JP2011174616A - Adjustable transmission machine - Google Patents

Adjustable transmission machine Download PDF

Info

Publication number
JP2011174616A
JP2011174616A JP2011082609A JP2011082609A JP2011174616A JP 2011174616 A JP2011174616 A JP 2011174616A JP 2011082609 A JP2011082609 A JP 2011082609A JP 2011082609 A JP2011082609 A JP 2011082609A JP 2011174616 A JP2011174616 A JP 2011174616A
Authority
JP
Japan
Prior art keywords
output
input
torque
transmission
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011082609A
Other languages
Japanese (ja)
Other versions
JP5271374B2 (en
Inventor
Kenkichi Onoki
謙吉 小野木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOKYO JIDO KIKO KK
Original Assignee
TOKYO JIDO KIKO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOKYO JIDO KIKO KK filed Critical TOKYO JIDO KIKO KK
Priority to JP2011082609A priority Critical patent/JP5271374B2/en
Publication of JP2011174616A publication Critical patent/JP2011174616A/en
Application granted granted Critical
Publication of JP5271374B2 publication Critical patent/JP5271374B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To achieve a transmission mechanism which enables error compensation of speed ratio or torque depending on an ambient air temperature change or a secular change by carrying out an independent operation besides a synchronous operation of speed ratio and torque as well as efficiency compensation to an excessive friction force or an insufficient friction force in a low speed area and a high speed area because two control functions for output rotation number, speed ratio, and torque are indispensable in the belt driven variable transmission of constant horsepower transmission type. <P>SOLUTION: In the adjustable transmission machine, two control functions for speed and torque are arranged mutually at two pressure units for pressurizing input and output vehicles, and for a speed ratio and a torque, different order supply paths are employed for order supply from a regulator to a belt pulley movable vehicle for complete separation and segmentation. Furthermore, the operation order for releasing the high compression state of the elastic body during stop of transmission is enabled in addition to the error compensation of speed or torque. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は一般産業機械、車両、電動機等に使う可変伝動機に関し特にプーリへの弾性力と加圧力の識別供給と指令制御形態とで摩擦力安定化と広帯域高効率伝動を果す可変伝動機に関する。 The present invention relates to a variable transmission for use in general industrial machines, vehicles, electric motors, etc., and more particularly to a variable transmission that achieves frictional force stabilization and broadband high-efficiency transmission by identifying and supplying elastic force and applied pressure to a pulley and command control mode. .

定馬力型ベルト無段変速機の動作は、米国特許第4,973,288号又は同第5,269,726号等で開発中だが満足な商品の実現に至らない。入出力車を後者は油圧でまた前者はネジ巻上機で夫々同時加圧する思想である。然しこれ等の思想は決定的かつ重大な機能上乃至原理上の欠陥を持つ。通常出力車が負荷に伝える出力馬力P〔W〕は該回転数N〔rpm〕とトルクT〔Kgm〕との伝動関係式P=1.027×N×Tで決る。回転数はベルトプーリ間接触位置即ち半径比で決まるのに対しトルクは両者間の接触摩擦圧と接触面積で決まる。この事は回転数がプーリ内ベルトの位置決め制御だけで決まるのに対し軸トルクが該プーリとの該面積と常時摩擦圧の可変加圧制御だけで決まる事を意味する。従って無段変速機での所望回転数とトルクの確保策は各プーリに可変径位置決め制御と摩擦圧の可変加圧制御とを識別適用し相互に同期操作すべき事を上述伝動関係式自体が示す。然し上述米国特許思想は仮に入出力車に同期した加圧力の位置決め機能を与えても常時適正なベルト位置を維持する保証は無くまして両車に常時所定摩擦力付与のトルク保証機能は全く無い。この事は上述両特許思想では適正な回転数とトルクの確保と維持ができず定馬力伝動が原理的に不可能な事を示す。 The operation of the constant horsepower belt continuously variable transmission is under development in US Pat. No. 4,973,288 or US Pat. No. 5,269,726, but does not lead to a satisfactory product. The idea is to pressurize the input / output vehicle simultaneously with hydraulic pressure in the latter and screw hoisting in the former. However, these ideas have decisive and significant functional or principle defects. The output horsepower P [W] transmitted to the load by the normal output vehicle is determined by a transmission relational expression P = 1.027 × N × T between the rotational speed N [rpm] and the torque T [Kgm]. The rotation speed is determined by the contact position between the belt pulleys, that is, the radius ratio, whereas the torque is determined by the contact friction pressure and the contact area between the two. This means that the rotational speed is determined only by the positioning control of the belt in the pulley, whereas the shaft torque is determined only by the area of the pulley and the variable pressure control of the constant friction pressure. Therefore, the above transmission relational expression itself indicates that the variable speed positioning control and the frictional pressure variable pressurization control should be discriminated and applied to each pulley in order to ensure the desired rotation speed and torque in the continuously variable transmission. Show. However, the above-mentioned US patent idea has no guarantee that the proper belt position is always maintained even if the positioning function of the pressurizing force synchronized with the input / output vehicle is provided, and there is no torque guarantee function for always applying a predetermined friction force to both the vehicles. This indicates that the above-mentioned patent ideas cannot secure and maintain an appropriate rotation speed and torque, and that constant horsepower transmission is impossible in principle.

これに対し本件出願人は欧州特許出願EP0931960A2号で入出力車の二つの各プーリに可変加圧制御と可変径位置決め制御の各機能役割の分化を提案した。然し幾つかの未解決な問題が残る。その第一は入出力車のベルトプーリ間摩擦力の平衡が崩れた不安定性であり第二はそれに伴う伝動効率の悪化の問題である。前者は引張型ベルトの低速伝動を不能に到らせる。その原因は直接にプーリへの外部加圧による摩擦力確保策では接触半径又は面積の増大時に摩擦伝動面の摩擦係数が不安定化し摩擦力過剰を招く為である。後者では押込型ベルトでも伝動効率は速比ε=1付近で最大だがそれ以外の速比域は両プーリの接触面積の平衡が崩れて悪化する。即ち両プーリ中接触面積の増大側での摩擦力過剰でベルト食込みによるブレーキ発熱と、接触面積の減少側での摩擦力不足でスリップ発熱とが同時発生するのが原因と推測され制御形態を充実する対策が望まれる。 On the other hand, the applicant of the present application proposed differentiation of each functional role of variable pressure control and variable diameter positioning control for two pulleys of an input / output vehicle in European Patent Application EP0931960A2. However, some unresolved issues remain. The first is the instability in which the frictional force between the belt and pulley of the input / output vehicle is out of balance, and the second is the problem of deterioration in transmission efficiency. The former makes the low speed transmission of the tension belt impossible. This is because the friction coefficient of the friction transmission surface becomes unstable when the contact radius or the area is increased in the measure for securing the friction force by directly applying external pressure to the pulley, resulting in excessive friction force. In the latter case, the transmission efficiency of the push-type belt is maximum near the speed ratio ε = 1, but in other speed ratio areas, the contact area of both pulleys is not balanced and deteriorates. That is, it is estimated that the brake heat generation due to the belt biting due to excessive friction force on the contact area increase side in both pulleys and the slip heat generation due to insufficient friction force on the contact area decrease side is the cause, and the control mode is enhanced It is desirable to take measures.

米国特許第4,973,288号US Pat. No. 4,973,288 米国特許第5,269,726号US Pat. No. 5,269,726 欧州特許出願EP0931960AEuropean Patent Application EP0931960A

本発明の共通解決課題は、可変径車への加圧力は速比の弾性力はトルクの制御機能を果すが、従来技術の単一制御指令だけでは満足な操作が出来ないので調節装置で速比又は出力回転数指令やトルク指令等複数指令に分化し制御要素別に個別化する指令供給系路に関し、高効率伝動と長期安定伝動を果す可変伝動機を提供し、必要に応じ弾性体がトルク制御作用を持つ反面該高加圧が伝動部材劣化を招くので指令操作による防止策を提供する。 The common problem to be solved by the present invention is that the force applied to the variable-diameter wheel is the elastic force of the speed ratio, and the torque control function is performed. For the command supply system that is divided into multiple commands such as ratio or output rotation speed command and torque command and individualized by each control element, it provides a variable transmission that achieves high efficiency transmission and long-term stable transmission, and elastic body torques as necessary While having a control action, the high pressurization causes the transmission member to be deteriorated, thus providing a preventive measure by command operation.

本発明の第一解決課題は、速比とトルクの二制御機能を入力及び出力車の二加圧装置に個別付与する際調節装置の指令供給も速比又はトルク制御機能を他制御機能から分離し個別にサーボ制御して予め定めた速比対接触半径・摩擦力特性に従った伝動制御思想である。 The first problem to be solved by the present invention is that when the two control functions of the speed ratio and the torque are individually applied to the two pressurizing devices of the input and output vehicles, the command supply of the adjusting device is also separated from the other control functions. This is a transmission control concept according to speed ratio versus contact radius / friction force characteristics that are individually servo controlled.

本発明の第二解決課題は、定馬力伝動は上述伝動関係式の通り回転数(速比)制御とトルク制御を要し調節装置から第一及び第二加圧装置に出力回転数制御する加圧力指令及び出力トルク制御する弾性力指令を入力又は出力車に並列供給して伝動する思想である。   The second problem to be solved by the present invention is that constant horsepower transmission requires rotational speed (speed ratio) control and torque control as described above in relation to the transmission relational expression, and the output rotational speed control is performed from the adjusting device to the first and second pressurizing devices. This is the idea of transmitting pressure commands and elastic force commands for controlling output torque in parallel to input or output vehicles for transmission.

本発明の第三解決課題は入出力車の一方に加圧力で速比を他方に弾性力でトルクを制御すると加圧力供給側伝達車は指令供給の停止後は弾性力供給側伝達車が摩擦力過剰に成り摩擦力の平衡が崩れて伝動の不安定化を招くので両車で摩擦力を安定化する思想である。   The third problem to be solved by the present invention is that when the pressure ratio is controlled by one force of the input / output vehicle and the torque is controlled by the elastic force by the other force, the elastic force supply side transmission vehicle rubs after the command supply stops. The idea is to stabilize the frictional force between the two cars because the force becomes excessive and the balance of the frictional force is lost, leading to unstable transmission.

本発明の第四解決課題は、調節装置は可変径車に加圧力又は弾性力指令の形で速比又はトルク指令等の制御指令を施すが各指令加圧系路を共用利用して他指令をも施す事で第一圧縮装置の作動と停止を切換し又は伝動機休止中に高圧縮弾性体を解放する思想である。 A fourth problem to be solved by the present invention is that the adjusting device gives a control command such as a speed ratio or a torque command to the variable diameter wheel in the form of a pressure or elastic force command, but other commands using each command pressurization system in common. The idea is to switch the operation and stop of the first compression device or to release the high compression elastic body while the transmission is stopped.

本発明の第五解決課題は入出力車の速比制御とトルク制御の同期操作で変速するが高負荷トルク時に速比制御側伝達車では弾性力が無く摩擦力不足とトルク制御側伝達車の摩擦力過剰で招く不安定伝動や伝動不能を阻止し両車で摩擦力の平衡を維持する思想である。   The fifth problem to be solved by the present invention is that the speed ratio control and the torque control of the input / output vehicle are shifted synchronously. However, the speed ratio control side transmission vehicle has no elastic force at the time of high load torque, and there is insufficient frictional force. It is an idea that prevents unstable transmission and inability to transmit due to excessive frictional force, and maintains the balance of frictional force in both cars.

本発明の第六解決課題は、入力又は出力車を可変径車で速比及びトルク制御する際可変径車周囲の狭い空間に加圧力系路と弾性力系路とを同時設置する為第一及び第二加圧装置の指令信号を円環状形成し互に誤信号要因が無く同芯円配置で個別制御する思想である。   The sixth problem to be solved by the present invention is that when a speed ratio and torque control of an input or output vehicle is performed with a variable diameter vehicle, a pressure system path and an elastic force system path are simultaneously installed in a narrow space around the variable diameter vehicle. In addition, the command signal of the second pressurizing device is formed in an annular shape, and there is no cause of erroneous signals to each other, and the individual control is performed in a concentric circle arrangement.

本発明の第七解決課題は、入力又は出力車で速比及びトルク制御するのに可変径車周囲に第一及び第二圧縮装置を集中配置する際両者の一方を弾性装置と共に円環状成形し可変径車を含めて三者を同軸同芯円配置するように回転軸を貫通させた対策を施す思想である。 The seventh problem to be solved by the present invention is that when the first and second compression devices are centrally arranged around a variable diameter vehicle for speed ratio and torque control with an input or output vehicle, one of them is annularly formed with an elastic device. The idea is to take measures by penetrating the rotating shaft so that the three members including the variable diameter wheel are arranged coaxially and concentrically.

本発明の共通解決手段は、調節装置から各伝達車への指令供給を速比指令系路とトルク指令系路に分離識別し途中の駆動源、圧縮装置、弾性装置等の加圧装置総てを分離個別化して単独操作可能にしかつ必要に応じ各指令供給経路を除加圧指令等他指令をも共用可能に施す構成である。   The common solution of the present invention is to separate the command supply from the adjusting device to each transmission vehicle into a speed ratio command system path and a torque command system path, and to pressurize all the pressurization devices such as a drive source, a compression device, and an elastic device. The command supply path is configured so that other commands such as a depressurization command can be shared as needed.

本発明の第一解決手段は、調節装置が速比及びトルク制御する第一及び第二圧縮装置に夫々施す第一及び第二駆動源を経て互に分離し識別供給した速比及びトルク指令を直接施す事で速比又はトルクを単独操作可能にサーボ制御し予め定めた速比対出力摩擦圧特性に従い高効率操作する構成である。   The first solving means of the present invention is to provide the speed ratio and the torque command which are separated and supplied to each other through the first and second drive sources respectively applied to the first and second compression devices which are controlled by the adjusting device to control the speed ratio and torque. By direct application, servo control is performed so that the speed ratio or torque can be independently operated, and high-efficiency operation is performed in accordance with a predetermined speed ratio vs. output friction pressure characteristic.

本発明の第二解決手段は入出力車の一方に弾性体を他方に速比制御の第一加圧装置とトルク制御の第二加圧装置とを並設する事で、入出力車への両弾性力で両者の摩擦力に平衡を施しながら調節装置からの速比指令及びトルク指令の個別操作で伝動する構成である。   The second solving means of the present invention is to install an elastic body on one side of the input / output vehicle and a first pressurizing device for speed ratio control and a second pressurizing device for torque control on the other side, In this configuration, the elastic force is balanced by both elastic forces, and the speed ratio command and torque command from the adjusting device are transmitted individually while balancing the frictional forces.

本発明の第三解決手段は入出力車の一方に加圧力指令を他方に弾性力指令を施すと共に加圧力供給する伝達車にもう一つ別の弾性体から弾性力供給して入出力車双方に弾性力を適正付与して常時摩擦力の平衡が崩れない様に他方の弾性体で可変制御する構成である。   The third solving means of the present invention is to apply a pressure command to one of the input / output vehicles and an elastic force command to the other and supply an elastic force from another elastic body to the transmission vehicle for supplying the pressure to both input / output vehicles. In this configuration, the other elastic body is variably controlled so that the elastic force is properly applied to the frictional force and the balance of the frictional force is not constantly lost.

本発明の第四解決手段は、加圧力供給の有無を制御し加圧力と弾性力の同時供給又は単独供給を選択する為第一圧縮装置に作動指令を又は伝動機の運転休止中に高圧縮状態の弾性装置の加圧を解放し起動時に加圧する為第二圧縮装置に除加圧指令を施す構成である。 The fourth solution of the present invention is to control the presence / absence of pressure supply and select an operation command to the first compression device to select simultaneous supply or single supply of pressure force and elastic force, or high compression while the transmission is stopped. In order to release the pressurization of the elastic device in the state and pressurize it at the time of start-up, a depressurization command is given to the second compression device.

本発明の第五解決手段は、速比制御機能を果す第一加圧装置を持つ伝達車に対し更に弾性力供給でトルク制御機能を果す第二加圧装置を別途に並設し調節装置が入出力車双方に個別に制御したトルク指令を施す事で負荷トルクの変動に対しても高効率伝動を果す構成である。   The fifth solving means of the present invention is that an adjustment device is provided by separately arranging a second pressurizing device that further performs a torque control function by supplying elastic force to a transmission wheel having a first pressurizing device that performs a speed ratio control function. By applying individually controlled torque commands to both the input and output vehicles, it is possible to achieve high-efficiency transmission against load torque fluctuations.

本発明の第六解決手段は、弾性装置と第一又は第二圧縮装置の摺動装置を円環状成形し互に同軸同芯円配置する事で、調節装置で施す速比及びトルク指令を夫々加圧力及び弾性力指令に信号変換後の両指令をプーリ回転軸に沿い該軸芯方向に平行に施す構成である。   The sixth solving means of the present invention is that the elastic device and the sliding device of the first or second compression device are formed in an annular shape and arranged coaxially and concentrically with each other, thereby providing the speed ratio and torque command applied by the adjusting device, respectively. In this configuration, both the command after signal conversion into the pressure and elastic force commands are applied in parallel to the axial direction along the pulley rotation axis.

本発明の第七解決手段は、第一及び第二加圧装置を可変径車周囲に同時設置する際円環状の摺動装置と円環状の弾性装置と更に可変径車回転軸との三者を互に同軸同芯円配置し該回転軸を貫通させて加圧力指令と弾性力指令とを互に並列に個別供給する構成である。   The seventh solving means of the present invention comprises three members, an annular sliding device, an annular elastic device, and a variable diameter wheel rotating shaft when the first and second pressurizing devices are simultaneously installed around the variable diameter wheel. Are arranged coaxially and concentrically to each other, and the pressure command and the elastic force command are individually supplied in parallel with each other through the rotating shaft.

本発明は定馬力伝動等に要する回転数(速比)制御する第一加圧装置、トルク制御する第二加圧装置に施す調節装置の指令供給系路に関し、調節装置の段階からプーリ可動車の段階に至る指令供給系路を速比指令供給系路とトルク指令供給系路とに分離識別したので、第一に該両加圧装置を単一指令で共用する際の制約が無く同期操作も単独操作も調節装置で選定でき、第二に速比とトルクの指令を共用すると加圧装置の構造にも制約が残るが指令を分離すると調節装置側で指令操作方向や極性を任意に選択でき、第三に指令供給系路相互間での誤信号要因を排除でき各指令の反転逆転を阻止でき、第四に速比又はトルク指令供給系路に調節指令の外に誤差補償や劣化阻止等他指令付与でき、第五に単一可動車に加圧力と弾性力とを同時供給し又は入出力車双方に加圧力の同時供給は伝動不能に至るが弾性力の同時供給は良好な高効率伝動を果す等の効果がある。   The present invention relates to a command supply path for an adjusting device applied to a first pressurizing device for controlling the number of revolutions (speed ratio) required for constant horsepower transmission and the like, and a second pressurizing device for torque control. Since the command supply path leading to the stage is separated and identified as the speed ratio command supply path and the torque command supply path, first, there is no restriction when sharing both the pressurizers with a single command, and the synchronous operation Can also be selected by the adjusting device. Secondly, if the speed ratio and torque commands are shared, the structure of the pressurizing device will remain limited, but if the commands are separated, the adjusting device side will select the command operation direction and polarity arbitrarily. Third, it can eliminate the cause of error signals between the command supply paths and prevent the reversal and reversal of each command, and fourth, error compensation and prevention of deterioration in addition to the adjustment command in the speed ratio or torque command supply path Other commands can be given, and fifth, a single movable vehicle is supplied with pressure and elastic force simultaneously Or the simultaneous supply of pressure to the input and output wheel both have effects such as, but leads to inability transmission simultaneous supply of an elastic force plays a good high efficiency transmission.

特に(1)速比及びトルクの両制御機能を入力及ぶ出力車の何れかに配置すればその同期又は単独操作で定馬力伝動も定トルク伝動も更にトルク変換伝動も実現できしかも速比やトルクの補償演算が瞬時かつ高精度管理できるので安定伝動と高効率伝動が常時かつ長期に渡り保証される。(2)一つの可動車に第一及び第二加圧装置を並設すると調節装置で速比又はトルクの制御機能の一方を選択し或いは双方を同時供給できるので、負荷の必要に応じて入出力車双方で同時に個別にトルク制御操作可能なので常時両車の高精度トルク管理により高効率伝動が、特に摩擦力不足と過剰を招き易い低速域と高速域での効率改善し結果的に広帯域も実現する。(3)入出力車の一方又は双方の弾性装置が内外で生じる誤差要因を瞬時に吸収能力し安定伝動に復帰するので次の変速動作を促し結果的に常時高速度の変速応答性も確保できる。(4)二伝達車双方に第一及び第二加圧装置を施すと入力及び出力車が夫々トルク及び速比を制御する第一伝動形態と夫々速比及びトルクを制御する第二伝動形態との二つの伝動形態が一台の伝動機で果せる結果、両形態からより高効率の伝動帯域を選択すると著しく広帯域高効率伝動機が実現する。   In particular, (1) If both speed ratio and torque control functions are placed on any of the output vehicles that have input, constant horsepower transmission, constant torque transmission, and torque conversion transmission can be realized in synchronism or single operation, and the speed ratio and torque Since the compensation calculation can be managed instantaneously and with high accuracy, stable transmission and high-efficiency transmission are always guaranteed for a long time. (2) If the first and second pressure devices are installed side by side in one movable vehicle, either the speed ratio or torque control function can be selected by the adjustment device, or both can be supplied simultaneously. Since the torque control can be performed individually on both the output cars at the same time, high-efficiency transmission is achieved by high-accuracy torque management of both cars at all times. Realize. (3) Since one or both elastic devices of the input / output vehicle can absorb the error factor generated inside and outside instantly and return to stable transmission, the next shift operation is promoted, and as a result, a high-speed shift response can always be secured. . (4) When the first and second pressurizing devices are applied to both of the two transmission wheels, a first transmission mode in which the input and output vehicles respectively control the torque and speed ratio, and a second transmission mode in which the speed ratio and torque are controlled, respectively. As a result of the two types of transmission being achieved by a single transmission, when a more efficient transmission band is selected from both forms, a remarkably broadband high efficiency transmission is realized.

上述以外に複数の制御要素を個別区分する利点は、(イ)ベルト周長の伸びやベルトプーリ摩擦面の磨耗は速比及びトルクの誤差要因になるが、これ等の各制御要素が分離している為回転数及び摩擦圧等の検出器を用いて誤差補償が可能で又速比の誤差補償だけでなく弾性体のヘタリ劣化した際のトルク誤差補償も加圧装置を個別設置の思想により実現する。(ロ)また入出力車の双方でトルク制御する際には高負荷トルク時や軽負荷トルク時など負荷の要求に応じ両トルクを調節装置の二つの指令供給だけで常時最適なトルク制御の付与が実現するので結果的に高負荷時でも軽負荷時でも常時高効率伝動を果す効果がある。 In addition to the above, the advantages of separately dividing multiple control elements are as follows: (a) The belt circumference elongation and belt pulley friction surface wear cause speed ratio and torque error factors, but these control elements are separated. Therefore, it is possible to compensate for errors using detectors such as rotation speed and friction pressure, etc. In addition to speed ratio error compensation, torque error compensation in the event of elastic deterioration of the elastic body is based on the idea of individually installing a pressure device. Realize. (B) When torque control is performed on both input and output vehicles, optimal torque control is always applied by supplying only two commands to the controller according to the load demand, such as during high load torque or light load torque. As a result, there is an effect that high-efficiency transmission is always achieved at both high and light loads.

(ハ)更に可変伝動機の制御要素には速比、トルク以外にも可変を要しない作動指令、除圧加圧指令等の制御要素が存在し、この場合に既存加圧装置の指令供給系路を共用する事でそこに他指令による他機能の動作を付与する事も可能である。例えば弾性体を用いる伝動機では運転中に弾性体がトルク制御の付与に有効に働く反面停止中は高加圧状態の弾性力が弾性体を含む伝動部材の変形劣化を促進するので、その劣化阻止策として停止時に高加圧状態にある弾性体の高圧縮を解除し起動の際に加圧する除加圧指令を弾性体の加圧装置に強制的に供給して各伝動部材保護と長期の安定伝動を果す効用が働く利点がある。 (C) In addition to the speed ratio and torque, the control elements of the variable transmission have control elements such as an operation command that does not require variable and a decompression and pressurization command. In this case, the command supply system of the existing pressurization device It is also possible to give the operation of other functions by other commands by sharing the road. For example, in a transmission using an elastic body, the elastic body works effectively for giving torque control during operation, while the elastic force in a high pressure state accelerates the deformation deterioration of the transmission member including the elastic body during the stoppage. As a deterrent measure, the elastic body that is in a high pressure state at the time of stopping is released from high compression and a depressurization command to pressurize at the time of start-up is forcibly supplied to the elastic body pressure device to protect each transmission member and There is an advantage that the utility to achieve stable transmission works.

本発明は所定出力トルクを確保するのに、出力車への直接的な外部加圧に依らず入力車を外部可変加圧制御しベルトを経て間接的出力摩擦力を得るので、出力軸トルクを創出する構成は如何なる構造でも良く入力車での摩擦力不足も無くす事ができる。特に可変径プーリを入出力車に用いる無段変速機では、ベルトプーリ間の接触半径又は面積が増大した時に、プーリ可動車に変速動作時以外は実質的な加圧力を供給せず相手プーリ摩擦力で生じたベルト張力に基きVベルトとプーリV溝間のクサビ効果で間接的に接触摩擦力を作り出すので、外部加圧力に応じて変化する摩擦係数の不安定性を解消し、高負荷トルク時にも安定かつ高効率伝動を達成する。特にベルトがプーリ内に食い込む謂所巻込現象が生じ易い引張型ベルトでも伝達不能に到る事が無く、ベルトプーリの材質、湿式乾式等潤滑性、温度等の周囲条件の変化に拘わらず安定したクサビ摩擦力を創出できる為、従来の不安定なカム機構等の巻込防止対策を別途に施す事なく安定伝動を実現する。ベルト接触半径の増減は入出力車で発生し各操作器が対応プーリへの基準車又は追従車機能の切換能力をもたせる事で安定伝動可能な変速領域を大幅に拡大でき然もその両端部領域で高効率伝動を維持するので、車両や受発電設備等の分野では低燃費、低価格かつ低運転コスト高効率の伝動機を実現する効果がある。   In the present invention, in order to secure a predetermined output torque, the input vehicle is subjected to external variable pressurization control to obtain an indirect output friction force via the belt without depending on the direct external pressurization to the output vehicle. Any structure can be created, and it is possible to eliminate the shortage of frictional force in the input vehicle. Especially in continuously variable transmissions that use variable-diameter pulleys for input and output vehicles, when the contact radius or area between belt pulleys increases, the pulley pulleys do not supply substantial pressure to the pulley movable vehicle except during gear shifting operations. Since the frictional effect between the V-belt and pulley V-groove is indirectly generated based on the belt tension generated by the force, the instability of the friction coefficient that changes according to the external pressure is eliminated, and at high load torque Achieves stable and highly efficient transmission. In particular, even tension type belts that tend to cause so-called entanglement phenomenon in which the belt bites into the pulley do not become unable to transmit, and are stable regardless of changes in ambient conditions such as belt pulley material, wet dry lubricity, temperature, etc. As a result, it is possible to create a stable friction transmission without taking any additional measures to prevent entrainment such as the conventional unstable cam mechanism. Increase / decrease in belt contact radius occurs in the input / output vehicle, and each controller has the ability to switch the function of the reference vehicle or the following vehicle to the corresponding pulley. Therefore, in the fields of vehicles, power receiving facilities, etc., there is an effect of realizing a highly efficient transmission with low fuel consumption, low price and low driving cost.

本発明の第1実施例可変伝動機の全体構成断面図を、1 is a cross-sectional view of the overall configuration of a variable transmission according to a first embodiment of the present invention. 同第1実施例の入力車及び入力操作器の断面図を、A cross-sectional view of the input vehicle and input controller of the first embodiment, 同第1実施例の出力車及び出力操作器の断面図を、A cross-sectional view of the output vehicle and output controller of the first embodiment, 同第1実施例の各操作器用の駆動源及び調節装置の構成図を、The block diagram of the drive source and adjusting device for each operating device of the first embodiment, 同第1実施例の出力操作器に施した圧力検出器の断面図を、A cross-sectional view of a pressure detector applied to the output operation device of the first embodiment, 同第1実施例の速比対接触半径・摩擦力特性で図6Aは入力車側の図6Bは出力車側の夫々の動作特性説明図を、さらにFIG. 6A shows the speed ratio versus contact radius / friction force characteristics of the first embodiment, FIG. 6B shows the operation characteristics on the input car side, and FIG. 同第1実施例の速比対伝動効率特性図を夫々示す。The speed ratio versus transmission efficiency characteristic diagram of the first embodiment is shown respectively. 本発明の第2実施例可変伝動機の全体構成断面図を、さらに2 is a sectional view of the overall configuration of a variable transmission according to a second embodiment of the present invention; 同第2実施例の入力車及び入力操作器の断面図を夫々示す。Sectional drawing of the input vehicle and input operation device of the said 2nd Example is each shown. 本発明の第3実施例可変伝動機の入力車及び入力操作器の断面図を、更にFIG. 3 is a sectional view of an input vehicle and an input operation unit of a variable transmission according to a third embodiment of the present invention; 同第3実施例の出力車及び出力操作器の断面図を夫々示す。Sectional drawing of the output vehicle and output operation device of the said 3rd Example is each shown.

本発明思想は変速伝動装置と変速制御装置を共に油層に納めた湿式型に限定されず、両者を空中に納めた乾型でも又夫々を個別収納しても良い。又伝動形態として本発明は特に定馬力伝動型可変伝動機で大きな効力を発揮するが速比制御のみ単独操作して定トルク伝動型可変伝動機に適用してもよい。制御形態として変速制御装置の操作器は、加圧力と弾性力の識別に際し第一及び第二加圧装置で成る個別加圧方式と、複合装置による複合加圧方式とを開示したが、入出力両操作器を共に個別加圧装置による加圧方式にしても良く又入力側を複合加圧装置による加圧方式に出力側を個別加圧装置による等各種の加圧方式にしても良い。その際出力車に図6Bの予備圧は当然可変制御しても良く又必ずしも与える事を要しない。プーリを押圧する加圧装置、複合装置、圧縮装置、弾性装置又は当接装置は全て非回転配置の例を示したが回転状態で使用しても良く、取付位置もプーリの周囲に制約されず油圧ジャッキや梃子の圧力伝達装置にて任意位置に配しても良い。   The idea of the present invention is not limited to the wet type in which both the transmission gear and the transmission control device are housed in the oil layer, but may be a dry type in which both are housed in the air, or may be individually housed. As a transmission form, the present invention is particularly effective for a constant horsepower transmission type variable transmission, but it may be applied to a constant torque transmission type variable transmission by operating only the speed ratio control alone. As the control mode, the operation device of the speed change control device has disclosed the individual pressurization method composed of the first and second pressurization devices and the composite pressurization method by the composite device in distinguishing the applied pressure and the elastic force. Both of the operating devices may be of a pressurizing system using an individual pressurizing apparatus, or may be of various pressurizing systems such as a pressurizing system using a composite pressurizing apparatus on the input side and an individual pressurizing apparatus on the output side. At this time, the preliminary pressure of FIG. 6B may naturally be variably controlled to the output vehicle, and it is not always necessary to give it. The pressurizing device, composite device, compression device, elastic device, or contact device that presses the pulley are all shown as non-rotating arrangements, but they may be used in a rotating state, and the mounting position is not limited to the periphery of the pulley. You may arrange | position in arbitrary positions with the pressure transmission device of a hydraulic jack or a lever.

操作器の加圧力と弾性力を切換する例では速比ε=1で優先的に切換える例を示したが任意の速比の時点で切換えを行っても良く、調節操作や切換操作の基準を速比で無く出力回転数又は出力トルクを優先的な基準に調節し又は切換えても良い。その際望ましくは該出力回転数とトルクとが共に瞬時の衝撃なく安全にバンプレス切換させる事が好ましい。更に入力動力が内燃機関や直流電動機等の如き該出力回転数が変速する時は可変伝動機の速比制御を或る定速比のままで出力トルクのみを該回転数に応じ入力操作器の単独操作で可変トルク制御を施してトルク変換機にしても良い。尚基準車機能のプーリは回転数制御をまた追従車機能のそれはトルク制御を夫々果すので、操作器が各機能切換した時は当然調節装置から供給される速比及びトルク指令も同時切換えるべきは明白で該指令も増速・減速の回転数指令と、増圧・減圧のトルク指令とを夫々識別選択して供給制御すべきは当然である。従って伝動部材のベルトプーリ摩擦面劣化等には該補償した回転数指令を弾性体劣化等には該補償したトルク指令を当然夫々識別供給すべきである。   In the example of switching the pressurizing force and elastic force of the operating device, an example of switching preferentially at the speed ratio ε = 1 has been shown. However, switching may be performed at an arbitrary speed ratio, and the standard of adjustment operation and switching operation is set. The output rotation speed or output torque may be adjusted or switched to a priority reference instead of the speed ratio. In this case, it is desirable that both the output rotational speed and the torque be safely switched to bumpless without instantaneous impact. Further, when the input power is changed in the output rotational speed, such as an internal combustion engine or a DC motor, only the output torque is controlled according to the rotational speed while the speed ratio control of the variable transmission is kept at a certain constant speed ratio. A torque converter may be provided by performing variable torque control by a single operation. The pulley for the standard vehicle function performs the rotational speed control and that for the following vehicle function performs the torque control, so when the function is switched, the speed ratio and torque command supplied from the adjusting device should be switched simultaneously. Obviously, the command should be controlled by discriminating and selecting the rotation speed command for acceleration / deceleration and the torque command for pressure increase / deceleration, respectively. Accordingly, the compensated rotational speed command should be identified and supplied for the belt pulley friction surface degradation of the transmission member and the compensated torque command should be identified for the elastic body degradation.

次に、各装置、部品等の代替化、兼用共用化は各種変更が可能である。加圧装置は圧縮装置が弾性装置又は/及び当接装置と直列連結ならば配列順序は任意である。圧縮装置は指令信号の供給停止後も該押圧位置を安定保持できるなら他の巻上機や油圧ジャッキ又はカム機構等でも良い。弾性装置も皿バネに限る事なく他の如何なる型でも良い。当接装置も他形態で良く例えば各弾性体自体に当接具をもたせ直列配列させても良い。入力及び出力加圧装置は二摺動材が該相互間間隙の有無で当接又は解放状態に応じて各プーリ可動車に加圧力供給の有無を制御可能な入力及び出力当接装置を切換器として持たせても良い。尚夫々の加圧手段である摺動具、摺動体、摺動材等は相互に兼用、共用したり本体、車、圧力伝達装置等の他伝動部材類と代替兼用しても良い。圧力伝達装置や第一及び第二検出器も他の如何なる型式でも良く、例えば圧力伝達装置はプーリ回転軸の中空軸芯内を伝達させても良い。第一及び第二又は入出力駆動源の制御モータは入力及び出力側の各加圧装置毎に個別配置の例を示したが、駆動源には共用化又は単一化でき周知の伝達機や歯車同期嵌合装置等切換器を用いても良く、モータ種類も交流又はステップモータでも良い。尚可動車と弾性体の同時加圧装置では圧縮装置操作量と円板車相対距離間で比例又は反比例し且つ弾性体と弾性力間で夫々反比例又は比例する構成であれば良い。又各操作器は該各圧縮装置を該第一及び第二各加圧装置に対して夫々個別に又は共用単一に持っても良い。   Next, various changes can be made to the substitution of each device, parts, etc., and the common use. The pressurizing device may be arranged in any order as long as the compression device is connected in series with the elastic device and / or the contact device. The compression device may be another hoisting machine, a hydraulic jack, a cam mechanism, or the like as long as the pressing position can be stably held even after the supply of the command signal is stopped. The elastic device is not limited to a disc spring, and may be any other type. The contact device may have other forms, for example, each elastic body itself may be provided with a contact tool and arranged in series. The input and output pressurization device switches the input and output contact devices that can control the presence or absence of pressure supply to each pulley movable vehicle according to the contact or release state of the two sliding members with or without the gap between them. It may be given as Note that each of the pressurizing means, such as a sliding tool, a sliding body, a sliding material, etc., may be shared and shared with each other or may be replaced with other transmission members such as a main body, a vehicle, and a pressure transmission device. The pressure transmission device and the first and second detectors may be of any other type. For example, the pressure transmission device may transmit the inside of the hollow shaft core of the pulley rotation shaft. The control motors of the first and second or input / output drive sources are individually arranged for each of the pressure devices on the input and output sides. However, the drive source can be shared or unified, and a known transmitter or A switching device such as a gear synchronous fitting device may be used, and the motor type may be an AC or step motor. It should be noted that the simultaneous pressurizing device for the movable vehicle and the elastic body may have a configuration that is proportional or inversely proportional between the compression device operation amount and the disc wheel relative distance and inversely proportional or proportional between the elastic body and the elastic force. Each operation device may have each compression device individually or in common with each of the first and second pressure devices.

該モータと圧縮装置をもつ加圧装置では、プーリ高圧力に耐えて長期間の高精度の位置決めと加圧値の供給制御を要する。故に操作器の各加圧指令供給系路を互に分離しセルフロック機能即ち逆転阻止機能とモータのオーバラン阻止機能等の速比、トルク及び制御指令への誤信号要因を積極的に排除する事を要す。即ち各圧縮装置は二摺動具間に押圧装置を施した摺動装置と該押圧装置を動かす付勢装置とでなり該摺動装置及び付勢装置の一方又は双方に自己反転阻止機能を持たせている。従って台形ネジ等金属面接触摩擦手段やウォーム伝達機等一方向伝達機を用いたり、更にクラッチ、ブレーキ機能付モータや逆転阻止機能をもつステップモータの適用がされるべきである。尚圧縮装置の摺動量は、基準車機能の出力車移動量lではプーリ移動分1pのみだが追従車機能の入力車移動量lではプーリ移動分1pと弾性体圧縮量1sが加わり合計移動量は1p+1sとなる。従って回転数指令とトルク指令では操作量も操作方向も互に異なるため、ネジ又はカム等の巻上摺動装置の場合は巻上ピッチ、回転方向、右ネジ・左ネジ等のネジ溝加工方向、歯車伝達機の速比等周知要素を設計に応じて選択すれば良い。 In a pressurizing device having the motor and the compression device, long-term high-precision positioning and pressurization value supply control are required to withstand high pulley pressure. Therefore, each pressurization command supply system of the controller is separated from each other and positive signal, torque, and control signal error signals such as self-lock function, ie, reverse rotation prevention function and motor overrun prevention function, are positively eliminated. Is required. That is, each compression device is composed of a sliding device having a pressing device between two sliding tools and an urging device for moving the pressing device, and one or both of the sliding device and the urging device have a self-inversion prevention function. It is Therefore, a metal surface contact friction means such as a trapezoidal screw or a one-way transmission device such as a worm transmission device should be used, or a stepping motor having a clutch, a brake function or a reverse rotation prevention function should be applied. Note sliding amount of the compression device, the output wheel movement amount l 0 in the pulley moving amount 1p only I but total movement joined by the input vehicle movement amount l 1 pulley movement amount 1p and elastic compression amount 1s of the follower vehicle function of the reference vehicle features The amount is 1p + 1s. Therefore, since the operation amount and the operation direction are different between the rotational speed command and the torque command, in the case of a hoisting / sliding device such as a screw or a cam, the hoisting pitch, the rotational direction, and the thread groove machining direction such as a right screw / left screw A known element such as a gear ratio of the gear transmission may be selected according to the design.

次に調節装置90の指令制御形態は各種考えられ、出力回転数N0又は出力トルクT0に精度を要しない時は予め初期設定した操作量として単一の制御指令を供給すれば良い。それ等に高精度を維持し安定伝動させて変速動作の高速度応答性を優先する時はベルトプーリ摩擦面、周長又は弾性体ヘタリ等伝動部材の劣化誤差を定期感知し、出力回転数や摩擦力の検知値と設定値との偏差に応じた補償量、劣化量に応じて回転数又はトルクの各指令に、予めメモリに定めた値となる様に補償量をCPU
にて算出加味して入力及び出力操作器に与え実質的な回転数又は摩擦圧の該検出値を帰還させて開又は閉ループにてサーボ制御し補償を施しても良い。更にトルクと速比の高精度管理を要する場合には、各検出値と予めメモリに定めた基準値とを比較し負帰還制御を入力又は出力側の各操作器に供給する事により高負荷伝動でも極めて高い効率の長期安定運転を果す。調節装置は負荷に伴い予め速比対接触半径・出力摩擦力設定圧を収めたメモリと演算処理装置でプログラマブル制御しても良い。
Next, various types of command control modes of the adjusting device 90 are conceivable. When the output rotation speed N0 or the output torque T0 does not require accuracy, a single control command may be supplied as a preset operation amount. When maintaining high accuracy and stable transmission to give priority to high speed responsiveness of speed change operation, periodically detect deterioration error of transmission member such as belt pulley friction surface, circumference or elastic sag, and output rotation speed or The compensation amount according to the deviation between the detected value of the frictional force and the set value, the compensation amount according to the deterioration amount, and the compensation amount so that it becomes a value predetermined in the memory for each command of the rotational speed or torque
In consideration of the calculation, the input and output operating devices may be fed back to the detected value of the substantial rotational speed or friction pressure, and servo-controlled in an open or closed loop for compensation. Furthermore, when high-precision management of torque and speed ratio is required, high load transmission is performed by comparing each detected value with a reference value determined in advance in memory and supplying negative feedback control to each input or output controller. However, it achieves long-term stable operation with extremely high efficiency. The adjusting device may be controlled in a programmable manner by means of a memory in which the speed ratio versus contact radius and output friction force setting pressure are stored in advance according to the load and an arithmetic processing unit.

本発明の共通実施形態は、可変径プーリV溝とVベルト間摩擦力を操作器の外部加圧力供給で制御する際入出力プーリ中一方車の軸トルク確保の為他方車摩擦力を外部弾性力供給で制御しベルト張力を経て該一方車軸トルクを間接調節してベルト種類に制約されず特に定馬力型に適する無段変速機を提供する事である。第一実施形態は、特に出力車トルク確保の為、調節装置が入力操作器の操作で入力車の摩擦力不足を償い且つ入力車に常時弾性力供給し入力車摩擦力を可変制御しベルト張力を経て出力車を間接的に可変トルク制御する事である。第二実施形態は、出力車への直接加圧に伴うベルト巻込を避け出力摩擦力の安定確保の為調節装置が入力車に常時弾性力供給すべき加圧値を可変加圧制御して間接的に出力プーリV溝のクサビ効果を利用し出力摩擦力を調整して可変トルク制御する事で、引張型又は押込型ベルト等ベルト種類に制約されずに特に大きい速比域で高効率で安定な定馬力伝動を達成する事である。   In the common embodiment of the present invention, when the frictional force between the variable-diameter pulley V-groove and the V-belt is controlled by the external pressure supply of the operating device, the other vehicle frictional force is externally elastic to secure the axial torque of one vehicle in the input / output pulley. It is to provide a continuously variable transmission that is not restricted by the belt type and is particularly suitable for a constant horsepower type by controlling the force by supplying force and indirectly adjusting the one axle torque via belt tension. In the first embodiment, in particular, in order to secure the output vehicle torque, the adjusting device compensates for the shortage of the friction force of the input vehicle by operating the input controller, and constantly supplies elastic force to the input vehicle to variably control the input vehicle friction force to adjust the belt tension. After that, the output vehicle is indirectly controlled with variable torque. In the second embodiment, in order to avoid belt entrainment due to direct pressurization to the output vehicle and to ensure the stability of the output frictional force, the adjustment device performs variable pressurization control on the pressurization value that should always supply elastic force to the input vehicle. By using the wedge effect of the output pulley V groove and adjusting the output friction force to control the variable torque, it is highly efficient in a particularly large speed ratio range without being restricted by the belt type such as tension type or push type belt. To achieve stable constant horsepower transmission.

第三実施形態は、大速比域に於ける入力車の摩擦力不足と出力車の摩擦力過剰を抑制すると同時に小速比域に於いても入力車の摩擦力過剰と出力車の摩擦力不足を抑制して全変速域で最適伝動効率の無段変速機を提供する事である。第四実施形態は、上述第三解決課題の具体化の際入力車の一方には加圧力と弾性力の識別可能な操作機構を、他方には加圧力と弾性力の識別供給可能な簡易な加圧機構を夫々配して高効率を果たす無段変速機を提供する事である。第五実施形態は、無段変速機の入力車と出力車の一方又は双方の可動車にプーリV溝の正確な位置決めを果す非弾性加圧力と、誤差・振動等の吸収整定を果す弾性力とを夫々指令に応じ識別供給可能な操作機構を提供する事です。第六実施形態は、上述第五解決課題を更に簡略化し入出力車の一方又は双方の可動車に対し簡易かつ軽量に非弾性の加圧力と、弾性体による弾性力とを単一の制御指令に応じて識別供給可能な加圧機構を提供する事である。   The third embodiment suppresses the frictional force shortage of the input vehicle and the excessive frictional force of the output vehicle in the large speed ratio region, and at the same time, the frictional force of the input vehicle and the frictional force of the output vehicle also in the small speed ratio region. The aim is to provide a continuously variable transmission with optimum transmission efficiency in the entire transmission range while suppressing the shortage. In the fourth embodiment, when the third solving problem is realized, an operation mechanism capable of discriminating the applied pressure and the elastic force is provided on one side of the input vehicle, and a simple operation capable of discriminating and supplying the applied pressure and the elastic force on the other side. It is to provide a continuously variable transmission that achieves high efficiency by arranging pressure mechanisms. In the fifth embodiment, an inelastic pressure force that accurately positions the pulley V-groove in one or both of the input vehicle and the output vehicle of the continuously variable transmission, and an elastic force that performs absorption settling such as error and vibration It is to provide an operation mechanism that can be identified and supplied according to each command. In the sixth embodiment, the fifth problem to be solved is further simplified, and a simple control command for inelastic pressure applied to one or both of the input / output vehicles and the elastic force by the elastic body with a single control command. It is to provide a pressurizing mechanism that can be identified and supplied according to the situation.

本発明の共通実施手段は、互に定馬力伝動する入出力プーリ中、一方車のトルク確保の為他方車に該操作器が弾性装置を圧縮装置で圧縮して生じた弾性力を常時供給制御し且つ該他方車を出力回転数又は速比の指令に応じて可変加圧制御し、調節装置が該他方車摩擦力の操作でベルトを経て間接的に該一方車軸トルクを調節する事により可変トルク制御を果した無段変速機を提供する事である。第一実施手段は、弾性装置を圧縮装置で直列圧縮して生じた弾性力を入力車に常時供給する加圧装置と、更に調節装置の指令により該加圧装置を経て可変加圧制御する駆動源とでなる入力操作器で入力車摩擦力を可変加圧制御する事でベルトを経て該出力車軸トルクを間接的に可変トルク制御する構成である。第二実施手段は入力車に常時弾性力供給で可変加圧制御する追従車機能を又出力車に変速時に加圧力で非変速時に実質的に非加圧で可変位置決め制御する基準車機能を夫々与え調節装置が入力操作器で入力車摩擦力からVベルトと出力車V溝で作るクサビ摩擦力で間接的に出力軸の可変トルク制御した事です。 The common implementation means of the present invention is to constantly supply and control the elastic force generated by compressing the elastic device by the compression device in the other vehicle in order to ensure the torque of the one vehicle in the input / output pulley that transmits constant horsepower to each other. In addition, the other vehicle is variably pressurized and controlled according to the output rotation speed or speed ratio command, and the adjusting device is variable by adjusting the one axle torque indirectly through the belt by operating the other vehicle friction force. It is to provide a continuously variable transmission that achieves torque control. The first implementation means includes a pressurizing device that constantly supplies an elastic force generated by serially compressing the elastic device to the input vehicle, and a drive that performs variable pressurization control via the pressurizing device according to a command from the adjusting device. In this configuration, the input axle frictional force is variably controlled by an input operating device as a power source, so that the output axle torque is indirectly variably controlled via the belt. The second implementation means has a following vehicle function that performs variable pressurization control by always supplying elastic force to the input vehicle, and a reference vehicle function that performs variable positioning control by substantially applying no pressure during shifting and non-shifting during output shifting. This is because the feed adjuster indirectly controls the variable torque of the output shaft with the wedge friction force created by the V belt and the output wheel V groove from the input vehicle friction force with the input actuator.

第三実施手段は、無段変速機の大速比域では入力車に追従車機能を又出力車に基準車機能を与え更に小速比域では入力車に基準車機能を又出力車に追従車機能を与え、各操作器が各車の操作機能を変速域の途中で切換えた事である。第四実施手段は、入出力可動車の一方は二つの圧縮装置が弾性装置と当接装置を夫々個別に直列連結する個別操作器で又他方は単一圧縮装置が弾性装置と当接装置の並列体を直列連結する識別操作器で夫々加圧切換した事です。第五実施手段は、入出力車可動車の一方又は双方に、弾性装置と第一圧縮装置を直列重畳した第一加圧装置と、当接装置と第二圧縮装置を直列連結した第二加圧装置とで夫々弾性力と加圧力を個別供給する操作器を施す事である。第六実施手段は、入出力車可動車の一方又は双方に、弾性装置と圧縮装置に直列重畳しかつ当接装置と該弾性装置を並列連結して成る加圧装置が制御指令に応じ変速域を弾性力域と加圧力域に識別供給する操作器を施す事である。   The third implementation means provides the following vehicle function to the input vehicle and the reference vehicle function to the output vehicle in the high speed ratio range of the continuously variable transmission, and further follows the reference vehicle function to the input vehicle and the output vehicle in the small speed ratio region. Car functions are given, and each controller switches the operation function of each car in the middle of the shift range. In the fourth embodiment, one of the input / output movable vehicles is an individual controller in which two compression devices individually connect the elastic device and the contact device in series, and the other is a single compression device of the elastic device and the contact device. It is that each pressure switch was performed with the identification controller that connects parallel bodies in series. The fifth implementation means includes a first pressurizing device in which an elastic device and a first compression device are superposed in series, a contact device and a second compression device in series on one or both of the movable I / O vehicles. It is to provide an operating device that individually supplies elastic force and pressure with the pressure device. In the sixth embodiment, the pressure device formed by serially superimposing the elastic device and the compression device and connecting the abutment device and the elastic device in parallel to one or both of the movable vehicles of the input / output vehicle is in accordance with the control command. It is to provide an operating device that distinguishes between the elastic force range and the pressure range.

図1乃至図6に於いて、車両用の可変伝動機10は、入力車1と出力車2間に施すベルト3で成る変速伝動装置10Aと、該同一平面側に入力操作器9と出力操作器8を図4で示す調節装置90で調節する変速制御装置10Bとで構成される。本例では入力操作器9は第一及び第二入力加圧装置11,51でなる個別加圧装置50を更に出力操作器8は出力加圧装置21でなる複合加圧装置40を有し夫々図4に示す駆動源60で付勢される。各加圧装置11,51,21は夫々圧縮装置14,54,24を有し入力弾性装置31と、入力当接装置35と、出力複合装置20とを夫々操作する。入力操作器9は入力車1に第一及び第二入力加圧装置11,51とで調節装置90が個別に又出力操作器8は出力車2に加圧装置21が単一で指令に応じ夫々弾性力と加圧力を識別供給する能力を有する。尚入出力側に略同等機能部品が存在する為本明細書では各部品名称に「入力」、「出力」の区別を要す時は付すが、前後の記述や図面等で解る時は省く。   1 to 6, a variable transmission 10 for a vehicle includes a transmission 10A composed of a belt 3 provided between an input vehicle 1 and an output vehicle 2, and an input operation unit 9 and an output operation on the same plane side. 4 is configured with a shift control device 10B that adjusts the adjusting device 8 with an adjusting device 90 shown in FIG. In this example, the input operating device 9 has an individual pressurizing device 50 composed of the first and second input pressurizing devices 11 and 51, and the output operating device 8 has a combined pressurizing device 40 composed of the output pressurizing device 21. It is energized by the drive source 60 shown in FIG. Each pressurizing device 11, 51, 21 has a compression device 14, 54, 24, respectively, and operates the input elastic device 31, the input contact device 35, and the output composite device 20, respectively. In response to the command, the input operation unit 9 has a first and second input pressurization devices 11 and 51 for the input wheel 1 and an adjustment device 90 for the output operation unit 8 and a single pressurization device 21 for the output wheel 2. Each has the ability to distinguish and supply elastic force and pressure. In addition, since there are substantially equivalent functional parts on the input / output side, in this specification, when it is necessary to distinguish between “input” and “output” for each part name, it is omitted when it is understood by the preceding and following descriptions and drawings.

変速伝動装置10Aは夫々可動車1a,2a と固定車1b,2b を相対向しキーを経て前者が後者に対し軸芯方向に摺動可能に配された可変径プーリ1,2
を含み、夫々入力軸1cと出力軸2cに互に逆向きに配される。各プーリ1,2 は夫々一対の軸受7,6で軸支されて回転し、更に本体10と各可動車1a,2aとの間を夫々一対の軸受5,4で回転力を分離しながら各加圧装置11,51,21で夫々該プーリ可動車を加圧操作している。本体10は、車両等の他伝動機器等を収める第一本体10aと、可変伝動機10を収める第二本体10bとが分離可能に組付される。
The transmission 10A is a variable-diameter pulley 1 and 2 in which the movable wheels 1a and 2a and the fixed wheels 1b and 2b are opposed to each other, and the former is slidable in the axial direction relative to the latter via a key.
Are arranged in opposite directions on the input shaft 1c and the output shaft 2c, respectively. The pulleys 1 and 2 rotate while being supported by a pair of bearings 7 and 6, respectively, while further separating the rotational force between the main body 10 and the movable wheels 1a and 2a by the pair of bearings 5 and 4, respectively. The pressurizing devices 11, 51 and 21 respectively pressurize the pulley movable wheels. The main body 10 is assembled so that a first main body 10a that houses other transmission devices such as a vehicle and a second main body 10b that houses the variable transmission 10 are separable.

Vベルト3は、入力車が出力車を引張伝動する引張型と押込伝動する押込型との二種類のベルトが周知で本発明にはこの両者が適用可能である。その構造説明は省略し例えば前者は米国特許第4,493,681号等で又後者は同第3,949,621号等の例示を記述するに留める。尚本実施例思想は特に引張ベルトでもカム機構等の不安定摩擦力の補償対策を付せずに安定伝動を果すので、金属芯体3aを耐熱樹脂、セラミック、金属等の複合材3bを囲む構造の引張型ベルト3で図示する。本発明の変速伝動装置10Aは次に述べる変速制御装置10Bの操作により図7に示す通り広い可変速可変トルク帯域の全帯域で定馬力の動力伝動を高効率で果すものである。   As the V-belt 3, two types of belts, that is, a tension type in which the input wheel pulls the output wheel and a push-in type in which the input wheel is pushed and transmitted are well known, and both can be applied to the present invention. The description of the structure is omitted. For example, the former is described in U.S. Pat. No. 4,493,681, and the latter is only described in U.S. Pat. No. 3,949,621. In addition, since the idea of this embodiment achieves stable transmission without taking compensation measures for unstable friction force such as a cam mechanism even with a tension belt, the metal core 3a surrounds a composite material 3b made of heat-resistant resin, ceramic, metal, or the like. This is illustrated by a tension belt 3 having a structure. The speed change transmission device 10A according to the present invention achieves a constant horsepower power transmission with high efficiency in the entire wide variable speed variable torque band as shown in FIG. 7 by the operation of the speed change control device 10B described below.

各操作器9,8は、対応する各伝達車1,2の可動車1a,2aに加圧力又は弾性力を制御指令に応じて個別に識別供給可能に構成されている。即ち第一加圧装置による加圧力供給は対応伝達車を基準車機能に又第二加圧装置による弾性力供給は対応伝達車を追従車機能に夫々働かせる。ここで、基準車・追従車機能とは、摩擦伝動時の安定要因の設定を基準車側で定め又不安定要因を追従車側で自己収束し整定する機能を云う。即ち基準車機能は摩擦伝動時のベルトの基準位置を定めて出力回転数や速比を決定する機能で、ベルト接触半径を定めるプーリV溝の位置決め制御を意味する。変速操作時はプーリからベルトに加圧力を付与して可変径位置決め制御するが速比が決まると実質的に加圧力印加も停止し可動車によるV溝位置は固定されるので通常の定速比プーリと同一条件のV溝を形成する。追従車機能はベルトプーリの接触面摩粍や内外の外乱振動等の誤差要因が生じても上述位置決め制御とは全く無関係に両者間に常時所定摩擦力の供給維持しその誤差要因を正規伝動状態に瞬時に復帰させる自己整定乃至自動調芯機能を弾性力の働きで果し各軸の軸トルクを決定する機能である。   Each of the operation devices 9 and 8 is configured to be able to individually identify and supply pressure or elastic force to the corresponding movable wheels 1a and 2a of the transmission wheels 1 and 2 according to a control command. In other words, the pressure supply by the first pressurizing device makes the corresponding transmission wheel function as a reference vehicle function, and the elastic force supply by the second pressurizing device makes the corresponding transmission wheel work by the following vehicle function. Here, the reference vehicle / following vehicle function refers to a function of setting a stable factor at the time of friction transmission on the reference vehicle side and self-converging and stabilizing the unstable factor on the following vehicle side. That is, the reference vehicle function is a function for determining the output rotational speed and speed ratio by determining the reference position of the belt at the time of friction transmission, and means positioning control of the pulley V groove for determining the belt contact radius. At the time of gear shifting operation, a variable diameter positioning control is performed by applying a pressure from the pulley to the belt, but when the speed ratio is determined, the application of the pressure is substantially stopped and the V groove position by the movable vehicle is fixed, so the normal constant speed ratio A V-groove with the same conditions as the pulley is formed. In the following vehicle function, even if error factors such as belt pulley contact surface friction and internal / external disturbance vibrations occur, the specified frictional force is always maintained between the two regardless of the positioning control described above, and the error factors are normally transmitted. This is a function for determining the shaft torque of each axis by performing the self-settling or automatic alignment function for instantaneous recovery to the moment by the action of elastic force.

入力操作器9は、本例では入力車1への加圧力供給用の第一入力加圧装置11と弾性力供給用の第二入力加圧装置51と夫々個別の指令供給系路を持つ個別加圧装置50の入力加圧装置と駆動源60a,60bとで構成される。第一加圧装置11は入力切換器の当接装置35と第一圧縮装置14との直列構造で、又第二加圧装置51は弾性装置31と第二圧縮装置54との直列構造で夫々構成し両者は共用の摺動体36と軸受5を経てプーリ1の可動車1aを互に回転軸芯方向に平行に加圧する。当接装置35と弾性装置31は入力車1の軸1cの外周に同軸で同芯円上に並列で軸芯方向に平行に配され、又各圧縮装置14,54は同軸上に縦続配列される。従って各加圧装置の加圧形態は、車1aに対し装置14が第二本体10bの内壁から又装置54が外壁から図2の圧力伝達装置70を経て弾性装置31に圧力伝達する。   In this example, the input operating device 9 is an individual having a first input pressurizing device 11 for supplying pressure to the input wheel 1 and a second input pressurizing device 51 for supplying elastic force, and an individual command supply system. It is comprised by the input pressurization apparatus of the pressurization apparatus 50, and the drive sources 60a and 60b. The first pressurizing device 11 has a series structure of the contact device 35 of the input switching device and the first compression device 14, and the second pressurization device 51 has a serial structure of the elastic device 31 and the second compression device 54, respectively. Both are configured to press the movable wheel 1a of the pulley 1 in parallel with each other in the direction of the rotation axis through the common sliding body 36 and the bearing 5. The contact device 35 and the elastic device 31 are coaxially arranged on the outer periphery of the shaft 1c of the input wheel 1 and are arranged in parallel on the concentric circle and parallel to the axial direction, and the compression devices 14 and 54 are arranged in cascade on the same axis. The Therefore, the pressurizing form of each pressurizing device is that the device 14 transmits pressure to the elastic device 31 from the inner wall of the second main body 10b and the device 54 from the outer wall to the elastic device 31 via the pressure transmitting device 70 of FIG.

各加圧装置11,51の各圧縮装置14,54は共に摺動装置13,53とこれを付勢する付勢装置12,52とで成る。各摺動装置13,53は、二つの摺動具16,17と56,57並びに両者間を摺動させる押圧装置15,55を有し本例ではボールネジである。摺動装置13は管状形成し入力車1の周囲に又摺動装置53は棒状形成され該軸1の延長上に離隔して位置する。付勢装置12,52は本例では共にウォーム18,58とホイール19,59から成るウォーム伝達機で成り、夫々軸18a,58aに駆動源60a、60bからの速比、トルク指令が入力され摺動装置13,53が一旦位置決め又は摩擦圧が決るとその指令の供給を停止しても該位置又は該摩擦力を保つセルフロック機能を果す。各加圧装置11,51はテーパローラ5とスラスト軸受5bとの間で非回転状態で車1を加圧する。歯車19のキー19aを経た雄ネジの摺動具16と歯車59に直結の雌ネジの摺動具57とは回転に伴って上下に摺動する事はなく、加圧装置11では摺動具17が又加圧装置51では摺動具56が上下動する。 The compression devices 14 and 54 of the pressurizing devices 11 and 51 are both composed of sliding devices 13 and 53 and biasing devices 12 and 52 for biasing the sliding devices 13 and 53. Each sliding device 13, 53 has two sliding tools 16, 17, 56, 57 and a pressing device 15, 55 that slides between both, and is a ball screw in this example. The sliding device 13 is formed in a tubular shape, and the sliding device 53 is formed in a rod shape around the input wheel 1 and is spaced apart on the extension of the shaft 1. The urging devices 12 and 52 are both worm transmissions including worms 18 and 58 and wheels 19 and 59 in this example, and the speed ratios and torque commands from the drive sources 60a and 60b are input to the shafts 18a and 58a, respectively. Once the moving devices 13 and 53 are positioned or the friction pressure is determined, a self-locking function is maintained that maintains the position or the frictional force even if the supply of the command is stopped. The pressurizing devices 11 and 51 pressurize the vehicle 1 between the taper roller 5 and the thrust bearing 5b in a non-rotating state. The male screw sliding tool 16 passed through the key 19a of the gear 19 and the female screw sliding tool 57 directly connected to the gear 59 do not slide up and down with rotation. In the pressure device 51, the sliding tool 56 moves up and down.

第一加圧装置11の当接装置35は切換器として働き、間隙38を経て配される二つの摺動材36,37で成り、圧縮装置14は作動指令の選択に応じ両者を互に当接する当接動作時と、両者間を離隔させる当接解除時とを調節装置90の作動指令で加圧力の供給と停止を制御される。当接動作時は圧縮装置14が摺動材36,37と軸受5を介し、入力車1に直接加圧力を与えるので該車1が可変径位置決め制御の基準車機能を果す事になる。当接解除時は間隙38を生じ圧縮装置14は入力車1には作用しないので追従車機能のトルク制御が選択できる。本例では摺動材37は圧縮装置14の摺動具17と共用し摺動材36は弾性装置31の摺動体34と共用する。77は自転阻止の回止具である。 The abutting device 35 of the first pressurizing device 11 functions as a switching device and is composed of two sliding members 36 and 37 disposed through a gap 38. The compression device 14 applies both to each other according to the selection of an operation command. Supply and stop of pressurizing force are controlled by the operation command of the adjusting device 90 at the time of the contact operation in contact and at the time of release of contact to separate the two. During the contact operation, the compression device 14 directly applies pressure to the input wheel 1 through the sliding members 36 and 37 and the bearing 5, so that the wheel 1 performs the reference vehicle function of the variable diameter positioning control. When the contact is released, the gap 38 is generated and the compression device 14 does not act on the input wheel 1, so that torque control of the following vehicle function can be selected. In this example, the sliding material 37 is shared with the sliding tool 17 of the compression device 14, and the sliding material 36 is shared with the sliding body 34 of the elastic device 31. Reference numeral 77 denotes a rotation prevention device for preventing rotation.

第二加圧装置51の弾性装置31は中心貫通孔を施され、四枚の皿バネの直列構造で示す弾性体32と、これを両端で加圧する二つの摺動体33,34とで成り、第一摺動装置13の第一摺動具16、17と当接装置35の外周に該貫通孔が同芯配置される。弾性体は弾性振動の伝達を一端で可能で他端で不能に構成し且つ両端が摺動可能な為浮遊状態に支持される。図2の通り弾性装置31は本例では圧縮装置51との間に圧力伝達装置70が配されて弾性体32をトルク指令で直列圧縮し同時に生じた弾性力を摺動体34と軸受5を介し供給するので、この時該車1が可変加圧制御の追従車機能を果す事になる。従って第一加圧装置11の加圧力と第二加圧装置51の弾性力とは同時供給でき共に共通の摺動体34と軸受5を経て互に車1を並列印加する。   The elastic device 31 of the second pressurizing device 51 is provided with a central through hole, and is composed of an elastic body 32 shown by a series structure of four disc springs, and two sliding bodies 33 and 34 that pressurize the elastic body 32 at both ends. The through holes are arranged concentrically on the outer periphery of the first sliding tools 16 and 17 of the first sliding device 13 and the contact device 35. The elastic body is configured to be capable of transmitting elastic vibration at one end and not at the other end, and is supported in a floating state because both ends are slidable. As shown in FIG. 2, in this example, the elastic device 31 is provided with a pressure transmission device 70 between the compression device 51 and compresses the elastic body 32 in series with a torque command, and simultaneously generates the elastic force via the sliding body 34 and the bearing 5. At this time, the vehicle 1 performs the function of the following vehicle under variable pressure control. Accordingly, the pressurizing force of the first pressurizing device 11 and the elastic force of the second pressurizing device 51 can be supplied simultaneously, and the vehicle 1 is applied in parallel to each other via the common sliding body 34 and the bearing 5.

図2の圧力伝達装置70は、圧縮装置54の摺動具56の端部56aに連結しこれを中心受加圧点から左右対称に延長した第一伝達手段71と摺動体33を兼ねる第二伝達手段74とでなる横伝達手段78と、その両端に連結し摺動具56の軸芯方向に平行に二本の加圧軸72でなる縦伝達手段73と、更に弾性装置31の押圧用加圧軸72,72の摺動方向を円滑案内する軸受と本体貫通孔でなる支持装置79と成る。各手段71,72,73は四角形枠を形成し高加圧でも四角形を保守させる為各軸72,72はリニヤボール軸受75,76を介して本体10dで支持し摺動具56と同方向に加圧する。尚本例では摺動体33と加圧環74を共用し弾性装置31を直列加圧する。そこで各操作器は、該プーリ周囲に配した該各弾性装置又は当接装置、該各圧縮装置、若しくは該各加圧装置と、該プーリ離隔地の該圧縮装置、該弾性装置又は当接装置、若しくは該プーリ軸受との間を夫々上記圧力伝達装置で互に圧力伝達している。   The pressure transmission device 70 of FIG. 2 is connected to the end portion 56a of the sliding tool 56 of the compression device 54, and is a second transmission device that doubles as a first transmission means 71 and a sliding body 33 that extend symmetrically from the center receiving and pressing point. A lateral transmission means 78 composed of a transmission means 74, a longitudinal transmission means 73 composed of two pressure shafts 72 connected to both ends thereof and parallel to the axial direction of the sliding tool 56, and further for pressing the elastic device 31 A support device 79 including a bearing for smoothly guiding the sliding direction of the pressure shafts 72 and 72 and a main body through hole is formed. Each means 71, 72, 73 forms a rectangular frame, and the shafts 72, 72 are supported by the main body 10 d via linear ball bearings 75, 76 and added in the same direction as the sliding tool 56 in order to maintain the square even under high pressure. Press. In this example, the sliding body 33 and the pressure ring 74 are shared and the elastic device 31 is pressurized in series. Therefore, each operation device includes the elastic device or the contact device arranged around the pulley, the compression device, or the pressure device, and the compression device, the elastic device, or the contact device of the pulley separation. Alternatively, pressure is transmitted between the pulley bearings by the pressure transmission device.

図3の出力操作器8は、本例では出力車2への第一加圧装置の加圧力供給と第二加圧装置の弾性力供給との各圧縮装置を単一共用に持つ出力加圧装置21が駆動源60cへの単一の制御指令に応じて両者を夫々識別供給する。操作器9と異なり、円環状をなす出力弾性装置41とその内側又は外側に出力切換器である出力当接装置45を同軸同芯円状に並列組付した複合装置20を更に単一の出力圧縮装置24で直列組付した複合加圧装置40である出力加圧装置21を持つ。圧縮装置24は2つ摺動具26,27とボールネジ26aの押圧装置25とでなる摺動装置23、更にウォーム28とホイール29で成りセルフロック機能を持つウォーム伝達機の付勢装置22で成る。圧縮装置24及び54の相違点は、摺動装置53は右ネジ加圧されるが摺動装置23は左ネジ加圧された事と、摺動具56は非回転で上下動するが、摺動具26は回転しかつ上下動する為軸受49が配される事と、更に圧縮装置54の全体が振動不能に本体10bに設置されるが、圧縮装置24では摺動装置23のみは伝達車2と弾性装置41との間を弾性振動伝達可能な連動状態又は浮遊状態に支持する為摺動具26は付勢装置22のホイール29との間に軸芯方向に摺動可能にスプライン結合26cを延長配置して回転伝動を可能にした事等がある。   In this example, the output operation unit 8 in FIG. 3 has an output pressurization having a single compression device for supplying pressure to the output wheel 2 and supplying an elastic force to the second pressurization device. The device 21 identifies and supplies both in response to a single control command to the drive source 60c. Unlike the controller 9, the output elastic device 41 having an annular shape and the output device 45, which is an output switching device, on the inner side or the outer side of the output device 41 are arranged in parallel in a coaxial concentric circle. It has an output pressurizing device 21 which is a composite pressurizing device 40 assembled in series by a compressing device 24. The compression device 24 includes a sliding device 23 including two sliding tools 26 and 27 and a pressing device 25 for the ball screw 26a, and further includes a worm transmitting device urging device 22 including a worm 28 and a wheel 29 and having a self-locking function. . The difference between the compression devices 24 and 54 is that the sliding device 53 is pressurized with a right-hand screw but the sliding device 23 is pressurized with a left-hand screw, and the sliding tool 56 moves up and down without rotation. Since the moving tool 26 rotates and moves up and down, a bearing 49 is arranged, and the entire compression device 54 is installed in the main body 10b so as not to vibrate. In the compression device 24, only the sliding device 23 is a transmission wheel. 2 and the elastic device 41 are supported in an interlocking state or floating state capable of transmitting elastic vibration, and the sliding tool 26 is slidable in the axial direction between the wheel 29 of the urging device 22 and a spline coupling 26c. Has been extended to enable rotational transmission.

軸受49を経て加圧される弾性装置41は一端閉止の円環状型枠又は鍋に形成した摺動体43と、摺動体44との間で収納加圧する複数の皿バネでなる弾性体42を持つ。本例では図2の弾性体32は伝達車側に又図3の弾性体42は本体側に夫々配されるが、共に弾性体32,42の一端は弾性振動可能に他端は振動不能に支持させて摩擦伝動面での振動抑制を効果的に実施する。当接装置45は、二つの摺動材46,47で成り両者間の間隙を指令で制御される、本例では摺動材47が摺動体43の鍋状外縁で又摺動材46は摺動体44で夫々共用している。図3は中心線の左半分で弾性装置41の軽負荷トルク時には間隙48が介在し当接装置45が当接解除状態で弾性力を又右半分で弾性装置41が所定値を越え当接装置45が当接動作状態で加圧力を夫々伝達車2に識別供給する状態を示す。尚本例の当接動作状態では弾性体42の弾性力Psは加圧力に加わり常時供給する。   The elastic device 41 that is pressurized through the bearing 49 has a sliding body 43 formed in an annular mold frame or pan that is closed at one end, and an elastic body 42 that consists of a plurality of disc springs that store and pressurize between the sliding body 44. . In this example, the elastic body 32 in FIG. 2 is disposed on the transmission wheel side and the elastic body 42 in FIG. 3 is disposed on the main body side. Effectively suppresses vibration on the friction transmission surface by supporting it. The contact device 45 is composed of two sliding members 46 and 47, and the gap between them is controlled by a command. In this example, the sliding member 47 is a pan-shaped outer edge of the sliding body 43 and the sliding member 46 is a sliding member. Each of the moving objects 44 is shared. FIG. 3 shows a gap 48 in the left half of the center line when the elastic device 41 is lightly loaded, and the elastic device 41 exceeds the predetermined value in the right half and the elastic device 41 exceeds the predetermined value when the abutting device 45 is in the contact released state. Reference numeral 45 denotes a state in which the pressure is discriminated and supplied to the transmission wheel 2 in the contact operation state. In the contact operation state of this example, the elastic force Ps of the elastic body 42 is always supplied while being applied to the applied pressure.

尚加圧装置21でも加圧装置51と同一構造の縦伝達手段83と横伝達手段88と支持装置89とで成り左右対称に四角形枠の圧力伝達装置80を持つ為類似参照符号を付し説明を省く。相違点は本例では全加圧機構を固定車2bの裏側に配し弾性振動も相互に伝える事である。又図5は加圧装置21の本体10dと複合装置20の一端間に配した第一検出器の圧力検出器94の断面図である。環状の弾性体42を持つ弾性装置42と摺動材46、47でなる当接装置45とが液封した主ダイヤフラム104を同時に圧縮可能に構成した環状検出端101と、この検出端101の一箇所から放射状に延長して副ダイヤフラム106を変位する導出端102と、この端部に配し半導体歪ゲージをもった圧力−電気信号変換部103と、更に油媒体105とで成る。単に印加弾性力又は加圧力だけで無く定速比運転時での出力摩擦伝達面での摩擦力の値を適正に感知し且つ摩擦圧によるトルクの負帰還制御が可能となる。   It should be noted that the pressurizing device 21 is composed of a longitudinal transmission means 83, a lateral transmission means 88, and a support device 89 having the same structure as the pressurization device 51, and has a rectangular frame pressure transmission device 80 symmetrically, so that similar reference numerals are given. Omit. The difference is that, in this example, the entire pressurizing mechanism is arranged on the back side of the fixed wheel 2b to transmit elastic vibrations to each other. FIG. 5 is a cross-sectional view of the pressure detector 94 of the first detector disposed between the main body 10 d of the pressurizing device 21 and one end of the composite device 20. An annular detection end 101 in which an elastic device 42 having an annular elastic body 42 and an abutment device 45 composed of sliding members 46 and 47 are configured to be capable of simultaneously compressing a main diaphragm 104 sealed, and one of the detection ends 101 The lead-out end 102 extends radially from the location and displaces the sub-diaphragm 106, the pressure-electrical signal conversion unit 103 having a semiconductor strain gauge disposed at the end, and the oil medium 105. It is possible to appropriately sense not only the applied elastic force or applied pressure but also the value of the friction force on the output friction transmission surface during constant speed ratio operation, and to perform negative feedback control of the torque by the friction pressure.

図4の通り各操作器8,9は、各加圧装置11,51及び21に夫々個別に駆動源60a,60b及び60cを隣接して施し電子調節装置90から速比、トルク及び制御指令が個別の指令供給系路に加圧力、弾性力及び制御指令として供給される。各駆動源60には夫々にギヤヘッド64、直流サーボの可逆モータ65,ブレーキ66,エンコーダ67を持ち各対応する参照部品番号に符号a,b,cを付して示す。両操作器には互に同期したサーボ制御を要するが、各圧縮装置14,54及び24の移動操作量は夫々異る為対応の各軸18a,58a及び28aへの速比、トルク及び制御指令は調節装置90から個別に設けた速比の異なる歯車伝達機61a,61b,61cをもち必要に応じ歯車68,69を付設する。 As shown in FIG. 4, the operating devices 8 and 9 are respectively provided with drive sources 60 a, 60 b and 60 c adjacent to the pressurizing devices 11, 51 and 21, respectively, and the speed ratio, torque and control command are received from the electronic control device 90. Supplied as pressure, elastic force and control commands to individual command supply paths. Each drive source 60 has a gear head 64, a DC servo reversible motor 65, a brake 66, and an encoder 67, respectively, and corresponding reference part numbers are denoted by reference symbols a, b, and c. The two controllers require servo control synchronized with each other, but the moving operation amounts of the compression devices 14, 54 and 24 are different, so the speed ratio, torque and control command to the corresponding shafts 18a, 58a and 28a are different. Is equipped with gear transmissions 61a, 61b, 61c with different speed ratios provided individually from the adjusting device 90, and with gears 68, 69 as necessary.

調節装置90は、CPU又は演算処理装置95及び各種RAM,ROMでなる記憶装置96,97を中心としてA/D乃至D/A等の変換増幅器98、伝送バスをもつ入出力装置91を経て入力及び出力情報を導出入する。入力情報はエンジン等のスタータスイッチ等の変速機10の起動指令と、変速指令又は除加圧指令などの制御指令と、図1で第二検出器として伝達車1,2の回転数検出器92,93の回転数と、圧力検出器94からフィルタ99を経たベルトプーリ摩擦接触圧と、更に各エンコーダ操作量Ra,Rb,Rc等である。出力情報は変換増幅器98a,98b,98cから各モータ65a,65b,65cへの操作指令Ea,Eb,Ecとブレーキ指令Ba,Bb,Bcである。   The adjusting device 90 is input via a CPU / arithmetic processing device 95 and storage devices 96 and 97 composed of various RAMs and ROMs through a conversion amplifier 98 such as A / D to D / A and an input / output device 91 having a transmission bus. And output information. Input information includes a start command for the transmission 10 such as a starter switch such as an engine, a control command such as a shift command or a depressurization command, and a rotation speed detector 92 for the transmission wheels 1 and 2 as the second detector in FIG. , 93, the belt pulley frictional contact pressure from the pressure detector 94 through the filter 99, and the encoder operation amounts Ra, Rb, Rc, and the like. The output information is operation commands Ea, Eb, Ec and brake commands Ba, Bb, Bc from the conversion amplifiers 98a, 98b, 98c to the motors 65a, 65b, 65c.

記憶装置96は演算処理装置95がプログラマブル制御を実行する基礎情報を持つ。又記憶装置97は三つの処理情報で成りメモリ97aはプーリ1が追従車機能でプーリ2が基準車機能で作動する時の同期及び切換制御情報を、メモリ97bはプーリ1が基準車機能でプーリ2が追従車機能で作動する時の同期及び切換制御情報を、メモリ97cは両プーリ1,2の機能切換時の同期操作情報や各操作器8,9を非同期で個別の単独操作した時の夫々定トルク型伝動機、トルク変換型伝動機の制御情報を予め記憶される。フィルタ99は弾性力から弾性振動分を除く。上述の各駆動源60および調節装置90の各機器は例えば山洋電気(株)出版「1998〜99サーボシステム総合カタログ」等で既に開示され市販中なので詳細説明は省く。 The storage device 96 has basic information for the arithmetic processing unit 95 to execute programmable control. The storage device 97 is composed of three processing information, the memory 97a is synchronization and switching control information when the pulley 1 is operated by the following vehicle function and the pulley 2 is operated by the reference vehicle function, and the memory 97b is the pulley 1 by the reference vehicle function and the pulley. The synchronization and switching control information when the 2 is operated by the following vehicle function, the memory 97c is the synchronous operation information when switching the functions of both pulleys 1 and 2 and when the individual operating devices 8 and 9 are operated individually and individually. Control information for the constant torque type transmission and the torque conversion type transmission is stored in advance. The filter 99 removes elastic vibration components from the elastic force. Each device of the drive source 60 and the adjusting device 90 described above is already disclosed in, for example, Sanyo Denki Co., Ltd. “1998-99 Servo System General Catalog” and the like, and is not commercially available.

次に第1実施例の動作を述べる。本例の思想は、引張型ベルトを用いて入力又は出力車のいずれの伝達車に対してもベルトプーリ間の接触半径が大きい時は常に該伝達車を基準車機能に、接触半径が小さい時は常に該伝達車を追従車機能に夫々働かせる為に、対応する各操作器からの加圧力又は弾性力を識別して供給制御する事である。本例では入力及び出力回転数N1,N0の速比ε(=N1/N0)が中間域のε=1を基準に切換える場合を述べる。即ち変速領域が、ε>1の大速比域又は低速域では入力車1に追従車機能を出力車2に基準車機能を与え個別操作して成る第一伝動装置Aの伝動形態で、逆にε<1の小速比域又は高速域では入力車1に基準車機能を出力車2に追従車機能を与え個別操作して成る第二伝動装置Bの伝動形態で夫々作動する様に、両操作器8,9と伝動装置の動作形態を切換える。図1は入力車1が最小半径r10で出力車2が最大半径r00なので、操作器9では入力切換器の当接装置35は当接解除状態で弾性装置31の弾性力を、操作器8では出力切換器の当接装置45が当接動作状態で加圧力を夫々供給し第一伝動装置Aを成し、この伝動中に増速指令が供給されたとする。   Next, the operation of the first embodiment will be described. The idea of this example is that when the contact radius between the belt pulleys is large for any input or output vehicle using a tension belt, the transmission vehicle is always used as a reference vehicle function and the contact radius is small. Is to control the supply by identifying the applied pressure or elastic force from each corresponding operating device in order to always make the transmission vehicle function in the following vehicle function. In this example, the case where the speed ratio ε (= N1 / N0) of the input and output rotational speeds N1 and N0 is switched based on ε = 1 in the intermediate region will be described. In other words, in the high speed ratio range where ε> 1 or the low speed range, the transmission mode of the first transmission device A is configured by individually operating the input vehicle 1 with the following vehicle function and the output vehicle 2 with the reference vehicle function. In the small speed ratio range or high speed range where ε <1, the input vehicle 1 is provided with a reference vehicle function and the output vehicle 2 is provided with a follow-up vehicle function so as to operate in the transmission form of the second transmission device B which is individually operated. The operation modes of both the operating devices 8 and 9 and the transmission are switched. In FIG. 1, the input wheel 1 has the minimum radius r10 and the output wheel 2 has the maximum radius r00. Therefore, in the operating device 9, the contact device 35 of the input switching device is in the released state, and the operating device 8 Assume that the abutment device 45 of the output switching device supplies pressures in the abutment operation state to form the first transmission device A, and a speed increase command is supplied during this transmission.

図6は、変速域の速比εを横軸に、ベルトプーリ間摩擦力Pと接触半径rを夫々左右の縦軸に示す動作特性図で、図6Aは入力車の又図6Bは出力車の各特性を示す。起動時は図1の最大速比εmaxの為に入力車1には弾性体32の最大圧縮圧により最大摩擦力が施される。最大張力のVベルト3を経て出力車2のV溝には張力による最大摩擦力が保証される。本例の場合は出力当接装置45が当接動作中でも弾性体42の弾性加圧力は軸受49、摺動装置23及び圧力伝達装置80を経て、図6Bの二点鎖線の基礎圧Ps0は供給され続ける。従って出力車2の摩擦力はベルト張力と基礎圧Ps0が重畳した最大値P0maxになる。増速指令が加わり三つのモータ67が動くと各軸18a,58a,28aが回動し、入力車側では当接装置35の間隙38は挾まるが影響は無く、弾性体32が圧縮装置54により図6Aの通り圧縮がP11に減圧されるのでトルク指令としての供給弾性力も減り入力摩擦力も減る。出力車側ではベルト張力による摩擦力分が減少する為出力摩擦力もP01に減圧し同時圧縮装置21により複合装置20はそのままの状態で圧縮装置21の摺動具26,27間のみが相対変位し、圧力伝達装置80を経て可動車2aを速比指令としての供給加圧力で強制移動しベルト半径をr01に減ずる。この時同時に弾性力の働きで減圧に拘わらず入力車1の半径r10は増しr11に移動する。この一連の動作が同時に同期して行われる。以下同様に再度増速指令が加わると同じ動作を繰返し、速比ε=1に達するまで繰返す。   FIG. 6 is an operational characteristic diagram in which the speed ratio ε of the speed change range is shown on the horizontal axis, and the frictional force P between belt pulleys and the contact radius r are shown on the left and right vertical axes. FIG. 6A is an input vehicle and FIG. Each characteristic is shown. At the time of startup, the input wheel 1 is subjected to the maximum frictional force by the maximum compression pressure of the elastic body 32 because of the maximum speed ratio εmax of FIG. The maximum frictional force due to the tension is guaranteed in the V groove of the output wheel 2 through the V belt 3 having the maximum tension. In the case of this example, even when the output contact device 45 is in contact operation, the elastic pressure of the elastic body 42 is supplied through the bearing 49, the sliding device 23, and the pressure transmission device 80, and the basic pressure Ps0 of the two-dot chain line in FIG. Continue to be. Therefore, the frictional force of the output wheel 2 becomes the maximum value P0max in which the belt tension and the basic pressure Ps0 are superimposed. When the speed increasing command is applied and the three motors 67 are moved, the shafts 18a, 58a, and 28a are rotated. On the input wheel side, the gap 38 of the abutment device 35 is stagnated but there is no effect, and the elastic body 32 is compressed. As a result, the compression is reduced to P11 as shown in FIG. 6A, so that the supply elastic force as the torque command is reduced and the input friction force is also reduced. On the output vehicle side, the frictional force due to the belt tension decreases, so the output frictional force is also reduced to P01, and the simultaneous compression device 21 keeps the composite device 20 as it is, and the relative displacement is only between the sliding tools 26 and 27 of the compression device 21. Then, the movable vehicle 2a is forcibly moved by the supply pressure as a speed ratio command through the pressure transmission device 80, and the belt radius is reduced to r01. At the same time, the radius r10 of the input wheel 1 increases and moves to r11 regardless of the pressure reduction due to the action of the elastic force. This series of operations is performed simultaneously and synchronously. Similarly, when the speed increasing command is applied again, the same operation is repeated and repeated until the speed ratio ε = 1 is reached.

更に増速指令がε=1に達すると当接装置35、45が両切換器として働き二つの操作器8,9の動作が瞬時に切換わる。即ち入力側では当接装置35の僅かに残された間隙38は調節装置90の作動指令で瞬時に消去し摺動材36,37は当接動作状態に入り弾性体32の弾性力は当接装置35の加圧力に優先的に速比を固定して切換が行われる。出力側では同時に付勢装置22の働きで摺動具26は上昇し複合装置20を減圧するので当接装置45は圧力検出器94から当接解除状態に入り、弾性体42の弾性力が摺動装置23、圧力伝達装置80を経て車2に伝えられる。従ってε<1の小速比域では、入力車1が接触半径を増大し基準車機能で又出力車2が接触半径を減少し追従車機能で成る第二伝動装置Bとして働く事になる。第一伝動装置Aでは出力回転数は出力操作器8で直接制御し、出力トルクは入力操作器9でベルト張力を経て間接制御したのに比し、切換後は第二伝動装置Bでは出力回転数が操作器9の速比指令で間接制御され出力トルクが操作器8のトルク指令で直接制御される。従って以後は調節装置90による各制御指令と該各補償信号の供給切換がある以外は全く同様に安定伝動を続ける。図3の左半分は増速指令が更に加わり出力回転数での速比εs の出力車2及び加圧装置21の状態を示す。最小速比εminまで同じ動作をする。   Further, when the speed increasing command reaches ε = 1, the contact devices 35 and 45 function as both switching devices, and the operations of the two operating devices 8 and 9 are switched instantaneously. That is, on the input side, the slightly remaining gap 38 of the contact device 35 is instantaneously erased by the operation command of the adjusting device 90, and the sliding members 36 and 37 enter the contact operation state, and the elastic force of the elastic body 32 is contacted. Switching is performed by fixing the speed ratio preferentially to the pressure applied by the device 35. At the same time, on the output side, the slidable tool 26 is raised by the action of the urging device 22 to depressurize the composite device 20, so that the contact device 45 enters the contact release state from the pressure detector 94, and the elastic force of the elastic body 42 is slid. It is transmitted to the vehicle 2 through the moving device 23 and the pressure transmission device 80. Therefore, in the small speed ratio range of ε <1, the input vehicle 1 increases the contact radius and functions as the reference vehicle function, and the output vehicle 2 decreases the contact radius and functions as the second transmission device B configured as the following vehicle function. In the first transmission device A, the output rotational speed is directly controlled by the output operation unit 8, and the output torque is controlled indirectly by the input operation unit 9 via the belt tension. The number is indirectly controlled by the speed ratio command of the operating device 9 and the output torque is directly controlled by the torque command of the operating device 8. Therefore, thereafter, stable transmission is continued in exactly the same manner except that each control command by the adjusting device 90 and the supply switching of each compensation signal are performed. The left half of FIG. 3 shows the state of the output wheel 2 and the pressurizing device 21 with the speed ratio εs at the output rotational speed when the speed increase command is further applied. The same operation is performed up to the minimum speed ratio εmin.

逆に再び最大速比εmaxに復帰するには上述と逆回転の減速指令を各モータ65に与える事で上述と逆の動作手順で達成できる。速比ε=1での機能切換は、ベルト3の長手方向の伸びと幅方向の厚味の経年変化の悪影響を無くす為に本例では調節装置90が常時入出力車回転数検出器92,93と圧力検出器94から算出し演算する速比信号εとトルク信号を基準に各加圧装置へのトルク及び速比指令の指令供給の切換をする例を述べる。然も実際には速比ε=1付近での伝動装置A及びB間のハンチングを阻止する為各指令は図6A,6Bの速比対接触半径・摩擦力特性に示す通り動作スキ間(Differential)を施して制御される。尚上述の例では操作器9の弾性装置31又は当接装置35の一方のみしか車1の加圧に影響しないので両圧縮装置14,54を常に駆動しても良いが必ずしもそうする必要は無く、車1に影響しない圧縮装置は図2の左側摺動体の如くその期間弾性体への指令の供給を停止し又は外部加圧を停止しある圧縮状態で待機しても良くまた切換時のみだけでなく常時両者を同時駆動させれば良い。更に弾性体31,41、プーリ1,2、ベルト3等の伝動部材が長期間の高圧縮圧で磨耗やヘタリ変形劣化した時に各車1,2で所定摩擦力が継続維持でき無くなる恐れが残るが、本例では図1の最大速比状態で伝動運転を停止する際でも調節装置90から加圧装置51,21の高加圧を低加圧に強制的に解除又は加圧する除圧又は加圧指令を与え長期間の運転停止の時の強制解放による経年劣化の阻止対策を施し得る。調節装置は変速機停止中に該第二及び複合加圧装置等入出力車側の各弾性装置の圧縮を解放状態にしても良い。又各増幅器98は両操作器の切換時のみ直流モータ65を供給電圧又はパルス量操作で急速切換動作でき瞬時速動指令を供給して機能切換しても良い。   On the other hand, returning to the maximum speed ratio εmax can be achieved by an operation procedure reverse to that described above by giving a reverse rotation command to each motor 65. In the present example, the function switching at the speed ratio ε = 1 eliminates the adverse effects of the longitudinal extension of the belt 3 and the thickness change in the width direction. An example of switching the command supply of torque and speed ratio command to each pressurizing device based on the speed ratio signal ε and torque signal calculated and calculated from 93 and the pressure detector 94 will be described. However, in order to prevent the hunting between the transmission devices A and B in the vicinity of the speed ratio ε = 1 in practice, each command is determined as shown in the speed ratio vs. contact radius / friction force characteristics in FIGS. 6A and 6B. ) To be controlled. In the above example, since only one of the elastic device 31 or the contact device 35 of the operating device 9 affects the pressurization of the vehicle 1, both the compression devices 14 and 54 may be always driven, but it is not always necessary to do so. The compression device that does not affect the vehicle 1 may stop the supply of commands to the elastic body during that period, such as the left sliding body in FIG. 2, or may stop the external pressurization and wait in a certain compression state, or only at the time of switching. Instead, it is sufficient to always drive both at the same time. Further, when the transmission members such as the elastic bodies 31 and 41, the pulleys 1 and 2 and the belt 3 are worn or deteriorated due to high compression pressure for a long time, there is a possibility that the predetermined frictional force cannot be continuously maintained in each of the vehicles 1 and 2. However, in this example, even when the transmission operation is stopped in the maximum speed ratio state of FIG. 1, depressurization or pressurization that forcibly releases or pressurizes high pressurization of the pressurization devices 51 and 21 from the adjustment device 90 to low pressurization. A pressure command can be given to prevent aged deterioration by forced release during long-term shutdown. The adjusting device may release the compression of each elastic device on the input / output vehicle side such as the second and composite pressurizing devices while the transmission is stopped. Also, each amplifier 98 can be switched quickly by switching the DC motor 65 by operating the supply voltage or pulse amount only when switching between the two operating devices, and switching the function by supplying an instantaneous speed command.

更に本例では、出力トルクを入力及び出力操作器9、8の間接又は直接加圧制御で果す場合を持つが、各弾性体32,42の劣化した時にも高精度の所望摩擦力を出力車2で補償する為圧力検出器94がトルクの算出に使用される。出力車2が基準車機能で働く時でも弾性力供給しても良くクサビ摩擦力は同検出器で常時感知できるので、当然サーボ制御させても良い。摩擦力の低下時のトルク補償制御は、予め弾性体31の劣化の検出値からトルクを知りCPU95とメモリ97aとで定めた摩擦力に適するように入力又は出力操作器9、8にサーボ制御すれば良く、これを更に開ループ乃至閉ループ制御を施すことによって所定摩擦力供給での可変トルク制御を任意に利用する事が達成できる。出力回転数を入力又は出力操作器9、8の間接又は直接位置決め制御で行う際回転数検出器93を用いた時も同様である。   Further, in this example, the output torque may be achieved by indirect or direct pressurization control of the input and output operation devices 9 and 8, but even when the elastic bodies 32 and 42 are deteriorated, a high-precision desired friction force is output. 2 is used to calculate torque. Even when the output vehicle 2 works as a reference vehicle function, an elastic force may be supplied, and the wedge frictional force can always be detected by the same detector, so that the servo control may naturally be performed. In the torque compensation control when the frictional force is reduced, the torque is obtained from the detection value of the deterioration of the elastic body 31 in advance, and the input or output operating devices 9 and 8 are servo-controlled so as to be suitable for the frictional force determined by the CPU 95 and the memory 97a. The variable torque control with a predetermined frictional force supply can be arbitrarily used by performing open loop or closed loop control. The same applies to the case where the rotation speed detector 93 is used when the output rotation speed is controlled by indirect or direct positioning control of the input or output operation devices 9 and 8.

本例の効用は、両車1,2のベルトプーリ間の接触半径又は面積が減少時は高圧の弾性力の常時供給を維持し続けるので加圧不足に因る滑りを解消し、接触半径又は面積が増大時は変速動作時以外には弾性力を全く印加しないか又は僅かに可変制御した弾性力Psを加えるだけなので摩擦係数変動や摩擦力過剰の不安定化を招く事が無く、必要以上の外部加圧に因るベルトの巻込み現象に伴う伝動不良が解消する。故に本明細書及び請求項で「実質的な非加圧」とは摩擦伝動に悪影響の無い範囲内で積極的に弾性力を可変制御しても良い事を意味する。その結果図7の通り二つの効率特性の各最高効率域間の中間域で大速比域での第一伝動装置Aと小速比域での第二伝動装置Bとを両最高効率域間の中間域で単に安定連結するだけで無く両変速領域を安定のまま大幅に拡大し広帯域化ができる事を示し、所望摩擦力の安定維持が確立する為に高速度の変速応答性を果しかつ低速域及び高速域の該変速領域の両端域でも高効率伝動を果す。然も最大の利点はベルト巻込み現象が解消する為従来周知の押込型ベルトだけで無く引張型ベルトを、カム機構等の調整装置を全く付さずに適用できる点に有る。尚各操作器の機能切換位置は必ずしも速比ε=1に制約されず任意に変更可能である。 The effect of this example is that when the contact radius or area between the belt pulleys of both cars 1 and 2 is reduced, the continuous supply of high-pressure elastic force is maintained, so slipping due to insufficient pressurization is eliminated, and the contact radius or When the area increases, the elastic force is not applied at all except during the speed change operation, or the elastic force Ps that is slightly variably controlled is applied. The transmission failure due to the belt winding phenomenon due to the external pressurization of the belt is eliminated. Therefore, in the present specification and claims, “substantially non-pressurized” means that the elastic force may be positively variably controlled within a range that does not adversely affect the frictional transmission. As a result, as shown in FIG. 7, the first transmission device A in the high speed ratio region and the second transmission device B in the small speed ratio region between the two maximum efficiency regions in the middle region between the two maximum efficiency regions. In addition to a stable connection in the middle range, it has been shown that both shift regions can be greatly expanded while remaining stable, and a wider band can be achieved. In addition, high-efficiency transmission is achieved at both ends of the low-speed range and the high-speed range. However, the greatest advantage is that not only the conventionally known push-type belt but also a tension-type belt can be applied without any adjusting device such as a cam mechanism because the belt winding phenomenon is eliminated. The function switching position of each operating device is not necessarily limited to the speed ratio ε = 1 and can be arbitrarily changed.

図8及び図9は第2実施例可変伝動機を示す。第2実施例が第1実施例との相違点は入力操作器9の構成のみにあり実質的な第一及び第二伝動装置A,B
の機能切換による可変トルク制御及び可変径位置決め制御動作は全く同一である。そこで同一又は類似機能の部材には第1実施例と同じ参照番号を付し相違点を述べる。構造上の相違点は、入力操作器9が出力操作器8と同様に単一の圧縮装置14と複合装置30の直列連結で複合加圧装置50′の入力加圧装置11を形成した点である。複合装置30は第二入力加圧装置51の弾性装置31と第一入力加圧装置11の当接装置35とを予め並列に圧縮組付してある。本例では摺動装置13の摺動具17と、弾性装置31の摺動体33と、更に当接装置35の摺動材37が一体共用化して複合装置20に相異し圧縮状態で両端閉止した円環鍋型収納枠を成す。該室内に複数皿バネの弾性体32を収め摺動体34を兼用する摺動材36及び37とで弾性体32を圧縮収納してある。図6A,6Bの各摩擦力特性の実線で示す通り入力弾性体32は高加圧域特性Ps1を出力弾性体42は低加圧域特性Ps0を夫々担うので、第1実施例と同様に通常は前者が後者より大きい弾性圧縮圧の皿バネが選定されるがベルトプーリ間摩擦係数によっても変化する。摺動材37は可動材37aと可動材37bとの間でネジ39が施され当接装置35の当接又は解除状態の動作点を可調整にしてある。当接装置45も同様に構成しても良い。
8 and 9 show a second embodiment variable transmission. The second embodiment differs from the first embodiment only in the configuration of the input operation device 9 and is substantially the first and second transmission devices A and B.
The variable torque control and the variable diameter positioning control operation by the function switching are completely the same. Therefore, members having the same or similar functions are denoted by the same reference numerals as in the first embodiment, and the differences are described. The structural difference is that the input operating device 9 forms the input pressurizing device 11 of the composite pressurizing device 50 ′ by connecting the single compressing device 14 and the composite device 30 in series like the output operating device 8. is there. In the composite device 30, the elastic device 31 of the second input pressurizing device 51 and the contact device 35 of the first input pressurizing device 11 are preliminarily compressed and assembled in parallel. In this example, the sliding tool 17 of the sliding device 13, the sliding body 33 of the elastic device 31, and the sliding material 37 of the abutment device 35 are integrated and shared, and unlike the composite device 20, both ends are closed in a compressed state. It forms a circular pan-shaped storage frame. The elastic body 32 is compressed and accommodated with sliding members 36 and 37 that also serve as the sliding body 34. As shown by the solid lines of the frictional force characteristics in FIGS. 6A and 6B, the input elastic body 32 is responsible for the high pressurization area characteristic Ps1 and the output elastic body 42 is responsible for the low pressurization area characteristic Ps0. In the case of the former, a disc spring having an elastic compression pressure larger than that of the latter is selected, but it also varies depending on the friction coefficient between belt pulleys. The sliding member 37 is provided with a screw 39 between the movable member 37a and the movable member 37b, so that the operating point of the contact or release state of the contact device 35 can be adjusted. The contact device 45 may be configured in the same manner.

複合装置30と20の相違点は弾性体の圧縮動作方向が互に逆である。複合装置30が予め圧縮収納した弾性体閉止型だが同装置20では開放型である。複合加圧装置は二摺動材の一方を型枠摺動体に又他方を弾性体と一方摺動材間に摺動可能に配し予め最小圧縮圧Ps1で封じた閉止型でなり入力操作器に配置し、又は二摺動材の一方を型枠摺動体で又他方を本体で夫々共用し両摺動材の当接時に弾性体の最大圧縮圧Ps0を供給する開放型でなり出力操作器に配置する。動作上も図6A,6B と同様に変速機10が第一伝動装置Aで作動中は操作器8が加圧力でベルト3を位置決め制御する為、当接装置35では図8の間隙38が生じ弾性体32が有効に働く。然し第二伝動装置Bに移ると、操作器8が弾性力の可変加圧制御域に入り同時に当接装置35も間隙38は消失し操作器9が図9の当接動作状態に移るので、小速比域では実質的に弾性体32の機能は無効になり、入力車1が基準車機能として作動する。尚ベルト3は無端帯体3aと多数ブロック3bとの押込型で示す。   The difference between the composite devices 30 and 20 is that the compression direction of the elastic body is opposite to each other. The composite device 30 is an elastic body closed type compressed and stored in advance, but the device 20 is an open type. The composite pressure device is a closed type in which one of the two sliding members is slidable between the mold sliding member and the other is slidable between the elastic member and the one sliding member, and is sealed in advance with the minimum compression pressure Ps1. Or an open type actuator that supplies the maximum compression pressure Ps0 of the elastic body when one of the two sliding members is shared by the mold sliding body and the other is shared by the main body and the sliding members are in contact with each other. To place. 6A and 6B, since the operating device 8 controls the positioning of the belt 3 with the applied pressure while the transmission 10 is operating with the first transmission device A, the contact device 35 generates the gap 38 in FIG. The elastic body 32 works effectively. However, when moving to the second transmission device B, the operating device 8 enters the variable pressure control area of the elastic force, and at the same time the contact device 35 disappears the gap 38 and the operating device 9 moves to the contact operation state of FIG. In the small speed ratio range, the function of the elastic body 32 is substantially invalidated, and the input vehicle 1 operates as a reference vehicle function. The belt 3 is shown as a push-in type with an endless belt 3a and a large number of blocks 3b.

本例の効用は第1実施例と略同様だが更に小型軽量化が果せる。然し複合装置30が閉止型の為変速機の停止中に伝動部材の劣化防止策用の弾性体32を除圧操作できないが弾性体32に圧縮圧に経年変化が生じても出力トルク制御に圧力検出器94を使う為CPU95とメモリ97cが出力車2での所定摩擦力を常時調節するので弾性力の劣化減少分は入力操作器9の操作量を増す補償操作で障害を克服できる。検出器無しでも少ない劣化の弾性材を使用して長期伝動に耐えさせ又はネジ39で再調整すれば良い。   The utility of this example is substantially the same as that of the first embodiment, but further reduction in size and weight can be achieved. However, since the composite device 30 is closed, the elastic body 32 for preventing the deterioration of the transmission member cannot be depressurized while the transmission is stopped. However, even if the compression pressure of the elastic body 32 changes over time, the output torque is controlled. Since the CPU 95 and the memory 97c constantly adjust the predetermined frictional force in the output wheel 2 because the detector 94 is used, the obstacle can be overcome by the compensation operation for increasing the operation amount of the input operation unit 9 for the decrease in the elastic force. Even without a detector, an elastic material with little deterioration may be used to withstand long-term transmission or readjustment with the screw 39 may be performed.

図10及び11は、本発明の共通ベース思想を示す第3実施例であり、両操作器とも常時機能切換せずに第一伝達装置Aを構成する可変伝動機の夫々入力車及び出力車断面図である。本例では変速領域の全域で、入力操作器9はトルク指令で常時弾性力供給する可変加圧制御によるトルク制御の追従車機能を又出力操作器8は変速時の速比指令で加圧力供給し定常時に無加圧の可変位置決め制御による速比制御の基準車機能を夫々果す。ベルトプーリ間で大摩擦力を得る為に伝達車に巨大外部圧を施す方法は摩擦係数が安定せず摩擦力過剰による伝動不能に到る。特にこの傾向は入力車1よりも出力車2で生じ易い。その理由は出力回転数Nの方がより小さくなり逆に出力トルクTはその分増大する事を要するからである。本例では制御指令供給時は加圧力供給してもそれ以外の定速比運転時は出力車2のV溝に対し加圧装置による外部圧を全く与えず単に定速比プーリのV溝と同等の構成である。所定出力トルクの確保は入力操作器9で追従車機能する入力車1の弾性摩擦力にて与えたベルト張力のみで決定させた思想である。図中のチェーンベルト3の様にプーリ内巻込現象が生じ易い引張型ベルトでも又生じ難い押込型ベルトでもその型式に因らず、大速比域での安定伝動と高効率伝動を果す。 FIGS. 10 and 11 show a third embodiment showing the common base concept of the present invention, in which both actuators have their input vehicle and output vehicle cross sections of the variable transmission constituting the first transmission device A without constantly switching functions. FIG. In this example, the input operating device 9 has a function of following the torque control by variable pressurization control that always supplies elastic force with a torque command, and the output operating device 8 supplies pressure with a speed ratio command during shifting. In the steady state, the vehicle functions as a reference vehicle for speed ratio control by variable positioning control without pressure. In order to obtain a large frictional force between the belt pulleys, the method of applying a huge external pressure to the transmission wheel does not stabilize the friction coefficient, resulting in inability to transmit due to excessive frictional force. In particular, this tendency is more likely to occur in the output vehicle 2 than in the input vehicle 1. The reason is that the output rotational speed N 0 becomes smaller and, conversely, the output torque T 0 needs to increase accordingly. In this example, even if the pressure is supplied when the control command is supplied, the external pressure by the pressurizing device is not applied to the V groove of the output wheel 2 at all during the constant speed ratio operation. The configuration is equivalent. Ensuring the predetermined output torque is a concept that is determined only by the belt tension given by the elastic frictional force of the input wheel 1 that functions as a following vehicle by the input operation unit 9. Regardless of the type of belt, such as the chain belt 3 shown in the figure, which is likely to cause an in-pulley pull-in belt or a push-in belt that is unlikely to occur, stable transmission and high-efficiency transmission in a large speed ratio range are achieved.

構造的には入力操作器9は、図9の操作器9から当接装置35を除去して弾性装置31を圧縮装置14が直列圧縮する弾性加圧装置51と駆動源60bとでなる。出力操作器8は、図1,3又は図8の操作器8から複合装置20を除去し、摺動装置23と付勢装置22を直結した圧縮装置24にて変速動作時だけ加圧力を施し出力車2を可変径位置決め制御の基準車機能を果す構造である。他の構造は第1,第2実施例と同一なので同一の参照符号を付して詳細な説明を省く。尚圧力検出器94の検出端101はホイール29のスラスト軸受4bでの圧力を感知する為摩擦力の値は可動車2a、圧力伝達装置80を経て圧縮装置24と本体10d間で常時感知でき他実施例と同様調節装置90にて操作器9にサーボ制御を施しそれを更に開又は閉ループ制御を施す事で適正な摩擦力管理による任意のトルク制御が達成できる。   Structurally, the input operation device 9 includes an elastic pressure device 51 and a drive source 60b in which the compression device 14 serially compresses the elastic device 31 by removing the contact device 35 from the operation device 9 of FIG. The output operation device 8 removes the composite device 20 from the operation device 8 of FIG. 1, 3 or 8 and applies pressure only during the shifting operation by the compression device 24 in which the sliding device 23 and the urging device 22 are directly connected. The output wheel 2 has a structure that fulfills the reference vehicle function of variable diameter positioning control. Since other structures are the same as those of the first and second embodiments, the same reference numerals are assigned and detailed description is omitted. Since the detection end 101 of the pressure detector 94 senses the pressure at the thrust bearing 4b of the wheel 29, the value of the friction force can always be sensed between the compressor 24 and the main body 10d via the movable wheel 2a and the pressure transmission device 80. Similar to the embodiment, servo control is performed on the controller 9 by the adjusting device 90, and further open or closed loop control is performed, whereby arbitrary torque control by appropriate frictional force management can be achieved.

上述実施例で入出力車のいずれか一方が弾性力による追従車機能を持つ理由はベルトの周長伸びや厚味摩粍等の誤差要因の吸収能力を弾性力自体に持たせて常時安定伝動の維持を果させる為である。従って入力操作器9を図10の構造で又出力操作器8を図3の構造で夫々組立てた可変伝動機であっても又入力弾性体32が出力弾性体42よりバネ圧を大きく選定し実質的に加圧力として機能する時は安定伝動を果す。そこで本発明では入力及び出力車に同時に弾性力供給して両車で摩擦力を平衡させるトルク付与を行ってもよいが同時に加圧力供給状態にすべきでは無い。従って、両操作器8、9の一方を個別加圧装置又は複合加圧装置で他方を圧縮装置が弾性装置を直列圧縮する弾性加圧装置として両操作器でトルク用に可変加圧制御しても良いので負荷に応じた可変トルク制御が可能である。この時各加圧装置が第3実施例等の様に当接装置等の切換器を持つ必要は無く、更に入力車1に図10の操作器9を出力車に可変径車又は図示しない定速比プーリをベルト接触半径一定で施しても出力トルクを入力操作器で調節する本発明思想は達成できると共に本発明の範囲に含むのは当然である。
従って本発明は「特許請求の範囲」から当業者が容易に創作しうる範囲内に於いて各種の変更、変形を加えても該範囲に包含される。
The reason why either of the input / output vehicles in the above-mentioned embodiment has the function of following the vehicle by the elastic force is to provide the elastic force itself with the ability to absorb error factors such as the belt circumference extension and thick miso so that it is always stable transmission This is to make it possible to maintain. Therefore, even if the input operation device 9 is a variable transmission assembled with the structure of FIG. 10 and the output operation device 8 with the structure of FIG. 3, the input elastic body 32 is selected to have a spring pressure larger than that of the output elastic body 42 and is substantially selected. When it functions as an applied pressure, it performs stable transmission. Therefore, in the present invention, it is possible to apply an elastic force to the input and output vehicles at the same time and apply torque to balance the frictional force between the two vehicles, but the pressure supply state should not be set at the same time. Therefore, one of the operating devices 8 and 9 is individually pressurized or combined pressurizing device and the other is an elastic pressurizing device in which the compressing device compresses the elastic device in series. Therefore, variable torque control according to the load is possible. At this time, it is not necessary for each pressurizing device to have a switching device such as an abutting device as in the third embodiment, etc. Further, the operating device 9 of FIG. Even if the speed ratio pulley is applied at a constant belt contact radius, the idea of the present invention in which the output torque is adjusted by the input operating device can be achieved and is naturally included in the scope of the present invention.
Therefore, the present invention includes various changes and modifications within the scope that can be easily created by those skilled in the art from the claims.

1,2 プーリ
3 ベルト
8,9 操作器
10 可変伝動機又は本体
11,21,51 加圧装置
12,22,52 付勢装置又はウォーム伝達機
13,23,53 摺動装置
14,24,54 圧縮装置
15,25,55 押圧装置
30,20 複合装置
31,41 弾性装置
35,45 当接装置又は切換器
40 複合加圧装置
50 個別加圧装置
60 駆動源
70,80 圧力伝達装置
90 調節装置
92,93 第二検出器又は回転数検出器
94 第一検出器又は圧力検出器
1, 2 Pulley 3 Belt 8, 9 Operator 10 Variable transmission or main body 11, 21, 51 Pressure device 12, 22, 52 Biasing device or worm transmission 13, 23, 53 Sliding device 14, 24, 54 Compression device 15, 25, 55 Press device 30, 20 Composite device 31, 41 Elastic device 35, 45 Contact device or switching device 40 Compound press device 50 Individual press device 60 Drive source 70, 80 Pressure transmission device 90 Adjustment device 92, 93 Second detector or rotational speed detector 94 First detector or pressure detector

Claims (10)

ベルトを巻掛し可変径車でなる入力及び出力車と、指令に応じ上記入力又は出力車の一方に加圧力を施す入力及び出力加圧装置とで摩擦伝動制御する可変伝動機において、
第一圧縮装置が該加圧力で速比制御する第一加圧装置と、第二圧縮装置が弾性装置を直列圧縮で得た弾性力でトルク制御する第二加圧装置と、上記第一及び第二圧縮装置に連結する第一及び第二駆動源を持つ上記入力及び出力加圧装置と、更に上記第一及び第二駆動源に夫々速比及びトルク指令を識別供給し速比又はトルクを単独操作可能に個別にサーボ制御し低速域又は高速域の出力トルクを誤差補償する調節装置とを有する可変伝動機。
In a variable transmission that performs friction transmission control with an input and output vehicle that is wound around a belt and is made of a variable-diameter vehicle, and an input and output pressurization device that applies pressure to one of the input or output vehicle according to a command,
A first pressure device in which a first compression device performs speed ratio control with the applied pressure; a second pressure device in which a second compression device performs torque control with an elastic force obtained by serial compression of the elastic device; The input and output pressurizing devices having first and second drive sources connected to the second compression device, and further, the speed ratio and torque command are identified and supplied to the first and second drive sources, respectively. A variable transmission having an adjustment device that individually controls servo so that it can be operated independently and compensates for an error in the output torque in a low speed range or a high speed range.
ベルトを巻掛し可変径車で成る入力及び出力車と、駆動源を経た指令で入力又は出力車に加圧力を施す入力又は出力加圧装置とを持つ可変伝動機において、
上記入力及び出力車に夫々弾性力を施す入力及び出力弾性装置と、第一圧縮装置が該加圧力で可変速比制御する第一加圧装置と、第二圧縮装置が上記両弾性装置の一方を直列加圧で得た圧縮弾性力で可変トルク制御する第二加圧装置と、上記第一及び第二圧縮装置に夫々連結する第一及び第二駆動源と、上記入力又は出力車に該加圧力と該圧縮弾性力を施す上記第一及び第二加圧装置を並設する上記入力又は出力加圧装置と、更に上記第一及び第二駆動源に夫々速比及びトルク指令を識別供給する調節装置とを有する可変伝動機。
In a variable transmission having an input and output vehicle that is wound around a belt and made of a variable diameter vehicle, and an input or output pressurizing device that applies pressure to the input or output vehicle by a command through a drive source,
An input and output elastic device that applies an elastic force to the input and output wheels, a first pressurizing device that the first compression device performs variable speed ratio control using the applied pressure, and a second compression device that is one of the two elastic devices. A second pressurizing device that performs variable torque control with a compression elastic force obtained by serial pressurization, a first and second drive source that are connected to the first and second compression devices, respectively, and the input or output vehicle. The input or output pressurizing device in which the first and second pressurizing devices for applying pressure and the compression elastic force are arranged in parallel, and the speed ratio and the torque command are separately supplied to the first and second drive sources, respectively. A variable transmission having an adjusting device.
ベルトを巻掛し可変径車で成る入力及び出力車と、駆動源を経た指令で入力又は出力車に加圧力を施す入力又は出力加圧装置とを持つ可変伝動機において、
上記入力及び出力車に夫々弾性力を施す入力及び出力弾性装置と、第一圧縮装置が該加圧力で可変速比制御する第一加圧装置と、第二圧縮装置が上記両弾性装置の一方を直列加圧で得た圧縮弾性力で可変トルク制御する第二加圧装置と、上記第一及び第二圧縮装置に夫々連結する第一及び第二駆動源と、上記入力及び出力車の一方に該加圧力を又他方に該圧縮弾性力を施した上記入力及び出力加圧装置と、更に上記第一及び第二駆動源に夫々速比及びトルク指令を識別供給しサーボ制御する調節装置とを有する可変伝動機。
In a variable transmission having an input and output vehicle that is wound around a belt and made of a variable diameter vehicle, and an input or output pressurizing device that applies pressure to the input or output vehicle by a command through a drive source,
An input and output elastic device that applies an elastic force to the input and output wheels, a first pressurizing device that the first compression device performs variable speed ratio control using the applied pressure, and a second compression device that is one of the two elastic devices. A second pressurizing device that performs variable torque control with a compression elastic force obtained by serial pressurization, a first and second drive source coupled to the first and second compression devices, respectively, and one of the input and output vehicles The input and output pressurizing devices having the applied pressure applied to the other and the compression elastic force applied to the other, and the adjusting device for identifying and supplying the speed ratio and torque command to the first and second drive sources, respectively, and servo-controlling them. Variable transmission with
請求項1、2又は3において、上記調節装置は、上記伝動機運転停止時に休止中高加圧状態にある上記弾性装置の高加圧を強制解除状態に保ち起動時に加圧する除加圧指令を、上記弾性装置を圧縮する上記各加圧装置の対応駆動源に施す可変伝動機。 In claim 1, 2, or 3, the adjusting device is a depressurization command to pressurize at the time of start-up while keeping the high pressurization of the elastic device in the high pressurization state during suspension of the transmission operation in the forced release state, A variable transmission that is applied to a corresponding drive source of each of the pressure devices that compresses the elastic device. 入力及び出力軸に夫々施す入力及び出力車と、該両車間に施すベルトと、可動車を持つ上記入力又は出力車と、該可動車に弾性力を施す弾性装置とを持つ可変伝動機において、
圧縮装置が上記弾性装置を直列重畳して生じた圧縮弾性力の供給で上記可動車にトルク制御を施す加圧装置は、調節装置から駆動源を経て上記圧縮装置に上記伝動機運転時に独立してトルク又は制御指令或いはトルク補償指令をかつ停止時に休止中は上記弾性装置の高加圧状態を解除状態に保ち起動時に加圧する除加圧指令を施される可変伝動機。
In a variable transmission having an input and output vehicle applied to the input and output shafts, a belt applied between the two vehicles, the input or output vehicle having a movable vehicle, and an elastic device for applying an elastic force to the movable vehicle,
A pressurizing device that performs torque control on the movable vehicle by supplying a compressive elastic force generated by superimposing the elastic device in series with a compression device is independent of the compression device from the adjusting device via a drive source during the transmission operation. A variable transmission that receives a torque or control command or a torque compensation command and is given a depressurization command to keep the high pressurization state of the elastic device in a released state and pressurize at the time of start-up during a stop.
入力及び出力軸に夫々施す入力及び出力車と該両車間に施すベルトとを駆動源を経て指令に応じ夫々入力及び出力加圧装置で可変の摩擦伝動制御した可変伝動機において、
上記入力及び出力車の一方に一方圧縮装置が一方弾性装置を直列圧縮し得た弾性力でトルク制御を施す一方加圧装置と、他方に第一圧縮装置の加圧力で速比制御する第一加圧装置及び第二圧縮装置が他方弾性装置を直列圧縮し得た弾性力でトルク制御する第二加圧装置を並設した他方加圧装置と、更に上記伝動機運転時に上記第一圧縮装置に連結する第一駆動源へ速比指令を上記一方及び第二圧縮装置に夫々連結する一方及び第二駆動源へ個別にトルク指令をかつ停止時に休止中は上記弾性装置の高加圧状態を解除状態に保ち起動時に加圧する除加圧指令を施す調節装置とを有する可変伝動機。
In the variable transmission in which the input and output vehicles applied to the input and output shafts and the belt applied between the two vehicles are controlled by frictional transmission variable by the input and output pressurization devices according to the commands through the drive source,
One compression device performs torque control with the elastic force obtained by serially compressing one elastic device with one of the input and output vehicles, and the first pressure ratio control with the pressure of the first compression device on the other The other pressurizing device in which the pressurizing device and the second compressing device are arranged side by side with the second pressurizing device that controls the torque by the elastic force obtained by compressing the other elastic device in series, and the first compressing device during the transmission operation A speed ratio command is connected to the first drive source connected to the first and second compression devices, respectively, and a torque command is individually supplied to the one and second drive sources, and the high pressure state of the elastic device is set during the stoppage when stopped. A variable transmission having an adjustment device that issues a depressurization command that keeps the release state and pressurizes when starting.
請求項1、2、3、5又は6において、上記調節装置は、高負荷トルク時又は軽負荷トルク時で変化するトルク負荷に伴い上記入力又は/及び出力車の軸トルクを増減する為上記出力加圧装置に出力摩擦圧の圧力検出器を有する可変伝動機。 7. The control device according to claim 1, wherein the adjusting device increases or decreases the shaft torque of the input or / and output vehicle in accordance with a torque load that changes during a high load torque or a light load torque. A variable transmission having a pressure detector for output friction pressure in a pressurizing device. 請求項1、2、3又は6において、上記入力又は出力加圧装置は、円環状をなす上記一方又は他方弾性装置の内側又は外側に上記第一又は第二圧縮装置の摺動具を互に同芯円状に貫通配置した可変伝動機。   7. The input or output pressurizing device according to claim 1, wherein the input or output pressurizing device is configured such that the sliding tool of the first or second compression device is attached to the inside or the outside of the one or the other elastic device having an annular shape. A variable transmission with concentric circles. 請求項8において、上記入力又は出力加圧装置は、円環状に形成した上記摺動具又は受容器一方又は他方弾性装置の貫通孔内に夫々上記入力又は出力車回転軸を中心とする同軸同芯円状に貫通配置した可変伝動機。   9. The input or output pressurizing device according to claim 8, wherein the input or output pressurizing device is coaxially centered around the input or output wheel rotation axis in a through hole of one or the other elastic device of the sliding tool or the receiver formed in an annular shape. A variable transmission with a core circle. 請求項1、2及び6において、上記第一及び第二加圧装置は、上記第一及び第二圧縮装置の両摺動装置の双方を上記入力又は出力車回転軸と同軸配置しかつ該両摺動装置の少なくとも一方を円環状に形成して該回転軸を貫通配置した可変伝動機。












7. The first and second pressure devices according to claim 1, wherein both the sliding devices of the first and second compression devices are arranged coaxially with the input or output wheel rotation shaft and both A variable transmission in which at least one of the sliding devices is formed in an annular shape and the rotary shaft is disposed therethrough.












JP2011082609A 2011-04-04 2011-04-04 Variable transmission Expired - Lifetime JP5271374B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011082609A JP5271374B2 (en) 2011-04-04 2011-04-04 Variable transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011082609A JP5271374B2 (en) 2011-04-04 2011-04-04 Variable transmission

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000213513A Division JP4785159B2 (en) 2000-06-09 2000-06-09 Variable transmission

Publications (2)

Publication Number Publication Date
JP2011174616A true JP2011174616A (en) 2011-09-08
JP5271374B2 JP5271374B2 (en) 2013-08-21

Family

ID=44687642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011082609A Expired - Lifetime JP5271374B2 (en) 2011-04-04 2011-04-04 Variable transmission

Country Status (1)

Country Link
JP (1) JP5271374B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02180339A (en) * 1988-12-30 1990-07-13 Aisin Aw Co Ltd Belt type continuous transmission
JPH11344090A (en) * 1998-05-31 1999-12-14 Tokyo Jido Kiko Kk Transmission operating device
JP2000088069A (en) * 1998-09-16 2000-03-28 Tokyo Jido Kiko Kk Continuously variable transmission, operating apparatus for continuously variable transmission, and transmitting body
JP2000120818A (en) * 1998-10-07 2000-04-28 Tokyo Jido Kiko Kk Transmission vehicle pressure device and resilient means therefore

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02180339A (en) * 1988-12-30 1990-07-13 Aisin Aw Co Ltd Belt type continuous transmission
JPH11344090A (en) * 1998-05-31 1999-12-14 Tokyo Jido Kiko Kk Transmission operating device
JP2000088069A (en) * 1998-09-16 2000-03-28 Tokyo Jido Kiko Kk Continuously variable transmission, operating apparatus for continuously variable transmission, and transmitting body
JP2000120818A (en) * 1998-10-07 2000-04-28 Tokyo Jido Kiko Kk Transmission vehicle pressure device and resilient means therefore

Also Published As

Publication number Publication date
JP5271374B2 (en) 2013-08-21

Similar Documents

Publication Publication Date Title
JP5630676B2 (en) Variable transmission
JP4785159B2 (en) Variable transmission
US6997832B2 (en) Variable-speed control system for a transmission
JP4478225B2 (en) Transmission vehicle
US6494798B1 (en) Pulley press controlling apparatus using an elastic member for belt transmission
JP5271374B2 (en) Variable transmission
JP5095787B2 (en) Variable transmission
JP4410865B2 (en) Compressor for transmission wheel pressurizing device
JP5312414B2 (en) Variable transmission
JP5764857B2 (en) Variable transmission
JP6065337B2 (en) Belt variable transmission
JP5903725B2 (en) Variable transmission
JP5810363B2 (en) Variable transmission
JP2010281454A5 (en)
JP2010281453A5 (en)
EP1906059B1 (en) Continuously variable transmission
JP2015042905A5 (en)
JP2014132200A5 (en)
JP4221099B2 (en) Shift control device
JP5155956B2 (en) Transmission wheel pressurizing device
JP2000145907A (en) Continuously variable transmission and shift control device for the transmission
JP5252755B2 (en) Variable transmission

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120911

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130510

R150 Certificate of patent or registration of utility model

Ref document number: 5271374

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term