JP2011178859A - Biomass thermochemical decomposition gasification apparatus - Google Patents

Biomass thermochemical decomposition gasification apparatus Download PDF

Info

Publication number
JP2011178859A
JP2011178859A JP2010043345A JP2010043345A JP2011178859A JP 2011178859 A JP2011178859 A JP 2011178859A JP 2010043345 A JP2010043345 A JP 2010043345A JP 2010043345 A JP2010043345 A JP 2010043345A JP 2011178859 A JP2011178859 A JP 2011178859A
Authority
JP
Japan
Prior art keywords
raw material
biomass
cylinder
cylindrical cylinder
kneading
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010043345A
Other languages
Japanese (ja)
Inventor
Motohiro Dei
基裕 出井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIHON BIO ENERGY KK
Original Assignee
NIHON BIO ENERGY KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIHON BIO ENERGY KK filed Critical NIHON BIO ENERGY KK
Priority to JP2010043345A priority Critical patent/JP2011178859A/en
Publication of JP2011178859A publication Critical patent/JP2011178859A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a biomass thermochemical decomposition gasification apparatus that enables efficient, low-cost, and quick continued production of high-quality hydrocarbon from biomass raw materials including oil and fat. <P>SOLUTION: The biomass thermochemical decomposition gasification apparatus includes: a kneading part 2; a reaction part 3; an inert gas supply means 37; and a gas recovery means 5. The kneading part 2 performs conveyance while performing kneading of the biomass raw material with a catalyst raw material inside of a first tubular cylinder 20 including an injection opening 21 at the upstream border side thereof through which the biomass raw material and the catalyst raw material are injected. The reaction part 3 is provided with a stirring screw conveyor 32, which includes paddles 33 inside of a second tubular cylinder 30 including a receiving opening 31 at the upstream border side thereof and a plurality of gas releasing apertures 34 at the outer periphery thereof, and a high-frequency induction heating means 40 or a microwave irradiation heating means for heating inside the second tubular cylinder 30. The reaction part 3 performs conveyance downstream while performing thermochemical decomposition and gasification. The inert gas supply means 37 supplies inert gas into the second tubular cylinder 30. The gas recovery means 5 recovers decomposition gas released from the gas releasing apertures 34 of the second tubular cylinder 30. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、油脂を含むバイオマス原料(搾油残渣や動物性を含む)から高効率で低コストに炭化水素油を採り出すことのできるバイオマス熱化学分解ガス化装置に関する。   The present invention relates to a biomass thermochemical decomposition gasification apparatus that can extract hydrocarbon oil from biomass raw materials (including oil residue and animal property) containing fats and oils with high efficiency and low cost.

近年、炭酸ガス排出規制に対応する取り組みの一つとして、化石燃料にかえて動植物起源の各種バイオマス原料から液体燃料を取り出す試みが盛んに行われている。バイオマス原料から液体燃料を取り出すエネルギー変換技術としては、熱化学系のものが知られている。例えば、炭水化物系原料やバイオマス原料からバイオエタノールを取り出す発酵技術(特許文献1、2)、動植物油や廃食油をメチルエステル化してバイオディーゼルを得るエステル化技術(特許文献3、4を参照)、木質バイオマス原料を高温高圧で反応させたり、反対に、比較的低圧で温和な反応条件で灯油・軽油〜重油留分を得るバイオオイル化技術(特許文献5を参照)等が知られている。   In recent years, attempts to extract liquid fuels from various biomass raw materials of animal and plant origin in place of fossil fuels have been actively carried out as one of the measures corresponding to carbon dioxide emission regulations. Thermochemical systems are known as energy conversion techniques for extracting liquid fuel from biomass raw materials. For example, fermentation technology for extracting bioethanol from carbohydrate-based raw materials and biomass raw materials (Patent Literatures 1 and 2), esterification technology for obtaining biodiesel by methyl esterifying animal and vegetable oils and waste cooking oil (see Patent Literatures 3 and 4), A bio-oil conversion technology (see Patent Document 5), in which a woody biomass raw material is reacted at a high temperature and a high pressure, and on the contrary, a kerosene / light oil to heavy oil fraction is obtained under mild reaction conditions at a relatively low pressure, is known.

しかしながら、発酵技術で得られるバイオエタノールは同量のガソリンと比べると熱量が小さく、内燃機関で燃焼した場合にガソリン燃焼よりもNOx等が多く排出される可能性がある。また、インフラの整備も必要となり、食料と競合する場合もある。一方、エステル化技術は、原料となる動植物油の前処理たとえば脱ガム処理や、廃食油の場合は酸化や水分の混入が大きく、また動物油脂と植物油脂が混ざっていること等で前処理にコストがかかり、反応後の触媒および発生したグリセリンの洗浄処理など後処理にもコストがかかる。また、総じて生成油の品質が低いために一般の内燃機関で使用するとフィルターの目詰まりや部品の劣化等の不具合が起こる。更に、原料の大量安定的確保も難しく、なによりエステル化反応には時間がかかる。   However, bioethanol obtained by fermentation technology has a smaller amount of heat than gasoline of the same amount, and when it is burned in an internal combustion engine, there is a possibility that more NOx or the like is emitted than gasoline combustion. In addition, infrastructure needs to be developed and may compete with food. On the other hand, the esterification technology can be used for pretreatment of raw material animal and vegetable oils such as degumming treatment, waste edible oils with large oxidation and moisture mixing, and the mixture of animal fats and vegetable oils. The cost is high, and the post-treatment such as the washing of the catalyst after the reaction and the generated glycerin is also expensive. Further, since the quality of the produced oil is generally low, problems such as filter clogging and component deterioration occur when used in a general internal combustion engine. Furthermore, it is difficult to secure a large amount of raw materials stably, and the esterification reaction takes time.

バイオオイル化技術は、主として木質系バイオマス原料を高温、高圧で熱分解させて重油のような性状のバイオオイルを作り、それを重油代替燃料としてボイラー等に化石重油と混燃すること、さらには前記バイオオイルからGTL技術によりFT蒸留して軽質油に改質することも可能である。しかしながら、生成油であるバイオオイルの収率が非常に低く、製造工程が複雑で設備に巨費を要する為、安価で安定・大量生産可能な燃料製造技術として十分に確立されているとは言えない。   Bio-oil technology is mainly made by thermally decomposing woody biomass at high temperature and high pressure to produce bio-oil-like bio-oil, which is mixed with fossil heavy oil in boilers as an alternative fuel for heavy oil, It is also possible to modify the bio-oil to light oil by FT distillation using GTL technology. However, the yield of bio-oil, which is the product oil, is very low, the manufacturing process is complicated, and the equipment is expensive. Therefore, it cannot be said that it has been well established as a fuel manufacturing technology that is cheap, stable and mass-produced. .

その他、油脂類を熱分解して気化させ、生じたガスとアルミノシリケート系触媒とを接触させて燃料油を製造する技術も知られている(例えば、特許文献6、7を参照)。しかしながら、この方法では、熱分解槽と触媒槽とが分離しているため、製造装置のサイズが大きくなりやすく、また、高温に加熱された油脂のガスがアルミノシリケート系触媒に接触するまでの間に、ガス成分同士がラディカル反応を起して重縮合し複雑な炭化水素化合物となりやすく、高品質の燃料が得られにくいという問題があった。   In addition, there is also known a technique for producing fuel oil by thermally decomposing and vaporizing fats and oils and bringing the generated gas into contact with an aluminosilicate catalyst (see, for example, Patent Documents 6 and 7). However, in this method, since the pyrolysis tank and the catalyst tank are separated, the size of the manufacturing apparatus tends to be large, and the oil gas heated to a high temperature is in contact with the aluminosilicate catalyst. In addition, the gas components tend to undergo a radical reaction and polycondensate to form a complex hydrocarbon compound, which makes it difficult to obtain a high-quality fuel.

特開2008−278825号公報JP 2008-278825 A 特開2009−100713号公報JP 2009-100713 A 特開2009−203346号公報JP 2009-203346 A 特開2009−235313号公報JP 2009-235313 A 特開2006−063310号公報JP 2006-063310 A 特開2009−35678号公報JP 2009-35678 A 特開2009−179785号公報JP 2009-179785 A

そこで、本発明が前述の状況に鑑み、解決しようとするところは、油脂を含むバイオマス原料から、高品質の炭化水素を効率よく低コストで素早く連続生産することのできるバイオマス熱化学分解ガス化装置を提供する点にある。   Therefore, in view of the above-described situation, the present invention intends to solve a biomass thermochemical decomposition gasification apparatus that can quickly and continuously produce high-quality hydrocarbons efficiently and at low cost from biomass raw materials containing fats and oils. Is to provide

本発明は、前述の課題解決のために、上流端側にバイオマス原料と触媒原料を投入する投入口を有する第1の筒状シリンダの内部に、搬送歯や原料によっては破砕歯、混練歯などを適切に配置させたパドルを有する回転軸を設け、該回転するパドルによりシリンダ内に投入された前記バイオマス原料と触媒原料を混練し、原料によっては粗破砕もしながら下流端側へ搬送する混練部と、上流端側に前記混練部で調製された原料を受け入れる受け入れ口を有し、且つ外周部に複数の分解ガス放出孔を有する第2の筒状シリンダの内部に、搬送と攪拌を行うパドルを有する攪拌スクリューコンベアを設け、前記第2の筒状シリンダ内を加熱する高周波誘導加熱手段又はマイクロ波照射加熱手段を設け、前記パドルによりシリンダ内の調製原料を攪拌しながら熱化学分解及びガス化させつつ下流側へ搬送する反応部と、前記第2の筒状シリンダ内部に窒素やヘリウム等の不活性ガスを供給する不活性ガス供給手段と、前記反応部全体を覆う気密チェンバーよりなり、前前記第2の筒状シリンダの分解ガス放出孔を通じて外側に放出される分解ガスを回収するガス回収手段とを備えることを特徴とするバイオマス熱化学分解ガス化装置を構成した(請求項1)。   In order to solve the above-described problems, the present invention has a first cylindrical cylinder having an inlet for supplying biomass raw material and catalyst raw material on the upstream end side, and depending on the conveying teeth and raw materials, crushing teeth, kneading teeth, etc. A kneading unit that provides a rotating shaft having a paddle appropriately disposed, kneads the biomass material and catalyst material charged into the cylinder by the rotating paddle, and conveys the raw material to the downstream end side while roughly crushing depending on the material And a paddle for carrying and stirring in a second cylindrical cylinder having a receiving port for receiving the raw material prepared in the kneading part on the upstream end side and having a plurality of cracked gas discharge holes on the outer peripheral part. A high-frequency induction heating means or microwave irradiation heating means for heating the inside of the second cylindrical cylinder, and the prepared raw material in the cylinder is stirred by the paddle. A reaction portion that is conveyed to the downstream side while being thermally and chemically decomposed and gasified, an inert gas supply means for supplying an inert gas such as nitrogen or helium into the second cylindrical cylinder, and the entire reaction portion A biomass thermochemical decomposition gasification apparatus comprising a gas recovery means for recovering cracked gas discharged to the outside through the cracked gas discharge hole of the second cylindrical cylinder. (Claim 1).

ここで、前記攪拌スクリューコンベアが、無軸スクリューコンベアの軸方向に隣接するスクリューパドルのピッチ間に攪拌部材を渡設してなるものが好ましい(請求項2)。   Here, it is preferable that the stirring screw conveyor is formed by passing a stirring member between pitches of screw paddles adjacent to each other in the axial direction of the non-axial screw conveyor.

また、前記分解ガス放出孔が前記第2の筒状シリンダ外周部の上面側にのみ設けられ、該分解ガス放出孔の外側に、二酸化炭素を選択的に吸着する目的を有する活性炭フィルター層又は固体触媒層を設けたものが好ましい(請求項3)。   The cracked gas discharge hole is provided only on the upper surface side of the outer peripheral part of the second cylindrical cylinder, and an activated carbon filter layer or solid having the purpose of selectively adsorbing carbon dioxide outside the cracked gas discharge hole What provided the catalyst layer is preferable (Claim 3).

更に、前記第2の筒状シリンダ内の温度と圧力をセンシングするセンサーを設け、温圧を精密に管理するための制御モニター装置を設けたものが好ましい(請求項4)。   Furthermore, it is preferable that a sensor for sensing the temperature and pressure in the second cylindrical cylinder is provided, and a control monitor device for precisely managing the temperature and pressure is provided.

また、前記第1の筒状シリンダの下流側端部と第2の筒状シリンダの上流側端部とが、第2のシリンダから第1のシリンダへの熱伝導を遮断する連結部を介して接続された一体型の装置であり、反応部の軸を混錬部の軸よりも下方に位置させた請求項1〜4の何れか1項に記載のバイオマス熱化学分解ガス化装置であることが好ましい(請求項5)。   Further, the downstream end of the first cylindrical cylinder and the upstream end of the second cylindrical cylinder are connected via a connecting portion that blocks heat conduction from the second cylinder to the first cylinder. The biomass thermochemical decomposition gasification apparatus according to any one of claims 1 to 4, wherein the biomass thermochemical decomposition gasification apparatus is a connected and integrated apparatus, and the reaction part axis is positioned below the kneading part axis. (Claim 5).

請求項1に係るバイオマス熱化学分解ガス化装置によれば、混練部においてバイオマス原料と触媒原料が第1の筒状シリンダ内で混練されながら搬送され、この混練過程で、バイオマス原料と触媒原料が均質に接触し、後の反応部でバイオマス原料中の油脂成分の熱分解および接触触媒反応による(ガス化並びに)脱炭酸反応(熱化学分解反応)が効率よく行なわれる状態の調製原料とされる。つまり原料の油脂と触媒の接触効率を高めるための均一混錬による原料の調整が行なわれる。次にこの調製原料が反応部の第2の筒状シリンダ内を搬送・攪拌されながら高周波誘導加熱手段又はマイクロ波照射加熱手段により効率よく急速に加熱され、調製原料中の油脂成分が熱分解し、瞬時に該バイオマス原料と接触している調製原料中の触媒と接触反応することで速やかに脱炭素反応が生じる。このような急速加熱はタールの発生を抑制する。   According to the biomass thermochemical decomposition gasification apparatus according to claim 1, the biomass material and the catalyst material are conveyed while being kneaded in the first cylindrical cylinder in the kneading unit. It is a prepared raw material in a state in which it is homogeneously contacted and is efficiently subjected to thermal decomposition of fat and oil components in the biomass raw material and catalytic catalytic reaction (gasification and) decarboxylation reaction (thermochemical decomposition reaction) in the subsequent reaction part. . That is, the raw material is adjusted by uniform kneading in order to increase the contact efficiency between the raw oil and fat and the catalyst. Next, the prepared raw material is efficiently and rapidly heated by the high frequency induction heating means or the microwave irradiation heating means while being transported and stirred in the second cylindrical cylinder of the reaction section, and the fat and oil components in the prepared raw material are thermally decomposed. The decarbonization reaction occurs rapidly by instantaneously contacting with the catalyst in the prepared raw material that is in contact with the biomass raw material. Such rapid heating suppresses the generation of tar.

このように本発明では、バイオマス原料の油脂成分を瞬時に急速かつ均一に加熱でき、反応炉全体や原料全体を四六時中加熱するのではなく原料と触媒の接触部分を選択的に集中的に加熱するため、バイオマス原料中の油脂の熱分解ガス化と脱炭酸脱炭素反応を効率よく行なわせることができ、生産効率の向上を図ることができるとともに燃料油となる高品質の炭化水素油を得ることができる。すなわち本装置で得られたガスは、冷却凝縮して粗油に化し、該粗油を分留すれば各種炭化水素油を得ることができ、油脂を含むバイオマス原料から、複雑な構造とすることなく低コストで、且つ高品質の炭化水素油を、効率よく連続的に生産できるのである。   As described above, in the present invention, the oil and fat component of the biomass raw material can be heated instantaneously and uniformly, and the contact portion between the raw material and the catalyst is selectively concentrated instead of heating the entire reaction furnace or the entire raw material all the time. Therefore, it is possible to efficiently perform pyrolysis gasification and decarbonation and decarbonization reaction of fats and oils in biomass raw materials, improve production efficiency, and at the same time, high quality hydrocarbon oil that is used as fuel oil Can be obtained. That is, the gas obtained by this device is cooled and condensed into crude oil, and various hydrocarbon oils can be obtained by fractionating the crude oil. Therefore, high-quality hydrocarbon oil can be produced efficiently and continuously at low cost.

請求項2に係る発明によれば、前記攪拌スクリューコンベアが、無軸スクリューコンベアの軸方向に隣接するスクリューパドルのピッチ間に攪拌部材を渡設してなるので、シリンダ内部の調製原料がスクレイプされピッチ間において移動しながら攪拌することを繰り返し、前方に押し出されることとなり、反応過程で調製原料を適度に攪拌することで反応時間が一層短縮され、発生する分解ガスの回収が容易となる。   According to the second aspect of the invention, the stirring screw conveyor is formed by passing the stirring member between the pitches of the screw paddles adjacent to each other in the axial direction of the non-axial screw conveyor, so that the prepared raw material inside the cylinder is scraped. Stirring is repeated while moving between the pitches, and the mixture is pushed forward. By appropriately stirring the prepared raw material in the reaction process, the reaction time is further shortened, and the generated cracked gas can be easily recovered.

請求項3に係る発明によれば、前記第2の筒状シリンダの前記分解ガス放出孔の外側に、活性炭フィルター層又は固体触媒層を設けたので、活性炭フィルター層では分解ガス中の二酸化炭素をより選択的・効率的に吸着でき、また固体触媒層では上記熱化学分解反応をより確実に行なわせることができる。   According to the invention of claim 3, since the activated carbon filter layer or the solid catalyst layer is provided outside the cracked gas discharge hole of the second cylindrical cylinder, the activated carbon filter layer allows carbon dioxide in the cracked gas to be removed. Adsorption can be performed more selectively and efficiently, and the thermochemical decomposition reaction can be more reliably performed in the solid catalyst layer.

請求項4に係る発明によれば、前記第2の筒状シリンダ内の温度及び圧力をセンシングするセンサーを設けたので、検出された温圧データのフィードバックをもとに反応部内部の環境を電気的にリアルタイムに監視制御するモニターでき、測定結果に基づき原料供給量や回転スピード、加熱手段による加熱温度、不活性ガスの供給量などを調整できる。   According to the fourth aspect of the invention, since the sensor for sensing the temperature and pressure in the second cylindrical cylinder is provided, the environment inside the reaction unit is electrically connected based on the feedback of the detected temperature and pressure data. It is possible to monitor in real time and control the raw material supply amount and rotation speed, the heating temperature by the heating means, the supply amount of inert gas, and the like based on the measurement result.

請求項5に係る発明によれば、混練部を構成する第1の筒状シリンダと反応部を構成する第2のシリンダを1つの動力で作動するように一体型としたので、混練部から反応部に調製原料が直接渡され、途中の配管等が省略でき、装置全体を小型化でき、より効率良く低コストに生産できる。また、反応部の軸を混錬部の軸よりも下方に位置させた。これは、反応部の軸は無軸スクリューコンベアを保持するクランクを有するが、連結部にギアボックスを設けて無軸スクリューコンベアのクランクを設けるために、反応部の軸の位置は筈かに下方に位置する。それによりクランク動作がおこり、反応物が上部の細孔(分解ガス放出孔)を閉塞することがなく、さらに反応部の熱が混錬部に伝わることを遮断できる。   According to the fifth aspect of the present invention, the first cylindrical cylinder constituting the kneading part and the second cylinder constituting the reaction part are integrated so as to operate with one power, so that the reaction from the kneading part. The prepared raw material is directly passed to the part, piping in the middle can be omitted, the entire apparatus can be miniaturized, and production can be performed more efficiently and at low cost. The axis of the reaction part was positioned below the axis of the kneading part. This is because the shaft of the reaction part has a crank that holds the non-axial screw conveyor, but the position of the axis of the reaction part is far below in order to provide a gear box at the connecting part and provide the crank of the non-axial screw conveyor. Located in. As a result, a crank operation occurs, the reactant does not block the upper pores (decomposed gas discharge holes), and the heat of the reaction part can be blocked from being transmitted to the kneading part.

本発明の第1実施形態に係るバイオマス熱化学分解ガス化装置を示す概略図。Schematic which shows the biomass thermochemical decomposition gasification apparatus which concerns on 1st Embodiment of this invention. 同じくバイオマス熱化学分解ガス化装置の変形例を示す概略図。Schematic which similarly shows the modification of a biomass thermochemical decomposition gasification apparatus. 本発明の第2実施形態に係るバイオマス熱化学分解ガス化装置を示す概略図。Schematic which shows the biomass thermochemical decomposition gasification apparatus which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係るバイオマス熱化学分解ガス化装置を示す概略図。Schematic which shows the biomass thermochemical decomposition gasification apparatus which concerns on 3rd Embodiment of this invention.

次に、本発明の実施形態を添付図面に基づき詳細に説明する。   Next, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

図1は、本発明に係るバイオマス熱化学分解ガス化装置の全体構成を示す概略図であり、図1及び図2は本発明の第1実施形態、図3は第2実施形態、図4は第3実施形態を示し、図中符号1はバイオマス熱化学分解ガス化装置、2は混練部、3は反応部、4は加熱手段、5はガス回収手段をそれぞれ示している。   FIG. 1 is a schematic diagram showing an overall configuration of a biomass thermochemical decomposition gasification apparatus according to the present invention. FIGS. 1 and 2 are a first embodiment of the present invention, FIG. 3 is a second embodiment, and FIG. In the figure, reference numeral 1 denotes a biomass thermochemical decomposition gasification apparatus, 2 denotes a kneading section, 3 denotes a reaction section, 4 denotes a heating means, and 5 denotes a gas recovery means.

本発明のバイオマス熱化学分解ガス化装置1は、図1に示すように、バイオマス原料と触媒原料を混練して調製原料とする混練部2と、調製原料を加熱してガス化及び脱炭酸反応(熱化学分解反応)させる反応部3とを連続的に設けた装置であり、別途の反応炉への挿入・取り出しの作業など原料投入後の作業が不要であり、燃料油となる高品質の炭化水素油を効率よく得ることを可能とする装置である。本発明でいう熱化学分解反応とは、原料油脂(脂肪酸)が加熱により摂氏300度付近でエステルが熱分解しβ―シス型脱離反応が起こる結果、遊離脂肪酸とグリセリン分解物を生成し、更に摂氏400度付近で賦活された触媒との接触触媒反応により脱炭酸が促進され脱水・重合して炭化水素油(分解ブラ)となる反応をいう。   As shown in FIG. 1, the biomass thermochemical decomposition gasification apparatus 1 of the present invention comprises a kneading part 2 for kneading a biomass raw material and a catalyst raw material to prepare a raw material, and a gasification and decarboxylation reaction by heating the prepared raw material. (Thermochemical decomposition reaction) is a device that is continuously provided with a reaction section 3 that does not require any work after the raw material is charged, such as insertion and removal into a separate reactor, and is a high-quality fuel oil. This is an apparatus that makes it possible to obtain hydrocarbon oil efficiently. The thermochemical decomposition reaction referred to in the present invention means that the raw oil (fatty acid) is thermally decomposed by heating at around 300 degrees Celsius and a β-cis-type elimination reaction occurs. As a result, a free fatty acid and a glycerin decomposition product are produced, Further, it refers to a reaction in which decarboxylation is promoted by a catalytic catalytic reaction with a catalyst activated at around 400 degrees Celsius and dehydrated and polymerized to form hydrocarbon oil (decomposed bra).

バイオマス原料は、油脂を含むものであれば固相および液相どちらのバイオマスにも対応でき、特に安価で手に入り易く、取り扱い易いという観点からは、種子内に栄養として油脂(脂肪酸)を貯蔵している油糧植物のバイオマス原料が好ましい。このような油糧植物の中でも、ジャトロファ(ナンヨウアブラギリ)、ヒマワリ、ゴマ、ナタネ、ツバキ、パームヤシ、ココヤシ等が挙げられる。中でも、食料とはならず、大量に生産が可能なジャトロファ、パームヤシ、パームヤシの搾油残渣等を用いることが好ましい。また、生成される分解油の油質に違いがでるが、動物性油脂、種皮、果皮、枝、葉部分を含むバイオマス原料であってもよい。原料は使用前に数日間陰干し乾燥しておくことで余計な水分が除かれ、エネルギー節約を行いつつ反応部のシリンダー内圧の負担軽減と材料コストの節約、および油脂の効率的な熱化学分解を行うことができる。混錬部のパドルの交換により、使用する原料が硬皮種子であっても反応は円滑に行われる。   Biomass raw materials can be used for both solid and liquid biomass as long as they contain fats and oils. From the viewpoint of being inexpensive, easy to obtain, and easy to handle, fats and oils (fatty acids) are stored as nutrients in seeds. Preferred is a biomass raw material of the oil plant. Among such oil plants, jatropha (Nanyo aburagiri), sunflower, sesame, rapeseed, camellia, palm palm, coconut and the like can be mentioned. Of these, it is preferable to use jatropha, palm palm, palm palm oil residue, etc. that are not food and can be produced in large quantities. Moreover, although the difference in the oil quality of the cracked oil produced | generated, the biomass raw material containing animal fats and oils, a seed coat, a fruit skin, a branch, and a leaf part may be sufficient. By drying the raw material in the shade for several days before use, excess moisture is removed, reducing energy consumption and reducing the internal pressure of the cylinder in the reaction section, saving material costs, and efficient thermochemical decomposition of fats and oils. It can be carried out. By exchanging the paddles in the kneading part, the reaction is carried out smoothly even if the raw material used is hard seed.

触媒原料は、バイオマス原料からの油脂ガスを脱炭酸反応させることが可能な触媒であればよい。例えば、海塩、死滅珊瑚粉末、これらの炭素塩を活性炭や多孔質シリカに担持させた触媒等が挙げられる。特に炭素塩を担持した活性炭の触媒を用いると、活性炭部分が効率的な熱媒体となってバイオマス原料への加熱速度が向上する。具体的には、CaO及び/又はMgOと、活性炭とを含むものが好ましい。更には、KOHを含むものが好ましい。また、活性炭は多孔質シリカよりも二酸化炭素選択性が高いため脱炭酸反応による二酸化炭素吸着に有効である。触媒原料は、これら成分を別々に投入してもよいし、例えばCaO及び/又はMgOを活性炭に担持された状態で投入してもよい。更に、予めCaO及び/又はMgOと活性炭原料とを焼成担持させたものを投入してもよい。焼成前のものでも反応部で加熱されることで300度近辺で焼成担持されることとなる。混錬部のパドルとシリンダーのクリアランスが0.5mm以下が望ましいので、またバイオマス原料と触媒原料との相均一を達成するためには触媒原料の粒度は0.5mm以下の粒度とすることが好ましい。   The catalyst raw material should just be a catalyst which can decarboxylate the fats and oils gas from a biomass raw material. Examples thereof include sea salt, dead powder, and a catalyst in which these carbon salts are supported on activated carbon or porous silica. In particular, when an activated carbon catalyst supporting a carbon salt is used, the activated carbon portion becomes an efficient heat medium, and the heating rate to the biomass raw material is improved. Specifically, what contains CaO and / or MgO and activated carbon is preferable. Furthermore, the thing containing KOH is preferable. Moreover, since activated carbon has higher carbon dioxide selectivity than porous silica, it is effective for carbon dioxide adsorption by decarboxylation. The catalyst raw material may be charged with these components separately, or may be charged with CaO and / or MgO supported on activated carbon, for example. Furthermore, you may throw in what CaO and / or MgO, and the activated carbon raw material were carry | supported by baking beforehand. Even those before firing are fired and supported at around 300 degrees by being heated in the reaction part. Since the kneading part paddle / cylinder clearance is preferably 0.5 mm or less, the particle size of the catalyst raw material is preferably 0.5 mm or less in order to achieve a uniform phase between the biomass raw material and the catalyst raw material. .

まず、図1、2に基づき、本発明の第1実施形態を説明する。   First, a first embodiment of the present invention will be described with reference to FIGS.

混練部2は、公知の混練機の構造と同様のものを採用でき、上流端側にバイオマス原料と触媒原料を投入する投入口21(定量ホッパー)を有する第1の筒状シリンダ20の内部に、パドル23を有する回転軸22を設け、該回転するパドル23によりシリンダ20内に投入された前記バイオマス原料と触媒原料を混練しながら下流端側へ搬送する装置部分である。パドル23は、例えば、送り込み用のスクリュー歯、破断・破砕用歯、混錬用歯、送り出し用スクリューを順に組み合わせたものとなる。原料が液体の時は破砕歯は不要となる。混練部2は、単軸式、二軸式又はそれ以上の複数軸式とすることが可能である。例えば二軸式の場合、平行な二本の回転軸が軸方向に設けられ、各回転軸に断面楕円形等の歯や形状の異なるブレード等が取り付けたものなどを採用できる。そして、投入口21からシリンダ内に投入された原料が二本の回転軸の間およびシリンダ内周面との間で摩擦混合されることで混練されながら、前方向(下流側)に搬送される。   The kneading part 2 can adopt the same structure as that of a known kneader, and is provided inside the first cylindrical cylinder 20 having an inlet 21 (quantitative hopper) for feeding biomass raw material and catalyst raw material on the upstream end side. The rotary shaft 22 having the paddle 23 is provided, and the biomass raw material and the catalyst raw material introduced into the cylinder 20 by the rotating paddle 23 are kneaded and conveyed to the downstream end side. The paddle 23 is, for example, a combination of feeding screw teeth, breaking / crushing teeth, kneading teeth, and feeding screw. When the raw material is liquid, crushing teeth are not necessary. The kneading part 2 can be a single-axis type, a biaxial type, or a multi-axis type higher than that. For example, in the case of the biaxial type, it is possible to employ a configuration in which two parallel rotation shafts are provided in the axial direction, and teeth or blades having different shapes such as elliptical sections are attached to each rotation shaft. The raw material introduced into the cylinder from the introduction port 21 is conveyed in the forward direction (downstream side) while being kneaded by friction mixing between the two rotating shafts and between the cylinder inner peripheral surface. .

混練部2の第1の筒状シリンダ20の下流端には、セラミックス製等の断熱材(セラミックウール塗装など)を挟んで反応部3を構成する第2の筒状シリンダ30の上流端側の受け入れ口31が装着される連結部7が設けられ、該連結部7を介して両シリンダ20、30が熱遮断された状態に連結されている。これは熱伝導により混錬部まで昇温させてしまうと、混錬不十分の段階で熱分解反応が起こることを防止するためである。この連結部7には、混練部2側の第1のドアと反応部3側の第2のドアがあり、第1ドアが開き、原料が搬入されると閉じて、第2ドアが開く構造を有する。   At the downstream end of the first cylindrical cylinder 20 of the kneading part 2, a heat insulating material made of ceramics (ceramic wool coating or the like) is sandwiched between the upstream end side of the second cylindrical cylinder 30 constituting the reaction part 3. A connecting portion 7 to which the receiving port 31 is attached is provided, and the cylinders 20 and 30 are connected to each other through the connecting portion 7 in a state where the heat is shut off. This is to prevent the thermal decomposition reaction from occurring at the stage of insufficient kneading when the temperature is raised to the kneading part by heat conduction. The connecting part 7 has a first door on the kneading part 2 side and a second door on the reaction part 3 side. The first door is opened and closed when the raw material is loaded, and the second door is opened. Have

反応部3は、上流端側に前記受け入れ口31、下流端側に残渣を排出する排出口36、窒素やヘリウム等の不活性ガスを供給するガス供給口37、及び外周部の複数の分解ガス放出孔34を有する第2の筒状シリンダ30を備え、該筒状シリンダ30の内部には、搬送・攪拌機能を有するスクリューパドル33からなる攪拌スクリューコンベア32が設けられている。分解ガス放出孔34はシリンダ下部に設けても反応物で詰まるため、上面だけとされる。スクリューパドル33とシリンダ下部の内壁との間に0.5mm以下のクリアランスだが、上部はパドルに付着した反応物がガス放出孔を塞ぐことを避けるために、さらに発生ガスによる内圧の上昇を抑えるために余剰空間が必要であり、シリンダ上部には十分な容積が与えられる。これにより熱容量も増えて混錬部の温度が上がる事を防ぐこともできる。   The reaction unit 3 includes the receiving port 31 on the upstream end side, a discharge port 36 for discharging residues on the downstream end side, a gas supply port 37 for supplying an inert gas such as nitrogen or helium, and a plurality of cracked gases on the outer peripheral portion. A second cylindrical cylinder 30 having a discharge hole 34 is provided, and an agitating screw conveyor 32 including a screw paddle 33 having a conveying / stirring function is provided inside the cylindrical cylinder 30. Even if the cracked gas discharge hole 34 is provided in the lower part of the cylinder, it is clogged with the reactants, so that only the upper surface is formed. The clearance between the screw paddle 33 and the inner wall of the lower part of the cylinder is 0.5 mm or less, but the upper part is to prevent the reactant attached to the paddle from blocking the gas discharge hole and to further suppress the increase in internal pressure due to the generated gas. In addition, an extra space is required, and a sufficient volume is given to the upper part of the cylinder. This can also prevent the heat capacity from increasing and the temperature of the kneading part from rising.

そして、上記混練部2の第1の筒状シリンダ20の下流側端部から排出された調製原料を連結部7を介して受け入れ口31から受け入れ、パドル33の回転により調製原料が攪拌されながら軸方向に搬送される。つまり第1の筒状シリンダ20及び第2の筒状シリンダ30の内部を原料がほぼ連続的に移動し、混練調製、不活性雰囲気下での熱分解、脱炭酸、ガス化という一連の反応と処理が連続的かつ自動的に為され、残渣が排出口36から排出される。不活性ガスは内部雰囲気中の酸素濃度等をゼロ近くに調整して原料の燃焼を防止する。排出口36にはバネ付勢された圧力弁が設けられ、残渣が一定以上蓄積すると圧力で弁を押し開けて残渣を排出する。これにより排出口36からのガス漏れが防止されている。   And the prepared raw material discharged | emitted from the downstream end part of the 1st cylindrical cylinder 20 of the said kneading part 2 is received from the receiving port 31 via the connection part 7, and while the prepared raw material is stirred by rotation of the paddle 33, a shaft Conveyed in the direction. In other words, the raw material moves substantially continuously inside the first cylindrical cylinder 20 and the second cylindrical cylinder 30, and a series of reactions such as kneading preparation, thermal decomposition in an inert atmosphere, decarboxylation, and gasification The treatment is continuously and automatically performed, and the residue is discharged from the discharge port 36. The inert gas adjusts the oxygen concentration in the internal atmosphere to near zero to prevent the raw material from burning. The discharge port 36 is provided with a spring-biased pressure valve, and when the residue accumulates over a certain amount, the valve is pushed open by pressure to discharge the residue. Thereby, the gas leak from the discharge port 36 is prevented.

攪拌スクリューコンベア32は、両端がクランク軸で保持される無軸スクリューコンベアの軸方向に隣接するステンレス薄板製のスクリューパドル33のピッチ間に、図示したような攪拌部材38を渡設し、搬送とともに攪拌の機能を有する構造とされている。無軸スクリューコンベアとすることで軸を通した混錬部への熱伝導を小さくでき、僅かな熱伝導は摂氏60度以下であれば混錬部の原料粘度をあげて作業性が高まる。更に低コストで加熱効率を向上することができる。   The agitating screw conveyor 32 has an agitating member 38 as shown in the figure interposed between the pitches of screw paddles 33 made of stainless steel plates adjacent to each other in the axial direction of a non-axial screw conveyor whose both ends are held by a crankshaft. The structure has a stirring function. By making the shaftless screw conveyor, heat conduction to the kneading part through the shaft can be reduced, and if the slight heat conduction is 60 degrees Celsius or less, the raw material viscosity of the kneading part is increased and workability is improved. Furthermore, heating efficiency can be improved at low cost.

攪拌部材38は本例ではピッチ間の寸法に等しい長さを有する攪拌板であり、パドル外周縁(山の頂点)から回転中心にむかう放射方向に取り付ける。攪拌板の幅はスクリューパドル幅の半分くらいに設定される。尚、本例では攪拌部材38をパドル外周縁に端部を一致させたものとしたが、図2に示すように一部の攪拌部材をパドル途中位置に設けたものでもよい。また、攪拌部材38は板状の攪拌板以外に棒状や線状、例えば単又は複数本のピアノ線をピッチ間に張設したものでもよい。このような攪拌部材38によりシリンダ内部の最下部にある調製原料がスクレイプされピッチ間において移動しながら攪拌することを繰り返し、前方に押し出される。調製原料(被加熱物)は基本的に油脂と触媒等の固体および種皮や果皮などが混錬されたスラリー状態で反応部に投入されるので、反応過程で調製原料を適度に攪拌することで反応時間が一層短縮され、発生する分解ガスの回収も容易となるのである。   In this example, the stirring member 38 is a stirring plate having a length equal to the dimension between pitches, and is attached in a radial direction from the paddle outer peripheral edge (the peak of the mountain) to the rotation center. The width of the stirring plate is set to about half of the screw paddle width. In this example, the stirring member 38 has its end aligned with the paddle outer periphery, but a part of the stirring member may be provided in the middle of the paddle as shown in FIG. Further, the stirring member 38 may be a rod-like or linear shape other than the plate-like stirring plate, for example, one or a plurality of piano wires stretched between pitches. Such a stirring member 38 scrapes the prepared raw material in the lowermost part inside the cylinder and repeatedly stirs it while moving between the pitches and pushes it forward. The prepared raw material (substance to be heated) is basically put into the reaction section in a slurry state in which solids such as oil and fat, catalyst, etc. and seed coat and pericarp are kneaded, so by appropriately stirring the prepared raw material during the reaction process The reaction time is further shortened, and the generated cracked gas can be easily recovered.

また、第2の筒状シリンダ30を加熱する加熱手段4として、高周波誘導加熱手段40が設けられている。本例では、シリンダ壁そのものの上下部ないし左右部を電極とする。その他コイル状導線とこれに電気的に接続した電源とから構成することもできる。シリンダ壁は、電気抵抗の大きな金属であればよくステンレスが望ましい。調製原料は高周波誘導加熱手段により直接、急速に加熱され、バイオマス原料に含まれる油脂のガス化が生じる。本例では触媒の担持体および別途熱媒体として活性炭を混錬するので更に加熱効率がよい。例えば、原料60kgを従来のエステル反応を用いた製造方法に供した場合には、油を製造するのに8時間程度かかるとされているが、本発明の装置によれば、約数分程度に処理時間を低減することが可能になる。この反応部3では、急速、高温、均一な熱分解が行なわれるため、バイオマス原料からのタールの発生はほとんどないか極めて少なくてすむ。したがって、タールを回収する手間も省けるし、装置の保守も容易になる。   Further, a high frequency induction heating means 40 is provided as the heating means 4 for heating the second cylindrical cylinder 30. In this example, the upper and lower parts or the left and right parts of the cylinder wall itself are electrodes. In addition, it can also be comprised from the coil-shaped conducting wire and the power supply electrically connected to this. The cylinder wall may be a metal having a large electric resistance, and stainless steel is desirable. The prepared raw material is directly and rapidly heated by high-frequency induction heating means, resulting in gasification of fats and oils contained in the biomass raw material. In this example, since the activated carbon is kneaded as a catalyst carrier and a separate heat medium, the heating efficiency is further improved. For example, when 60 kg of raw material is subjected to a production method using a conventional ester reaction, it takes about 8 hours to produce oil, but according to the apparatus of the present invention, it takes about several minutes. Processing time can be reduced. In this reaction part 3, since rapid, high temperature, and uniform thermal decomposition is performed, tar is hardly generated from the biomass raw material, or very little. Therefore, the trouble of collecting tar can be saved and the maintenance of the apparatus becomes easy.

そして、シリンダ間を連結している上述した連結部7には、更に電磁波漏出を防止する電磁波トラップが設けられる。また、反応部3を構成している当該筒状シリンダ30内には、温度センサーと圧力センサーが設けられ、検出された温圧データのフィードバックをもとに反応部内部の環境を電気的にリアルタイムに監視制御するモニターでき、測定結果に基づき原料供給量や回転スピード、加熱手段4による加熱温度、不活性ガスの供給量などを調整する。   The connecting portion 7 connecting the cylinders is further provided with an electromagnetic wave trap for preventing electromagnetic wave leakage. In addition, a temperature sensor and a pressure sensor are provided in the cylindrical cylinder 30 constituting the reaction unit 3, and the environment inside the reaction unit is electrically real-time based on feedback of the detected temperature / pressure data. Based on the measurement results, the raw material supply amount and rotation speed, the heating temperature by the heating means 4, the inert gas supply amount, and the like are adjusted.

第1の筒状シリンダ20の混練用の回転軸22と、第2の筒状シリンダ30の攪拌スクリューコンベア32のクランク軸は、連結部7内で断熱部を介して連結され、共通の駆動モータ90を用いて互いに連動して回転するように構成されている。回転軸22が単軸であればセラミックス製等の断熱材を介在させて互いに連結すればよく、二軸式の混練用回転軸の場合はギアボックスを介して二軸から一軸に変換し、その変換後の出力軸とクランク軸とを同じく断熱材を介在させて互いに連結すればよい。混練部2は二軸式とすれば均一な混練が可能であり、一軸式とすれば低コスト化ができる。一方の回転軸自体を断熱素材で作製することも可能である。尚、このように回転軸22とクランク軸を連動させることは必ずしも必要でなく、別途の軸受けでそれぞれ独立支持させ、攪拌スクリューコンベアを別途の駆動モータで駆動させるようにすることも好ましい。このような構造では、攪拌スクリューコンベア間が離間するので両者間で熱が遮断され、断熱部を省略した簡易な構造とすることが可能となる。   The rotating shaft 22 for kneading of the first cylindrical cylinder 20 and the crankshaft of the stirring screw conveyor 32 of the second cylindrical cylinder 30 are connected through a heat insulating part in the connecting part 7, and a common drive motor 90 are configured to rotate in conjunction with each other. If the rotating shaft 22 is a single shaft, it may be connected to each other with an insulating material made of ceramics or the like. In the case of a biaxial kneading rotating shaft, it is converted from two to one through a gear box, The converted output shaft and crankshaft may be connected to each other with a heat insulating material interposed therebetween. If the kneading part 2 is a biaxial type, uniform kneading is possible, and if it is a uniaxial type, the cost can be reduced. One rotating shaft itself can be made of a heat insulating material. Note that it is not always necessary to link the rotary shaft 22 and the crankshaft in this way, and it is also preferable that the rotating shaft 22 and the crankshaft are independently supported by separate bearings and the stirring screw conveyor is driven by a separate drive motor. In such a structure, since the agitating screw conveyors are separated from each other, heat is blocked between the two, and a simple structure in which the heat insulating portion is omitted can be achieved.

筒状シリンダ30の外周面側には、更にガスが内から外に向けて内部を接触流通する活性炭フィルター層35が外装されている。この活性炭フィルター層35は分解ガス中の二酸化炭素をより選択的・効率的に吸着するものであり、筒状のものを外装してもよいし、シート状のものを巻き付けてもよい。活性炭フィルター層35の代わりに、上記した触媒原料と同様の成分からなる固体触媒層とすることもできる。例えばCaO及び/又はMgOと活性炭とKOHとを含むものが好適である。このような固体触媒層は、濾材に上記成分を炭素繊維の不織布上に均一に分散付着させたフィルター状の濾布部材とすることができ、上記触媒成分を濾材に吹き付け塗装して乾燥したものや、触媒成分を水溶液中に分散させた液に濾材を浸漬して乾燥させることで作製できる。   On the outer peripheral surface side of the cylindrical cylinder 30, an activated carbon filter layer 35 through which gas flows in contact from the inside toward the outside is further packaged. The activated carbon filter layer 35 adsorbs carbon dioxide in the cracked gas more selectively and efficiently. The activated carbon filter layer 35 may have a cylindrical shape or may be wound with a sheet shape. Instead of the activated carbon filter layer 35, a solid catalyst layer made of the same components as the catalyst raw material described above can be used. For example, what contains CaO and / or MgO, activated carbon, and KOH is suitable. Such a solid catalyst layer can be made into a filter-like filter cloth member in which the above components are uniformly dispersed and adhered onto a carbon fiber non-woven fabric, and the catalyst component is spray-coated on the filter material and dried. Alternatively, it can be produced by immersing the filter medium in a liquid in which the catalyst component is dispersed in an aqueous solution and drying it.

反応部3を構成している第2のシリンダ30の外周側には、該シリンダ30の分解ガス放出孔34から放出され、活性炭フィルター層35を通過した分解ガスを封じ込め、回収口81から回収するための気密チャンバー8が設けられている。この気密チャンバー8は、内部に活性炭フィルター層35及び加熱手段4の高周波誘導加熱手段40を内装した状態でシリンダ30の外周側の空間を囲む容器であり、活性炭フィルター層35の外側に放出される分解ガスを回収するガス回収手段5を構成している。気密チャンバー8には、上述の第2の筒状シリンダ30と同様、窒素やヘリウム等の不活性ガスがガス供給口82から供給され、内部雰囲気中の酸素濃度等をゼロ近くに調整して原料の燃焼を防止している。気密チャンバー8は、作業者の安全性の観点から、高周波を反射するステンレス等の材料で構成され、内部には筒状シリンダ30と同様、赤外線温度センサーと圧力センサーが設けられ、測定結果に基づき加熱手段4による加熱温度を調整したり不活性ガスの供給量を調整する。   On the outer peripheral side of the second cylinder 30 constituting the reaction unit 3, the cracked gas discharged from the cracked gas discharge hole 34 of the cylinder 30 and passed through the activated carbon filter layer 35 is contained and recovered from the recovery port 81. An airtight chamber 8 is provided. The airtight chamber 8 is a container that surrounds the space on the outer peripheral side of the cylinder 30 with the activated carbon filter layer 35 and the high frequency induction heating means 40 of the heating means 4 inside, and is released to the outside of the activated carbon filter layer 35. A gas recovery means 5 for recovering the cracked gas is configured. As with the second cylindrical cylinder 30 described above, an inert gas such as nitrogen or helium is supplied from the gas supply port 82 to the hermetic chamber 8, and the oxygen concentration in the internal atmosphere is adjusted to close to zero to obtain a raw material. Prevents burning. The airtight chamber 8 is made of a material such as stainless steel that reflects high frequency from the viewpoint of the safety of the operator, and is provided with an infrared temperature sensor and a pressure sensor in the same manner as the cylindrical cylinder 30, and based on the measurement result. The heating temperature by the heating means 4 is adjusted and the supply amount of the inert gas is adjusted.

回収口81から回収される分解ガスは、冷却凝縮することで、粗油にすることができる。冷却凝縮は、常法に従って行えばよい。例えば、摂氏5度にした冷媒に分解ガスを接触させることで急速に冷却凝縮させて液化してもよいし、零下80度程度の深冷トラップを設けて凝縮液化させることもできる。凝縮液を所望の容器内において炭化水素油を含む油層と水層とに分離し、油層を取り出すことで粗油を得ることができる。粗油は、炭素数8から18の種々の脂肪族系炭化水素油である。次に、粗油を蒸留装置を設けて分留に供することで炭化水素油を得ることができる。分留の方法は、同じく常法に従って行えばよい。この分留により重油に近い重質なオイルから灯油、軽油等の炭化水素油が得られる。   The cracked gas recovered from the recovery port 81 can be made into crude oil by cooling and condensing. Cooling condensation may be performed according to a conventional method. For example, it is possible to rapidly cool and condense by bringing a cracked gas into contact with a refrigerant at 5 degrees Celsius, or to condense and liquefy by providing a deep cold trap of about 80 degrees below zero. The condensate is separated into an oil layer containing a hydrocarbon oil and an aqueous layer in a desired container, and a crude oil can be obtained by taking out the oil layer. The crude oil is various aliphatic hydrocarbon oils having 8 to 18 carbon atoms. Next, the crude oil is provided with a distillation apparatus and subjected to fractional distillation, whereby a hydrocarbon oil can be obtained. The fractionation method may be carried out according to a conventional method. By this fractionation, hydrocarbon oil such as kerosene and light oil can be obtained from heavy oil close to heavy oil.

次に、図3に基づき、本発明の第2実施形態を説明する。   Next, a second embodiment of the present invention will be described based on FIG.

本実施形態は、加熱手段4として高周波誘導加熱手段の代わりにマイクロ波照射加熱手段41を設けたものである。本例の筒状シリンダ30は、マイクロ波がシリンダ内の調製原料を加熱できるように耐熱ガラス製とされている。このマイクロ波照射加熱手段41によると、高周波誘導加熱手段と同様、調製原料が直接急速に加熱される。調製原料には触媒の担持体および別途熱媒体として活性炭が混錬されるので、更に加熱効率がよい。連結部7には、電磁波トラップを設けて電波を吸着し、電波障害を無くす工夫がなされている。その他の構成、作用効果については上記第1実施形態と基本的には同じであり、同一構造には同一符号を付し、説明を省略する。   In this embodiment, a microwave irradiation heating means 41 is provided as the heating means 4 instead of the high frequency induction heating means. The cylindrical cylinder 30 of this example is made of heat resistant glass so that the microwave can heat the prepared raw material in the cylinder. According to this microwave irradiation heating means 41, the prepared raw material is directly and rapidly heated as in the high-frequency induction heating means. Since the prepared raw material is kneaded with a catalyst carrier and a separate heat medium, the heating efficiency is further improved. The connecting portion 7 is provided with an electromagnetic wave trap to adsorb radio waves and eliminate radio interference. Other configurations and operational effects are basically the same as those of the first embodiment, and the same structures are denoted by the same reference numerals and description thereof is omitted.

次に、図4に基づき、本発明の第3実施形態を説明する。   Next, a third embodiment of the present invention will be described based on FIG.

本実施形態では、混練部2の筒状シリンダ20と反応部3の筒状シリンダ30を連結せずに分離したものであり、混練部2の回転軸と反応部3の攪拌スクリューコンベア32のクランク軸は互いに独立の駆動モータ90、91で独立に回転駆動され、シリンダ、回転軸とも完全に熱が遮断される構造である。混練部2で混練調製された原料は、排出口25を通じて筒状シリンダ20から排出され、反応部3の筒状シリンダ30の受け入れ口31(ホッパー)から筒状シリンダ30内に投入される。受け入れ口31には、第1実施形態の連結部7と同様、原料が搬入されると閉じてガス漏れを防ぐドアが設けられる。排出口25と投入口31の間は、好ましくはホースやベルトコンベアを介して、原料が連続的に移動し、上記第1実施形態と同様、混練調製、ガス化、脱炭酸反応の一連の処理を自動的に為し、生産効率を高めたものが好ましい。その他の構成、作用効果については上記第1実施形態と基本的には同じであり、同一構造には同一符号を付し、説明を省略する。   In this embodiment, the cylindrical cylinder 20 of the kneading unit 2 and the cylindrical cylinder 30 of the reaction unit 3 are separated without being connected, and the rotating shaft of the kneading unit 2 and the crank of the stirring screw conveyor 32 of the reaction unit 3 are separated. The shaft is driven to rotate independently by mutually independent drive motors 90 and 91, and the cylinder and the rotating shaft are completely shielded from heat. The raw material kneaded and prepared in the kneading unit 2 is discharged from the cylindrical cylinder 20 through the discharge port 25 and is introduced into the cylindrical cylinder 30 from the receiving port 31 (hopper) of the cylindrical cylinder 30 of the reaction unit 3. Similarly to the connecting portion 7 of the first embodiment, the receiving port 31 is provided with a door that closes when the raw material is carried in and prevents gas leakage. The raw material continuously moves between the discharge port 25 and the input port 31, preferably via a hose or a belt conveyor, and a series of processes of kneading preparation, gasification, and decarboxylation reaction as in the first embodiment. It is preferable to automatically improve the production efficiency. Other configurations and operational effects are basically the same as those of the first embodiment, and the same structures are denoted by the same reference numerals and description thereof is omitted.

以上、本発明の実施形態について説明したが、本発明はこうした実施例に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲において種々なる形態で実施し得ることは勿論である。   Although the embodiments of the present invention have been described above, the present invention is not limited to these embodiments, and can of course be implemented in various forms without departing from the gist of the present invention.

1 バイオマス熱化学分解ガス化装置
2 混練部
3 反応部
4 加熱手段
5 ガス回収手段
7 連結部
8 気密チャンバー
20 筒状シリンダ
21 投入口
22 回転軸
23 パドル
25 排出口
30 筒状シリンダ
31 受け入れ口
32 攪拌スクリューコンベア
33 スクリューパドル
34 分解ガス放出孔
35 活性炭フィルター層
36 排出口
37 ガス供給口
38 攪拌部材
40 高周波誘導加熱手段
41 マイクロ波照射加熱手段
81 回収口
82 ガス供給口
90 駆動モータ
91 駆動モータ
DESCRIPTION OF SYMBOLS 1 Biomass thermochemical decomposition gasifier 2 Kneading part 3 Reaction part 4 Heating means 5 Gas recovery means 7 Connection part 8 Airtight chamber 20 Cylindrical cylinder 21 Input port 22 Rotating shaft 23 Paddle 25 Outlet port 30 Cylindrical cylinder 31 Receiving port 32 Stir screw conveyor 33 Screw paddle 34 Decomposition gas discharge hole 35 Activated carbon filter layer 36 Discharge port 37 Gas supply port 38 Stirring member 40 High frequency induction heating means 41 Microwave irradiation heating means 81 Recovery port 82 Gas supply port 90 Drive motor 91 Drive motor

Claims (5)

上流端側にバイオマス原料と触媒原料を投入する投入口を有する第1の筒状シリンダの内部に、パドルを有する回転軸を設け、該回転するパドルによりシリンダ内に投入された前記バイオマス原料と触媒原料を混練しながら下流端側へ搬送する混練部と、
上流端側に前記混練部で調製された原料を受け入れる受け入れ口を有し、且つ外周部に複数の分解ガス放出孔を有する第2の筒状シリンダの内部に、搬送と攪拌を行うパドルを有する攪拌スクリューコンベアを設け、前記第2の筒状シリンダ内を加熱する高周波誘導加熱手段又はマイクロ波照射加熱手段を設け、前記パドルによりシリンダ内の調製原料を攪拌しながら熱化学分解及びガス化させつつ下流側へ搬送する反応部と、
前記第2の筒状シリンダ内部に不活性ガスを供給する不活性ガス供給手段と、
前記反応部全体を覆う気密チェンバーよりなり、前記第2の筒状シリンダの分解ガス放出孔を通じて外側に放出される分解ガスを回収するガス回収手段と、
を備えることを特徴とするバイオマス熱化学分解ガス化装置。
A rotating shaft having a paddle is provided inside a first cylindrical cylinder having an inlet for supplying biomass material and catalyst material on the upstream end side, and the biomass material and catalyst introduced into the cylinder by the rotating paddle A kneading part for conveying the raw material to the downstream end side while kneading the raw material;
It has a receiving port for receiving the raw material prepared in the kneading section on the upstream end side, and a paddle for carrying and stirring inside a second cylindrical cylinder having a plurality of cracked gas discharge holes on the outer peripheral section. A stirring screw conveyor is provided, a high-frequency induction heating means or a microwave irradiation heating means for heating the inside of the second cylindrical cylinder is provided, and the prepared raw material in the cylinder is stirred and thermochemically decomposed and gasified by the paddle. A reaction section transported downstream;
An inert gas supply means for supplying an inert gas into the second cylindrical cylinder;
A gas recovery means comprising an airtight chamber covering the entire reaction section, and recovering cracked gas released to the outside through the cracked gas discharge hole of the second cylindrical cylinder;
A biomass thermochemical decomposition gasification apparatus comprising:
前記攪拌スクリューコンベアが、無軸スクリューコンベアの軸方向に隣接するスクリューパドルのピッチ間に攪拌部材を渡設してなる請求項1記載のバイオマス熱化学分解ガス化装置。   The biomass thermochemical decomposition gasification apparatus according to claim 1, wherein the agitation screw conveyor is provided with an agitation member between pitches of screw paddles adjacent to each other in the axial direction of the axisless screw conveyor. 前記分解ガス放出孔が前記第2の筒状シリンダ外周部の上面側にのみ設けられ、該分解ガス放出孔の外側に、二酸化炭素を選択的に吸着する目的を有する活性炭フィルター層又は固体触媒層を設けてなる請求項1又は2記載のバイオマス熱化学分解ガス化装置。   An activated carbon filter layer or a solid catalyst layer having the purpose of selectively adsorbing carbon dioxide outside the cracked gas discharge hole, wherein the cracked gas discharge hole is provided only on the upper surface side of the outer peripheral portion of the second cylindrical cylinder. The biomass thermochemical decomposition gasification apparatus according to claim 1 or 2, comprising: 前記第2の筒状シリンダ内の温度及び圧力をセンシングするセンサーを設けてなる請求項1〜3の何れか1項に記載のバイオマス熱化学分解ガス化装置。   The biomass thermochemical decomposition gasification apparatus according to any one of claims 1 to 3, further comprising a sensor for sensing temperature and pressure in the second cylindrical cylinder. 前記第1の筒状シリンダの下流側端部と第2の筒状シリンダの上流側端部とが、第2のシリンダから第1のシリンダへの熱伝導を遮断する連結部を介して接続された一体型の装置であり、反応部の軸を混錬部の軸よりも下方に位置させた請求項1〜4の何れか1項に記載のバイオマス熱化学分解ガス化装置。   The downstream end of the first cylindrical cylinder and the upstream end of the second cylindrical cylinder are connected via a connecting portion that blocks heat conduction from the second cylinder to the first cylinder. The biomass thermochemical decomposition gasification apparatus according to any one of claims 1 to 4, wherein the reaction unit shaft is positioned below the kneading unit shaft.
JP2010043345A 2010-02-26 2010-02-26 Biomass thermochemical decomposition gasification apparatus Pending JP2011178859A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010043345A JP2011178859A (en) 2010-02-26 2010-02-26 Biomass thermochemical decomposition gasification apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010043345A JP2011178859A (en) 2010-02-26 2010-02-26 Biomass thermochemical decomposition gasification apparatus

Publications (1)

Publication Number Publication Date
JP2011178859A true JP2011178859A (en) 2011-09-15

Family

ID=44690722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010043345A Pending JP2011178859A (en) 2010-02-26 2010-02-26 Biomass thermochemical decomposition gasification apparatus

Country Status (1)

Country Link
JP (1) JP2011178859A (en)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103121030A (en) * 2011-11-17 2013-05-29 陈自强 Biomass thermal-explosion fission machine
CN103146402A (en) * 2011-12-07 2013-06-12 王钜 Biomass microwave hot-processing device and technology therefor
JP2014001324A (en) * 2012-06-19 2014-01-09 Chugoku Electric Power Co Inc:The Gasification furnace generating combustible fuel gas and control method of the same
JP2017001022A (en) * 2015-06-05 2017-01-05 エーアールケー カンパニー リミテッドArk Co.,Ltd. Sludge dehydrator equipped with main-axis screw conveyer section and non-axis screw conveyer section
WO2018209926A1 (en) * 2017-05-18 2018-11-22 华南理工大学 Microwave-based thermal coupling chemical looping gasification method employing two sources, and device for same
KR20210073193A (en) * 2019-12-10 2021-06-18 주식회사 삼주공업 Condenser for waste synthetic resin emulsion device
KR20210076321A (en) * 2019-12-16 2021-06-24 한국건설기술연구원 Composting device using algae biomass
KR20220096285A (en) * 2020-12-30 2022-07-07 한국생산기술연구원 Apparatus for manufacturing high quality bio-char continuously, and method thereof
KR20220103394A (en) * 2021-01-15 2022-07-22 황현아 Apparatus of carbonizing waste using complex heat source
KR20220128939A (en) * 2021-03-15 2022-09-22 이정율 Wastesynthetic resin emulsifier equipped with air-pneumatic input device
KR20220163806A (en) * 2021-06-03 2022-12-12 유승민 Apparatus for continuous carbonization biomass
KR102537375B1 (en) * 2023-01-03 2023-05-31 주식회사 씨오콤 Automatic sludge discharge structure and pyrolysis emulsification device equipped with the same
KR102539139B1 (en) * 2022-10-04 2023-06-01 창원대학교 산학협력단 A catalytic reaction process that decomposes the wax component of the pyrolysis oil produced in the waste plastic pyrolysis process
KR20230078101A (en) * 2021-11-26 2023-06-02 주식회사 대경에스코 Pyrolysis Apparatus for Waste Plastics and Preparing Method of Low Boiling Point Oil Using the Same
KR102544280B1 (en) * 2022-05-06 2023-06-15 박안수 Pyrolysis apparatus for plastic wastes
KR20230087649A (en) * 2021-12-09 2023-06-19 (주)리보테크 Feeding apparatus of waste synthetic resin for pyrolysis treatment equipment and pyrolysis circulation apparatus including the feeding apparatus for pyrolysis treatment equipment of waste synthetic resin
KR20230099776A (en) * 2021-12-27 2023-07-05 권수길 continuous operation equation pyrolysis emulsifier
KR20230110910A (en) * 2022-01-17 2023-07-25 이달은 Condenser for pyrolysis and A thermal decomposition treatment device with this
KR20230116463A (en) * 2022-01-28 2023-08-04 리젠에코솔루션(주) Apparatus and method for recycling waste synthetic resin
KR20230123817A (en) * 2022-02-17 2023-08-24 김관우 Waste resin regenerative oil production apparatus using microwave
KR102585437B1 (en) * 2022-12-26 2023-10-06 주식회사 베스텍엔터프라이즈 pyrolysis oil inorganic materials remover
KR102596791B1 (en) * 2022-11-22 2023-11-01 주식회사동서산업롤 Waste plastic emulsification system with improved heating and reduction efficiency
CN117008479A (en) * 2023-09-27 2023-11-07 深圳碳中和生物燃气股份有限公司 Carbon emission optimization control method and system based on biomass gasification furnace
US11807814B2 (en) 2020-05-11 2023-11-07 Anders Mokvist Method and system for conversion of biomass to biofuel and extraction of carbon-containing products
KR102603119B1 (en) * 2023-05-04 2023-11-17 주식회사 성광이엔에프 Multi-stage continuous pyrolysis reactor of combusted hot air indirect heating type
KR102603124B1 (en) * 2023-05-04 2023-11-17 주식회사 성광이엔에프 Multi-stage continuous pyrolysis reactor of molten salt type
KR102628903B1 (en) * 2022-12-07 2024-01-25 한성만 Apparatus for producing recycled oil from waste resin
KR20240057321A (en) * 2022-10-24 2024-05-02 한국철도기술연구원 Hybrid heating type railroad waste sleeper pyrolysis equipment
KR102664581B1 (en) * 2022-12-06 2024-05-09 고등기술연구원연구조합 System for producing hydrocarbon fuel and method therefor
KR102721837B1 (en) 2023-02-06 2024-10-24 (유)풍산에너지 Oil vapor purifier of synthetic resin pyrolysis emulsification equipment

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103121030A (en) * 2011-11-17 2013-05-29 陈自强 Biomass thermal-explosion fission machine
CN103146402A (en) * 2011-12-07 2013-06-12 王钜 Biomass microwave hot-processing device and technology therefor
JP2014001324A (en) * 2012-06-19 2014-01-09 Chugoku Electric Power Co Inc:The Gasification furnace generating combustible fuel gas and control method of the same
JP2017001022A (en) * 2015-06-05 2017-01-05 エーアールケー カンパニー リミテッドArk Co.,Ltd. Sludge dehydrator equipped with main-axis screw conveyer section and non-axis screw conveyer section
WO2018209926A1 (en) * 2017-05-18 2018-11-22 华南理工大学 Microwave-based thermal coupling chemical looping gasification method employing two sources, and device for same
US11504691B2 (en) 2017-05-18 2022-11-22 South China University Of Technology Microwave-based thermal coupling chemical looping gasification method employing two sources, and device for same
KR102721445B1 (en) * 2018-10-29 2024-10-24 차이나 페트로리움 앤드 케미컬 코포레이션 Continuous operation method for microwave high-temperature pyrolysis of solid materials containing organic matter
KR20210073193A (en) * 2019-12-10 2021-06-18 주식회사 삼주공업 Condenser for waste synthetic resin emulsion device
KR102384367B1 (en) 2019-12-10 2022-04-07 주식회사 삼주공업 Condenser for waste synthetic resin emulsion device
KR20210076321A (en) * 2019-12-16 2021-06-24 한국건설기술연구원 Composting device using algae biomass
KR102389129B1 (en) * 2019-12-16 2022-04-21 한국건설기술연구원 Composting device using algae biomass
US11807814B2 (en) 2020-05-11 2023-11-07 Anders Mokvist Method and system for conversion of biomass to biofuel and extraction of carbon-containing products
US12104120B2 (en) 2020-05-11 2024-10-01 Anders Mokvist Method and system for conversion of biomass to biofuel and extraction of carbon-containing products
KR102485296B1 (en) 2020-12-30 2023-01-06 한국생산기술연구원 Apparatus for manufacturing high quality bio-char continuously, and method thereof
KR20220096285A (en) * 2020-12-30 2022-07-07 한국생산기술연구원 Apparatus for manufacturing high quality bio-char continuously, and method thereof
KR20220103394A (en) * 2021-01-15 2022-07-22 황현아 Apparatus of carbonizing waste using complex heat source
KR102550870B1 (en) * 2021-01-15 2023-07-03 황현아 Apparatus of carbonizing waste using complex heat source
KR20220128939A (en) * 2021-03-15 2022-09-22 이정율 Wastesynthetic resin emulsifier equipped with air-pneumatic input device
KR102646085B1 (en) 2021-03-15 2024-03-12 이정율 Wastesynthetic resin emulsifier equipped with air-pneumatic input device
KR102509193B1 (en) * 2021-06-03 2023-03-10 유승민 Apparatus for continuous carbonization biomass
KR20220163806A (en) * 2021-06-03 2022-12-12 유승민 Apparatus for continuous carbonization biomass
KR20230078101A (en) * 2021-11-26 2023-06-02 주식회사 대경에스코 Pyrolysis Apparatus for Waste Plastics and Preparing Method of Low Boiling Point Oil Using the Same
KR102624291B1 (en) 2021-11-26 2024-01-15 주식회사 대경에스코 Pyrolysis Apparatus for Waste Plastics and Preparing Method of Low Boiling Point Oil Using the Same
KR20230087649A (en) * 2021-12-09 2023-06-19 (주)리보테크 Feeding apparatus of waste synthetic resin for pyrolysis treatment equipment and pyrolysis circulation apparatus including the feeding apparatus for pyrolysis treatment equipment of waste synthetic resin
KR102629046B1 (en) 2021-12-09 2024-01-26 (주)리보테크 Feeding apparatus of waste synthetic resin for pyrolysis treatment equipment and pyrolysis circulation apparatus including the feeding apparatus for pyrolysis treatment equipment of waste synthetic resin
KR20230099776A (en) * 2021-12-27 2023-07-05 권수길 continuous operation equation pyrolysis emulsifier
KR102601808B1 (en) 2021-12-27 2023-11-14 권수길 continuous operation equation pyrolysis emulsifier
KR20230110910A (en) * 2022-01-17 2023-07-25 이달은 Condenser for pyrolysis and A thermal decomposition treatment device with this
KR102611806B1 (en) 2022-01-17 2023-12-11 유한회사 호원 Condenser for pyrolysis and A thermal decomposition treatment device with this
KR20230116463A (en) * 2022-01-28 2023-08-04 리젠에코솔루션(주) Apparatus and method for recycling waste synthetic resin
KR102660629B1 (en) 2022-01-28 2024-05-03 리젠에코솔루션(주) Apparatus and method for recycling waste synthetic resin
KR20230123817A (en) * 2022-02-17 2023-08-24 김관우 Waste resin regenerative oil production apparatus using microwave
KR102703293B1 (en) * 2022-02-17 2024-09-04 김관우 Waste resin regenerative oil production apparatus using microwave
KR102544280B1 (en) * 2022-05-06 2023-06-15 박안수 Pyrolysis apparatus for plastic wastes
KR102539139B1 (en) * 2022-10-04 2023-06-01 창원대학교 산학협력단 A catalytic reaction process that decomposes the wax component of the pyrolysis oil produced in the waste plastic pyrolysis process
KR102678069B1 (en) * 2022-10-24 2024-06-26 한국철도기술연구원 Hybrid heating type railroad waste sleeper pyrolysis equipment
KR20240057321A (en) * 2022-10-24 2024-05-02 한국철도기술연구원 Hybrid heating type railroad waste sleeper pyrolysis equipment
KR102596791B1 (en) * 2022-11-22 2023-11-01 주식회사동서산업롤 Waste plastic emulsification system with improved heating and reduction efficiency
KR102664581B1 (en) * 2022-12-06 2024-05-09 고등기술연구원연구조합 System for producing hydrocarbon fuel and method therefor
KR102628903B1 (en) * 2022-12-07 2024-01-25 한성만 Apparatus for producing recycled oil from waste resin
KR102585437B1 (en) * 2022-12-26 2023-10-06 주식회사 베스텍엔터프라이즈 pyrolysis oil inorganic materials remover
KR102537375B1 (en) * 2023-01-03 2023-05-31 주식회사 씨오콤 Automatic sludge discharge structure and pyrolysis emulsification device equipped with the same
KR102721837B1 (en) 2023-02-06 2024-10-24 (유)풍산에너지 Oil vapor purifier of synthetic resin pyrolysis emulsification equipment
KR102603124B1 (en) * 2023-05-04 2023-11-17 주식회사 성광이엔에프 Multi-stage continuous pyrolysis reactor of molten salt type
KR102603119B1 (en) * 2023-05-04 2023-11-17 주식회사 성광이엔에프 Multi-stage continuous pyrolysis reactor of combusted hot air indirect heating type
KR102721836B1 (en) 2023-05-08 2024-10-24 (유)풍산에너지 Waste synthetic resin pyrolysis emulsification equipment
CN117008479B (en) * 2023-09-27 2023-12-01 深圳碳中和生物燃气股份有限公司 Carbon emission optimization control method and system based on biomass gasification furnace
CN117008479A (en) * 2023-09-27 2023-11-07 深圳碳中和生物燃气股份有限公司 Carbon emission optimization control method and system based on biomass gasification furnace

Similar Documents

Publication Publication Date Title
JP2011178859A (en) Biomass thermochemical decomposition gasification apparatus
US20220213386A1 (en) An integrated method of pyrolysis carbonization and catalysis for biomass and a device thereof
RU2392543C2 (en) Method and device for processing of domestic and industrial organic wastes
US6133491A (en) Process and apparatus for producing hydrocarbons from residential trash or waste and/or organic waste materials
US20120266529A1 (en) Fast pyrolysis system
CN110451754A (en) A kind of method for innocent treatment of greasy filth pyrolysis
US20130075061A1 (en) Vibratory heat exchanger unit for low temperature conversion for processing organic waste and process for processing organic waste using a vibratory heat exchanger unit for low temperature conversion
CN106430891B (en) Pyrolysis method and device for high-humidity sludge
EP2634236B1 (en) External heating type coal material decomposition apparatus with multiple tubes
DK2507346T3 (en) DEVICE AND PROCEDURE FOR THERMOCHEMICAL HARMONIZATION AND GASATION OF MOISTURIZED BIOMASS
JP2017502159A (en) Pyrolysis oil by microwave system
CN102154019A (en) Spiral push type low temperature pyrolysis carbonation furnace
US9150791B2 (en) Torrefaction apparatus
WO1989009809A1 (en) Method and apparatus for refinement of organic material
RU2482160C1 (en) Method for thermal processing of organic material and apparatus for realising said method
EP1154007A1 (en) Process and apparatus for producing hydrocarbons from city garbage and/or organic waste material
Reddy et al. Synthesis of renewable carbon biorefinery products from susceptor enhanced microwave-assisted pyrolysis of agro-residual waste: A review
WO2012093982A1 (en) Pyrolysis plant for processing carbonaceous feedstock
JP2016535815A (en) Char by microwave system
JP2008248183A (en) Carbonization apparatus
Jung et al. Virtuous utilization of biochar and carbon dioxide in the thermochemical process of dairy cattle manure
Sardi et al. Advanced bio-oil production from a mixture of microalgae and low rank coal using microwave assisted pyrolysis
Saifuddin et al. Microwave-assisted co-pyrolysis of Bamboo biomass with plastic waste for hydrogen-rich syngas production
Chen et al. Microwave catalytic pyrolysis production and characterization of Chlorella vulgaris under different compound additives
WO2011031249A1 (en) Fast pyrolysis system