a resin that has a high melt viscosity and quickly cools and hardens. Specifically, the hot melt resin preferably has a viscosity at the time of melting of 5 Pa · s or more.

このようなホットメルト型樹脂は、加熱することで再溶融するため、補修部を簡単に除去することが可能である。このため、ホットメルト型樹脂は、損傷箇所2を応急的に補修し、その後硬化性補修材4や逃がし管3を除去し、ロウ付けなどで恒久的な修理を行う場合に適する。   Since such a hot melt resin is remelted by heating, the repaired portion can be easily removed. For this reason, the hot-melt resin is suitable for the case where the damaged portion 2 is repaired immediately, and then the curable repair material 4 and the escape pipe 3 are removed and permanent repair is performed by brazing or the like.

また、硬化性補修材4の材料を選択する際には、硬化後の弾性率も重要な要素である。即ち、硬化性補修材4の弾性率が低いと、配管1内の流体圧に負けて硬化性補修材4が変形してしまい、補修材として機能しなくなる可能性がある。このため、硬化性補修材4の硬化後の引っ張り弾性率は、30MPa以上であることが好ましい。   Further, when selecting a material for the curable repair material 4, the elastic modulus after curing is also an important factor. That is, if the elastic modulus of the curable repair material 4 is low, the curable repair material 4 may be deformed by losing the fluid pressure in the pipe 1 and may not function as the repair material. For this reason, it is preferable that the tensile elasticity modulus after hardening of the curable repair material 4 is 30 MPa or more.

実施の形態2.
次に、図5はこの発明の実施の形態2による配管補修方法を配管の直管部に適用したときの補修後の状態を示す断面図である。例えば、損傷箇所2が広範囲に渡る場合や、リークガス量が多い場合など、1本の逃がし管3では対処不可能な場合は、図5に示すように、複数本の逃がし管3を用いることで対処可能である。逃がし管3の本数以外の補修方法は、実施の形態1と同様である。
Embodiment 2. FIG.
Next, FIG. 5 is a cross-sectional view showing a state after repair when the pipe repair method according to Embodiment 2 of the present invention is applied to a straight pipe portion of the pipe. For example, when the damaged part 2 covers a wide range or the amount of leak gas is large, and when it is impossible to deal with a single escape pipe 3, a plurality of escape pipes 3 can be used as shown in FIG. It can be dealt with. Repair methods other than the number of escape pipes 3 are the same as those in the first embodiment.

このように、損傷箇所2の状態に応じて逃がし管3の本数を増減させることにより、現場でのフレキシブルな対応が可能となる。   As described above, by increasing or decreasing the number of the escape pipes 3 in accordance with the state of the damaged portion 2, it is possible to respond flexibly on site.

実施の形態3.
次に、図6はこの発明の実施の形態3による配管補修方法を配管の直管部に適用したときの断面を工程順に示す説明図である。実施の形態3の配管補修方法は、逃がし管3と配管1との間を硬化性補修材4で塞ぐ工程までは、実施の形態1と同様である。この後、実施の形態3では、硬化性補修材4の上から液状のコーティング材(接着性物質)5をさらに塗布する。即ち、図6(a)に示すように、硬化性補修材4よりも粘度の低いコーティング材5により硬化性補修材4の表面をコーティングする。そして、図6(b)に示すように、流出口3bを封止する。
Embodiment 3 FIG.
Next, FIG. 6 is explanatory drawing which shows the cross section when the piping repair method by Embodiment 3 of this invention is applied to the straight pipe part of piping in order of a process. The pipe repair method of the third embodiment is the same as that of the first embodiment until the step of closing the space between the escape pipe 3 and the pipe 1 with the curable repair material 4. Thereafter, in the third embodiment, a liquid coating material (adhesive substance) 5 is further applied on the curable repair material 4. That is, as shown in FIG. 6A, the surface of the curable repair material 4 is coated with a coating material 5 having a viscosity lower than that of the curable repair material 4. And as shown in FIG.6 (b), the outflow port 3b is sealed.

コーティング材5としては、例えば低粘度の硬化性樹脂又は溶剤揮発型コーティング材等が用いられる。また、コーティング材5の引っ張り弾性率は、0.1GPa以上であることが好ましい。それよりも軟らかいものは、配管1内の圧力により変形し、シールすることができない可能性がある。   As the coating material 5, for example, a low-viscosity curable resin or a solvent volatile coating material is used. Moreover, it is preferable that the tensile elasticity modulus of the coating material 5 is 0.1 GPa or more. Those softer than that may be deformed by the pressure in the pipe 1 and cannot be sealed.

このような配管補修方法では、低粘度のコーティング材5で硬化性補修材4の表面をコーティングするので、硬化性補修材4に微小な隙間やピンホールが形成されていても、流体の漏れをより確実に防止することができる。特に、硬化性補修材4として接着性の弱いものや粘度の高いものを用いる場合には、硬化性補修材4内にボイドや隙間が形成されて気密性が低下する可能性があるが、コーティング材5により気密性を高めることができる。   In such a pipe repair method, since the surface of the curable repair material 4 is coated with the low-viscosity coating material 5, even if a minute gap or a pinhole is formed in the curable repair material 4, fluid leakage is prevented. It can prevent more reliably. In particular, when a material having low adhesiveness or a material having high viscosity is used as the curable repair material 4, voids or gaps may be formed in the curable repair material 4 and the airtightness may be reduced. Airtightness can be enhanced by the material 5.

なお、実施の形態3では逃がし管3を1本のみ用いたが、実施の形態2に示したように複数本の逃がし管3を用いる場合にも、コーティング材5をコーティングすることで実施の形態3と同様の効果を得ることができる。   In the third embodiment, only one escape pipe 3 is used. However, as shown in the second embodiment, even when a plurality of escape pipes 3 are used, the coating material 5 is coated to form the embodiment. The same effect as 3 can be obtained.

実施の形態4.
次に、図7はこの発明の実施の形態4による配管補修方法を配管の直管部に適用したときの補修後の状態を示す断面図である。この例では、コック又はバルブ等の封止装置6が予め設けられている逃がし管3を用い、封止装置6を操作することにより流出口3bを封止する。他の補修方法は、実施の形態3と同様である。
Embodiment 4 FIG.
Next, FIG. 7 is a cross-sectional view showing a state after repair when the pipe repair method according to Embodiment 4 of the present invention is applied to a straight pipe portion of the pipe. In this example, the outlet 3b is sealed by operating the sealing device 6 using the escape pipe 3 in which the sealing device 6 such as a cock or a valve is provided in advance. Other repair methods are the same as those in the third embodiment.

このような配管補修方法では、流出口3bの封止を容易に、かつ、より確実に実施することができる。また、万が一閉管後に漏れが発生しても、封止装置6を再び開くことで容易に補修が可能となる。   In such a pipe repair method, the outlet 3b can be easily and more reliably sealed. Even if a leak occurs after the tube is closed, it can be repaired easily by opening the sealing device 6 again.

なお、実施の形態4の封止装置6は、実施の形態1、2の逃がし管3に取り付けてもよい。   In addition, you may attach the sealing device 6 of Embodiment 4 to the escape pipe | tube 3 of Embodiment 1,2.

効果の検証
図8は実施の形態3、4の配管補修方法の評価試験装置を示すブロック図、図9は図8の試験装置による試験結果を示す表である。この評価試験では、空調配管のフロンガス漏れに対する効果を検証した。
Verification of Effect FIG. 8 is a block diagram showing an evaluation test apparatus for the pipe repair method according to the third and fourth embodiments, and FIG. 9 is a table showing test results by the test apparatus of FIG. In this evaluation test, the effect of air-conditioning piping on CFC gas leakage was verified.

図において、フロンボンベ11内のフロンガスは、小型貯蔵タンク12に供給される。評価対象となる試料10には、小型貯蔵タンク12により圧力がかけられる。試料10に初期圧(ここでは3.5MPa)をかける際には、小型貯蔵タンク12の圧力が3.5MPaとなるように、フロンボンベ11から小型貯蔵タンク12にフロンガスを移した後、フロンボンベ11のバルブを閉じ、試料10側のバルブを開く。   In the figure, the CFC gas in the CFC cylinder 11 is supplied to the small storage tank 12. Pressure is applied to the sample 10 to be evaluated by the small storage tank 12. When an initial pressure (3.5 MPa in this case) is applied to the sample 10, the front gas is transferred from the front cylinder 11 to the small storage tank 12 so that the pressure in the small storage tank 12 becomes 3.5 MPa, and then the front cylinder is used. 11 valve is closed and the sample 10 side valve is opened.

試料10と小型貯蔵タンク12との間には、圧力センサ13が接続されている。圧力センサ13は、試料10内の圧力に応じた信号を発生する。圧力センサ13には、データロガー(レコーダ)14が接続されている。データロガー14は、圧力センサ13からの信号に基づいて試料10内の圧力を求め、そのデータを記録・保持する。データロガー14には、パーソナルコンピュータ15が接続されている。   A pressure sensor 13 is connected between the sample 10 and the small storage tank 12. The pressure sensor 13 generates a signal corresponding to the pressure in the sample 10. A data logger (recorder) 14 is connected to the pressure sensor 13. The data logger 14 obtains the pressure in the sample 10 based on the signal from the pressure sensor 13, and records / holds the data. A personal computer 15 is connected to the data logger 14.

試料10としては、図9の表に示すように、試料A〜D及び比較試料Aを用いた。試料Aは、図1、図6、図7と同様に、直管(長さ約150mm)に孔(擬似的な損傷箇所)を設けたものである。試料Bは、図2と同様に、T字管の角に孔を設けたものである。試料Cは、図3と同様に、曲管の外周に孔を設けたものである。試料Dは、図4と同様に、曲管の内周に孔を設けたものである。比較試料Aは、試料Aと同様に、直管に孔を設けたものである。   As Sample 10, Samples A to D and Comparative Sample A were used as shown in the table of FIG. In the sample A, a hole (pseudo-damaged portion) is provided in a straight pipe (length: about 150 mm) as in FIGS. In the sample B, holes are provided at the corners of the T-shaped tube as in FIG. In the sample C, a hole is provided on the outer periphery of the bent tube as in FIG. In the sample D, a hole is provided in the inner periphery of the bent tube, as in FIG. As in the case of Sample A, Comparative Sample A is a straight pipe provided with holes.

試料A〜D及び比較試料Aは、いずれもφ1/2インチ(12.7mm)の銅管であり、孔の径はいずれもφ50μmとした。また、試料A〜D及び比較試料Aにおいて、小型貯蔵タンク12に接続される端部以外の端部(試料Bでは2箇所)は封止した。   Samples A to D and comparative sample A were all φ1 / 2 inch (12.7 mm) copper tubes, and the diameter of each hole was φ50 μm. Further, in Samples A to D and Comparative Sample A, the ends other than the end connected to the small storage tank 12 (two locations in Sample B) were sealed.

評価試験は、試料A〜D及び比較試料Aのそれぞれについて、孔を補修しない場合(図6の「未補修」)と、孔を補修した場合(図6の「補修後」)とで所定時間後の圧力の低下度合い(リーク状態)を調べた。   The evaluation test is performed for each of the samples A to D and the comparative sample A when the hole is not repaired (“unrepaired” in FIG. 6) and when the hole is repaired (“after repair” in FIG. 6). Later, the degree of pressure decrease (leak state) was examined.

また、試料A〜Dの「補修後」の評価試験では、3.5MPaの圧力をかけながら、実施の形態3、4と同様の方法で孔を補修した。さらに、比較試料Aの「補修後」の評価試験では、3.5MPaの圧力をかけながら、市販の補修キット(ブチルゴムテープ+ウレタンテープ)で孔を補修した。   In the evaluation test “after repair” of samples A to D, the hole was repaired by the same method as in the third and fourth embodiments while applying a pressure of 3.5 MPa. Furthermore, in the evaluation test “after repair” of comparative sample A, the hole was repaired with a commercially available repair kit (butyl rubber tape + urethane tape) while applying a pressure of 3.5 MPa.

硬化性補修材4としては、エポキシパテ(ニューピグコーポレーション製リペアパテ)を用いた。また、コーティング材5として、室温硬化エポキシ接着材(セメダイン社製セメダインハイスーパー5)を用いた。さらに、コーティング材5は、硬化性補修材4の表面、及び硬化性補修材4と配管1との境界面に厚さ約1mmでコーティングした。   As the curable repair material 4, an epoxy putty (Repair Putty made by New Pig Corporation) was used. Further, as the coating material 5, a room temperature curing epoxy adhesive (Cemedine High Super 5 manufactured by Cemedine) was used. Further, the coating material 5 was coated on the surface of the curable repair material 4 and the boundary surface between the curable repair material 4 and the pipe 1 with a thickness of about 1 mm.

逃がし管3としては、φ3.2mmの銅管とφ1/4インチ(6.35mm)の銅管とを溶接したものを用いた。溶接後の銅管の長さはそれぞれ30mm、10mmであった。   As the escape pipe 3, a welded pipe having a φ3.2 mm copper pipe and a φ1 / 4 inch (6.35 mm) copper pipe was used. The lengths of the copper tubes after welding were 30 mm and 10 mm, respectively.

このような評価試験を行った結果、未補修の試料A〜Dでは、24時間後に大きな圧力低下が見られるが、実施の形態3、4のような補修を行った試料A〜Dでは、24時間後にも初期圧が維持された。また、実施の形態3、4のような補修を行った試料A〜Dでは、211時間後であっても初期圧が維持された。即ち、実施の形態3、4の配管補修方法によれば、直管のみならず、枝分かれ部及び曲げ部においても補修が可能で、補修箇所のガスリークに伴う圧力低下が見られず、優れた補修性能を持つことが実証された。   As a result of performing such an evaluation test, a large pressure drop is observed after 24 hours in the unrepaired samples A to D, but in the samples A to D that have been repaired as in the third and fourth embodiments, 24 The initial pressure was maintained after time. In Samples A to D that were repaired as in Embodiments 3 and 4, the initial pressure was maintained even after 211 hours. That is, according to the pipe repair method of the third and fourth embodiments, repair is possible not only in the straight pipe but also in the branching portion and the bending portion, and the pressure drop due to the gas leak at the repaired portion is not seen, and excellent repair is performed. Proven to have performance.

一方、市販の補修キットで補修した比較試料Aでは、24時間後に未補修に近いレベルまで圧力が低下した。なお、未補修の試料A〜Dにおける24時間後の圧力の相違は、孔の位置による孔の圧損の相違によるものと考えられる。   On the other hand, in Comparative Sample A repaired with a commercially available repair kit, the pressure dropped to a level close to unrepaired after 24 hours. Note that the difference in pressure after 24 hours in the unrepaired samples A to D is considered to be due to the difference in the pressure loss of the hole depending on the position of the hole.

1 配管、2 損傷箇所、3 逃がし管、4 硬化性補修材、5 コーティング材、6 封止装置。   1 piping, 2 damaged parts, 3 relief pipes, 4 curable repair material, 5 coating material, 6 sealing device.

Claims (6)

流入口と流出口とを有する逃がし管を、前記流入口が損傷箇所に対向するように配管の外部に配置する工程、
前記逃がし管と前記配管との間を未硬化状態の硬化性補修材で塞ぎ、前記損傷箇所から前記配管外に漏れている流体の全てを前記逃がし管に通す工程、
前記硬化性補修材を硬化させる工程、及び
前記逃がし管を閉じる工程
を含むことを特徴とする配管補修方法。
A step of disposing an escape pipe having an inflow port and an outflow port outside the pipe so that the inflow port faces the damaged portion;
The step of closing the space between the escape pipe and the pipe with an uncured curable repair material, and passing all of the fluid leaking out of the pipe from the damaged portion through the escape pipe,
A pipe repairing method comprising: curing the curable repair material; and closing the escape pipe.
前記硬化性補修材は、使用直前に2成分を混合することにより、パテ状又は粘土状の状態を経て硬化するタイプのエポキシ樹脂であることを特徴とする請求項1記載の配管補修方法。   2. The pipe repair method according to claim 1, wherein the curable repair material is an epoxy resin of a type that cures through a putty-like or clay-like state by mixing two components immediately before use. 前記硬化性補修材は、再溶融可能なホットメルトタイプの熱可塑性樹脂であり、前記硬化性補修材の溶融時の粘度が5Pa・s以上であることを特徴とする請求項1記載の配管補修方法。   2. The pipe repair according to claim 1, wherein the curable repair material is a remeltable hot-melt type thermoplastic resin, and the viscosity of the curable repair material upon melting is 5 Pa · s or more. Method. 前記逃がし管をかしめることにより前記逃がし管を閉じることを特徴とする請求項1から請求項3までのいずれか1項に記載の配管補修方法。   The pipe repair method according to any one of claims 1 to 3, wherein the relief pipe is closed by caulking the relief pipe. 封止装置が予め設けられている前記逃がし管を用い、前記封止装置を操作することにより前記逃がし管を閉じることを特徴とする請求項1から請求項3までのいずれか1項に記載の配管補修方法。   4. The escape pipe according to claim 1, wherein the escape pipe is provided with a sealing device in advance, and the relief pipe is closed by operating the sealing device. 5. Piping repair method. 前記逃がし管と前記配管との間を前記硬化性補修材で塞いだ後、前記硬化性補修材よりも粘度の低いコーティング材により前記硬化性補修材の表面をコーティングする工程をさらに含むことを特徴とする請求項1から請求項5までのいずれか1項に記載の配管補修方法。   The method further comprises a step of coating the surface of the curable repair material with a coating material having a viscosity lower than that of the curable repair material after the space between the escape pipe and the pipe is filled with the curable repair material. The piping repair method according to any one of claims 1 to 5.
JP2010042680A 2010-02-26 2010-02-26 Piping repairing method Pending JP2011179552A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010042680A JP2011179552A (en) 2010-02-26 2010-02-26 Piping repairing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010042680A JP2011179552A (en) 2010-02-26 2010-02-26 Piping repairing method

Publications (1)

Publication Number Publication Date
JP2011179552A true JP2011179552A (en) 2011-09-15

Family

ID=44691273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010042680A Pending JP2011179552A (en) 2010-02-26 2010-02-26 Piping repairing method

Country Status (1)

Country Link
JP (1) JP2011179552A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012225388A (en) * 2011-04-18 2012-11-15 Mitsubishi Electric Corp Pipe repair device and method
JP2018044665A (en) * 2016-09-18 2018-03-22 東京電力ホールディングス株式会社 Gas leak repair method for gas insulation equipment
WO2021192878A1 (en) * 2020-03-27 2021-09-30 デクセリアルズ株式会社 Material for locating gas leak, method for locating gas leak, material for repairing gas leak, method for repairing gas leak, and device for repairing gas leak

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61127996A (en) * 1984-11-28 1986-06-16 東京電力株式会社 Method of closing leakage of pressure fluid
JPH01135294U (en) * 1988-03-08 1989-09-14
JP2006064166A (en) * 2004-08-30 2006-03-09 Chemitec Kk Oil leakage point sealing method
JP2006083906A (en) * 2004-09-15 2006-03-30 Chugoku Electric Power Co Inc:The Method for preventing fluid leak
JP2007051268A (en) * 2005-07-21 2007-03-01 Cosmo Material:Kk Sealing material for gas piping
JP2009109004A (en) * 2007-10-10 2009-05-21 Cosmo Material:Kk Gas-leak repairing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61127996A (en) * 1984-11-28 1986-06-16 東京電力株式会社 Method of closing leakage of pressure fluid
JPH01135294U (en) * 1988-03-08 1989-09-14
JP2006064166A (en) * 2004-08-30 2006-03-09 Chemitec Kk Oil leakage point sealing method
JP2006083906A (en) * 2004-09-15 2006-03-30 Chugoku Electric Power Co Inc:The Method for preventing fluid leak
JP2007051268A (en) * 2005-07-21 2007-03-01 Cosmo Material:Kk Sealing material for gas piping
JP2009109004A (en) * 2007-10-10 2009-05-21 Cosmo Material:Kk Gas-leak repairing method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012225388A (en) * 2011-04-18 2012-11-15 Mitsubishi Electric Corp Pipe repair device and method
JP2018044665A (en) * 2016-09-18 2018-03-22 東京電力ホールディングス株式会社 Gas leak repair method for gas insulation equipment
WO2021192878A1 (en) * 2020-03-27 2021-09-30 デクセリアルズ株式会社 Material for locating gas leak, method for locating gas leak, material for repairing gas leak, method for repairing gas leak, and device for repairing gas leak
KR20220121877A (en) * 2020-03-27 2022-09-01 데쿠세리아루즈 가부시키가이샤 Leak point specific material and leak point specific method, leak point repair material and leak point repair method, and leak point repair device
KR102652063B1 (en) 2020-03-27 2024-03-27 데쿠세리아루즈 가부시키가이샤 Leak point specific material and leak point specific method, leak point repair material and leak point repair method, and leak point repair device

Similar Documents

Publication Publication Date Title
US10428992B2 (en) Cured in place liner system and installation methods
US6467811B2 (en) Flanged connection repair device and method
KR101561031B1 (en) Device for protecting and sealing of pipe connecting part, sealing method of pipe connecting part
US7950418B2 (en) Device and method for repairing a pipeline
RU2010130359A (en) PIPELINE, PIPELINE SECTION AND METHOD OF ITS MANUFACTURE
US20180306371A1 (en) Method and Apparatus for Lining a Pipe
JP2017166565A (en) Leakage part repair method of gas pipe
JP2011179552A (en) Piping repairing method
CA2935142A1 (en) Bare sleeve pipe repair method and apparatus
JP2013228084A (en) Method for repairing metal pipe, and enclosure cover used for the method
CN103133817A (en) Device and method for conducting online pipeline leakage stoppage
US9845903B2 (en) Hose joint with adhesive
JP2019183950A (en) Pipeline repair method
EP2802802B1 (en) Pipe repair means
US20120211916A1 (en) Method of strengthening the connection between pipe sections in high pressure pipelines
JP7360612B2 (en) How to repair a nozzle or pipe
CN208670427U (en) Using photo-curing material to the leak stopping structure of spot corrosion perforating apparatus
JP4056078B1 (en) Gas / liquid leak prevention method
JP5358640B2 (en) OF cable repair device and repair method
JP2012225388A (en) Pipe repair device and method
JP4992448B2 (en) Piping leak prevention device
CN212338584U (en) Quick patching device of pipeline
JP2011007306A (en) Repairing method for piping
JP2018011486A (en) Member for repairing closure, heating member, sealing member, and a method for repairing closure
JPS6230901B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130319

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130709