JP2011176592A - Temperature compensation circuit and power amplifier - Google Patents

Temperature compensation circuit and power amplifier Download PDF

Info

Publication number
JP2011176592A
JP2011176592A JP2010038853A JP2010038853A JP2011176592A JP 2011176592 A JP2011176592 A JP 2011176592A JP 2010038853 A JP2010038853 A JP 2010038853A JP 2010038853 A JP2010038853 A JP 2010038853A JP 2011176592 A JP2011176592 A JP 2011176592A
Authority
JP
Japan
Prior art keywords
temperature
circuit
compensation
bias
temperature compensation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010038853A
Other languages
Japanese (ja)
Inventor
Taiyo Oishi
太洋 大石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2010038853A priority Critical patent/JP2011176592A/en
Publication of JP2011176592A publication Critical patent/JP2011176592A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a temperature compensation circuit that performs high precision temperature compensation. <P>SOLUTION: A bias circuit 20 is equipped with: a CTAT circuit 30 configured to supply a reference current having negative linear temperature characteristics with respect to an absolute temperature as a base bias current to respective transistors Tr1, Tr2 and Tr3 having positive linear temperature characteristics with respect to the absolute temperature so as to cancel temperature variations in current or voltage of the transistors Tr1, Tr2 and Tr3; and the temperature characteristic compensation circuit 40 configured to compensate deviations between temperature characteristics of the CTAT circuit 30 and temperature characteristics of the transistors Tr1, Tr2 and Tr3. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は電源回路の温度特性と回路素子の温度特性とのずれを補償するための温度補償回路及び電力増幅器に関する。   The present invention relates to a temperature compensation circuit and a power amplifier for compensating for a deviation between a temperature characteristic of a power supply circuit and a temperature characteristic of a circuit element.

OFDM方式(直交周波数分割多重方式)は、地上波デジタル放送、無線LAN、電力線モデム等で用いられるデジタル変調方式の1つであり、フェージングやマルチパスの影響を受け難い高品質な通信を可能とする利点を有している。この種のデジタル変調方式に用いられる電力増幅器には、高出力化や高効率化とともに低歪み化が要求されている。一般に、トランジスタは、入力信号の増加に対して出力信号が線形的に増加する線形領域と、入力信号の増加に対して出力信号の利得圧縮が生じる飽和領域とを有する入出力特性を有しており、飽和領域での信号増幅は出力信号の歪みをもたらすことが知られている。OFDM方式では、多数のシンボルが多重されるため、送信信号波形はガウス分布となり、PAR(ピーク対平均電力比)が大きくなる傾向がある。このため、OFDM方式に使用される電力増幅器では、トランジスタの動作出力点をそのトランジスタの飽和出力点から数dBバックオフした点に設定し、トランジスタをなるべく線形領域に近い領域で動作させて、低歪み化を実現させている。   The OFDM system (orthogonal frequency division multiplexing) is one of digital modulation systems used in terrestrial digital broadcasting, wireless LAN, power line modems, etc., and enables high-quality communication that is not easily affected by fading and multipath. Has the advantage of Power amplifiers used in this type of digital modulation system are required to have low distortion as well as high output and high efficiency. Generally, a transistor has an input / output characteristic having a linear region in which an output signal increases linearly with an increase in input signal, and a saturation region in which gain compression of the output signal occurs with respect to an increase in input signal. It is known that signal amplification in the saturation region causes distortion of the output signal. In the OFDM method, since a large number of symbols are multiplexed, the transmission signal waveform has a Gaussian distribution, and the PAR (peak-to-average power ratio) tends to increase. For this reason, in the power amplifier used in the OFDM system, the operation output point of a transistor is set to a point backed off by several dB from the saturation output point of the transistor, and the transistor is operated in a region as close to the linear region as possible. Realizes distortion.

ところで、複数のトランジスタを多段接続してなる電力増幅器では、トランジスタの電流及び電圧が温度に応じて変化する温度特性を有しているため、温度変化に対して電力増幅器の利得を一定に保つためには、トランジスタの温度補償が重要な課題になる。例えば、正温度特性を有するトランジスタでは、温度上昇に伴って電流及び電圧が上昇するので、負温度特性を有するバイアス電源を用いることにより、トランジスタに流れる電流の温度変化をバイアス電流の温度変化で相殺し、一定のバイアス電流がトランジスタに供給されるように回路設計するのが好ましい。この種の温度補償技術に関連する文献として、例えば、特開2004−159213号公報が知られている。   By the way, a power amplifier formed by connecting a plurality of transistors in multiple stages has a temperature characteristic in which the current and voltage of the transistor change according to the temperature. Therefore, in order to keep the gain of the power amplifier constant with respect to the temperature change. For this reason, temperature compensation of the transistor is an important issue. For example, in a transistor with positive temperature characteristics, the current and voltage increase as the temperature rises, so by using a bias power supply with negative temperature characteristics, the temperature change of the current flowing through the transistor is offset by the temperature change of the bias current. It is preferable to design the circuit so that a constant bias current is supplied to the transistor. For example, Japanese Patent Application Laid-Open No. 2004-159213 is known as a document related to this type of temperature compensation technology.

特開2004−159123号公報JP 2004-159123 A

しかし、実際の回路設計においては、トランジスタに流れる電流の温度変化をバイアス電流の温度変化で完全に相殺する温度特性を有するバイアス電源を設計するのは困難であり、温度補償のずれが生じるため、電力増幅器の利得やP1dB(1dB利得圧縮点)を温度変化に対して一定に保つことが難しい。   However, in actual circuit design, it is difficult to design a bias power source having a temperature characteristic that completely cancels the temperature change of the current flowing through the transistor with the temperature change of the bias current, and a temperature compensation shift occurs. It is difficult to keep the gain of the power amplifier and P1 dB (1 dB gain compression point) constant with respect to temperature changes.

そこで、本発明は高精度な温度補償を実現できる温度補償回路を提案することを課題とする。   Accordingly, an object of the present invention is to propose a temperature compensation circuit capable of realizing highly accurate temperature compensation.

上記の課題を解決するため、本発明に係わる温度補償回路は、回路素子の電流又は電圧の温度変化を相殺するように回路素子に電流又は電圧を供給する温度補償機能を有する電源回路と、電源回路の温度特性と回路素子の温度特性とのずれを補償する温度特性補償回路を備える。斯かる構成によれば、電源回路から回路素子に供給される電流又は電圧の温度変化を高精度に補償することができる。   In order to solve the above problems, a temperature compensation circuit according to the present invention includes a power supply circuit having a temperature compensation function for supplying a current or voltage to a circuit element so as to cancel a temperature change in the current or voltage of the circuit element, and a power supply. A temperature characteristic compensation circuit for compensating for a difference between the temperature characteristic of the circuit and the temperature characteristic of the circuit element is provided. According to such a configuration, it is possible to compensate for a temperature change in the current or voltage supplied from the power supply circuit to the circuit element with high accuracy.

温度特性補償回路は、一つ又は複数の温度補償抵抗と、温度補償機能を有しない一つ又は複数の抵抗素子と、一つ又は複数の温度補償抵抗と温度補償機能を有しない一つ又は複数の抵抗素子の中から温度に応じて選択された何れか一つを電源から電源回路に至る電流経路に接続するスイッチとを備えてもよい。単一の温度補償抵抗のみでは、広範囲な温度範囲における高精度な温度補償は困難であるが、一つ又は複数の温度補償抵抗と温度補償機能を有しない一つ又は複数の抵抗素子の中から温度に応じて選択された最適な抵抗を用いて温度補償を行うことにより、精度の高い温度補償を実現できる。   The temperature characteristic compensation circuit includes one or more temperature compensation resistors, one or more resistance elements that do not have a temperature compensation function, and one or more temperature compensation resistors and one or more that do not have a temperature compensation function. A switch that connects any one of the resistance elements selected in accordance with the temperature to a current path from the power supply to the power supply circuit. Although it is difficult to perform high-precision temperature compensation over a wide temperature range with only a single temperature compensation resistor, one or more temperature compensation resistors and one or more resistance elements that do not have a temperature compensation function can be used. High-precision temperature compensation can be realized by performing temperature compensation using an optimum resistance selected according to temperature.

複数の温度補償抵抗は、正温度特性を有する第一の温度補償抵抗と、負温度特性を有する第二の温度補償抵抗とを含んでもよい。これにより、電源回路の温度特性を柔軟に補償できる。   The plurality of temperature compensation resistors may include a first temperature compensation resistor having a positive temperature characteristic and a second temperature compensation resistor having a negative temperature characteristic. Thereby, the temperature characteristic of the power supply circuit can be flexibly compensated.

回路素子が温度上昇に伴って電流又は電圧が上昇する正温度特性を有する回路素子(例えばトランジスタ)である場合には、電源回路は、温度上昇に伴って電流又は電圧が低下する負温度特性を有する電源回路(例えば、CTAT(Complementary To Absolute Temperature)回路)が好ましい。一方、回路素子が温度上昇に伴って電流又は電圧が低下する負温度特性を有する回路素子(例えばダイオード)である場合には、電源回路は、温度上昇に伴って電流又は電圧が上昇する正温度特性を有する電源回路(例えば、PTAT(Proportional To Absolute Temperature)回路)が好ましい。   When the circuit element is a circuit element (for example, a transistor) having a positive temperature characteristic in which current or voltage increases as the temperature rises, the power supply circuit has a negative temperature characteristic in which current or voltage decreases as the temperature rises. A power supply circuit (for example, a CTAT (Complementary To Absolute Temperature) circuit) is preferable. On the other hand, when the circuit element is a circuit element (for example, a diode) having a negative temperature characteristic in which the current or voltage decreases with an increase in temperature, the power supply circuit has a positive temperature at which the current or voltage increases with an increase in temperature. A power supply circuit having characteristics (for example, a PTAT (Proportional To Absolute Temperature) circuit) is preferable.

本発明によれば、電源回路の温度特性と回路素子の温度特性とのずれを高精度に補償することができる。   According to the present invention, a deviation between the temperature characteristic of the power supply circuit and the temperature characteristic of the circuit element can be compensated with high accuracy.

本実施形態に係わる電力増幅器の回路構成図である。It is a circuit block diagram of the power amplifier concerning this embodiment. 従来のバイアス回路の回路構成図である。It is a circuit block diagram of the conventional bias circuit. 従来のバイアス回路の温度特性を示すグラフである。It is a graph which shows the temperature characteristic of the conventional bias circuit. 実施例1に係わるバイアス回路の温度特性を示すグラフである。3 is a graph showing temperature characteristics of a bias circuit according to Example 1. 実施例2に係わるバイアス回路の温度特性を示すグラフである。6 is a graph showing temperature characteristics of a bias circuit according to Example 2. 実施例3に係わるバイアス回路の温度特性を示すグラフである。10 is a graph showing temperature characteristics of a bias circuit according to Example 3.

以下、各図を参照しながら本発明に関わる実施形態について説明する。
図1は本実施形態に係わる電力増幅器10の回路構成を示す。電力増幅器10は、例えば、OFDM方式の無線信号を線形増幅するためのものであり、温度変化に対して利得及びP1dBを一定に保つように回路設計されている。電力増幅器10は、多段接続される複数のトランジスタTr1,Tr2,Tr3と、入力端子31とトランジスタTr1の入力とをインピーダンス整合するための入力整合回路32と、トランジスタTr1の出力とトランジスタTr2の入力とをインピーダンス整合するための段間整合回路33と、トランジスタTr2の出力とトランジスタTr3の入力とをインピーダンス整合するための段間整合回路34と、トランジスタTr3の出力と出力端子36とをインピーダンス整合するための出力整合回路35と、それぞれのトランジスタTr1,Tr2,Tr3にベースバイアス電流Ib1,Ib2,Ib3を供給することにより、バイアス点を制御するバイアス回路20を備える。
Embodiments relating to the present invention will be described below with reference to the drawings.
FIG. 1 shows a circuit configuration of a power amplifier 10 according to the present embodiment. The power amplifier 10 is, for example, for linearly amplifying an OFDM radio signal, and is designed to keep the gain and P1 dB constant with respect to temperature changes. The power amplifier 10 includes a plurality of transistors Tr1, Tr2, Tr3 connected in multiple stages, an input matching circuit 32 for impedance matching between the input terminal 31 and the input of the transistor Tr1, an output of the transistor Tr1, and an input of the transistor Tr2. Impedance matching between the stage matching circuit 33 for impedance matching, the stage matching circuit 34 for impedance matching between the output of the transistor Tr2 and the input of the transistor Tr3, and the output terminal 36 for impedance matching. Output matching circuit 35 and a bias circuit 20 that controls the bias point by supplying base bias currents Ib1, Ib2, and Ib3 to the transistors Tr1, Tr2, and Tr3.

トランジスタTr1,Tr2,Tr3は、無線信号を線形増幅するための増幅器であり、本実施形態では、ベース端子を入力端子とし、コレクタ端子を出力端子とするエミッタ接地バイポーラトランジスタを用いている。最前段のトランジスタTr1のベース端子B1は、入力整合回路32を介して入力端子31から信号を受け取り、そのエミッタ端子E1は接地されており、そのコレクタ端子C1は、コレクタバイアス電源Vcc1に接続されている。2段目のトランジスタTr2のベース端子B2は、段間整合回路33を介してコレクタ端子C1に接続されており、そのエミッタ端子E2は接地されており、そのコレクタ端子C2は、コレクタバイアス電源Vcc2に接続されている。最終段のトランジスタTr3のベース端子B3は、段間整合回路34を介してコレクタ端子C2に接続されており、そのエミッタ端子E3は接地されており、そのコレクタ端子C3は、コレクタバイアス電源Vcc3に接続されるとともに、出力整合回路35を介して出力端子36に信号を出力する。   The transistors Tr1, Tr2, and Tr3 are amplifiers for linearly amplifying a radio signal. In this embodiment, a grounded-emitter bipolar transistor having a base terminal as an input terminal and a collector terminal as an output terminal is used. The base terminal B1 of the foremost transistor Tr1 receives a signal from the input terminal 31 via the input matching circuit 32, its emitter terminal E1 is grounded, and its collector terminal C1 is connected to the collector bias power supply Vcc1. Yes. The base terminal B2 of the second stage transistor Tr2 is connected to the collector terminal C1 via the interstage matching circuit 33, its emitter terminal E2 is grounded, and its collector terminal C2 is connected to the collector bias power supply Vcc2. It is connected. The base terminal B3 of the final stage transistor Tr3 is connected to the collector terminal C2 via the interstage matching circuit 34, the emitter terminal E3 is grounded, and the collector terminal C3 is connected to the collector bias power supply Vcc3. In addition, a signal is output to the output terminal 36 via the output matching circuit 35.

バイアス回路20は、絶対温度に関して正の線形温度特性を有するトランジスタTr1,Tr2,Tr3の電流又は電圧の温度変化を相殺するように、絶対温度に関して負の線形温度特性を有する基準電流をベースバイアス電流としてそれぞれのトランジスタTr1,Tr2,Tr3に供給するCTAT回路30と、CTAT回路30の温度特性とトランジスタTr1,Tr2,Tr3の温度特性とのずれを補償するための温度特性補償回路40を備える。温度特性補償回路40は、CTAT回路30の温度特性の負の傾きと、トランジスタTr1,Tr2,Tr3の温度特性の正の傾きとが相殺し、温度変化に依存しない一定のベースバイアス電流がトランジスタTr1,Tr2,Tr3に供給されるように、CTAT回路30の温度特性を補償する。温度特性補償回路40の詳細については後述する。   The bias circuit 20 uses a reference current having a negative linear temperature characteristic with respect to the absolute temperature as a base bias current so as to cancel a temperature change in the current or voltage of the transistors Tr1, Tr2, Tr3 having positive linear temperature characteristics with respect to the absolute temperature. As a CTAT circuit 30 to be supplied to each of the transistors Tr1, Tr2 and Tr3, and a temperature characteristic compensation circuit 40 for compensating for a deviation between the temperature characteristics of the CTAT circuit 30 and the temperature characteristics of the transistors Tr1, Tr2 and Tr3. In the temperature characteristic compensation circuit 40, the negative slope of the temperature characteristic of the CTAT circuit 30 and the positive slope of the temperature characteristics of the transistors Tr1, Tr2, Tr3 cancel each other, and a constant base bias current that does not depend on the temperature change becomes a transistor Tr1. , Tr2 and Tr3 are compensated for the temperature characteristics of the CTAT circuit 30. Details of the temperature characteristic compensation circuit 40 will be described later.

ここで、バイアス回路20の動作について説明する。バイアス回路20の電源をオン/オフに切り替えることで、トランジスタTr1,Tr2,Tr3の動作を瞬時にオン/オフに切り替えることができる。コレクタバイアス電源Vcc1,Vcc2,Vcc3がオンした状態でバイアス回路20の電源をオフにすることで、トランジスタTr1,Tr2,Tr3に流れるバイアス電流Ib1,Ib2,Ib3をオフにすることができる。バイアス電流Ib1,Ib2,Ib3が流れなければ、トランジスタTr1,Tr2,Tr3のコレクタ電流も殆ど流れないため、トランジスタTr1,Tr2,Tr3は、ほぼオフ状態となる。但し、コレクタバイアス電源Vcc1,Vcc2,Vcc3までもオフしてしまうと、トランジスタTr1,Tr2,Tr3の立ち上がりに時間を要するため、コレクタバイアス電源Vcc1,Vcc2,Vcc3をオンにしたまま、バイアス回路20の電源のオン/オフのみを制御する。つまり、コレクタバイアス電源Vcc1,Vcc2,Vcc3をオンさせることで、トランジスタTr1,Tr2,Tr3を準備状態にしておき、バイアス回路20の電源をオン/オフさせることで、トランジスタTr1,Tr2,Tr3の動作を制御する。   Here, the operation of the bias circuit 20 will be described. By switching the power supply of the bias circuit 20 on / off, the operation of the transistors Tr1, Tr2, Tr3 can be switched on / off instantaneously. The bias currents Ib1, Ib2, and Ib3 flowing through the transistors Tr1, Tr2, and Tr3 can be turned off by turning off the power supply of the bias circuit 20 with the collector bias power supplies Vcc1, Vcc2, and Vcc3 turned on. If the bias currents Ib1, Ib2, and Ib3 do not flow, the collector currents of the transistors Tr1, Tr2, and Tr3 hardly flow, so that the transistors Tr1, Tr2, and Tr3 are almost turned off. However, if the collector bias power supplies Vcc1, Vcc2, and Vcc3 are also turned off, it takes time for the transistors Tr1, Tr2, and Tr3 to rise. Therefore, the collector bias power supplies Vcc1, Vcc2, and Vcc3 remain turned on. Control power on / off only. That is, by turning on the collector bias power sources Vcc1, Vcc2, and Vcc3, the transistors Tr1, Tr2, and Tr3 are set in a ready state, and the power source of the bias circuit 20 is turned on / off, whereby the operations of the transistors Tr1, Tr2, and Tr3 are performed. To control.

なお、説明の便宜上、単一のCTAT回路30から全てのトランジスタTr1,Tr2,Tr3にバイアス電流を供給する回路構成を図示しているが、単一のCTAT回路から単一のトランジスタにバイアス電流を供給するように回路設計してもよい。高周波バイアス電流Ib1がバイアス回路20に逆流するのを阻止するためのチョークコイルLb1をバイアス回路20とベース端子B1との間のバイアス電流経路に介挿してもよく、高周波コレクタバイアス電流がコレクタバイアス電源Vcc1に逆流するのを阻止するためのチョークコイルLc1をコレクタバイアス電源Vcc1とコレクタ端子C1との間のバイアス電流経路に介挿してもよい。同様に、それぞれのトランジスタTr2,Tr3のバイアス電流経路にチョークコイルLb2,Lc2,Lb3,Lc3を介挿してもよい。   For convenience of explanation, a circuit configuration for supplying a bias current from a single CTAT circuit 30 to all the transistors Tr1, Tr2, Tr3 is shown. However, a bias current is supplied from a single CTAT circuit to a single transistor. The circuit may be designed to supply. A choke coil Lb1 for preventing the high-frequency bias current Ib1 from flowing back to the bias circuit 20 may be inserted in the bias current path between the bias circuit 20 and the base terminal B1, and the high-frequency collector bias current is used as a collector bias power source. A choke coil Lc1 for preventing reverse flow to Vcc1 may be inserted in a bias current path between the collector bias power supply Vcc1 and the collector terminal C1. Similarly, choke coils Lb2, Lc2, Lb3, and Lc3 may be inserted in the bias current paths of the transistors Tr2 and Tr3.

温度特性補償回路40は、複数の温度補償抵抗41,42と、複数の温度補償抵抗41,42の中から温度に応じて選択された何れか一つの温度補償抵抗を電源VccからCTAT回路30に至る電流経路に接続するスイッチ43を備える。複数の温度補償抵抗41,42の中から温度に応じて何れか一つの温度補償抵抗を選択するための手段として、本実施形態では、温度に対応する電圧を出力する温度センサ46の出力電圧と所定温度に対応する基準電圧43とを比較して、その比較結果に基づいてスイッチ切り替え信号を出力する比較器44を例示する。例えば、比較器44は、温度センサ46の出力電圧が基準電圧34より小さい場合には、温度補償抵抗41を選択すべきことを指示するスイッチ切り替え信号をスイッチ43に出力し、温度センサ46の出力電圧が基準電圧34より大きい場合には、温度補償抵抗42を選択すべきことを指示するスイッチ切り替え信号をスイッチ43に出力する。スイッチ43は、比較器44から出力されるスイッチ切り替え信号に基づいて複数の温度補償抵抗41,42の中から何れか一つの温度補償抵抗を選択し、選択された温度補償抵抗を電源VccからCTAT回路30に至る電流経路に接続する。   The temperature characteristic compensation circuit 40 includes a plurality of temperature compensation resistors 41 and 42 and any one temperature compensation resistor selected according to the temperature from the plurality of temperature compensation resistors 41 and 42 from the power supply Vcc to the CTAT circuit 30. A switch 43 connected to the current path is provided. In this embodiment, as means for selecting any one of the temperature compensation resistors 41 and 42 according to the temperature, the output voltage of the temperature sensor 46 that outputs a voltage corresponding to the temperature is used. A comparator 44 that compares a reference voltage 43 corresponding to a predetermined temperature and outputs a switch switching signal based on the comparison result is illustrated. For example, when the output voltage of the temperature sensor 46 is smaller than the reference voltage 34, the comparator 44 outputs a switch switching signal instructing that the temperature compensation resistor 41 should be selected to the switch 43, and outputs the temperature sensor 46. When the voltage is higher than the reference voltage 34, a switch switching signal instructing that the temperature compensation resistor 42 should be selected is output to the switch 43. The switch 43 selects one temperature compensation resistor from the plurality of temperature compensation resistors 41 and 42 based on the switch switching signal output from the comparator 44, and selects the selected temperature compensation resistor from the power source Vcc to CTAT. Connect to current path to circuit 30.

例えば、所定温度未満におけるトランジスタTr1,Tr2,Tr3の温度特性の正の傾きが急勾配であり、且つ所定温度以上におけるトランジスタTr1,Tr2,Tr3の温度特性の正の傾きが緩やかである場合には、所定温度未満におけるCTAT回路30の温度特性の負の傾きを急勾配に補正し、所定温度以上におけるCTAT回路30の温度特性の負の傾きを緩やかに補正する必要がある。そのためには、温度補償抵抗41として、温度上昇に伴って抵抗値が上昇する正温度特性を有するもの(例えば、サーミスタPTC又は白金測温抵抗体など)を使用し、温度補償抵抗42として、温度上昇に伴って抵抗値が低下する負温度特性を有するもの(例えば、サーミスタNTCなど)を使用するのが好ましい。   For example, when the positive slopes of the temperature characteristics of the transistors Tr1, Tr2, and Tr3 below a predetermined temperature are steep, and the positive slopes of the temperature characteristics of the transistors Tr1, Tr2, and Tr3 above a predetermined temperature are gentle It is necessary to correct the negative slope of the temperature characteristic of the CTAT circuit 30 below the predetermined temperature to a steep slope and to gently correct the negative slope of the temperature characteristic of the CTAT circuit 30 above the predetermined temperature. For this purpose, a temperature compensation resistor 41 having a positive temperature characteristic (for example, a thermistor PTC or a platinum resistance thermometer) whose resistance value increases as the temperature rises is used. It is preferable to use a material having a negative temperature characteristic (for example, the thermistor NTC) in which the resistance value decreases with increasing.

ここで、図2乃至図3を参照しながら従来のバイアス回路の構成について説明する。従来のバイアス回路31は、ベース・エミッタ間が接続されてなるトランジスタから成るCTAT回路30と、電源VccとCTAT回路30との間に接続するバイアス抵抗32とを備える。CTAT回路30は、温度に関して適度に安定的なDC基準電圧を発生するバンドギャップ基準電圧回路である。このようなバンドギャップ基準電圧回路は、実質的に一定のベース・エミッタ電圧を発生させるバイポーラトランジスタの特性を利用しており、シリコントランジスタでは、ベース・エミッタ電圧は、0.5V〜0.8Vの範囲にある。トランジスタのベース・エミッタに生じる電圧は、負の温度係数を有しているため、CTAT回路30は、トランジスタのベース・エミッタに発生する電圧を利用した電源回路であり、バイアス抵抗32及びトランジスタのベース・エミッタ間の電圧降下により出力電圧Voutが決定する。バイアス抵抗32を調整することで、出力電圧Voutを調整できる。また、ベース・エミッタ間電圧は、負の温度係数を有しているため、出力電圧Voutも負の温度係数を有する。図3に示すように、出力電圧Voutの温度特性100は、バイアス抵抗32の温度特性によって定まり、どの温度においてもその温度変化はほぼ一定となる。従って、バイアス回路31からバイアス電流の供給を受ける増幅器の温度特性が温度に依存して変化してしまうと、増幅器に供給されるバイアス電流の温度変化をバイアス回路31の出力電圧Voutの温度特性100によって完全に補償することが困難になり、温度に依存してバイアス電流が変動する。これに対し、本実施形態に係わるバイアス回路20によれば、複数の温度補償抵抗41,42の中から温度に応じて選択された何れか一つの温度補償抵抗を電源VccからCTAT回路30に至る電流経路に切り替え接続することにより、トランジスタTr1,Tr2,Tr3の電流又は電圧の温度変化を相殺し、温度に依存しない一定のバイアス電流Ib1,Ib2,Ib3をトランジスタTr1,Tr2,Tr3に供給することができる。   Here, the configuration of the conventional bias circuit will be described with reference to FIGS. The conventional bias circuit 31 includes a CTAT circuit 30 composed of a transistor having a base-emitter connected, and a bias resistor 32 connected between the power supply Vcc and the CTAT circuit 30. The CTAT circuit 30 is a bandgap reference voltage circuit that generates a DC reference voltage that is reasonably stable with respect to temperature. Such a bandgap reference voltage circuit utilizes the characteristics of a bipolar transistor that generates a substantially constant base-emitter voltage. In a silicon transistor, the base-emitter voltage is 0.5V to 0.8V. Is in range. Since the voltage generated at the base and emitter of the transistor has a negative temperature coefficient, the CTAT circuit 30 is a power supply circuit using the voltage generated at the base and emitter of the transistor. The output voltage Vout is determined by the voltage drop between the emitters. The output voltage Vout can be adjusted by adjusting the bias resistor 32. Further, since the base-emitter voltage has a negative temperature coefficient, the output voltage Vout also has a negative temperature coefficient. As shown in FIG. 3, the temperature characteristic 100 of the output voltage Vout is determined by the temperature characteristic of the bias resistor 32, and the temperature change is almost constant at any temperature. Accordingly, if the temperature characteristic of the amplifier that receives the bias current supplied from the bias circuit 31 changes depending on the temperature, the temperature change of the bias current supplied to the amplifier is changed by the temperature characteristic 100 of the output voltage Vout of the bias circuit 31. Makes it difficult to compensate completely, and the bias current varies depending on the temperature. On the other hand, according to the bias circuit 20 according to the present embodiment, any one temperature compensation resistor selected according to the temperature from the plurality of temperature compensation resistors 41 and 42 is connected from the power source Vcc to the CTAT circuit 30. By switching and connecting to the current path, temperature changes in the currents or voltages of the transistors Tr1, Tr2, and Tr3 are offset, and constant bias currents Ib1, Ib2, and Ib3 that are independent of temperature are supplied to the transistors Tr1, Tr2, and Tr3. Can do.

なお、本実施形態において、複数の温度補償抵抗は必須ではなく、何れか一つ以上の温度補償抵抗を抵抗素子(温度補償機能を有しない抵抗素子)に置き換えてもよい。言い換えれば、温度特性補償回路40は、一つ又は複数の温度補償抵抗と、温度補償機能を有しない一つ又は複数の抵抗素子とを含み、一つ又は複数の温度補償抵抗と温度補償機能を有しない一つ又は複数の抵抗素子の中から温度に応じて選択された何れか一つを電源VccからCTAT回路30に至る電流経路に接続してもよい。   In the present embodiment, a plurality of temperature compensation resistors are not essential, and any one or more temperature compensation resistors may be replaced with a resistance element (a resistance element having no temperature compensation function). In other words, the temperature characteristic compensation circuit 40 includes one or a plurality of temperature compensation resistors and one or a plurality of resistance elements not having a temperature compensation function, and has one or a plurality of temperature compensation resistors and a temperature compensation function. Any one selected from one or a plurality of resistive elements that do not have may be connected to the current path from the power supply Vcc to the CTAT circuit 30.

実施例1に係わる温度特性補償回路40は、温度補償抵抗41としてサーミスタPTCを使用し、温度補償抵抗42としてサーミスタNTCを使用する。サーミスタPTCは、温度上昇に伴い抵抗値が上昇する温度特性を有し、サーミスタNTCは、温度上昇に伴い抵抗値が減少する温度特性を有している。基準電圧45は、例えば、絶対温度T0に対応する電圧であり、比較器44は、基準電圧45と温度センサ36の出力電圧とを比較して、絶対温度がT0未満である場合には、温度補償抵抗41に切り替え接続することを指示するスイッチ切り替え信号をスイッチ43に出力し、絶対温度がT0以上である場合には、温度補償抵抗42に切り替え接続することを指示するスイッチ切り替え信号をスイッチ43に出力する。サーミスタPTCは、温度上昇に伴い抵抗値が上昇するため、絶対温度T0未満においてスイッチ43が温度補償抵抗41に切り替え接続すると、負温度特性を有するCTAT回路30を流れるバイアス電流が制限され、CTAT回路30の温度特性の負の傾きが急峻になる。図4に示すように、絶対温度T0未満では、温度特性補償回路40に接続するCTAT回路30の温度特性210は、温度特性補償回路40に接続しないCTAT回路の温度特性100よりも電圧及び電流の減少が急峻になる。一方、サーミスタNTCは、温度上昇に伴い抵抗値が減少するため、絶対温度T0以上においてスイッチ43が温度補償抵抗42に切り替え接続すると、負温度特性を有するCTAT回路30を流れるバイアス電流の減少が緩和され、CTAT回路30の温度特性の負の傾きが緩やかになる。図4に示すように、絶対温度T0以上では、温度特性補償回路40に接続するCTAT回路30の温度特性220は、温度特性補償回路40に接続しないCTAT回路の温度特性100よりも電圧及び電流の減少が緩やかになる。実施例1に関わる温度特性補償回路40によれば、絶対温度T0未満における温度特性の正の傾きが急勾配であり、且つ絶対温度T0以上における温度特性の正の傾きが緩やかであるトランジスタTr1,Tr2,Tr3に対して、温度依存性のない一定のバイアス電流Ib1,Ib2,Ib3を供給できる。なお、白金測温抵抗体は、温度上昇に伴い抵抗値が上昇する温度特性を有しているため、温度補償抵抗41として白金測温抵抗体を使用し、温度補償抵抗42としてサーミスタNTCを使用しても同様の作用効果を得ることができる。   The temperature characteristic compensation circuit 40 according to the first embodiment uses the thermistor PTC as the temperature compensation resistor 41 and the thermistor NTC as the temperature compensation resistor 42. The thermistor PTC has a temperature characteristic in which the resistance value increases as the temperature rises, and the thermistor NTC has a temperature characteristic in which the resistance value decreases as the temperature rises. The reference voltage 45 is, for example, a voltage corresponding to the absolute temperature T0. The comparator 44 compares the reference voltage 45 with the output voltage of the temperature sensor 36, and if the absolute temperature is less than T0, the temperature is A switch switching signal that instructs switching connection to the compensation resistor 41 is output to the switch 43. When the absolute temperature is equal to or higher than T0, a switch switching signal that instructs switching connection to the temperature compensation resistor 42 is output to the switch 43. Output to. Since the resistance value of the thermistor PTC increases as the temperature rises, if the switch 43 is switched to the temperature compensation resistor 41 below the absolute temperature T0, the bias current flowing through the CTAT circuit 30 having negative temperature characteristics is limited, and the CTAT circuit The negative slope of the temperature characteristic of 30 becomes steep. As shown in FIG. 4, at an absolute temperature T0 or lower, the temperature characteristic 210 of the CTAT circuit 30 connected to the temperature characteristic compensation circuit 40 has a voltage and current higher than the temperature characteristic 100 of the CTAT circuit not connected to the temperature characteristic compensation circuit 40. The decrease becomes steep. On the other hand, since the resistance value of the thermistor NTC decreases as the temperature rises, if the switch 43 is switched to the temperature compensation resistor 42 at an absolute temperature T0 or higher, the decrease in the bias current flowing through the CTAT circuit 30 having negative temperature characteristics is alleviated. As a result, the negative slope of the temperature characteristic of the CTAT circuit 30 becomes gentle. As shown in FIG. 4, at the absolute temperature T0 or higher, the temperature characteristic 220 of the CTAT circuit 30 connected to the temperature characteristic compensation circuit 40 has a voltage and current higher than the temperature characteristic 100 of the CTAT circuit not connected to the temperature characteristic compensation circuit 40. The decrease will be moderate. According to the temperature characteristic compensation circuit 40 according to the first embodiment, the transistor Tr1, the positive slope of the temperature characteristic below the absolute temperature T0 is a steep slope, and the positive slope of the temperature characteristic above the absolute temperature T0 is gentle. Constant bias currents Ib1, Ib2, and Ib3 having no temperature dependency can be supplied to Tr2 and Tr3. Since the platinum resistance thermometer has a temperature characteristic that the resistance value increases as the temperature rises, a platinum resistance thermometer is used as the temperature compensation resistor 41 and a thermistor NTC is used as the temperature compensation resistor 42. Even in this case, similar effects can be obtained.

実施例2に係わる温度特性補償回路40は、温度補償抵抗41として白金測温抵抗体を使用し、温度補償抵抗42に替えて温度補償機能を有しない抵抗素子(例えば、チップ抵抗素子、金属皮膜抵抗素子)を使用する。絶対温度T0未満におけるCTAT回路30の温度特性210が、温度特性補償回路40に接続しないCTAT回路の温度特性100よりも電圧及び電流の減少が急峻になる点は実施例1と同様である。一方、抵抗器の温度特性は、従来のバイアス抵抗32の温度特性と同様であるため、図5に示すように、絶対温度T0以上におけるCTAT回路30の温度特性230は、温度特性補償回路40に接続しないCTAT回路の温度特性100と同様である。実施例2に関わる温度特性補償回路40によれば、絶対温度T0未満における温度特性の正の傾きが急勾配であり、且つ絶対温度T0以上における温度特性の正の傾きが通常であるトランジスタTr1,Tr2,Tr3に対して、温度依存性のない一定のバイアス電流Ib1,Ib2,Ib3を供給できる。なお、温度補償抵抗41としてサーミスタPTCを使用し、温度補償抵抗42に替えて温度補償機能を有しない抵抗素子を使用しても同様の作用効果を得ることができる。   The temperature characteristic compensation circuit 40 according to the second embodiment uses a platinum resistance thermometer as the temperature compensation resistor 41, and replaces the temperature compensation resistor 42 with a resistor element (for example, a chip resistor element, a metal film). Resistive element) is used. The temperature characteristic 210 of the CTAT circuit 30 below the absolute temperature T0 is similar to the first embodiment in that the voltage and current decrease more rapidly than the temperature characteristic 100 of the CTAT circuit not connected to the temperature characteristic compensation circuit 40. On the other hand, since the temperature characteristic of the resistor is the same as that of the conventional bias resistor 32, the temperature characteristic 230 of the CTAT circuit 30 at the absolute temperature T0 or higher is transferred to the temperature characteristic compensation circuit 40 as shown in FIG. This is the same as the temperature characteristic 100 of the CTAT circuit that is not connected. According to the temperature characteristic compensation circuit 40 according to the second embodiment, the transistor Tr1, the positive slope of the temperature characteristic below the absolute temperature T0 is a steep slope, and the positive slope of the temperature characteristic above the absolute temperature T0 is normal. Constant bias currents Ib1, Ib2, and Ib3 having no temperature dependency can be supplied to Tr2 and Tr3. Similar effects can be obtained by using a thermistor PTC as the temperature compensation resistor 41 and using a resistance element having no temperature compensation function instead of the temperature compensation resistor 42.

実施例3に係わる温度特性補償回路40は、温度補償抵抗41に替えて温度補償機能を有しない抵抗素子(例えば、チップ抵抗素子、金属皮膜抵抗素子)を使用し、温度補償抵抗42としてサーミスタNTCを使用する。絶対温度T0以上におけるCTAT回路30の温度特性220が、温度特性補償回路40に接続しないCTAT回路の温度特性100と同様になる点は実施例1と同様である。一方、抵抗器の温度特性は、従来のバイアス抵抗32の温度特性と同様であるため、図6に示すように、絶対温度T0未満におけるCTAT回路30の温度特性240は、温度特性補償回路40に接続しないCTAT回路の温度特性100と同様である。実施例3に関わる温度特性補償回路40によれば、絶対温度T0未満における温度特性の正の傾きが通常配であり、且つ絶対温度T0以上における温度特性の正の傾きが緩やかであるトランジスタTr1,Tr2,Tr3に対して、温度依存性のない一定のバイアス電流Ib1,Ib2,Ib3を供給できる。   The temperature characteristic compensation circuit 40 according to the third embodiment uses a resistance element (for example, a chip resistance element or a metal film resistance element) that does not have a temperature compensation function instead of the temperature compensation resistor 41, and the thermistor NTC as the temperature compensation resistor 42. Is used. The temperature characteristic 220 of the CTAT circuit 30 at the absolute temperature T0 or higher is similar to the temperature characteristic 100 of the CTAT circuit not connected to the temperature characteristic compensation circuit 40, as in the first embodiment. On the other hand, since the temperature characteristic of the resistor is the same as that of the conventional bias resistor 32, the temperature characteristic 240 of the CTAT circuit 30 below the absolute temperature T0 is transferred to the temperature characteristic compensation circuit 40 as shown in FIG. This is the same as the temperature characteristic 100 of the CTAT circuit that is not connected. According to the temperature characteristic compensation circuit 40 according to the third embodiment, the transistor Tr1, the positive slope of the temperature characteristic below the absolute temperature T0 is normal, and the positive slope of the temperature characteristic above the absolute temperature T0 is gradual. Constant bias currents Ib1, Ib2, and Ib3 having no temperature dependency can be supplied to Tr2 and Tr3.

実施例1乃至3では、正温度特性を有するトランジスタTr1,Tr2,Tr3にバイアス電流Ib1,Ib2,Ib3を供給するバイアス電源としてCTAT回路30を例示したが、本発明はこれに限られるものではなく、例えば、負温度特性を有するトランジスタTr1,Tr2,Tr3にバイアス電流Ib1,Ib2,Ib3を供給するバイアス電源としてPTAT回路を用いてもよい。また、実施例1乃至3では、温度特性補償回路40の応用例として、電力増幅器10のバイアス回路20を例示したが、リファレンス電圧の温度補償回路や温度センサ等に応用してもよい。   In the first to third embodiments, the CTAT circuit 30 is illustrated as a bias power source that supplies the bias currents Ib1, Ib2, and Ib3 to the transistors Tr1, Tr2, and Tr3 having positive temperature characteristics. However, the present invention is not limited to this. For example, a PTAT circuit may be used as a bias power source that supplies bias currents Ib1, Ib2, and Ib3 to transistors Tr1, Tr2, and Tr3 having negative temperature characteristics. In the first to third embodiments, the bias circuit 20 of the power amplifier 10 is illustrated as an application example of the temperature characteristic compensation circuit 40, but may be applied to a temperature compensation circuit for a reference voltage, a temperature sensor, or the like.

本発明は、電力増幅器のバイアス回路、リファレンス電圧の温度補償回路、又は温度センサ等に応用できる。   The present invention can be applied to a bias circuit of a power amplifier, a temperature compensation circuit for a reference voltage, a temperature sensor, or the like.

10…電力増幅器
20…バイアス回路
30…CTAT回路
40…温度特性補償回路
41,42…温度補償抵抗
43…スイッチ
44…比較器
45…基準電圧
46…温度センサ
Tr1,Tr2,Tr3…トランジスタ
DESCRIPTION OF SYMBOLS 10 ... Power amplifier 20 ... Bias circuit 30 ... CTAT circuit 40 ... Temperature characteristic compensation circuit 41, 42 ... Temperature compensation resistor 43 ... Switch 44 ... Comparator 45 ... Reference voltage 46 ... Temperature sensor Tr1, Tr2, Tr3 ... Transistor

Claims (3)

回路素子の電流又は電圧の温度変化を相殺するように前記回路素子に電流又は電圧を供給する温度補償機能を有する電源回路と、
前記電源回路の温度特性と前記回路素子の温度特性とのずれを補償する温度特性補償回路と、
を備える温度補償回路。
A power supply circuit having a temperature compensation function for supplying a current or voltage to the circuit element so as to cancel a temperature change in the current or voltage of the circuit element;
A temperature characteristic compensation circuit for compensating for a deviation between the temperature characteristic of the power supply circuit and the temperature characteristic of the circuit element;
A temperature compensation circuit comprising:
請求項1に記載の温度補償回路であって、
前記温度特性補償回路は、一つ又は複数の温度補償抵抗と、温度補償機能を有しない一つ又は複数の抵抗素子と、前記一つ又は複数の温度補償抵抗と前記温度補償機能を有しない一つ又は複数の抵抗素子の中から温度に応じて選択された何れか一つを電源から前記電源回路に至る電流経路に接続するスイッチとを備える温度補償回路。
The temperature compensation circuit according to claim 1,
The temperature characteristic compensation circuit includes one or more temperature compensation resistors, one or more resistance elements that do not have a temperature compensation function, and one or more temperature compensation resistors and one that does not have the temperature compensation function. A temperature compensation circuit comprising: a switch that connects any one selected from one or a plurality of resistance elements according to temperature to a current path from a power supply to the power supply circuit.
請求項1又は請求項2に記載の温度補償回路を備える電力増幅器。   A power amplifier comprising the temperature compensation circuit according to claim 1.
JP2010038853A 2010-02-24 2010-02-24 Temperature compensation circuit and power amplifier Pending JP2011176592A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010038853A JP2011176592A (en) 2010-02-24 2010-02-24 Temperature compensation circuit and power amplifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010038853A JP2011176592A (en) 2010-02-24 2010-02-24 Temperature compensation circuit and power amplifier

Publications (1)

Publication Number Publication Date
JP2011176592A true JP2011176592A (en) 2011-09-08

Family

ID=44689043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010038853A Pending JP2011176592A (en) 2010-02-24 2010-02-24 Temperature compensation circuit and power amplifier

Country Status (1)

Country Link
JP (1) JP2011176592A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8896380B2 (en) 2012-03-28 2014-11-25 Tdk Corporation High frequency amplifier

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06174489A (en) * 1992-12-07 1994-06-24 Fujitsu Ten Ltd Temperature compensating circuit
JPH06307945A (en) * 1993-04-26 1994-11-04 Nec Corp Temperature compensated voltage generator
JP2004159123A (en) * 2002-11-07 2004-06-03 Renesas Technology Corp Electronic component for high-frequency power amplification and radio communication system
JP2009253728A (en) * 2008-04-08 2009-10-29 Panasonic Corp High-frequency power amplifier

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06174489A (en) * 1992-12-07 1994-06-24 Fujitsu Ten Ltd Temperature compensating circuit
JPH06307945A (en) * 1993-04-26 1994-11-04 Nec Corp Temperature compensated voltage generator
JP2004159123A (en) * 2002-11-07 2004-06-03 Renesas Technology Corp Electronic component for high-frequency power amplification and radio communication system
JP2009253728A (en) * 2008-04-08 2009-10-29 Panasonic Corp High-frequency power amplifier

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8896380B2 (en) 2012-03-28 2014-11-25 Tdk Corporation High frequency amplifier

Similar Documents

Publication Publication Date Title
CN109270983B (en) Envelope tracking current bias circuit with offset cancellation function and power amplifier
KR102268387B1 (en) Adaptive multi-band bias control circuit and power amplifier apparatus
US6992524B2 (en) Quiescent current control circuit for high-power amplifiers
KR101761946B1 (en) Power amplifier
JP5831511B2 (en) High frequency power amplifier
JP4088177B2 (en) Bias current supply circuit and amplifier circuit
JP4271708B2 (en) Power amplifier and multistage amplifier circuit including the same
EP1652295A2 (en) Temperature-insensitive bias circuit for high-power amplifiers
JP2005101734A (en) High output amplifier circuit
CN111953307A (en) Temperature correction circuit and method of operating a power amplifier
US9148095B2 (en) Bias circuit and amplifier controlling bias voltage
KR100712430B1 (en) Fet bias circuit
CN111384904B (en) Power amplifying circuit and electronic device
JP2011176592A (en) Temperature compensation circuit and power amplifier
JP2003273660A (en) High frequency amplifier
US10386880B2 (en) Circuit arrangement for compensating current variations in current mirror circuit
US20130154746A1 (en) Variable gain amplifier circuit
JP4667939B2 (en) High power amplifier and multi-stage high power amplifier
US11043923B2 (en) Bias circuit and amplifying device having temperature compensation function
JP2004248323A (en) Amplifier circuit of television switch module
JP2006067379A (en) High frequency power amplifier
JP4156539B2 (en) Variable gain amplifier circuit, IC equipped with the same, wireless communication system
JP2011124679A (en) Power amplifier
JP2008154043A (en) Bias circuit, active element circuit, and power amplifier
JP2009194870A (en) Overcurrent limiting circuit of power amplifier circuit using static induction transistor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130730

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130919

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20131004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140304

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140701